
A Compilation System That IntegratesHigh Performance Fortran and Fortran M�Ian Foster Bhaven AvalaniMing Xu Alok ChoudharyMathematics and Computer Science CIS/CSEArgonne National Laboratory Syracuse UniversityArgonne, IL 60439 Syracuse, NY 13244AbstractTask parallelism and data parallelism are often seenas mutually exclusive approaches to parallel program-ming. Yet there are important classes of application,for example in multidisciplinary simulation and com-mand and control, that would bene�t from an integra-tion of the two approaches. In this paper, we describea programming system that we are developing to ex-plore this sort of integration. This system builds onprevious work on task-parallel and data-parallel For-tran compilers to provide an environment in which thetask-parallel language Fortran M can be used to coor-dinate data-parallel High Performance Fortran tasks.We use an image-processing problem to illustrate theissues that arise when building an integrated compila-tion system of this sort.1 IntroductionIn data-parallel programming, programs apply asequence of operations identically to all or most el-ements of a large data structure; in task-parallel pro-gramming, programs consist of a set of (potentiallydissimilar) parallel tasks that perform explicit com-munication and synchronization operations. Bothparadigms are supported by a number of parallel lan-guages; in this paper, we use High Performance For-tran (HPF) [9] and Fortran M (FM) [5] as prototypicalexamples.While task and data parallelism are often consid-ered mutually exclusive approaches to parallel pro-gramming, many applications can in fact bene�t from�To appear in: Proc. 1994 Scalable High Performance Com-puting Conf., IEEE Computer Science Press.

both forms of parallelism. This is the case in so-called multidisciplinary simulation, in which a com-puter model of a complex physical system (such asan aircraft or the earth's climate) is constructed frommodels of system components. A parallel implementa-tion of such a system requires the ability to coordinatethe execution of dissimilar (and possibly data-parallel)simulations. Similarly, many image-processing appli-cations can be structured as pipelines of data-paralleloperations. However, the development of integratedtask/data parallel programming systems introduceschallenging technical issues in the areas of languagedesign, compilation, and run-time system design.To enable early experimentation with the integra-tion of task and data parallelism, both from the pro-gramming and implementation viewpoints, we are de-veloping a system that allows the use of FM to co-ordinate concurrent HPF computations. This systemintegrates software and compiler techniques developedin the HPF compiler project at Syracuse and the FMcompiler project at Argonne. In our prototype system,HPF and FM procedures are clearly distinguished andare compiled with the HPF or FM compiler, respec-tively. Simple interface routines are used to coordinatethe two programming models. We are currently inves-tigating mechanisms for a tighter integration of thetwo systems, with the eventual goal of producing asingle language and compiler. We expect this e�ort toprovide input into the next round of the HPF Forum,when it considers task parallelism.A number of technical issues must be addressedwhen developing an integrated task/data parallel pro-gramming system. These fall into two general areas.In the area of compiler and run-time design, a primaryconcern is the reconciliation of techniques developedpreviously for task- and data-parallel languages. Thisissue is the main focus of this paper. The language

Figure 1: Fortran M Programming Modeldesign issues are concerned with how task- and data-parallel constructs are harmonized. In this paper, weadopt the approach proposed by Chandy et al. [2],namely, the use of distinct task- and data-parallel lan-guages, with the task-parallel language used to co-ordinate data-parallel computations. An alternativeapproach that we will pursue in future work is thede�nition of a single integrated language.The organization of this paper is as follows. Sec-tions 2 and 3 introduce the FM and HPF compilersemployed in the integrated compilation system. Sec-tions 4 and 5 outline the techniques used to integrateFM and HPF and present a case study (an image-processing application) that bene�ts from the use ofboth task and data parallelism. Finally, Sections 6and 7 review related work and present our conclusions.2 Task parallelismFM is a small set of extensions to Fortran for task-parallel programming. Programs are constructed byusing single-reader, single-writer channels to plug to-gether concurrent processes. Processes and channelscan be created and deleted, and channels can be re-connected, dynamically; nevertheless, programs canbe guaranteed to be deterministic. Virtual computerconstructs can be used to control the mapping of pro-cesses to processors. This programmingmodel is illus-trated in Fig. 1, with processes represented by circlesand channels represented by arrows.An important feature of FM from the point of viewof task/data-parallel integration is its support for com-positionality. By this we mean that program com-ponents (processes) encapsulating concurrency, com-munication, and mapping decisions can be reused indi�erent situations without concern for internal im-plementation details. In the HPF/FM system, FMprocesses are used to encapsulate data-parallel HPF

