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Abstract

Task parallelism and data parallelism are often seen
as mutually exclusive approaches to parallel program-
ming. Yet there are important classes of application,
for example in multidisciplinary simulation and com-
mand and control, that would benefit from an integra-
tion of the two approaches. In this paper, we describe
a programming system that we are developing to ex-
plore this sort of integration. This system builds on
previous work on task-parallel and data-parallel For-
tran compilers to provide an environment in which the
task-parallel language Fortran M can be used to coor-
dinate data-parallel High Performance Fortran tasks.
We use an image-processing problem to illustrate the
1ssues that arise when building an integrated compila-
tion system of this sort.

1 Introduction

In data-parallel programming, programs apply a
sequence of operations identically to all or most el-
ements of a large data structure; in task-parallel pro-
gramming, programs consist of a set of (potentially
dissimilar) parallel tasks that perform explicit com-
munication and synchronization operations. Both
paradigms are supported by a number of parallel lan-
guages; in this paper, we use High Performance For-
tran (HPF) [9] and Fortran M (FM) [5] as prototypical
examples.

While task and data parallelism are often consid-
ered mutually exclusive approaches to parallel pro-
gramming, many applications can in fact benefit from
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both forms of parallelism. This is the case in so-
called multidisciplinary simulation, in which a com-
puter model of a complex physical system (such as
an aircraft or the earth’s climate) is constructed from
models of system components. A parallel implementa-
tion of such a system requires the ability to coordinate
the execution of dissimilar (and possibly data-parallel)
simulations. Similarly, many image-processing appli-
cations can be structured as pipelines of data-parallel
operations. However, the development of integrated
task/data parallel programming systems introduces
challenging technical issues in the areas of language
design, compilation, and run-time system design.

To enable early experimentation with the integra-
tion of task and data parallelism, both from the pro-
gramming and implementation viewpoints, we are de-
veloping a system that allows the use of FM to co-
ordinate concurrent HPF computations. This system
integrates software and compiler techniques developed
in the HPF compiler project at Syracuse and the FM
compiler project at Argonne. In our prototype system,
HPF and FM procedures are clearly distinguished and
are compiled with the HPF or FM compiler, respec-
tively. Simple interface routines are used to coordinate
the two programming models. We are currently inves-
tigating mechanisms for a tighter integration of the
two systems, with the eventual goal of producing a
single language and compiler. We expect this effort to
provide input into the next round of the HPF Forum,
when it considers task parallelism.

A number of technical issues must be addressed
when developing an integrated task/data parallel pro-
gramming system. These fall into two general areas.
In the area of compiler and run-time design, a primary
concern 1s the reconciliation of techniques developed
previously for task- and data-parallel languages. This
issue is the main focus of this paper. The language
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Figure 1: Fortran M Programming Model

destgn issues are concerned with how task- and data-
parallel constructs are harmonized. In this paper, we
adopt the approach proposed by Chandy et al. [2],
namely, the use of distinct task- and data-parallel lan-
guages, with the task-parallel language used to co-
ordinate data-parallel computations. An alternative
approach that we will pursue in future work is the
definition of a single integrated language.

The organization of this paper is as follows. Sec-
tions 2 and 3 introduce the FM and HPF compilers
employed in the integrated compilation system. Sec-
tions 4 and 5 outline the techniques used to integrate
FM and HPF and present a case study (an image-
processing application) that benefits from the use of
both task and data parallelism. Finally, Sections 6
and 7 review related work and present our conclusions.

2 Task parallelism

FM is a small set of extensions to Fortran for task-
parallel programming. Programs are constructed by
using single-reader, single-writer channels to plug to-
gether concurrent processes. Processes and channels
can be created and deleted, and channels can be re-
connected, dynamically; nevertheless, programs can
be guaranteed to be deterministic. Virtual computer
constructs can be used to control the mapping of pro-
cesses to processors. This programming model 1s illus-
trated in Fig. 1, with processes represented by circles
and channels represented by arrows.

An important feature of FM from the point of view
of task /data-parallel integration is its support for com-
positionality. By this we mean that program com-
ponents (processes) encapsulating concurrency, com-
munication, and mapping decisions can be reused in
different situations without concern for internal im-
plementation details. In the HPF/FM system, FM
processes are used to encapsulate data-parallel HPF

computations, and virtual computers are used to con-
trol the allocation of computational resources to HPF
computations.

