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PARADIGMS AND STRATEGIESFOR SCIENTIFIC COMPUTING ONDISTRIBUTED MEMORY CONCURRENT COMPUTERS 1Ian T. Foster David W. WalkerMathematics and Computer Science Mathematical Sciences SectionArgonne National Laboratory Oak Ridge National LaboratoryArgonne, IL 60439-4844 Oak Ridge, TN 37831-6367ABSTRACTIn this work we examine recent advances in parallel lan-guages and abstractions that have the potential for im-proving the programmability and maintainability of large-scale, parallel, scienti�c applications running on high per-formance architectures and networks. This paper focuseson Fortran M, a set of extensions to Fortran 77 that sup-ports the modular design of message passing programs. Wedescribe the Fortran M implementation of a particle-in-cell(PIC) plasma simulation application and discuss issues inthe optimization of the code. The use of two other method-ologies for parallelizing the PIC application are considered.The �rst is based on the shared object abstraction as em-bodied in the Orca language. The second approach is theSplit-C language. In Fortran M, Orca, and Split-C theability of the programmer to control the granularity ofcommunication is important is designing an e�cient im-plementation.1. INTRODUCTIONDistributed memory concurrent computers would appearto be ideal for large-scale applications with large compu-tational, memory, and/or storage requirements. However,many researchers are deterred from using these machinesby the perception that they are hard to program, and thishas hindered their more widespread use as general-purposecomputational resources. To improve the programmabilityand maintainability of large-scale parallel applications re-quires languages, abstractions, and mechanisms that hidedetails of how an architecture exploits parallelism, in ad-1This work was supported in part by the Applied Math-ematical Sciences Research Program, O�ce of Energy Re-search, U.S. Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy SystemsInc., by the O�ce of Scienti�c Computing of the U.S. De-partment of Energy under contract W-31-109-Eng-38, andby the National Science Foundation's Center for Researchin Parallel Computation under contract CCR-8809615.

dition to the development of tools to aid in the paralleliza-tion of code, and reusable software. In recent years, manypotentially useful parallel languages and abstractions havebeen proposed, but these have generally been ignored bymainstream computational scientists, who have preferredto use sequential languages, augmented by explicit datadistribution and message passing routines. One of the rea-sons that some good ideas have been overlooked has beenthe poor performance of prototypes | in general, compu-tational scientists are not prepared to sacri�ce much per-formance in return for improving ease of programming.This paper describes the early stages of an ongoingproject to investigate how well di�erent programmingmethodologies are able to exploit the power of high per-formance architectures and networks. The aim is to studyand evaluate di�erent approaches for a small number of ap-plications. For each approach and application, factors suchas performance, ease of programming, portability, modu-larity, and maintainability are assessed and where appro-priate, quanti�ed. The applications to be considered arecharacterized by di�erent types of interprocessor commu-nication, ranging from very regular to completely irregular.Three di�erent methodologies for parallelizing scienti�capplications will be considered in this paper, and their usein implementing a particle-in-cell (PIC) algorithm for sim-ulating plasmas will be discussed. The �rst is Fortran M,a set of extensions to Fortran 77 that supports the mod-ular design of message passing programs, and is the mainfocus of the paper. The other approaches use the Orcalanguage, which is based on the shared object abstraction,and the Split-C language, a set of parallel extensions to C.In this paper we do not attempt to give a detailed descrip-tion of Fortran M, Orca, or Split-C. Instead, the readeris referred to more complete documentation (Foster andChandy 1992, Foster et al. 1993, Bal et al. 1992, Culler etal. 1993). The PIC algorithm has been chosen for studybecause it involves gather and scatter-with-add operationsthat result in interesting communication and load balancetradeo�s.Section 2 gives an overview of some of the approaches



