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Abstract

We introduce a criterion for the evaluation of multidimensional quadrature, or cu-
bature, rules for the hypercube: this is the merit of a rule, which is closely related to
its trigonometric degree, and which reduces to the Zaremba figure of merit in the case
of a lattice rule. We derive a family of rules }f having dimension s and merit 2% These
rules seem to be competitive with lattice rules with respect to the merit that can be
achieved with a given number of abscissas.
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1 Introduction

Several measures of multidimensional quadrature, or cubature, rules have been convention-
ally used to evaluate their cost effectiveness. For integration over [0,1]° the most familiar
is the algebraic polynomial degree. Another, relevant to integrands with a continuous peri-
odic extension, is the trigonometric polynomial degree. In the corresponding evaluation of
lattice rules (see Sloan and Kachoyan 1987, Lyness 1989, Niederreiter 1992, Sloan and Joe
1994), several other measures are used; one of these is the Zaremba figure of merit. This
and the trigonometric degree are closely related, both being based on the ability of the rule
to integrate correctly a different but similar set of low-degree trigonometric polynomials.

In this paper we introduce the merit of a quadrature rule. It is relevant to any
quadrature rule designed for integrands with a periodic extension. In the case of a lattice
rule, it reduces to the Zaremba figure of merit.

In Section 2 we provide some of the underlying theory. In Section 3 we introduce
a construction that builds an s-dimensional rule of specified merit from a set of (s — 1)-
dimensional rules having the same or lower merit. This construction provides many pos-
sibilities for designing rules of moderate merit. In Section 4 and subsequently, we present

*This work was supported in part by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38 and by the Australian Research Council.
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a thorough description of one family. Fach member, denoted by @7, is a well-defined s-
dimensional quadrature rule of merit 2%, which is symmetric under permutations of the s
variables. The weights take s + k different values, of which some may be negative or zero.
If the points with zero weights are retained, then ¢);_, is embedded in @7 .

We shall see that the number of function values required by the rule ()7 satisfies

35—4)5—1 fs— 1), (L.1)

2
where p is the merit, namely, where p = 2*. This number is satisfactory when compared
with the known bounds for lattice rules: (1.1) implies

b (s— 1IN N (s— 1IN 7 (1.2)

s—1 s—1
(logzp+ 2574)"  (log, N 4 2554
whereas Zaremba (1974) shows that, for s > 2 and for every sufficiently large integer N,
there exists a lattice rule with N function evaluations and with merit p satisfying
(s — 1IN N (s— 1IN
(2log.p)’™"  (2log, Ny~
The orders of the lower bounds in (1.2) and (1.3) as N—oo are the same, namely,
O(N/(log, N)*~1), but the asymptotic constant in (1.2) is bigger, and hence better.

,0<N<,0<10g2,0+

(1.3)

An important practical aspect of these merit rules is that a straightforward construc-
tion is available. In contrast, good lattice rules in dimensions s > 2 can be found only by a
search.

In this paper, we exploit the rectangle rule

2k_1
1

Ref =55 30 fi/25),  k>1,
=0

to construct higher dimensional rules, all of which have abscissas in [0,1)°. This results in
rules )f which are not symmetric with respect to the center of the hypercube. One could
equally well base the theory on the trapezoidal rule

Tf = o (%f(O) b3 2+ %f(l)) ,

which is symmetric. This would lead to symmetrized versions of rules () using abscissas
n [0,1]°. When f(x) is periodic, these approximations coincide. The reader should bear in
mind that it is for periodic integrands that this theory is designed. When the integrand is
not periodic, we suggest that a symmetrized version of )7 be used.