The Argonne FM compiler compiles FM to For-
tran 77 plus calls to a thread-management and
message-passing library called Nexus [6]. Nexus
message-passing functions are implemented in terms
of TCP/IP, shared-memory operations, MPI, NX, or
PVM, depending on the target architecture. Compi-
lation proceeds without sophisticated analysis, with
each FM statement being replaced with a mixture of
Fortran code, calls to Nexus functions, and calls to
compiler-generated interface routines, which in turn
make calls to Nexus functions.

3 Data parallelism

HPF is a set of extensions to Fortran 90 that sup-
ports a data-parallel programming model. The Syra-
cuse HPF compiler translates HPF programs into For-
tran 77 plus calls to a set of collective communication
library routines [1]. It exploits only the parallelism
expressed in HPF’s explicitly data-parallel constructs
such as forall, array constructs, the independent do
assertion, and intrinsic functions. It does not attempt
to parallelize other constructs. The foundation of the
compiler lies in recognizing commonly occurring com-
munication and computation patterns. These patterns
are then replaced by calls to the optimized run-time
support system routines. This approach represents
a significant departure from traditional parallelizing
compilers, which perform in-depth dependency anal-
ysis to recognize parallelism and embed all synchro-
nization and low-level communication functions inside
the generated code.

The basic compiler is divided into three parts.

e Translator: This translates HPF to F77 plus calls
to communication libraries.

e Communication Library: Express is currently
used as the communication medium. A set of
transport-independent routines is under develop-
ment, which will run on communication systems
such as MPI, PVM, and p4.

e Intrinsics: This is a set of routines acting on vec-
tor data elements. These include reduction rou-
tines, shift routines, and general mathematical
routines such as matrix multiplication and ma-
trix transpose.

The compiler works in the following phases to gen-
erate the required code.



e Data Partitioning: The compiler partitions the
data and computation on the processors follow-
ing the decomposition, align, and distribute
directives given in the HPF program.

e Communication Detection and Generation: The
compiler detects and generates communication
using pattern matching to detect commonly oc-
curring communication patterns and generating
the equivalent communication calls to the com-
munication libraries.

e Code Generation: The code generator produces
loosely synchronous SPMD code. The generated
code is structured as alternating phases of lo-
cal computations and global communications. In
such a model the processes do not need to syn-
chronize during local computations.

4 Integration

We now discuss our approach to the integration of
task and data parallelism.

4.1 Applications

Several broad classes of mixed task/data-parallel
problems can be distinguished. Probably most com-
mon are those involving task-parallel collections of
data-parallel subcomputations. In the simplest case,
the set of data-parallel computations is static, and
hence the task-parallel component of the program is
concerned only with initiating the data-parallel com-
putations and coordinating the flow of data between
these computations. Problems of this sort include
some multidisciplinary simulations (e.g., a coupled cli-
mate models with ocean and atmosphere components)
and simple image-processing pipelines. In more com-
plex cases, the network of data-parallel computations
may change during program execution. This is the
case in more complex multidisciplinary simulations, in
image-processing problems where the computation de-
pends on the image, and in search applications where
the evaluation function applied at each search tree
node is a data-parallel program.

In another class of problem, a data-parallel program
calls task-parallel programs. This approach may be re-
quired if a data-parallel computation includes a phase
that is not data parallel: a call to a task-parallel rou-
tine can avoid a need for sequential execution. Alter-
natively, a data-parallel computation may require that
different task-parallel computations be performed on

different data items. For example, a function applied
in data-parallel fashion to each component of a data
structure may need to initiate a task-parallel function
evaluation on some components.

4.2 Our approach

In this paper, we consider only the relatively sim-
ple situation in which distinct task- and data-parallel
languages are defined, and the task-parallel language
is used to coordinate data-parallel computations. In
particular, we assume that FM is used to create net-
works of data-parallel HPF computations, which may
themselves interact by sending and receiving messages
on channels established by the FM coordinating pro-
gram.

An FM program that calls a data-parallel routine
must be able to indicate the HPF routine that is to
be executed and the number and identity of the pro-
cessors in which it is to execute. Invocation of an
HPF computation is indicated by a special HPFCALL
statement, which specifies the name of the routine to
execute and its arguments. For example:

HPFCALL my_hpf _proc(al,...,an)

Arguments passed from FM to HPF can be either
replicated or distributed over the HPF virtual pro-
cessors [7]. The number of processors is determined
by the FM virtual computer in which the call is made.