to exploiting parallelism on high performance architecturesand networks. In Section 3 a brief description of the PIC al-gorithm is given. The implementation of the PIC algorithmusing Fortran M is discussed in Section 4. Two implemen-tations, which di�er in how the gather phase is performed,are described. In Section 5, our future plans for optimizingthe Fortran M PIC code and for developing shared objectand Split-C versions of the code are described. Section 6presents some concluding remarks.2. PROGRAMMING METHODOLOGIESThe most common approach to programming distributedmemory machines is to use a sequential language and a li-brary of message passing routines. Such libraries providefor point-to-point communication between processes, andusually some collective communication, such as broadcastand reduction routines. Examples include native messagepassing systems such as NX/2 on the Intel family of paral-lel supercomputers, commercially available products suchas Express, and portability interfaces of varying degreesof sophistication such as PICL, p4, PARMACS, PVM andZipcode. The recently developed MPI message passing in-terface in intended to become the standard for explicit mes-sage passing on distributed memory systems (MPI 1993,Walker 1994). Many of these message passing systems aredescribed in a recent journal publication (Parallel Comput-ing 1994). We shall refer to this approach as \sequentiallanguage plus explicit message passing" (SL+EMP).A major reason for the popularity of the SL+EMP ap-proach has been the tradeo� between performance andease of programming. Although researchers would like dis-tributed memory machines to be easy to program, for manyat the forefront of computational science performance isthe preeminent requirement. For a large class of applica-tions SL+EMP results in high performance, scalable ap-plications. However, as software technologies advance, weexpect the balance of the tradeo� between performanceand programmability to change. Indeed, by allowing pre-processors, compilers, and/or runtime systems to scheduleresources and perform necessary data movement, we ex-pect alternatives to the SL+EMP approach to become in-creasingly attractive and to rival or exceed the SL+EMPapproach in performance. The work described here is di-rected at investigating and furthering this trend.Other approaches to parallel programming have beenreviewed by Bal (Bal 1990). Coordination languages rep-resent an important alternative to the SL+EMP approach.These are specialized languages for specifying concurrency,communication, and synchronization, and examples in-clude Occam, Strand, PCN, and Fortran M. Fortran Mprovides a set of extensions to Fortran 77 to support mod-ular message passing programs. The input and output ofdi�erent modules (or processes) are connected by typedchannels. Message passing is performed over channels bymeans of nonblocking send and receive routines. A pro-

cess encapsulates common data, subprocesses, and internalcommunication channels. The use of Fortran M is illus-trated for the PIC algorithm in Section 4.Another type of alternative approach involves softwaresupport for shared memory, such as the shared virtualmemory (Li and Hudak 1989) and shared object (Bal etal. 1992) paradigms. Orca provides quite general supportfor shared objects, while MetaMP (Otto 1991, Otto 1994)provides for globally indexed arrays and certain types ofweakly coherent shared data objects. The use of Orca inthe PIC algorithm is outlined in Section 5.Other important alternatives to the SL+EMP approachare not addressed in this paper, but will be studied in thefuture. ParAl, Sisal, and ID are implicit parallel lan-guages employing functional parallelism. Sequential lan-guages with data parallel extensions, such as Fortran-D,Vienna Fortran, and High Performance Fortran, make useof directives for specifying data distribution, and compu-tation is performed using the \owner computes" rule.3. PARTICLE-IN-CELL APPLICATIONThe particle-in-cell (PIC) method is commonly used forsimulating the evolution of plasmas (Birdsall and Langdon1985, Hockney and Eastwood 1988). The charged particlesmaking up a plasma move under the inuence of the elec-tromagnetic �elds that they generate, together with anyexternal �elds that may be present. Thus, in simulatingthe evolution of plasmas we seek to model the mutual in-teraction of all particles and �elds in a self-consistent man-ner. In PIC simulations the particles are represented by aset of \superparticles" each of which models the action of alarge number of physical particles, although for clarity wewill drop the \super-" pre�x. The dynamics of the systemis followed by integrating the equation of motion of each ofthe particles in a series of discrete time steps. The particlemotion is driven by the Lorentz force,dudt = qmc �Ep + 1u�Bp� ; (1)where q and m are the particle charge and rest mass, re-spectively, and c is the velocity of light. mu is the particle'srelativistic momentum divided by c (i.e., u = v=c), wherev is the velocity and 2 = 1+ u2. Ep and Bp are the elec-tric and magnetic �elds at the particle's position. These�elds are found on the grid by solving Maxwell's equationsat each time step on a rectangular grid,1c @B@t = �CurlE1c @E@t = CurlB� j; (2)where j is the current density due to the particles dividedby c. The particle dynamics and the evolution of the elec-tromagnetic �eld are coupled through the current densitygenerated by the motion of the particles, and the Lorentzforce arising from the electromagnetic �eld.



