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ABSTRACT

In this work we examine recent advances in parallel lan-
guages and abstractions that have the potential for im-
proving the programmability and maintainability of large-
scale, parallel, scientific applications running on high per-
formance architectures and networks. This paper focuses
on Fortran M, a set of extensions to Fortran 77 that sup-
ports the modular design of message passing programs. We
describe the Fortran M implementation of a particle-in-cell
(PIC) plasma simulation application and discuss issues in
the optimization of the code. The use of two other method-
ologies for parallelizing the PIC application are considered.
The first is based on the shared object abstraction as em-
bodied in the Orca language. The second approach is the
Split-C language. In Fortran M, Orca, and Split-C the
ability of the programmer to control the granularity of
communication 1s important is designing an efficient im-
plementation.

1. INTRODUCTION

Distributed memory concurrent computers would appear
to be ideal for large-scale applications with large compu-
tational, memory, and/or storage requirements. However,
many researchers are deterred from using these machines
by the perception that they are hard to program, and this
has hindered their more widespread use as general-purpose
computational resources. To improve the programmability
and maintainability of large-scale parallel applications re-
quires languages, abstractions, and mechanisms that hide
details of how an architecture exploits parallelism, in ad-
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dition to the development of tools to aid in the paralleliza-
tion of code, and reusable software. In recent years, many
potentially useful parallel languages and abstractions have
been proposed, but these have generally been ignored by
mainstream computational scientists, who have preferred
to use sequential languages, augmented by explicit data
distribution and message passing routines. One of the rea-
sons that some good ideas have been overlooked has been
the poor performance of prototypes — in general, compu-
tational scientists are not prepared to sacrifice much per-
formance in return for improving ease of programming.

This paper describes the early stages of an ongoing
project to investigate how well different programming
methodologies are able to exploit the power of high per-
formance architectures and networks. The aim is to study
and evaluate different approaches for a small number of ap-
plications. For each approach and application, factors such
as performance, ease of programming, portability, modu-
larity, and maintainability are assessed and where appro-
priate, quantified. The applications to be considered are
characterized by different types of interprocessor commu-
nication, ranging from very regular to completely irregular.

Three different methodologies for parallelizing scientific
applications will be considered in this paper, and their use
in implementing a particle-in-cell (PIC) algorithm for sim-
ulating plasmas will be discussed. The first is Fortran M,
a set of extensions to Fortran 77 that supports the mod-
ular design of message passing programs, and is the main
focus of the paper. The other approaches use the Orca
language, which is based on the shared object abstraction,
and the Split-C language, a set of parallel extensions to C.
In this paper we do not attempt to give a detailed descrip-
tion of Fortran M, Orca, or Split-C. Instead, the reader
is referred to more complete documentation (Foster and
Chandy 1992, Foster et al. 1993, Bal et al. 1992, Culler et
al. 1993). The PIC algorithm has been chosen for study
because it involves gather and scatter-with-add operations
that result in interesting communication and load balance
tradeoffs.

Section 2 gives an overview of some of the approaches



to exploiting parallelism on high performance architectures
and networks. In Section 3 a brief description of the PIC al-
gorithm is given. The implementation of the PIC algorithm
using Fortran M is discussed in Section 4. T'wo implemen-
tations, which differ in how the gather phase is performed,
are described. In Section 5, our future plans for optimizing
the Fortran M PIC code and for developing shared object
and Split-C versions of the code are described. Section 6
presents some concluding remarks.

2. PROGRAMMING METHODOLOGIES

The most common approach to programming distributed
memory machines is to use a sequential language and a li-
brary of message passing routines. Such libraries provide
for point-to-point communication between processes, and
usually some collective communication, such as broadcast
and reduction routines. Examples include native message
passing systems such as NX/2 on the Intel family of paral-
lel supercomputers, commercially available products such
as Express, and portability interfaces of varying degrees
of sophistication such as PICL, p4, PARMACS, PVM and
Zipcode. The recently developed MPI message passing in-
terface in intended to become the standard for explicit mes-
sage passing on distributed memory systems (MPI 1993,
Walker 1994). Many of these message passing systems are
described in a recent journal publication (Parallel Comput-
ing 1994). We shall refer to this approach as “sequential
language plus explicit message passing” (SL+EMP).