computations, and virtual computers are used to con-trol the allocation of computational resources to HPFcomputations.The Argonne FM compiler compiles FM to For-tran 77 plus calls to a thread-management andmessage-passing library called Nexus [6]. Nexusmessage-passing functions are implemented in termsof TCP/IP, shared-memory operations, MPI, NX, orPVM, depending on the target architecture. Compi-lation proceeds without sophisticated analysis, witheach FM statement being replaced with a mixture ofFortran code, calls to Nexus functions, and calls tocompiler-generated interface routines, which in turnmake calls to Nexus functions.3 Data parallelismHPF is a set of extensions to Fortran 90 that sup-ports a data-parallel programming model. The Syra-cuse HPF compiler translates HPF programs into For-tran 77 plus calls to a set of collective communicationlibrary routines [1]. It exploits only the parallelismexpressed in HPF's explicitly data-parallel constructssuch as forall, array constructs, the independent doassertion, and intrinsic functions. It does not attemptto parallelize other constructs. The foundation of thecompiler lies in recognizing commonly occurring com-munication and computation patterns. These patternsare then replaced by calls to the optimized run-timesupport system routines. This approach representsa signi�cant departure from traditional parallelizingcompilers, which perform in-depth dependency anal-ysis to recognize parallelism and embed all synchro-nization and low-level communication functions insidethe generated code.The basic compiler is divided into three parts.� Translator: This translates HPF to F77 plus callsto communication libraries.� Communication Library: Express is currentlyused as the communication medium. A set oftransport-independent routines is under develop-ment, which will run on communication systemssuch as MPI, PVM, and p4.� Intrinsics: This is a set of routines acting on vec-tor data elements. These include reduction rou-tines, shift routines, and general mathematicalroutines such as matrix multiplication and ma-trix transpose.The compiler works in the following phases to gen-erate the required code.2

� Data Partitioning: The compiler partitions thedata and computation on the processors follow-ing the decomposition, align, and distributedirectives given in the HPF program.� Communication Detection and Generation: Thecompiler detects and generates communicationusing pattern matching to detect commonly oc-curring communication patterns and generatingthe equivalent communication calls to the com-munication libraries.� Code Generation: The code generator producesloosely synchronous SPMD code. The generatedcode is structured as alternating phases of lo-cal computations and global communications. Insuch a model the processes do not need to syn-chronize during local computations.4 IntegrationWe now discuss our approach to the integration oftask and data parallelism.4.1 ApplicationsSeveral broad classes of mixed task/data-parallelproblems can be distinguished. Probably most com-mon are those involving task-parallel collections ofdata-parallel subcomputations. In the simplest case,the set of data-parallel computations is static, andhence the task-parallel component of the program isconcerned only with initiating the data-parallel com-putations and coordinating the
ow of data betweenthese computations. Problems of this sort includesome multidisciplinary simulations (e.g., a coupled cli-mate models with ocean and atmosphere components)and simple image-processing pipelines. In more com-plex cases, the network of data-parallel computationsmay change during program execution. This is thecase in more complex multidisciplinary simulations, inimage-processing problems where the computation de-pends on the image, and in search applications wherethe evaluation function applied at each search treenode is a data-parallel program.In another class of problem, a data-parallel programcalls task-parallel programs. This approach may be re-quired if a data-parallel computation includes a phasethat is not data parallel: a call to a task-parallel rou-tine can avoid a need for sequential execution. Alter-natively, a data-parallel computation may require thatdi�erent task-parallel computations be performed on