2 Merit

In this section, we apply the definition of Zaremba’s figure of merit in a wider context, in
order to define (in (2.13) below) the merit p(P) of an arbitrary linear functional of the form

PF=Y wif(x). (2.1)

J=1



where x; € R for 1 < j < s. To this end, we denote the Fourier coefficients fh of the
integrand function f(x) by

fh — / f(x)e—Zm'h.XdX
[0,1]°
and assume for the present that f has an absolutely convergent Fourier series

Jx)= Y fuetm X (2.2)

hEAO

Here Ag is the s-dimensional unit lattice. Thus f has a 1-periodic continuous extension

with respect to each component of x. Introducing the Fourier series representation into
(2.1), we find

Pf=">" dn(P)fn, (2.3)

hEAO
where the coefficients (which we shall refer to as error coef ficients) are given by

dy(P) = P(e2™BX), (2.4)

Equation (2.3) is a natural minor generalization of the classical Poisson summation formula.
Almost every serious cubature rule provides an approximation to

17 = o= [ fx)ax. (25)

which is exact when f(x) is constant. To this end, we reserve the term cubature rule for
the principal special case of (2.1) as follows.

Definition 2.1 The finite sum
Qf = w;if(xj)

is termed a cubature rule when
> w; =do(Q) = 1. (2.6)

In this case (2.3) may be re-expressed as

Qf —-1f= > dp(@)fn (2.7)
h e Ag
h#0

This expression for the error functional is basic to our development of rule construction
criteria. In particular, it may be used to define both the trigonometric degree and the merit
of a quadrature rule.

Definition 2.2 For a linear functional P of the form (2.1), A(P) is the subset of Ag for
which

dy(P) # 0. (2.8)



Obviously (2.7) may be replaced by
Qf—1f= 3. du@h (2.9)

h € A(Q)
h0

When @ is a lattice rule, A(Q) is the dual lattice of the one defining Q. (See Sloan and
Kachoyan (1987).) Because of this we refer to A(Q) as the pseudo — duallattice associated
with Q.

In general, the points of A(()) do not form a lattice. For many excellent rules (for
instance, product Gaussian rules), A(Q) = Ag.

To define the trigonometric degree and the merit, respectively, we need the following.

With h = (hy, ha, ..., hs) € Ay, we define
s(h) = [ha| + [ho| + ... + |hsl, (2.10)
r(h) = hihy. .. hs, h; = max(1, |hg). (2.11)
Both depend only on the absolute values of the nonzero components of h, s(h) being their

sum, and 7(h) their product. Then we have the following definitions.

Definition 2.3 The trigonometric degree D(Q) of a cubature rule Q) is

D(Q)=-1+ min s(h). (2.12)
h e A(Q)
h#£0

Definition 2.4 The merit p(Q) of a cubature rule Q) is

p(Q)= min r(h). (2.13)
h e A(Q)
h#0

These definitions have the immediate implication

do(Q)=1; dp(Q)=0 when h# 0 and 0< s(h) < D(Q)+1, (2.14)

and
do(Q)=1; dp(Q)=0 when h# 0 and r(h) < p(Q). (2.15)

Much of the theory of merit rules depends on properties of the error coefficients dy,(Q)). We
note that

(1)

dn(Q1 + Q2) = dn(@1) + dn(Q2), (2.16)
where @1 and () are operators of the form (2.1).
(2) If @ is symmetric about (%, %, .. ,%) for periodic integrands, (i.e., if ¢ is unchanged
when the transformation x—(1,1,...,1) — x is applied to a periodic integrand), then
dn(Q) = d_n(Q). (2.17)



(3) If QU™ is the m*-copy of Q (see, e.g., Sloan and Lyness (1989)), then

dp(QU™) = dyy,,(Q) when h/m € Aq,
= 0 otherwise. (2.18)

(4) Let h = (hq,ha, ..., hs) = (t1,t2,...,1s-1,7) = (t,7), and let @ = TJ be the s-
dimensional Cartesian product of an s — 1 dimensional rule T with respect to the first s —1
components, and a one-dimensional rule J with respect to the s-th component. Then

dn(Q) = di(T)d;(J). (2.19)

(5) Finally, if @) is a “grid” rule, that is, if all points of its abscissa set lie on a scaled unit
lattice Ag/m, where m is an integer, then dy,(Q) is periodic in h with period m. That is,

dpymz(@) = dp(Q), YV z € Ao. (2.20)

It appears that many rules of high trigonometric degree are grid rules.