A major reason for the popularity of the SL+EMP ap-
proach has been the tradeoff between performance and
ease of programming. Although researchers would like dis-
tributed memory machines to be easy to program, for many
at the forefront of computational science performance is
the preeminent requirement. For a large class of applica-
tions SL+EMP results in high performance, scalable ap-
plications. However, as software technologies advance, we
expect the balance of the tradeoff between performance
and programmability to change. Indeed, by allowing pre-
processors, compilers, and/or runtime systems to schedule
resources and perform necessary data movement, we ex-
pect alternatives to the SL4+EMP approach to become in-
creasingly attractive and to rival or exceed the SL4+EMP
approach in performance. The work described here is di-
rected at investigating and furthering this trend.

Other approaches to parallel programming have been
reviewed by Bal (Bal 1990). Coordination languages rep-
resent an important alternative to the SL+EMP approach.
These are specialized languages for specifying concurrency,
communication, and synchronization, and examples in-
clude Occam, Strand, PCN, and Fortran M. Fortran M
provides a set of extensions to Fortran 77 to support mod-
ular message passing programs. The input and output of
different modules (or processes) are connected by typed
channels. Message passing is performed over channels by
means of nonblocking send and receive routines. A pro-

cess encapsulates common data, subprocesses, and internal
communication channels. The use of Fortran M is illus-
trated for the PIC algorithm in Section 4.

Another type of alternative approach involves software
support for shared memory, such as the shared virtual
memory (Li and Hudak 1989) and shared object (Bal et
al. 1992) paradigms. Orca provides quite general support
for shared objects, while MetaMP (Otto 1991, Otto 1994)
provides for globally indexed arrays and certain types of
weakly coherent shared data objects. The use of Orca in
the PIC algorithm is outlined in Section 5.

Other important alternatives to the SL+EMP approach
are not addressed in this paper, but will be studied in the
future. ParAlfl, Sisal, and ID are implicit parallel lan-
guages employing functional parallelism. Sequential lan-
guages with data parallel extensions, such as Fortran-D,
Vienna Fortran, and High Performance Fortran, make use
of directives for specifying data distribution, and compu-
tation is performed using the “owner computes” rule.

3. PARTICLE-IN-CELL APPLICATION

The particle-in-cell (PIC) method is commonly used for
simulating the evolution of plasmas (Birdsall and Langdon
1985, Hockney and Eastwood 1988). The charged particles
making up a plasma move under the influence of the elec-
tromagnetic fields that they generate, together with any
external fields that may be present. Thus, in simulating
the evolution of plasmas we seek to model the mutual in-
teraction of all particles and fields in a self-consistent man-
ner. In PIC simulations the particles are represented by a
set of “superparticles” each of which models the action of a
large number of physical particles, although for clarity we
will drop the “super-” prefix. The dynamics of the system
is followed by integrating the equation of motion of each of
the particles in a series of discrete time steps. The particle
motion is driven by the Lorentz force,

du ¢ 1
u_ g (Ep+7upr), (1)

where ¢ and m are the particle charge and rest mass, re-
spectively, and cis the velocity of light. mu is the particle’s
relativistic momentum divided by ¢ (i.e., u = yv/c), where
v is the velocity and 4° =14 w®. E, and B, are the elec-
tric and magnetic fields at the particle’s position. These
fields are found on the grid by solving Maxwell’s equations
at each time step on a rectangular grid,
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where j is the current density due to the particles divided
by ¢. The particle dynamics and the evolution of the elec-
tromagnetic field are coupled through the current density
generated by the motion of the particles, and the Lorentz
force arising from the electromagnetic field.



Each particle lies in a cell of the grid, and this cell will be
referred to as the particle’s home cell. To solve Maxwell’s
equations the current density, j, which depends on parti-
cle charge and velocity, must be known at each grid point
and is evaluated by having each particle contribute to the
current density at the grid points lying at the corners of
its home cell. Maxwell’s equations can then be solved to
give the electromagnetic fields on the grid at the next time
step. Next the equation of motion (Eq. 1) is advanced one
time step. The electric and magnetic fields at each parti-
cles are found by interpolating the values at the vertices of
the particle’s home cell. Thus, E, and B, are a weighted
sum of the values of the E and B at the corners of the
home cell, and once these are determined the equation of
motion for each particle can be advanced. Thus, the PIC
algorithm proceeds in a series of time steps each made up
of four phases:

e The scatter phase in which particles scatter contri-
butions to the current density to the corners of their
home cells. This is a scatter-with-add operation.

e The field solve phase in which Maxwell’s equations
are advanced one time step. In the explicit scheme
used the new values at each grid point depend only
on values at neighboring grid points.

e The gather phase in which the particles use the elec-
tromagnetic field values at the corners of their home
cells to evaluate the fields at their positions.

e The push phase in which the equation of motion of
each particle is advanced one time step. The update
for each particle is independent of all others.