Each particle lies in a cell of the grid, and this cell will bereferred to as the particle's home cell. To solve Maxwell'sequations the current density, j, which depends on parti-cle charge and velocity, must be known at each grid pointand is evaluated by having each particle contribute to thecurrent density at the grid points lying at the corners ofits home cell. Maxwell's equations can then be solved togive the electromagnetic �elds on the grid at the next timestep. Next the equation of motion (Eq. 1) is advanced onetime step. The electric and magnetic �elds at each parti-cles are found by interpolating the values at the vertices ofthe particle's home cell. Thus, Ep and Bp are a weightedsum of the values of the E and B at the corners of thehome cell, and once these are determined the equation ofmotion for each particle can be advanced. Thus, the PICalgorithm proceeds in a series of time steps each made upof four phases:� The scatter phase in which particles scatter contri-butions to the current density to the corners of theirhome cells. This is a scatter-with-add operation.� The �eld solve phase in which Maxwell's equationsare advanced one time step. In the explicit schemeused the new values at each grid point depend onlyon values at neighboring grid points.� The gather phase in which the particles use the elec-tromagnetic �eld values at the corners of their homecells to evaluate the �elds at their positions.� The push phase in which the equation of motion ofeach particle is advanced one time step. The updatefor each particle is independent of all others.There are two basic approaches to parallelizing PIC ap-plications (Walker 1990, Walker 1991). In the �rst, boththe computational grid and the particles are spatially de-composed into processes, and only data lying along processboundaries needs to be moved between processes. Goodload balance is maintained if particles are distributed su�-ciently homogeneously, but for heterogeneous particle dis-tributions dynamic load balancing may be necessary. Inthe second approach, a regular spatial decomposition isapplied to the grid, but a nonspatial decomposition is ap-plied to the particles. The particles are decomposed intoapproximately equally-sized groups with no regard for theirspatial location. Thus, the particle and grid decompo-sitions are completely decoupled. This approach ensuresgood load balance, but the scatter and gather phases nowrequire nonlocal communication. In this work the secondtype of decomposition will be used.4. FORTRAN M IMPLEMENTATIONWe have developed two Fortran M implementations ofthe PIC algorithm that di�er primarily in how the gatherphase is performed. In both cases four fundamental pro-cesses are created. These are the particle, scatter, grid,and gather processes. Only the particle and grid processes

actually perform computations; the scatter and gather pro-cesses are for communicating data between the particlesand the computational grid. The particle process spawnsa speci�ed number of child processes, referred to as sub-group processes, each of which handles a given set of parti-cles. Similarly, the grid process spawns subgrid processes,each of which handles a rectangular 3D block of grid points.In the �rst implementation the gather phase is per-formed by having the grid points scatter electromagnetic�eld information to particles in the surrounding cells. Thisrequires each subgrid process to maintain lists that enableit to determine to which particle each of its grid pointsmust send electromagnetic �eld information. The maindisadvantage of this approach is that it introduces memoryimbalance, since the list data structure in each subgrid pro-cess must be large enough to hold the maximum number ofparticles that interact with any given subgrid in the courseof the simulation. In the alternative implementation thegather phase is performed by having each particle requestelectromagnetic �eld information from the grid points withwhich it interacts. This involves a two-phase communi-cation procedure in which a subgroup process sends outa request for data, and subsequently receives that data.This approach avoids the memory imbalance problem, butresults in additional communication overhead.4.1. Implementation 1In Fortran M, processes may communicate by means oftyped, uni-directional channels. A channel connects theoutport of the source process to the inport of the destina-tion process. In both implementations, the main programestablishes channels for the communication of data in thescatter, gather, and �eld solve phases and creates the par-ticle, scatter, grid, and gather processes. In the �rst imple-mentation, one channel is created to connect each subgroupprocess to the scatter process, and one channel is created toconnect the scatter process to each subgrid process. Sim-ilarly, a set of channels is created to connect each subgridprocess to the gather process, and another set is createdto connect the gather process to each subgroup process.Thus, if there are N subgroup processes and M subgridprocesses, the high-level structure of the �rst implementa-tion is as shown in Fig. 1.In the �rst implementation, each subgroup processpasses current density data through a channel to the scat-ter process. The scatter process then routes the data tothe correct subgrid process where it is accumulated at agrid point. In addition to sending the current density con-tribution, the indices of the grid point are also sent. Theseindices are used by the scatter router to direct the contri-bution to the correct subgrid process, and are also usedby the subgrid process to determine at which grid point toaccumulate the contribution. The detailed structure of theprocesses involved in the scatter phase is shown in Fig. 2.Each subgroup process, P, is connected to a router pro-cess, R, internal to the scatter process. When a router