It follows from the property (3) that

A(QU™) = mA(Q), (2.21)

so that the merit of an m®-copy rule is at least m. The merit of an m® copy of a product
Gaussian rule is exactly m, since, for these rules, A(Q) = Ag. Gaussian rules are designed
for a different class of function. In the context of sets of Gaussian rules, the effect of using
more points in € is to reduce in an overall manner the values of |dy(Q)| rather than to
eliminate any.

We introduce here two one-dimensional functionals which are useful subsequently.
These are the 2*-panel rectangle rule

2k—1

Rif = 2% Z f(i)25), E>1, (2.22)

=0

and the 2¥+t1point alternating null rule

Wif = Riwf— Rif

2k+1_1

= St ST (=125, k> (2.23)

=0
It is easy to verify that, when k > 1,
di(Rr) =1 when §/2% = integer, (2.24)

d;(Wy) = -1 when 7/2% = odd integer, (2.25)

and all other error coefficients of By and W}, are zero. It follows that Ry and W}, have merit
2% For later convenience, we collect together some useful special cases.



Lemma 2.5 For k > 1, the following results are valid:
do(Ry) =1, do(Wy) =0, (2.26)

d(R)=d;(Wi)=0  Vodd j. (2.27)

When j is even, and so representable uniquely in the form j = 2"(2] + 1) with |, m integer
and m > 1,

d;i(Wy,)=-1
d;(Wy) =0 when kE#m (2.28)
d;(Rq) =1

3 A Recursive Construction of Rules with Prescribed Merit
In this section we establish the following theorem.

Theorem 3.1 For positive integer k, let Qp be an s-dimensional cubature rule, defined by
Qr =TrRy + To Wi + T oWo + ...+ T Wiy, (3.1)

where T; (i = 1,2,...) is an (s — 1)-dimensional cubature rule, R; is the one-dimensional
2'-panel rectangle rule, and W; = R;x1 — R;. Assume that for all i = 1,2,...,k the merit of
T; is 2t or greater. Then the merit of Qy is 2% or greater.

To prove the theorem, we first establish a relation between the error coefficients
dn(Qr) = di ;(Qr) and di(1;), e = 1,2,..., k. This is based only on (3.1) and the results in

Lemma 2.5 of the preceding section.

Lemma 3.2 Let Qi be given by (3.1), and let k > 1. If j is odd, then

dy ;(Qr) = 0. (3.2)
If j =22l 4+ 1) with m € [1,k — 1] then,
dy ;(Qr) = di(Tk) = de(Th—m)- (3.3)
I[j=0,orif j =220+ 1) with m > k, then
d,j(Qr) = de(Tk). (3.4)

Proof. In view of (2.16) and (2.19), it follows from (3.1) that

k-1
dy j(Qr) = de(Ti)dj(Ry) + Y di(Ti—s)dj(Wy). (3.5)

=1

We simply apply the results of Lemma 2.5 to remove the dependence on Ry and W;. When
Jj = 0or jis odd, the result follows from (2.26) and (2.27). When j is even, we find from
(2.28) that at most one term in the sum over ¢ contributes, this term having ¢ = m when



m is defined by j = 2™(2[ 4+ 1). Naturally, this term appears only if this value of j occurs
in the summation, that is, only if m € [1,k — 1]. In this case we recover (3.3). Otherwise

we find (3.4). 11

As a special case of (3.4), note that doo(Qr) = do(T%), so that Qp is indeed a
quadrature rule in the sense of Definition 2.1.

We now proceed to the proof of Theorem 3.1.