di�erent data items. For example, a function appliedin data-parallel fashion to each component of a datastructure may need to initiate a task-parallel functionevaluation on some components.4.2 Our approachIn this paper, we consider only the relatively sim-ple situation in which distinct task- and data-parallellanguages are de�ned, and the task-parallel languageis used to coordinate data-parallel computations. Inparticular, we assume that FM is used to create net-works of data-parallel HPF computations, which maythemselves interact by sending and receiving messageson channels established by the FM coordinating pro-gram.An FM program that calls a data-parallel routinemust be able to indicate the HPF routine that is tobe executed and the number and identity of the pro-cessors in which it is to execute. Invocation of anHPF computation is indicated by a special HPFCALLstatement, which speci�es the name of the routine toexecute and its arguments. For example:HPFCALL my hpf proc(a1,...,an)Arguments passed from FM to HPF can be eitherreplicated or distributed over the HPF virtual pro-cessors [7]. The number of processors is determinedby the FM virtual computer in which the call is made.An HPF program passed a port (or, more com-monly, an array of ports) as an argument can commu-nicate with other, concurrently executing, HPF com-putations by using HPF's extrinsic procedure mecha-nism to invoke FM communication routines. Alterna-tively, and more elegantly, we can extend HPF withport data types and data-parallel send and receive op-erations, allowing us to write code such as the follow-ing: processors pr(8)real A(M,N)outport (real x(M,N)) outp(8)$HPF DISTRIBUTE A(BLOCK,*)send(outp) Awhere outp is, as shown, an array of FM ports. Weassume the latter approach in this paper.4.3 Technical issuesTechnical issues that must be resolved to implementthis approach include the following.3

Invocation. The HPFCALL statement can be imple-mented in terms of an existing syntactic extension,MPCALL. This statement, which allows invocation ofarbitrary message-passing programs, is implementedvia a preprocessor that generates an interface routinethat invokes the HPF program [7].Data Sharing. An FM program can pass FM datastructures as arguments to an HPF procedure; modi-�ed versions of these data structures may be returnedupon completion of the HPF computation. As FMand HPF may use di�erent data representations anddistributions, data conversion may be required at theFM/HPF interface. We incorporate this conversion inthe interface routines generated by the MPCALL pre-processor. Currently, the conversion is simple becausethe Syracuse HPF uses simple data layouts. In thefuture, it could be more complex [2].Data-Parallel Channel Communication. Our com-pilation system currently assumes that two communi-cating HPF computations execute on the same num-ber of (virtual) processors and use di�erent decompo-sitions for the variables that they communicate. Inthe general case, however, processors may use datadistributions, in which case data redistributions arerequired as part of communication. This situation issimilar to the parallel I/O problem (where in-memoryand disk �les may be laid out in di�erent ways), andsimilar solutions can probably be employed [11].Runtime Systems. The code generated by the HPFand FM compilers includes calls to the HPF and FMrun-time systems, which provide collective commu-nication and task/message management routines, re-spectively. The two run-time systems cannot coexistdirectly, because the HPF system makes the naturalassumption that the generated code is to run indepen-dently of other computations. In particular, it doesnot allow for multiple independent HPF computationsrunning on the same processor, or for an HPF compu-tation using a subset of available processors.The two run-time systems can be harmonized ei-ther by integration or by layering. Integration involvesthe development of a common run-time system pro-viding facilities required by both languages; layeringimplements HPF run-time system functions in termsof FM or Nexus facilities. We have adopted the lat-ter approach and have developed a message-passingcompatibility library written in FM that implementsthe Express calls generated by the HPF compiler asoperations on channels set up when the HPF code isinvoked from FM [7].The merit of this layered approach is that it re-

FFT

FFT
(HPF)

MM,FFT-1

Image Stream 1

Image Stream 2
 (operator)

Convolution
of Image 1 &
Operator

FM process

FM process

FM process

FM channels

(HPF)