There are two basic approaches to parallelizing PIC ap-
plications (Walker 1990, Walker 1991). In the first, both
the computational grid and the particles are spatially de-
composed into processes, and only data lying along process
boundaries needs to be moved between processes. Good
load balance is maintained if particles are distributed suffi-
ciently homogeneously, but for heterogeneous particle dis-
tributions dynamic load balancing may be necessary. In
the second approach, a regular spatial decomposition is
applied to the grid, but a nonspatial decomposition is ap-
plied to the particles. The particles are decomposed into
approximately equally-sized groups with no regard for their
spatial location. Thus, the particle and grid decompo-
sitions are completely decoupled. This approach ensures
good load balance, but the scatter and gather phases now
require nonlocal communication. In this work the second
type of decomposition will be used.

4. FORTRAN M IMPLEMENTATION

We have developed two Fortran M implementations of
the PIC algorithm that differ primarily in how the gather
phase is performed. In both cases four fundamental pro-
cesses are created. These are the particle, scatter, grid,
and gather processes. Only the particle and grid processes

actually perform computations; the scatter and gather pro-
cesses are for communicating data between the particles
and the computational grid. The particle process spawns
a specified number of child processes, referred to as sub-
group processes, each of which handles a given set of parti-
cles. Similarly, the grid process spawns subgrid processes,
each of which handles a rectangular 3D block of grid points.

In the first implementation the gather phase is per-
formed by having the grid points scatter electromagnetic
field information to particles in the surrounding cells. This
requires each subgrid process to maintain lists that enable
it to determine to which particle each of its grid points
must send electromagnetic field information. The main
disadvantage of this approach is that it introduces memory
imbalance, since the list data structure in each subgrid pro-
cess must be large enough to hold the maximum number of
particles that interact with any given subgrid in the course
of the simulation. In the alternative implementation the
gather phase is performed by having each particle request
electromagnetic field information from the grid points with
which 1t interacts. This involves a two-phase communi-
cation procedure in which a subgroup process sends out
a request for data, and subsequently receives that data.
This approach avoids the memory imbalance problem, but
results in additional communication overhead.

4.1. Implementation 1

In Fortran M, processes may communicate by means of
typed, uni-directional channels.
outport of the source process to the inport of the destina-
tion process. In both implementations, the main program
establishes channels for the communication of data in the

A channel connects the

scatter, gather, and field solve phases and creates the par-
ticle, scatter, grid, and gather processes. In the first imple-
mentation, one channel is created to connect each subgroup
process to the scatter process, and one channel is created to
connect the scatter process to each subgrid process. Sim-
ilarly, a set of channels is created to connect each subgrid
process to the gather process, and another set is created
to connect the gather process to each subgroup process.
Thus, if there are N subgroup processes and M subgrid
processes, the high-level structure of the first implementa-
tion is as shown in Fig. 1.

In the first implementation, each subgroup process
passes current density data through a channel to the scat-
ter process. The scatter process then routes the data to
the correct subgrid process where it is accumulated at a
grid point. In addition to sending the current density con-
tribution, the indices of the grid point are also sent. These
indices are used by the scatter router to direct the contri-
bution to the correct subgrid process, and are also used
by the subgrid process to determine at which grid point to
accumulate the contribution. The detailed structure of the
processes involved in the scatter phase is shown in Fig. 2.
Each subgroup process, P, is connected to a router pro-
cess, R, internal to the scatter process. When a router
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Figure 1: Schematic representation of processes and chan-
nels for Implementation 1. The black chevrons represent
inports and outports that are connected to form channels
between the processes. There are N subgroup processes
and M subgrid processes.

process receives data, it examines the grid point indices
and uses this information to determine to which subgrid
process to forward the current density contribution. The
forwarding is done by means of a merger, labeled ‘M’ is
Fig. 2. A merger is similar to a channel, but it connects
several specified outports to a single inport. The scatter
process contains one merger for each subgrid process, and
each router process has an outport to each of these merg-
ers. The inport of each merger passes data to a forward
process, F, which passes the data on to the final destination
subgrid process.