Proof. By assumption, for all i € [1, k], the merit of T; is 2 or greater; that is to
say, '
dt(Tz) =0 if t 7£ 0 and 1571 .. .1?5_1 < 2%, (36)

To establish the theorem, we have to show that

dp(Qr) = dt j(Qr) =0 (3.7)

whenever

... t_1) <2¥ and (t,7)#(0,0). (3.8)
When t = 0, we see from (3.5), (2.6), and (2.16) that

do;(Qr) = dj(Ri+Wi+Wot ...+ Wiy)
= d](Rk)v

which by (2.24) vanishes for 0 < |j| < 2¥. Now consider t # 0. When j = 0, the result follows
from (3.4) by applying (3.6) with ¢ = k. When j is odd, the result is given immediately by
(3.2). When j = 2™(2] + 1), we have j > 2™; thus for m > k there is nothing to prove,
while for m € [1,k — 1] it suffices to show that (3.7) holds whenever

... s < of—m

This follows from (3.3) on applying (3.6) once with 7 = k — m and again with ¢ = k. I

4 A Specific Family: The Meritorious Rules

Theorem 3.1 may be used to define a set of s-dimensional rules ()7 having merit 2k for s > 1
and k > 1 recursively, so long as the recursion is anchored by defining @}, k > 1. This may
be done in many ways. The rest of this paper is about a particular set of rules defined as
follows.

Definition 4.1 For k > 1, the meritorious rules )3, are defined by

Qr=Q "R+ TS QT Wy, s> 1 k> '

It follows immediately from Theorem 3.1 that ()} is an s-dimensional cubature rule for

which p(Q3) = 2*.



Equations (4.1) may be re-expressed in various forms. It is convenient to extend the
rule definitions in the following way:

Rof =0; Wof=Rf; Q;=0 Vj<0. (4.2)

(Note that the first member of (4.2) is not a natural extension of (2.22). However, once this
has been enforced, the second and third members follow naturally.) With this convention
we find, using W; = R;41 — R;,

k—1

Qh =2 (Qi1 — Q7 )R- (43)
=0
Also we may write (4.1) in the form
k-1
Qr=>_ W, (4.4)
7=0

k-1
Q5 = Z Qz:}Wj for s> 1.
=0
Using this, we easily obtain by induction the following theorem.

Theorem 4.2 Fork > 1 we have

Qr = Z W, W;, ... W;_.
St Hje<ho1

In this form it is apparent that the construction is a special case of a construction used by
Smoljak (1963), sometimes known as the method of hyperbolic cross points. It follows that
()} is symmetric under permutations of the components of x, and under reflections of the
form x; — 1 — z; when the rule is applied to periodic functions.

Corollary 4.3 The rule Q)j, is invariant under all permutations and reflections of the com-
ponents of X.

It is instructive to examine briefly some of the properties of the two-dimensional rules.
Direct substitution of the first member of (4.1) into the second gives

k-1
Qf = RipR.+ Z Ry jW;
7=1
k-1 k-1
= D Ri-jRjp1— ) RijR;
7=0 7=1
= SE-SE,  k>1,

where S? is defined by
St=0 when E<0



and

S?=RyRy+ Ry_1Ro+ ...+ RiR;,  when  k>1.

In this form it is apparent that Q% is the "blending rectangle rule” proposed by Delvos
(1990). A figure showing the abscissas of a 2-dimensional rule is presented in Section 5.

We shall now generalize this theory to s-dimensions.

Definition 4.4 For k > 1, the symmetric functionals S} are defined by

St = Ry,
Sp = > RjR;,...R;,  for s>1. (4.5)
Sji=k+s—1
Ji 21

This sum in (4.5) is over all s-partitions of k + s — 1 whose elements are positive. A trivial
consequence, which could also be used as a definition, is

Sk = Ry,
k

Sp=>Y Sy R for s> 1. (4.6)
=1

Theorem 4.5 Fork > 1 and s > 1,
: = i 2T ) s 4.7
Qi => (-1 j et (4.7)
The limits on this sum over j are 0 and min(k, s) — 1. However, the conventions
b J

(Q)ZOWhenb<Oorb>a, (8):1, and S2=0when j <0 (4.8)

allow us to suppress these limits.