(HPF)Figure 2: Convolution Algorithm Structurequires no changes to either run-time system. A dis-advantage is that it hinders the use of optimized col-lective communication algorithms within data-parallelcomponents. In principle, these algorithms could beinvoked by an optimizing FM compiler; in the absenceof such a compiler, however, all communication is per-formed using generic FM mechanisms. The develop-ment of integration techniques that preserve the per-formance of data-parallel components will be a topicof future research.Heterogeneous Environments. A task/data parallelprogram is inherently heterogeneous in that di�erentparts of the computation may execute di�erent code.This heterogeneous program structure may then bemapped to a heterogeneous computer system, eitherfor reasons of convenience or because some compo-nents of the application can bene�t from specializedcomputer resources. This complicates both mappingand run-time optimization. As the FM compiler is de-signed to execute in heterogeneous environments, ourcompilation system will allow us to explore these is-sues in future work.5 2-D convolution: A case studyTwo-dimensional (2-D) convolution is a simple ex-ample of a problem that can bene�t from both taskand data parallelism. We use it here to illustratethe mechanisms used to integrate FM and HPF. Asshown in Fig. 2, 2-D convolution involves two 2-D fastFourier transforms (FFTs), an element-wise multipli-cation, and an inverse 2-D FFT.5.1 FormulationA data-parallel convolution algorithm can be for-mulated in HPF as in Fig. 3. Images are computedone at a time, with data distribution statements usedto indicate how data parallelism is to be exploitedwithin each FFT. The 2-D FFT uses the Fortran 904

transpose intrinsic to transpose the input array sothat 1-D FFTs can be performed in each dimensionwithout communication. Each FFT operates on allprocessors.A mixed data/task-parallel algorithm can use dis-joint subsets of processors for each FFT. Data
owsbetween components in a pipeline fashion, which canimprove overall performance by reducing the numberof communications required. The mixed algorithm canbe formulated in HPF/FM as illustrated in Fig. 4.(For brevity, the FM code uses some Fortran 90 con-structs as abbreviations; these are not yet supportedby the FM compiler.) This comprises a main pro-gram, written in FM, and two HPF wrapper routines,fftW and iftW (the latter is not shown), which invokethe corresponding HPF FFT routines. The main pro-gram creates the structure illustrated in Fig. 2. TheHPFCALL statements create the boxes in the �gure andthe channels the connections between the boxes. Forsimplicity, input and output are not considered. TheSUBMACHINE annotations control resource allocation.The HPF wrapper routine fftW repeatedly initial-izes data, invokes the HPF FFT routine, and forwardsoutput data. Because this is data-parallel code, theSEND statement represents a parallel send: the com-munication of the distributed array A on an array ofports.In summary, the mixed code comprises three com-ponents: the FM main program, the HPF wrapperroutine fftW, and the HPF two-dimensional fft ofFig. 3.5.2 ImplementationEventually, we expect to provide a single compilerthat will accept both FM and HPF constructs. Thiswill allow the mixed-algorithm code to be compiledand executed directly. Currently, this capability isnot provided, and the generation of an executable pro-gram requires some additional programmer interven-tion. Such intervention is not required for the FMmain program or for the HPF FFT routine: these canbe compiled using the FM and HPF compilers, re-spectively, to produce a Fortran 77 main and f77fftsubroutine.Because the HPF compiler does not yet recognizecommunication constructs, we must hand-compile theinterface routine fftW to generate the following FMcode. Note that this is the code executed on a singlevirtual processor. It receives input data, invokes theFFT code generated by the HPF compiler when ap-plied to the HPF routine fft (f77fft), and forwardsoutput data.

C HPF Codeprogram data parallelcomplex A(512,512), B(512,512)complex C(512,512)!HPF$ processors pr(24)!HPF$ align B, C with A!HPF$ distribute A(BLOCK,*)do i = 1,nimagescall read input(A,B)call fft(512,512,A)call fft(512,512,B)C = A*Bforall(i=1:512, j=1:512)C(i,j) = CONJG(C(i,j))call ifft(C)call write output(C)enddoendC Two-dimensional forward FFTsubroutine fft(nrows,ncols,A)!HPF$ processors pr(24)complex A(nrows,ncols)!HPF$ distribute A(:,BLOCK)call d1fft(nrows,ncols,A)A = transpose(A)call d1fft(nrows,ncols,A)endC One-dimensional FFT on 2-d arraysubroutine d1fft(nrows,ncols,A)complex A(nrows,ncols)!HPF$ processors pr(24)!HPF$ distribute A(:,BLOCK)!HPF$ independentdo i = 1,nrowscall rowfft(i,A)enddoendfunction rowfft(icol,A)!HPF$ pure...endFigure 3: Data-Parallel Convolution Program5