The current density contribution and the grid point
indices are sufficient to perform the scatter phase of the
PIC algorithm. However, in the first implementation, the
global particle ID number must also be sent and stored
in the subgrid process so that the subgrid processes can
send back electromagnetic field information in the gather
phase to the correct subgroup processes. After the subgrid
processes have received and accumulated all the current
density information, Maxwell’s equations are solved. Then
each subgrid process sends electromagnetic field data to
the gather process which routes it to the correct subgroup
process. The channels that connect a subgrid process to
the gather process, and the gather process to the subgroup
processes carry the three components of the electric and
magnetic fields as well as the global particle ID which is
used by the gather process to route the data. When the
electromagnetic field information has been gathered by the
subgroup processes, the equation of motion is solved and
the particles are advanced by one time step.

Apart from the scatter and gather operations, the sub-
group processes are not involved in any other communica-
tion as the particle push phase involves data entirely lo-
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Figure 2: Schematic representation of processes and chan-
nels for Implementation 1 showing internal details of the
scatter process. The circles labeled P, R, F, and G repre-
sent the subgroup, router, forward, and subgrid processes.
The squares labeled M are mergers which the router pro-
cesses use to route information. The arrowed lines repre-
sent channels. In this example, there are N = 4 subgroup
processes, and M = 3 subgrid processes.

cal to each subgroup process. However, the subgrid pro-
cesses need to communicate with each other in the field
solve phase to exchange information about grid points lying
along their boundaries. In general, for a three-dimensional
problem each subgrid process must have six channels to
perform these exchanges — one to send, and one to re-
ceive, in each coordinate direction.

4.2 Implementation 2

The second implementation is the same as the first, except
the gather phase is performed using a two-phase commu-
nication protocol. When a subgroup process needs elec-
tromagnetic field information it passes a request to the
gather process, which routes the request to the subgrid
process that has the information. This subgrid process
then sends the information back to the subgroup process
that requested it. The high-level structure of the second
implementation is shown in Fig. 3.

A request for electromagnetic field information from a
subgroup process is routed to the appropriate subgrid pro-
cess using a set a M mergers. This is similar to the scheme
used in the scatter phase. However, the gather process
makes use of Fortran M’s dynamic channel capabilities to
send the information back to the requesting subgroup pro-
cess. Before a router process internal to the gather process
sends on a request for information, it first sets up a channel
to be used to return the information. The outport for this
channel is then sent, along with the grid point coordinates,
into the appropriate merger to a forward process. The for-
ward process then sends on the grid point coordinates to
the subgrid process containing the grid point. The subgrid
process sends the electromagnetic field information for the
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Figure 3: Schematic representation of processes and chan-
nels for Implementation 2 in which a request/response pro-
tocol is used to perform the gather phase. The black
chevrons represent inports and outports which are con-
nected to form channels between the processes. There are
N subgroup processes and M subgrid processes.

grid point back to the forward process. The forward pro-
cess then uses the outport that it received in the request
phase to return the electromagnetic field information back
to the router process that routed the request. This avoids
having to route the response through a set of mergers. The
router process can then send the electromagnetic field in-
formation back to the subgroup process that requested it.
An example of this two-phase request/response protocol is
shown in Fig. 4.

5. DISCUSSION AND FUTURE WORK

We have implemented the gather and scatter-with-add
kernels described in Section 4 in Fortran M, and are in
the process of developing a complete PIC application. The
Fortran M codes were simple to develop, but are currently
unoptimized. We intend to investigate optimization strate-
gies in the future. The key question here is whether the
task of optimizing the Fortran M code significantly detracts
from its programmability, which after all is the main rea-
son for using it. One optimization strategy is to reduce the
volume of interprocess communication. One way to do this
is to eliminate the scatter and gather processes, and their
child router and forward processes, and do all the routing
of messages directly in the subgroup and subgrid processes.
This makes the code less modular, and rather inelegant.