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Figure 2: Schematic representation of processes and chan-nels for Implementation 1 showing internal details of thescatter process. The circles labeled P, R, F, and G repre-sent the subgroup, router, forward, and subgrid processes.The squares labeled M are mergers which the router pro-cesses use to route information. The arrowed lines repre-sent channels. In this example, there are N = 4 subgroupprocesses, and M = 3 subgrid processes.cal to each subgroup process. However, the subgrid pro-cesses need to communicate with each other in the �eldsolve phase to exchange information about grid points lyingalong their boundaries. In general, for a three-dimensionalproblem each subgrid process must have six channels toperform these exchanges | one to send, and one to re-ceive, in each coordinate direction.4.2 Implementation 2The second implementation is the same as the �rst, exceptthe gather phase is performed using a two-phase commu-nication protocol. When a subgroup process needs elec-tromagnetic �eld information it passes a request to thegather process, which routes the request to the subgridprocess that has the information. This subgrid processthen sends the information back to the subgroup processthat requested it. The high-level structure of the secondimplementation is shown in Fig. 3.A request for electromagnetic �eld information from asubgroup process is routed to the appropriate subgrid pro-cess using a set a M mergers. This is similar to the schemeused in the scatter phase. However, the gather processmakes use of Fortran M's dynamic channel capabilities tosend the information back to the requesting subgroup pro-cess. Before a router process internal to the gather processsends on a request for information, it �rst sets up a channelto be used to return the information. The outport for thischannel is then sent, along with the grid point coordinates,into the appropriate merger to a forward process. The for-ward process then sends on the grid point coordinates tothe subgrid process containing the grid point. The subgridprocess sends the electromagnetic �eld information for the
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Figure 4: Schematic representation of processes and chan-nels for Implementation 2 showing internal details of thegather process. The circles labeled P, R, F, and G representthe subgroup, router, forward, and subgrid processes. Thesquares labeled M are mergers which the router processesuse to route information. Channels are shown as dashedlines. Solid arrowed lines are used to show an example ofa particular request and response. Note how the forwardprocess sends the response back directly to the router pro-cess. In this example, there are N = 4 subgroup processes,and M = 3 subgrid processes.corners. In general, the corners of a particular cell all liein the same subgrid process, except for cells on subgridboundaries. Thus, performance could be improved by des-ignating the lower, left, front corner of a cell as the root ver-tex for the cell, and sending current density contributionsfrom each particle to this root vertex. For 3D grids thiswould reduce the frequency of communication by about afactor of 8. The gather phase could be performed in asimilar way, by �rst gathering electromagnetic �eld infor-mation for each cell to the root vertex, and then gatheringit to the particles.A more general approach to increasing the granularityof communication is to bu�er messages in the scatter andgather processes. The idea here is to defer sending dataout of a router process outport until the amount of data tobe sent exceeds a speci�ed threshold. This threshold canbe used to adjust the granularity of communication, andhence to optimize performance.We are also planning to investigate other parallel pro-gramming methodologies to gauge their suitability for PICand other applications. One approach of interest is basedon the shared object abstraction as embodied in the Orcalanguage. Orca is a procedural, type-secure language thatsupports shared objects. In Orca a shared object is aninstance of an abstract data type consisting of a speci�-cation of the operations that can be applied to an object,and a declaration of variables and code for these opera-tions. Shared objects are transparently replicated throughthe machine, and replication, consistency, and object place-ment are managed by the Orca runtime system. The obvi-



ous way to write a PIC application in Orca is to distributethe particles nonspatially, as in our Fortran M implemen-tation, and to divide the grid into shared subgrids. Toclarify the issues that arise, consider the extreme case inwhich there is just a single shared subgrid { namely, theentire grid. Since operations on shared objects are atomic,having just one shared grid essentially serializes the scat-ter phase. Memory constraints may also preclude sharingthe entire grid. Increasing the number of shared subgridsincreases the parallelism in the scatter phase, but havingtoo many subgrids may place too great a burden on theOrca runtime system. As in the Fortran M implementa-tion, improved performance may result if the granularity ofcommunication is increased, for example, by scattering toall corners of a cell in a single operation, rather than scat-tering to each corner in separate operations. The granular-ity may be increased further by maintaining local copies ofgrid point information that are accessed and updated lo-cally, and used to periodically update the shared subgrids.A drawback of this approach is that the data structures forstoring the local copies are dynamic since as particles movethe set of grid points with which they interact changes.A simpler approach is to maintain a local bu�er for eachshared subgrid and to store deferred remote operations inthese bu�ers. This is essentially the same as bu�ering mes-sages in the scatter and router processes in our Fortran Mimplementation.We also intend to develop a version of the PIC applica-tion in the Split-C language, which is a parallel extensionto C. The extensions that Split-C provides are few in num-ber, but form the basis for a rich parallel programmingenvironment. A shared memory programming style is sup-ported through the use of global pointers. Split-C also pro-vides split-phase access to remote data, allowing remoteaccesses to be overlapped with useful computation. Thescatter phase of the PIC algorithm can be implementedusing the split-phase put assignment operation, while thegather phase can be implemented using a get assignmentoperation. The signaling store operation, which stores toa remote location and signals the processor containing thelocation that the store has occurred, may also be used inthe scatter phase. Finally, Split-C provides bulk data op-erations that can be used to increase the granularity ofcommunication. Here again the idea is to maintain localcopies of grid point information that can be used periodi-cally to update grid points on remote processors.6. CONCLUSIONSWe have described our progress in implementing the scat-ter and gather phases of the PIC algorithm in Fortran M,and discussed strategies for optimization. We have alsosketched ideas for implementing the PIC algorithm usingthe Orca shared object language, and the Split-C parallellanguage. In all three of these programming methodologieswe expect increasing the granularity of communication to
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