C FM Codeprogram mixed parallelprocessors pr(24)outport (complex x(512,64)) os1(8)outport (complex x(512,64)) os2(8)inport (complex x(512,64)) is1(8)inport (complex x(512,64)) is2(8)channel(in=is1(:), out=os1(:))channel(in=is2(:), out=os2(:))...processeshpfcall fftW(img,os1) submachine(1:8)hpfcall fftW(img,os2) submachine(9:16)hpfcall iftW(is1,is2) submachine(17:24)endprocessesendC HPF Codesubroutine fftW(nimages, outs)outport (complex x(512,512)) outs(8)complex A(512,512)!HPF$ processors pr(8)!HPF$ distribute A(:,BLOCK)do i = 1,nimagescall read input(A)call fft(A)send(outs) AenddoFigure 4: Task/Data-Parallel Convolution Program

C FM Codeprocess fft(nimages,out)outport (complex x(512,512/8)) outcomplex Alocal(512,512/8)do i = 1,nimagescall read input(Alocal)call f77fft(Alocal)send(out) AlocalenddoThis code is then compiled with the FM compilerand linked with main, f77fft, and various FM li-braries to produce an executable program.5.3 PerformanceWe give preliminary performance results for thedata-parallel and mixed codes in Fig. 5. These re-sults were obtained on a 128-processor IBM SP1 usingTCP/IP for interprocessor communication. (The SP1also provides a more e�cient communication librarycalled EUI-H. At the time when these experimentswere performed, however, the FM compiler had notyet been modi�ed to generate calls to EUI-H routines.)For these experiments, the FM main program and in-terface routines were compiled with the FM compiler,while the HPF code was hand-compiled. We see thatthe mixed code gives superior performance for smallerproblems and on larger numbers of processors, whilethe pure data-parallel code is faster on larger problemsand on smaller numbers of processors.This result can be explained using a simple perfor-mance model. Assume that the convolution code isapplied to arrays of size N �N = D on P processorsand that the cost of sending a message of N words ists + twN , where ts and tw are constants. The data-parallel model performs three matrix transposes, eachinvolving P processors. If P divides N , then eachmatrix transpose requires P (P � 1) messages and thecommunication ofD(P�1)=P data. Hence, total com-munication costs areTdata = ts3P (P � 1) + tw3DP � 1P :The mixed algorithm also performs three data-parallel FFTs, each on P=3 processors. In addition,the P=3 processors responsible for each of the forwardFFTs must communicate D data to the P=3 proces-sors responsible for the inverse FFT. If P=3 divides Nand P � 3, then total communication costs are6

0.01

0.1

1

10

100

1000

1 10 100

T
im

e
(s

ec
s)

Processors

HPF/FM, N=32
 N=64

 N=256
 N=512

 N=1024
 HPF, N=32

 N=64
 N=256
 N=512

 N=1024

Figure 5: Convolution Code Performance on IBM SP1Tmixed = ts�P + P 23 �+ twD�2 + (P=3� 1)P �In summary, the mixed algorithm sends fewer mes-sages but more data. Hence, we can expect it to befaster when N is small and P is large, the situationthat we in fact see in practice.6 Related workMultiparadigm programming has been investigatedby many researchers in a sequential context (for ex-ample, see [13]). In a parallel context, most workhas focused on task-parallel coordination frameworksfor data-parallel components. For example, Cheng etal. propose the use of the AVS data
ow visualiza-tion system to implement multidisciplinary applica-tions, in which some components may be data-parallelprograms [4]. This provides an elegant graphical pro-grammingmodel but is less expressive than HPF/FM.
For example, cyclic communication structures are noteasily expressed. Similarly, Quinn et al. describe workon iWARP in which a con�guration language is used toconnect Dataparallel C computations [8]. The Data-parallel C programs use specialized versions of C I/Olibraries for communication. Process and communi-cation structures are static, and all communicationpasses via a central communication server.Subhlok et al. describe a compile-time approachfor exploiting task and data parallelism on the iWarpmesh-connected multicomputer [12]. The input pro-gram incorporates HPF-like data parallel constructsand directives indicating data dependencies and paral-lel sections. An appropriate mix of task and data par-allelism is then generated automatically by the com-piler. HPF/FM permits more general and dynamicforms of task parallelism but also requires more pro-grammer intervention.Chapman et al. [3] have recently proposed the ad-dition of \spawn" and \shared data abstraction" con-structs to data-parallel languages to support multi-disciplinary programming. The shared data abstrac-7

