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a thorough description of one family. Each member, denoted by Qsk , is a well-de�ned s-dimensional quadrature rule of merit 2k, which is symmetric under permutations of the svariables. The weights take s + k di�erent values, of which some may be negative or zero.If the points with zero weights are retained, then Qsk�1 is embedded in Qsk .We shall see that the number of function values required by the rule Qsk satis�es� < N < ��log2 �+ 3s� 42 �s�1 =(s� 1)!; (1:1)where � is the merit, namely, where � = 2k. This number is satisfactory when comparedwith the known bounds for lattice rules: (1.1) implies� > (s� 1)!N�log2 �+ 3s�42 �s�1 > (s� 1)!N�log2N + 3s�42 �s�1 ; (1:2)whereas Zaremba (1974) shows that, for s � 2 and for every su�ciently large integer N ,there exists a lattice rule with N function evaluations and with merit � satisfying� > (s � 1)!N(2 loge �)s�1 > (s� 1)!N(2 logeN)s�1 : (1:3)The orders of the lower bounds in (1.2) and (1.3) as N!1 are the same, namely,O(N=(logeN)s�1), but the asymptotic constant in (1.2) is bigger, and hence better.An important practical aspect of these merit rules is that a straightforward construc-tion is available. In contrast, good lattice rules in dimensions s > 2 can be found only by asearch.In this paper, we exploit the rectangle ruleRkf = 12k 2k�1Xi=0 f(i=2k); k � 1;to construct higher dimensional rules, all of which have abscissas in [0; 1)s. This results inrules Qsk which are not symmetric with respect to the center of the hypercube. One couldequally well base the theory on the trapezoidal ruleTkf = 12k 0@12f(0) + 2k�1Xi=1 f(i=2k) + 12f(1)1A ;which is symmetric. This would lead to symmetrized versions of rules Qsk using abscissasin [0; 1]s. When f(x) is periodic, these approximations coincide. The reader should bear inmind that it is for periodic integrands that this theory is designed. When the integrand isnot periodic, we suggest that a symmetrized version of Qsk be used.2 MeritIn this section, we apply the de�nition of Zaremba's �gure of merit in a wider context, inorder to de�ne (in (2.13) below) the merit �(P ) of an arbitrary linear functional of the formPf = �Xj=1wjf(xj); (2:1)2



where xj 2 Rs for 1 � j � s. To this end, we denote the Fourier coe�cients f̂h of theintegrand function f(x) by f̂h = Z[0;1]s f(x)e�2�ih:xdxand assume for the present that f has an absolutely convergent Fourier seriesf(x) = Xh2�0 f̂he2�ih:x: (2:2)Here �0 is the s-dimensional unit lattice. Thus f has a 1-periodic continuous extensionwith respect to each component of x. Introducing the Fourier series representation into(2.1), we �nd Pf = Xh2�0 dh(P )f̂h; (2:3)where the coe�cients (which we shall refer to as error coefficients) are given bydh(P ) = P (e2�ih:x): (2:4)Equation (2.3) is a natural minor generalization of the classical Poisson summation formula.Almost every serious cubature rule provides an approximation toIf = f̂0 = Z f(x)dx; (2:5)which is exact when f(x) is constant. To this end, we reserve the term cubature rule forthe principal special case of (2.1) as follows.De�nition 2.1 The �nite sum Qf =Xwjf(xj)is termed a cubature rule when Xwj = d0(Q) = 1: (2:6)In this case (2.3) may be re-expressed asQf � If = Xh 2 �0h 6= 0 dh(Q)f̂h: (2:7)This expression for the error functional is basic to our development of rule constructioncriteria. In particular, it may be used to de�ne both the trigonometric degree and the meritof a quadrature rule.De�nition 2.2 For a linear functional P of the form (2.1), �(P ) is the subset of �0 forwhich dh(P ) 6= 0: (2:8)3