Another important optimization strategy is to reduce
the frequency of interprocess communication. In the cur-
rent code, communication in fine-grained. In the scatter
phase each particle sends data to each of the corners of
its home cell one at a time. Similarly, in the gather phase
each particle receives data separately from each of these
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Figure 4: Schematic representation of processes and chan-
nels for Implementation 2 showing internal details of the
gather process. The circles labeled P, R, F, and G represent
the subgroup, router, forward, and subgrid processes. The
squares labeled M are mergers which the router processes
use to route information. Channels are shown as dashed
lines. Solid arrowed lines are used to show an example of
a particular request and response. Note how the forward
process sends the response back directly to the router pro-
cess. In this example, there are N = 4 subgroup processes,
and M = 3 subgrid processes.

corners. In general, the corners of a particular cell all lie
in the same subgrid process, except for cells on subgrid
boundaries. Thus, performance could be improved by des-
ignating the lower, left, front corner of a cell as the root ver-
tex for the cell, and sending current density contributions
from each particle to this root vertex. For 3D grids this
would reduce the frequency of communication by about a
factor of 8. The gather phase could be performed in a
similar way, by first gathering electromagnetic field infor-
mation for each cell to the root vertex, and then gathering
it to the particles.

A more general approach to increasing the granularity
of communication is to buffer messages in the scatter and
gather processes. The idea here is to defer sending data
out of a router process outport until the amount of data to
be sent exceeds a specified threshold. This threshold can
be used to adjust the granularity of communication, and
hence to optimize performance.

We are also planning to investigate other parallel pro-
gramming methodologies to gauge their suitability for PIC
and other applications. One approach of interest is based
on the shared object abstraction as embodied in the Orca
language. Orca is a procedural, type-secure language that
supports shared objects. In Orca a shared object is an
instance of an abstract data type consisting of a specifi-
cation of the operations that can be applied to an object,
and a declaration of variables and code for these opera-
tions. Shared objects are transparently replicated through
the machine, and replication, consistency, and object place-
ment are managed by the Orca runtime system. The obvi-



ous way to write a PIC application in Orca is to distribute
the particles nonspatially, as in our Fortran M implemen-
tation, and to divide the grid into shared subgrids. To
clarify the issues that arise, consider the extreme case in
which there is just a single shared subgrid — namely, the
entire grid. Since operations on shared objects are atomic,
having just one shared grid essentially serializes the scat-
ter phase. Memory constraints may also preclude sharing
the entire grid. Increasing the number of shared subgrids
increases the parallelism in the scatter phase, but having
too many subgrids may place too great a burden on the
Orca runtime system. As in the Fortran M implementa-
tion, improved performance may result if the granularity of
communication is increased, for example, by scattering to
all corners of a cell in a single operation, rather than scat-
tering to each corner in separate operations. The granular-
ity may be increased further by maintaining local copies of
grid point information that are accessed and updated lo-
cally, and used to periodically update the shared subgrids.
A drawback of this approach is that the data structures for
storing the local copies are dynamic since as particles move
the set of grid points with which they interact changes.
A simpler approach is to maintain a local buffer for each
shared subgrid and to store deferred remote operations in
these buffers. This is essentially the same as buffering mes-
sages in the scatter and router processes in our Fortran M
implementation.

We also intend to develop a version of the PIC applica-
tion in the Split-C language, which is a parallel extension
to C. The extensions that Split-C provides are few in num-
ber, but form the basis for a rich parallel programming
environment. A shared memory programming style is sup-
ported through the use of global pointers. Split-C also pro-
vides split-phase access to remote data, allowing remote
accesses to be overlapped with useful computation. The
scatter phase of the PIC algorithm can be implemented
using the split-phase put assignment operation, while the
gather phase can be implemented using a get assignment
operation. The signaling store operation, which stores to
a remote location and signals the processor containing the
location that the store has occurred, may also be used in
the scatter phase. Finally, Split-C provides bulk data op-
erations that can be used to increase the granularity of
communication. Here again the idea is to maintain local
copies of grid point information that can be used periodi-
cally to update grid points on remote processors.

6. CONCLUSIONS

We have described our progress in implementing the scat-
ter and gather phases of the PIC algorithm in Fortran M,
and discussed strategies for optimization.
sketched ideas for implementing the PIC algorithm using
the Orca shared object language, and the Split-C parallel
language. In all three of these programming methodologies
we expect increasing the granularity of communication to

We have also

be important for improving performance. The use of split-
phase communication is also likely to prove a useful means
of optimizing codes. Our future work in this area will be
directed at investigating which optimization strategies are
the most effective and how they impact the programmabil-
ity and maintainability of the code.
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