tion, a form of monitor, is used to control interactionsbetween tasks created using spawn. A novel aspectof this proposal is that shared data abstractions arepersistent entities. While there has not yet been anyexperience in using these mechanisms for building ap-plications, it appears that they are intended primarilyfor relatively coarse-grained computations.7 ConclusionsWe have developed a prototype programming sys-tem that allows mixed task/data-parallel programscoded in FM and HPF to be compiled and executedon parallel computers. The system has been usedto implement a simple image-processing application;experimental studies con�rm the bene�ts of a mixedtask/data-parallel formulation, in that the mixed algo-rithm achieves higher performance than a pure data-parallel program.The development of this prototype system is justthe �rst phase in a research program designed to inves-tigate the language constructs, compiler techniques,and run-time mechanisms required to support e�cientmixed paradigm parallel programs.AcknowledgmentsThis work was supported by the O�ce of Scien-ti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38; by the National ScienceFoundation's Center for Research in Parallel Compu-tation under Contract CCR-8809615; and by ARPAunder Contract DABT63-91-C-0028. We are gratefulto other members of the Center for Research on Paral-lel Computation's Paradigm Integration project, par-ticularly Mani Chandy, Carl Kesselman, Robert Ol-son, and Steven Tuecke, for their contributions to thiswork.References[1] Z. Bozkus, Alok Choudhary, Geo�rey C. Fox, T.Haupt, and S. Ranka, Fortran 90D/HPF compiler fordistributed memory MIMD computers: Design, im-plementation, and performance eesults. In Proc. Su-percomputing '93, IEEE, November 1993, Portland,Oregon.[2] K. M. Chandy, I. Foster, K. Kennedy, C. Koelbel,and C.-W. Tseng, Integrated support for task and

data parallelism, Intl. J. Supercomputer Applications,8(2), 1994 (in press).[3] B. Chapman, P. Mehrotra, J. van Rosendale, and H.Zima, A software architecture for multidisciplinaryapplications: Integrating task and data parallelism,Technical Report 94-18, ICASE, MS 132C, NASALangley Research Center, Hampton, VA 23681, 1994.[4] G. Cheng, G. Fox, and K. Mills, Integrating multi-ple programming paradigms on Connection MachineCM5 in a data
ow-based software environment, Tech-nical Report, NPAC, Syracuse University, Syracuse,N.Y., 1993.[5] I. Foster and K. M. Chandy. Fortran M: A lan-guage for modular parallel programming. J. Paralleland Distributed Computing (to appear), and PreprintMCS-P327-0992, Argonne National Laboratory, 1992.[6] I. Foster, C. Kesselman, R. Olson, and S. Tuecke,Nexus: An Interoperability toolkit for parallel anddistributed computer systems, Technical ReportANL/MCS-TM-189, Argonne National Laboratory,1994.[7] I. Foster and M. Xu. Libraries for parallel paradigmintegration. In Toward Tera
op Computing and NewGrand Challenge Applications, R. Kalia and P.Vashishta (eds.), Nova Science Publishers, 1994.[8] P. Hatcher and M. Quinn. Data-parallel Programmingon MIMD Computers. The MIT Press, Cambridge,Mass., 1991.[9] High Performance Fortran Forum. High PerformanceFortran language speci�cation, version 1.0. TechnicalReport CRPC-TR92225, Center for Research on Par-allel Computation, Rice University, Houston, Texas,January 1993.[10] S. Hiranandani, K. Kennedy, and C. Tseng. Com-piling Fortran D for MIMD distributed-memory ma-chines. CACM, 35(8):66{80, August 1992.[11] J. del Rosario and A. Choudhary, High performanceI/O for parallel computers: Problems and prospects.IEEE Computer, March 1994.[12] J. Subhlok, J. Stichnoth, D. O'Hallaron, andT. Gross. Exploiting task and data parallelism on amulticomputer. In Proc. 4th ACM SIGPLAN Sympo-sium on Principles and Practice of Parallel Program-ming, San Diego, Calif., May 1993.[13] P. Zave, A compositional approach to multiparadigmprogramming, IEEE Software, 15{25, 1989.8