Obviously (2.7) may be replaced byQf � If = Xh 2 �(Q)h 6= 0 dh(Q)f̂h: (2:9)When Q is a lattice rule, �(Q) is the dual lattice of the one de�ning Q. (See Sloan andKachoyan (1987).) Because of this we refer to �(Q) as the pseudo� duallattice associatedwith Q.In general, the points of �(Q) do not form a lattice. For many excellent rules (forinstance, product Gaussian rules), �(Q) = �0.To de�ne the trigonometric degree and the merit, respectively, we need the following.With h = (h1; h2; : : : ; hs) 2 �0, we de�nes(h) = jh1j+ jh2j+ : : :+ jhsj; (2:10)r(h) = �h1�h2 : : :�hs; �hi = max(1; jhij): (2:11)Both depend only on the absolute values of the nonzero components of h, s(h) being theirsum, and r(h) their product. Then we have the following de�nitions.De�nition 2.3 The trigonometric degree D(Q) of a cubature rule Q isD(Q) = �1 + minh 2 �(Q)h 6= 0 s(h): (2:12)De�nition 2.4 The merit �(Q) of a cubature rule Q is�(Q) = minh 2 �(Q)h 6= 0 r(h): (2:13)These de�nitions have the immediate implicationd0(Q) = 1; dh(Q) = 0 when h 6= 0 and 0 < s(h) < D(Q) + 1; (2:14)and d0(Q) = 1; dh(Q) = 0 when h 6= 0 and r(h) < �(Q): (2:15)Much of the theory of merit rules depends on properties of the error coe�cients dh(Q). Wenote that(1) dh(Q1 +Q2) = dh(Q1) + dh(Q2); (2:16)where Q1 and Q2 are operators of the form (2.1).(2) If Q is symmetric about (12 ; 12 ; : : : ; 12) for periodic integrands, (i.e., if Q is unchangedwhen the transformation x!(1; 1; :::; 1)� x is applied to a periodic integrand), thendh(Q) = d�h(Q): (2:17)4



(3) If Q(m) is the ms-copy of Q (see, e.g., Sloan and Lyness (1989)), thendh(Q(m)) = dh=m(Q) when h=m 2 �0;= 0 otherwise: (2.18)(4) Let h = (h1; h2; : : : ; hs) = (t1; t2; : : : ; ts�1; j) = (t; j), and let Q = TJ be the s-dimensional Cartesian product of an s� 1 dimensional rule T with respect to the �rst s� 1components, and a one-dimensional rule J with respect to the s-th component. Thendh(Q) = dt(T )dj(J): (2:19)(5) Finally, if Q is a \grid" rule, that is, if all points of its abscissa set lie on a scaled unitlattice �0=m, where m is an integer, then dh(Q) is periodic in h with period m. That is,dh+mz(Q) = dh(Q); 8 z 2 �0: (2:20)It appears that many rules of high trigonometric degree are grid rules.It follows from the property (3) that�(Q(m)) = m�(Q); (2:21)so that the merit of an ms-copy rule is at least m. The merit of an ms copy of a productGaussian rule is exactly m, since, for these rules, �(Q) = �0. Gaussian rules are designedfor a di�erent class of function. In the context of sets of Gaussian rules, the e�ect of usingmore points in Q is to reduce in an overall manner the values of jdh(Q)j rather than toeliminate any.We introduce here two one-dimensional functionals which are useful subsequently.These are the 2k-panel rectangle ruleRkf = 12k 2k�1Xi=0 f(i=2k); k � 1; (2:22)and the 2k+1-point alternating null ruleWkf = Rk+1f � Rkf= 12k+1 2k+1�1Xi=0 (�1)i+1f(i=2k+1); k � 1: (2.23)It is easy to verify that, when k � 1,dj(Rk) = 1 when j=2k = integer; (2:24)dj(Wk) = �1 when j=2k = odd integer; (2:25)and all other error coe�cients of Rk and Wk are zero. It follows that Rk and Wk have merit2k. For later convenience, we collect together some useful special cases.5