Proof. We use induction on s, noting that the result is certainly true when s = 1.
For s > 2, assume that (4.7) is valid with s replaced by s — 1. Then for ¢ > 0

moer = X ( o ) Sty = 2(=1) ( o ) 5]
Z(_l)j ( ’ ; 2 ) 52'5;11_]‘ + Zj:(—l)j ( j :? ) Sz's—_j1+1
Z(_l)jsis—_jl-l—l ( i _ ! ) P (49)

where, in the last step, we have used the Pascal triangle binomial coefficient identity. Then
(4.3) gives

k—1
Qb = DD (-1¥STh, ( ’ ; ! )Rk—z’

=0 j



f o s—1 k
Z(—l)ﬂ( ; ) Sihaoi R
i=1

J
_ il =1 g 4.10
- Z(_ ) j k—j» (4.10)
J
where, in the last step, we have used (4.6). This establishes the theorem. 1

We close this section by noting some elementary embedding properties of the abscissa
sets of S} and (). Using (4.6), we note that

k+1

Sk = Zsk+2 R = Zskﬂ iRi1,

while
Sk - Z Sk—l—l 7

Since every point of R; is contained in R;4q it follows that
A(SE) € A(SE41), (4.11)

where A(Q) is the abscissa set of the functional @; thus the abscissa sets for each term on
the right of (4.7) are all contained in the abscissa set of 57, and so

A(Qk) € A(S})- (4.12)

In Section 6 we shall give a bound on the number of points N7 = v(S7) required by 57.
This is then also a bound on v(Q7). The next lemma follows from (4.5) and (4.7).

Lemma. All points of S} and of Q)j, lie on 27k Ag.

That is, all points are of the form z/2*, where z € Ag. A detailed analysis of the location
and nature of these points will appear in the next section.

5 The Structure of the Rules @}

In the preceding sections, we defined these rules recursively, defining an s-dimensional rule
in terms of combinations of products of lower-dimensional rules. This approach turned out
to be useful for establishing the existence of rules of specified merit. However, it is highly
inconvenient for practical use. In this section we re-express these rules in terms of abscissas
and weights. In so doing, we find a remarkable structure.

We note, once more, that all abscissas required by either 57 or by @3 lie in [0,1)* on
a grid of mesh 1/2%. That is, every abscissa is of the form

(jlvj?v"'vjs)/ka ]2 € [072k)

10



Thus, each of these points may be expressed in the form

i 12 is
XI(QTl7QT2,...,ﬂ), (51)

where either 7; is an odd integer and A; € [1,k] or ¢; = 0 and A; = 1. Note that A;
is the number of binary digits after the ”point” in the binary representation of the j-th
component, except that, if this component is zero, then A; is set to 1 (and not, as might
have been expected, to zero).

Definition 5.1 The length I(x) of a point x expressed in the form (5.1), with i; an odd
integer and A\; € [L,k] ori; =0 and \; =1, is

(x)=AM+ A+ ...+ A
We refer to points that can be expressed in this form as finite length points. In this

section, we shall establish that all points used by )7 are finite length points, of length
s<[<s+k—1.

MAXOXOXOXOXOXOXOXAXOXOXO0OX X 0XOXO0X
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Figure 1. Abscissas for S7, and hence also for the 2-dimensional
rules Q%, for k = 5. Abscissas of length 2, 3, 4, 5, and 6 are denoted
by A\, e, ¢, 0, and X, respectively.

Definition 5.2 The set $°(1) comprises all points in [0,1)® of length [.

11



We denote a sum of function values over this set by

S(f= Y flx) (5.2)

xe8s(l)

Note that this sum is defined quite independently of any quadrature rule. It is evident that

s = Y 5T NS ). (5.3)

Adp=I

Theorem 5.3 Fork > 1,

s+k—1
SZfIQ_(S—I—k_l) Z as,s—l—k—lss(l)fa (54)

I=s

s+ r=2Y) [ s+r-2
asm—( e )_( .1 ), r> 1. (5.5)

The reader should note that this structure is unexpectedly simple. First, the abscissas
of 57 f comprise only points of lengths s through s + &£ — 1 and comprise all these points.
Second, all abscissas of the same length carry the same weight. Third, while the weight of
a point of length [ in 5} depends on s, k, and [, each weight may be readily expressed as
2= (s+k=1) multiplied by a function of two parameters only, namely, s and k — [. Moreover,
in a sequential calculation, to evaluate S}, f after S;f, one need treat only one further
set of points, namely, S*(k 4 s), and one more weight, a; ;41 ; for one simply reassigns the
previous weights (remembering to include an additional 271 factor). In Figure 1 we show
the abscissas of 57, and hence of Q%, for k = 5, with abscissas of different length shown by
different symbols.

where

Proof. We shall prove Theorem 5.3 by induction on s. This is anchored by the
following lemma.