An HPF program passed a port (or, more com-
monly, an array of ports) as an argument can commu-
nicate with other, concurrently executing, HPF com-
putations by using HPF’s extrinsic procedure mecha-
nism to invoke FM communication routines. Alterna-
tively, and more elegantly, we can extend HPF with
port data types and data-parallel send and receive op-
erations, allowing us to write code such as the follow-
ing:

processors pr(8)

real A(M,N)

outport (real x(M,N)) outp(8)
$HPF DISTRIBUTE A(BLOCK,*)

send(outp) A

where outp is, as shown, an array of FM ports. We
assume the latter approach in this paper.

4.3 Technical issues

Technical issues that must be resolved to implement
this approach include the following.



Invocation. The HPFCALL statement can be imple-
mented in terms of an existing syntactic extension,
MPCALL. This statement, which allows invocation of
arbitrary message-passing programs, is implemented
via a preprocessor that generates an interface routine
that invokes the HPF program [7].

Data Sharing. An FM program can pass FM data
structures as arguments to an HPF procedure; modi-
fied versions of these data structures may be returned
upon completion of the HPF computation. As FM
and HPF may use different data representations and
distributions, data conversion may be required at the
FM/HPFT interface. We incorporate this conversion in
the interface routines generated by the MPCALL pre-
processor. Currently, the conversion is simple because
the Syracuse HPF uses simple data layouts. In the
future, it could be more complex [2].

Data-Parallel Channel Communication. Our com-
pilation system currently assumes that two communi-
cating HPF computations execute on the same num-
ber of (virtual) processors and use different decompo-
sitions for the variables that they communicate. In
the general case, however, processors may use data
distributions, in which case data redistributions are
required as part of communication. This situation is
similar to the parallel I/O problem (where in-memory
and disk files may be laid out in different ways), and
similar solutions can probably be employed [11].

Runtime Systems. The code generated by the HPF
and FM compilers includes calls to the HPF and FM
run-time systems, which provide collective commu-
nication and task/message management routines, re-
spectively. The two run-time systems cannot coexist
directly, because the HPF system makes the natural
assumption that the generated code is to run indepen-
dently of other computations. In particular, it does
not allow for multiple independent HPF computations
running on the same processor, or for an HPF compu-
tation using a subset of available processors.

The two run-time systems can be harmonized ei-
ther by integration or by layering. Integration involves
the development of a common run-time system pro-
viding facilities required by both languages; layering
implements HPF run-time system functions in terms
of FM or Nexus facilities. We have adopted the lat-
ter approach and have developed a message-passing
compatibility library written in FM that implements
the Express calls generated by the HPF compiler as
operations on channels set up when the HPF code is
invoked from FM [7].

The merit of this layered approach 1s that it re-
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Figure 2: Convolution Algorithm Structure

quires no changes to either run-time system. A dis-
advantage is that it hinders the use of optimized col-
lective communication algorithms within data-parallel
components. In principle, these algorithms could be
invoked by an optimizing FM compiler; in the absence
of such a compiler, however, all communication is per-
formed using generic FM mechanisms. The develop-
ment of integration techniques that preserve the per-
formance of data-parallel components will be a topic
of future research.

Heterogeneous Environments. A task/data parallel
program is inherently heterogeneous in that different
parts of the computation may execute different code.
This heterogeneous program structure may then be
mapped to a heterogeneous computer system, either
for reasons of convenience or because some compo-
nents of the application can benefit from specialized
computer resources. This complicates both mapping
and run-time optimization. As the FM compiler is de-
signed to execute in heterogeneous environments, our
compilation system will allow us to explore these is-
sues in future work.

5 2-D convolution: A case study

Two-dimensional (2-D) convolution is a simple ex-
ample of a problem that can benefit from both task
and data parallelism. We use it here to illustrate
the mechanisms used to integrate FM and HPF. As
shown in Fig. 2, 2-D convolution involves two 2-D fast
Fourier transforms (FFTs), an element-wise multipli-
cation, and an inverse 2-D FFT.