Lemma 2.5 For k � 1, the following results are valid:d0(R1) = 1; d0(Wk) = 0; (2:26)dj(R1) = dj(Wk) = 0 8odd j: (2:27)When j is even, and so representable uniquely in the form j = 2m(2l+ 1) with l;m integerand m � 1, dj(Wm) = �1dj(Wk) = 0 when k 6= mdj(R1) = 1: (2:28)3 A Recursive Construction of Rules with PrescribedMeritIn this section we establish the following theorem.Theorem 3.1 For positive integer k, let Qk be an s-dimensional cubature rule, de�ned byQk = TkR1 + Tk�1W1 + Tk�2W2 + : : :+ T1Wk�1; (3:1)where Ti (i = 1; 2; : : :) is an (s � 1)-dimensional cubature rule, Ri is the one-dimensional2i-panel rectangle rule, and Wi = Ri+1 � Ri. Assume that for all i = 1,2,...,k the merit ofTi is 2i or greater. Then the merit of Qk is 2k or greater.To prove the theorem, we �rst establish a relation between the error coe�cientsdh(Qk) = dt;j(Qk) and dt(Ti), i = 1; 2; : : : ; k. This is based only on (3.1) and the results inLemma 2.5 of the preceding section.Lemma 3.2 Let Qk be given by (3.1), and let k � 1. If j is odd, thendt;j(Qk) = 0: (3:2)If j = 2m(2l+ 1) with m 2 [1; k� 1] then,dt;j(Qk) = dt(Tk)� dt(Tk�m): (3:3)If j = 0, or if j = 2m(2l+ 1) with m � k, thendt;j(Qk) = dt(Tk): (3:4)Proof. In view of (2.16) and (2.19), it follows from (3.1) thatdt;j(Qk) = dt(Tk)dj(R1) + k�1Xi=1 dt(Tk�i)dj(Wi): (3:5)We simply apply the results of Lemma 2.5 to remove the dependence on R1 and Wi. Whenj = 0 or j is odd, the result follows from (2.26) and (2.27). When j is even, we �nd from(2.28) that at most one term in the sum over i contributes, this term having i = m when6



m is de�ned by j = 2m(2l + 1). Naturally, this term appears only if this value of j occursin the summation, that is, only if m 2 [1; k � 1]. In this case we recover (3.3). Otherwisewe �nd (3.4).As a special case of (3.4), note that d0;0(Qk) = d0(Tk), so that Qk is indeed aquadrature rule in the sense of De�nition 2.1.We now proceed to the proof of Theorem 3.1.Proof. By assumption, for all i 2 [1; k], the merit of Ti is 2i or greater; that is tosay, dt(Ti) = 0 if t 6= 0 and �t1 : : :�ts�1 < 2i: (3:6)To establish the theorem, we have to show thatdh(Qk) = dt;j(Qk) = 0 (3:7)whenever �t1 : : : �ts�1�j < 2k and (t; j) 6= (0; 0): (3:8)When t = 0, we see from (3.5), (2.6), and (2.16) thatd0;j(Qk) = dj(R1 +W1 +W2 + : : :+Wk�1)= dj(Rk);which by (2.24) vanishes for 0 < jjj < 2k. Now consider t 6= 0:When j = 0, the result followsfrom (3.4) by applying (3.6) with i = k. When j is odd, the result is given immediately by(3.2). When j = 2m(2l + 1), we have �j � 2m; thus for m � k there is nothing to prove,while for m 2 [1; k� 1] it su�ces to show that (3.7) holds whenever�t1 : : :�ts�1 < 2k�m:This follows from (3.3) on applying (3.6) once with i = k �m and again with i = k.4 A Speci�c Family: The Meritorious RulesTheorem 3.1 may be used to de�ne a set of s-dimensional rules Qsk having merit 2k for s � 1and k � 1 recursively, so long as the recursion is anchored by de�ning Q1k , k � 1. This maybe done in many ways. The rest of this paper is about a particular set of rules de�ned asfollows.De�nition 4.1 For k � 1, the meritorious rules Qsk are de�ned byQ1k = Rk; k � 1;Qsk = Qs�1k R1 +Pk�1j=1 Qs�1k�jWj ; s > 1; k � 1: (4.1)It follows immediately from Theorem 3.1 that Qsk is an s-dimensional cubature rule forwhich �(Qsk) = 2k. 7



Equations (4.1) may be re-expressed in various forms. It is convenient to extend therule de�nitions in the following way:R0f = 0; W0f = R1f ; Qsj = 0 8j � 0: (4:2)(Note that the �rst member of (4.2) is not a natural extension of (2.22). However, once thishas been enforced, the second and third members follow naturally.) With this conventionwe �nd, using Wj = Rj+1 � Rj ,Qsk = k�1Xi=0(Qs�1i+1 �Qs�1i )Rk�i: (4:3)Also we may write (4.1) in the formQ1k = k�1Xj=0Wj ; (4.4)Qsk = k�1Xj=0Qs�1k�jWj for s > 1:Using this, we easily obtain by induction the following theorem.Theorem 4.2 For k � 1 we haveQsk = Xj1+::: +js�k�1Wj1Wj2 : : :Wjs :In this form it is apparent that the construction is a special case of a construction used bySmoljak (1963), sometimes known as the method of hyperbolic cross points. It follows thatQsk is symmetric under permutations of the components of x, and under reections of theform xi ! 1� xi when the rule is applied to periodic functions.Corollary 4.3 The rule Qsk is invariant under all permutations and reections of the com-ponents of x.It is instructive to examine briey some of the properties of the two-dimensional rules.Direct substitution of the �rst member of (4.1) into the second givesQ2k = RkR1 + k�1Xj=1Rk�jWj= k�1Xj=0Rk�jRj+1 � k�1Xj=1Rk�jRj= S2k � S2k�1 k � 1;where S2k is de�ned by S2k = 0 when k � 08