Lemma 5.4 Fork > 1,

k
Qrf=Sif =275 _S'(DF. (5.6)

=1

Proof. In view of the definitions of the preceding section, this rule is simply the 2%
panel rectangle rule. Applying Definitions 5.1 and 5.2 in one dimension, we find

st ={o.4},
s'(2) = {43},
s'3)={528.5.1},

and so forth. It is obvious that the expression on the right of (5.6) is precisely the rectangle
rule, establishing the lemma. 1

b b

o] L L
WIW |
ool

o~
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The lemma is seen to coincide with Theorem 5.3 in the case that s = 1, since in this
case the coefficients a,, required in (5.4) have the value 1.

Now we provide the induction step for Theorem 5.3. Suppose the equation (5.4) is
valid for all £ with s replaced by s — 1; that is, suppose

s+k—2
§i7f = o (Hhe § ( kot ) SN, k>, (5.7)

[=5-1
Now from (4.6) we have

SE=> S 'Royig, r> 1L (5.8)
k=1

Since Sz_l contains only points of lengths s — 1 to s + & — 2, and R; contains only points
of lengths 1 to ¢, it follows that the term Sz_lRT_H_k contains only points of lengths s to
s+ 7 — 1. Now consider a particular point x = (y, z), where y is a point of 527! of length
A, and z is a point of R, of length p, with s < A4+ p < s+ r— 1. The k-th term of (5.8)
involves this point if and only if s — 1 < A< s+k—2and 1 < p <r+1-—k, which together
imply

A—s+2<k< —pu+r+1.

For k in this range, the weight associated with the point y in Sz_l is, from (5.7),

2_(5+k_2) 2s+k—-A—4
s—2 ’

while the weight associated with the point 2 in R, 11— is 21tk Thus, the total weight
associated with the point (y, z) in the sum (5.8) is

_ui-l-l o (s4r-1) 2s+k—A—4 _ g (stro1) S-I-Ti/:\—ﬂ s+m—3
s—2 s—2

k=A—s5+2 m=1

_ o (str-1) 28+ r—A—pu—2
N s—1 ’

where in the last step we used the well-known identity

(-2 (2)-(02),

easily proved by induction. Since the length of the point (y,z) is [ = A + u, we may use
(5.3) and recover (5.4). 1

To obtain an analogous formula for the rule {7, we simply apply Theorem 4.5. This
gives the following corollary to Theorem 5.3.

Corollary 5.5

s+k—1
Qif =270t N S, k>, (5.9)

I=s

13



where

min(r,s)—1
we, = Y (=) ( sl ) Va,, ;, r>1l (5.10)

Note that )7 uses the weights w1, ...., w; ;; the weight w; j, is associated with the abscissas
of shortest length s, the weight w,; with the abscissas of greatest length s + & — 1. There
are simple generating functions for these weights.

Theorem 5.6 The weights a,, and ws, of (5.5) and (5.10) are generated by

Alz,y) =2y(l—2 —y)~ ZZaHx y’ (5.11)

r=1s=1
and
W(z,y) =2yl -z -y + 2zy) 1:ZZwmx Y. (5.12)
r=1s=1
Proof. Using the binomial expansion and the elementary relation
vl s Y _ s +7—-1
we find

s+7—1 .
2(l—a)” Z( c )le. (5.13)