5.1 Formulation

A data-parallel convolution algorithm can be for-
mulated in HPF as in Fig. 3. Images are computed
one at a time, with data distribution statements used
to indicate how data parallelism is to be exploited
within each FFT. The 2-D FFT uses the Fortran 90



transpose intrinsic to transpose the input array so
that 1-D FFTs can be performed in each dimension
without communication. Each FFT operates on all
processors.

A mixed data/task-parallel algorithm can use dis-
joint subsets of processors for each FFT. Data flows
between components in a pipeline fashion, which can
improve overall performance by reducing the number
of communicationsrequired. The mixed algorithm can
be formulated in HPF/FM as illustrated in Fig. 4.
(For brevity, the FM code uses some Fortran 90 con-
structs as abbreviations; these are not yet supported
by the FM compiler.) This comprises a main pro-
gram, written in FM, and two HPF wrapper routines,
£ftW and iftW (the latter is not shown), which invoke
the corresponding HPF FFT routines. The main pro-
gram creates the structure illustrated in Fig. 2. The
HPFCALL statements create the boxes in the figure and
the channels the connections between the boxes. For
simplicity, input and output are not considered. The
SUBMACHINE annotations control resource allocation.

The HPF wrapper routine ££tW repeatedly initial-
izes data, invokes the HPF FFT routine, and forwards
output data. Because this is data-parallel code, the
SEND statement represents a parallel send: the com-
munication of the distributed array 4 on an array of
ports.

In summary, the mixed code comprises three com-
ponents: the FM main program, the HPF wrapper
routine fftW, and the HPF two-dimensional fft of
Fig. 3.

5.2 Implementation

Eventually, we expect to provide a single compiler
that will accept both FM and HPF constructs. This
will allow the mixed-algorithm code to be compiled
and executed directly. Currently, this capability is
not provided, and the generation of an executable pro-
gram requires some additional programmer interven-
tion. Such intervention is not required for the FM
main program or for the HPF FFT routine: these can
be compiled using the FM and HPF compilers; re-
spectively, to produce a Fortran 77 main and £77fft
subroutine.

Because the HPF compiler does not yet recognize
communication constructs, we must hand-compile the
interface routine ££tW to generate the following FM
code. Note that this is the code executed on a single
virtual processor. It receives input data, invokes the
FFT code generated by the HPF compiler when ap-
plied to the HPF routine £ft (£77££ft), and forwards
output data.

IHPF$
IHPF$
IHPF$

IHPF$

IHPF$

IHPF$
IHPF$
IHPF$

IHPF$

Figure 3: Data-Parallel Convolution Program

HPF Code
program data_parallel
complex A(512,512), B(512,512)
complex C(512,512)
processors pr(24)
align B, C with A
distribute A(BLOCK,*)
do 1 = 1,nimages
call read_input(4,B)
call ££t(512,512,4)
call £ft(512,512,B)
C = A*B
forall(i=1:512, j=1:512)
C(i,j) = coNJIG(C(i,j))
call ifft(C)
call write_output(C)
enddo
end

Two-dimensional forward FFT
subroutine fft(nrows,ncols,A)
processors pr(24)

complex A(nrows,ncols)
distribute A(:,BLOCK)

call difft(nrows,ncols,4d)

A = transpose(4)

call difft(nrows,ncols,4d)

end

One-dimensional FFT on 2-d array
subroutine difft(nrows,ncols,A)
complex A(nrows,ncols)
processors pr(24)
distribute A(:,BLOCK)
independent
do i = 1,nrows

call rowfft(i,4a)
enddo
end

function rowfft(icol,A)
pure

end




C FM Code
program mixed_parallel
processors pr(24)
outport (complex x(512,64)) o0s1(8)
outport (complex x(512,64)) o0s2(8)
inport (complex x(512,64)) is1(8)
inport (complex x(512,64)) is2(8)
channel(in=is1(:), out=o0s1(:))
channel(in=is2(:), out=0s2(:))

processes
hpfcall fftW(img,os1) submachine(1:8)
hpfcall fftW(img,o0s2) submachine(9:16)
hpfcall iftW(isl,is2) submachine(17:24)
endprocesses

end

C HPF Code
subroutine fftW(nimages, outs)
outport (complex x(512,512)) outs(8)
complex A(512,512)
IHPF$ processors pr(8)
'HPF$ distribute A(:,BLOCK)
do 1 = 1,nimages
call read_input(4)
call £ft(A)
send(outs) A
enddo

Figure 4: Task/Data-Parallel Convolution Program

C FM Code
process fft(nimages,out)
outport (complex x(512,512/8)) out
complex Alocal(512,512/8)
do 1 = 1,nimages
call read_input(Alocal)
call £77fft(Alocal)
send(out) Alocal
enddo

This code is then compiled with the FM compiler
and linked with main, £77fft, and various FM li-
braries to produce an executable program.

5.3 Performance

We give preliminary performance results for the
data-parallel and mixed codes in Fig. 5. These re-
sults were obtained on a 128-processor IBM SP1 using
TCP/IP for interprocessor communication. (The SP1
also provides a more efficient communication library
called EUI-H. At the time when these experiments
were performed, however, the FM compiler had not
yet been modified to generate calls to EUI-H routines.)
For these experiments, the FM main program and in-
terface routines were compiled with the FM compiler,
while the HPF code was hand-compiled. We see that
the mixed code gives superior performance for smaller
problems and on larger numbers of processors, while
the pure data-parallel code 1s faster on larger problems
and on smaller numbers of processors.

This result can be explained using a simple perfor-
mance model. Assume that the convolution code is
applied to arrays of size N x N = D on P processors
and that the cost of sending a message of N words is
ts + tyw N, where t; and t,, are constants. The data-
parallel model performs three matrix transposes, each
involving P processors. If P divides N, then each
matrix transpose requires P(P — 1) messages and the
communication of D(P—1)/P data. Hence, total com-
munication costs are

P-1
Thata = ts3P(P - 1) + tw3DT

The mixed algorithm also performs three data-
parallel FFTs, each on P/3 processors. In addition,
the P/3 processors responsible for each of the forward
FFTs must communicate D data to the P/3 proces-
sors responsible for the inverse FFT. If P/3 divides N
and P > 3, then total communication costs are
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For example, cyclic communication structures are not
9 easily expressed. Similarly, Quinn et al. describe work
Tixed = 1 (p + P_) 4ty D (2 + w) on iWARP in which a configuration language is used to
3 P connect Dataparallel C computations [8]. The Data-

In summary, the mixed algorithm sends fewer mes-
sages but more data. Hence, we can expect it to be
faster when N is small and P is large, the situation
that we in fact see in practice.

6 Related work

Multiparadigm programming has been investigated
by many researchers in a sequential context (for ex-
ample, see [13]). In a parallel context, most work
has focused on task-parallel coordination frameworks
for data-parallel components. For example, Cheng et
al. propose the use of the AVS dataflow visualiza-
tion system to implement multidisciplinary applica-
tions, in which some components may be data-parallel
programs [4]. This provides an elegant graphical pro-
gramming model but is less expressive than HPF/FM.

parallel C programs use specialized versions of C I/0
libraries for communication. Process and communi-
cation structures are static, and all communication
passes via a central communication server.

Subhlok et al. describe a compile-time approach
for exploiting task and data parallelism on the iWarp
mesh-connected multicomputer [12]. The input pro-
gram incorporates HPF-like data parallel constructs
and directives indicating data dependencies and paral-
lel sections. An appropriate mix of task and data par-
allelism is then generated automatically by the com-
piler. HPF/FM permits more general and dynamic
forms of task parallelism but also requires more pro-
grammer intervention.

Chapman et al. [3] have recently proposed the ad-
dition of “spawn” and “shared data abstraction” con-
structs to data-parallel languages to support multi-
disciplinary programming. The shared data abstrac-



tion, a form of monitor, is used to control interactions
between tasks created using spawn. A novel aspect
of this proposal 1s that shared data abstractions are
persistent entities. While there has not yet been any
experience in using these mechanisms for building ap-
plications, it appears that they are intended primarily
for relatively coarse-grained computations.

7 Conclusions

We have developed a prototype programming sys-
tem that allows mixed task/data-parallel programs
coded in FM and HPF to be compiled and executed
on parallel computers. The system has been used
to implement a simple image-processing application;
experimental studies confirm the benefits of a mixed
task /data-parallel formulation, in that the mixed algo-
rithm achieves higher performance than a pure data-
parallel program.

The development of this prototype system is just
the first phase in a research program designed to inves-
tigate the language constructs, compiler techniques,
and run-time mechanisms required to support efficient
mixed paradigm parallel programs.
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