Setting j = 7 — 1 in this and inserting expression (5.5) for a,, gives

x(1— ) Z a5, " (5.14)
After multiplying by y® and summing over s, we find a geometric series on the left-hand
side. Simplifying this yields (5.11), establishing the first part of this theorem.
It follows directly from (5.10) that

o o min(r,s)—1 4 61 4

dwgpat=> 2" > (=1) ( , ) 2, (5.15)

r=1 r=1 7=0 J
Inverting the summation order, we find after a minor rearrangement that the right-hand

side is )
3 ai(—1) ( 5 )2] 3N ag,ja (5.16)
7=0

r=7+1
The reader will recognize the sum over r as the one in (5.14), after which the sum over j
gives (1 —22)*"! establishing

> wgpa” = x(l—2)7H(1 - 22)5 " (5.17)
r=1

14



When treated in the same way as we treated (5.14) above, this yields (5.12). 1

All of the weights as,, being binomial coefficients, are positive. Some of the weights
ws,, are negative and some zero. Note that (5.17) is also a generating function, which may
in some cases be more convenient than the more elegant (5.12).

Corollary 5.7 as, = a, ; and w,, = w,,, and for even s, w, ; is zero.

Proof. The symmetry of the coefficients is an immediate consequence of the symmetry of
the generating functions (5.11), (5.12). (The symmetry of a, , is also apparent in (5.5).) The
final part follows from elementary manipulation of the generating function (5.12). First, we
establish that

Wir,0)= 23w’y = 21 e/ 2)(1 = il (5.18)

Then, applying the binomial theorem to each individual element (1 —z)~% and (1 — )" in
this sum and extraction of the coefficient of (zy)* gives

s 2
_ it s—1
wa=yeut (101

The right-hand side is identical to the coefficient of 2°~! in the expansion of (1 + 2)*~!(1 —
z)*~1. Since this is an even function of z, when s is even the coefficient of z°~1 is zero,
implying w, s = 0. 1

The authors have encountered no other cases of zero w,,. For s and r < 8, the
weights w, , are tabulated in the Appendix.

6 The Number of Abscissas

This section is concerned with the number of points required by the meritorious rule ¢)7.
We shall generally denote by v(P) the number of points required by an operator P. Further,
we abbreviate

N = v(5%),
v(§5(1)) = v*(1).

As in preceding sections, we deal first with the symmetric operator 5. This may be
generated by the use of (4.6), which states

k
SE=> 57 1R (6.1)

=1

Here R; is the 2! panel rectangle rule, which as in Lemma 5.4 may be expressed as

Rif = %isl(j)f, i>1, (6.2)
7=1
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where S1(j) is the set of one-dimensional points of length j. Substitution of (6.2) into (6.1)
and a rearrangement of the order of summation give

kK
51= 3000 SIS 0. (6.3
J=li=y

In this sum the terms with different index j represent distinct points, as the x,-
components of points with different values of 7 have different lengths and so are distinct.
Associated with each index j is a sum of symmetric operators Sk+1 ;» These form embedded

sets: all points of S;_I_% ; with ¢ > j are included in S;_I_% — Consequently, in determining

the number of distinet points, we need consider only those elements in this sum having
¢ = j. This gives

k
)= SIS ), (6.4)

where v(51(j)) = v'(j) = é;1 + 2771 is the number of one-dimensional points of length j.
For N7 = v(5}), we find the recursion relation
Ng=N;~ 1+ZNH1 27N k> Ls>2 (6.5)
7=1
(Note that the j = 1 term occurs twice.) This is anchored by
NE=2F k>l (6.6)

The values N} for s <4 and k£ < 8 are listed in the Appendix. Expressions for the rules of
dimension up to four are

N,g =2k,
Ni=2"k+1),
NP =28k + 5k + 2)/2,
Nt = 28 (k3 4+ 12k% 4 29K 4 6) /6.

To obtain a convenient bound, we proceed as follows. We set
N =2kp,1(k), k>1. (6.7)

Then substitution into (6.5) and (6.6) gives

ps(k) = ps—l(k) + Zps—l(j)v k > 17 s> 17

This, in fact, defines a set of polynomials, p,, of degree indicated by the subscript. Since
ps—1(k) is a positive integer, it is clear from (6.7) that N§ > 2F = p, with equality only if
s = 1. Computation of the values of p,_1(k) is most easily effected by means of the identity

ps(k) = ps(k = 1)+ 2ps_1(k) — ps—1(k = 1), E>1, s>1, with p(0)=1, s>1.
(6.8)
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One may obtain a simple upper bound on N; by showing first by induction that
ps(k) < (k+2s—1)(k+25s—2)...(k+s)/s!, (6.9)
and then applying the arithmetic mean, geometric mean inequality to obtain
ps(k) < (k+ 25— 1)°/sl. (6.10)
Substituting this in (6.7) gives

N < 2k (k + 352_ 4)5_1 J(s— 1) (6.11)

As remarked earlier, it is known that wy; = 0 when s is even. On recalling (4.12),
this leads to the bounds

v(Q37) < Nj, s odd, or s even and k < s,
v(Q7) < Nj — v (k), s even and k > s.

A numerical investigation confirms that for s < 8 all coefficients w,, other than w, , for
even s are nonzero. Thus the inequalities may be replaced by equalities for all s < 8; we
conjecture they may always be replaced by equalities.

Note that the bound (1.1) follows from (6.11), since the merit is p = 2.

A procedure similar to the one described above may be used to construct formu-
las analogous to (6.5) to (6.8) for v*(I), the number of s—dimensional points of length /.
Alternatively, an immediate corollary of Theorem 5.3 is that

Ni=v(s)+ v (s+ 1)+ ..+ (s+k—-1), s,k >1, (6.12)
giving immediately
v(s) = Ny = 27 V()= N1 — N, [>s>1. (6.13)
Invoking (6.7), we find, after some manipulation, that
() =2 (D) + 615y, I>s2>1, (6.14)

where
Gs—1(1) = 2ps_1(l — s+ 1) — ps_1(l = 5), [>s>1. (6.15)

These polynomials satisfy recursion relations similar in form to those satisfied by ps(k).
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APPENDIX

Weights and Abscissas

The cubature rule )7 of Section 4 is an s-dimensional quadrature rule for [0,1)°
having merit p = 2%, Tt has the form

s+k—1

Qnf =27 G0 N g 1S (D f.

I=s

Here S*(1)f is the sum of function values over all distinct s-dimensional points of length [,
as defined in Definition 5.1, and the weights are given by (5.10). Some numerical values are
given in the following tables.
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Table 1. Weight coefficients wy

r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=38
s=1 1 1 1 1 1 1 1 1
s = 1 0 -1 -2 -3 -4 -5 -6
s=3 1 -1 -2 -2 -1 1 4 8
s = 1 -2 -2 0 3 6 8 8
s=5 1 -3 -1 3 6 6 2 -6
s=6 1 -4 1 6 6 0 -10 -20
§ = 1 -5 4 8 2 -10 -20 -20
§ = 1 -6 8 8 -6 -20 -20 0
Table 2. The number v*(1) of points of length [
l=5s l=s54+1 [=s5+2 [=s5+3 l=s5+4 l=s+5 [=s5+6 [=s+7
s = 2 2 4 8 16 32 64
s=2 4 8 20 48 112 256 576
§ = 8 24 72 200 528 1344 3328
s=4| 16 64 224 704 2064 5760 15488
§ = 32 160 640 2240 7200 21792 63040 176000
s=6| 64 384 1728 6656 23232 75648 233792 693504
§ = 128 896 4480 18816 70784 246400 809088 2537600
§ = 256 2048 11264 51200 206336 763904 2653184 8763392
Table 3. The number N} of abscissas required by 57
k=1 k=2 k=3 k=4 k=5 k=6 k=17 k=28
s = 2 4 8 16 32 64 128 256
s=2 4 12 32 80 192 448 1024 2304
s=3 8 32 104 304 832 2176 5504 13568
§ = 16 80 304 1008 3072 8832 24320 64768
s=5h| 32 192 832 3072 10272 32064 95104 271104
§ = 64 448 2176 8832 32064 107712 341504 1035108
s=7| 128 1024 5504 24320 95104 341504 1150592 3688192
s=8 | 256 2304 13568 64768 271104 1035108 3688192 12451584
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