and S2k = RkR1 +Rk�1R2 + : : :+ R1Rk when k � 1:In this form it is apparent that Q2k is the "blending rectangle rule" proposed by Delvos(1990). A �gure showing the abscissas of a 2-dimensional rule is presented in Section 5.We shall now generalize this theory to s-dimensions.De�nition 4.4 For k � 1, the symmetric functionals Ssk are de�ned byS1k = Rk;Ssk = X�ji = k + s� 1ji � 1 Rj1Rj2 : : :Rjs for s > 1: (4.5)This sum in (4.5) is over all s-partitions of k+ s� 1 whose elements are positive. A trivialconsequence, which could also be used as a de�nition, isS1k = Rk;Ssk = kXi=1 Ss�1k+1�iRi for s > 1: (4.6)Theorem 4.5 For k � 1 and s � 1,Qsk =Xj (�1)j  s � 1j !Ssk�j : (4:7)The limits on this sum over j are 0 and min(k; s)� 1. However, the conventions ab ! = 0 when b < 0 or b > a;  00 ! = 1; and Ssj = 0 when j � 0 (4:8)allow us to suppress these limits.Proof. We use induction on s, noting that the result is certainly true when s = 1.For s � 2, assume that (4.7) is valid with s replaced by s � 1. Then for i � 0Qs�1i+1 � Qs�1i = Xj (�1)j  s � 2j !Ss�1i+1�j �Xj (�1)j  s � 2j !Ss�1i�j= Xj (�1)j  s � 2j !Ss�1i+1�j +Xj (�1)j  s � 2j � 1 !Ss�1i�j+1= Xj (�1)jSs�1i�j+1  s� 1j ! ; (4.9)where, in the last step, we have used the Pascal triangle binomial coe�cient identity. Then(4.3) gives Qsk = k�1Xi=0Xj (�1)jSs�1i�j+1  s� 1j !Rk�i9



= Xj (�1)j  s� 1j ! kXi=1 Ss�1k�j+1�iRi= Xj (�1)j  s� 1j !Ssk�j ; (4.10)where, in the last step, we have used (4.6). This establishes the theorem.We close this section by noting some elementary embedding properties of the abscissasets of Ssk and Qsk. Using (4.6), we note thatSsk+1 = k+1Xi=1 Ss�1k+2�iRi = kXi=0 Ss�1k+1�iRi+1;while Ssk = kXi=1 Ss�1k+1�iRi:Since every point of Ri is contained in Ri+1 it follows thatA(Ssk) � A(Ssk+1); (4:11)whereA(Q) is the abscissa set of the functional Q; thus the abscissa sets for each term onthe right of (4.7) are all contained in the abscissa set of Ssk, and soA(Qsk) � A(Ssk): (4:12)In Section 6 we shall give a bound on the number of points N sk = �(Ssk) required by Ssk .This is then also a bound on �(Qsk). The next lemma follows from (4.5) and (4.7).Lemma. All points of Ssk and of Qsk lie on 2�k�0.That is, all points are of the form z=2k, where z 2 �0. A detailed analysis of the locationand nature of these points will appear in the next section.5 The Structure of the Rules QskIn the preceding sections, we de�ned these rules recursively, de�ning an s-dimensional rulein terms of combinations of products of lower-dimensional rules. This approach turned outto be useful for establishing the existence of rules of speci�ed merit. However, it is highlyinconvenient for practical use. In this section we re-express these rules in terms of abscissasand weights. In so doing, we �nd a remarkable structure.We note, once more, that all abscissas required by either Ssk or by Qsk lie in [0; 1)s ona grid of mesh 1=2k. That is, every abscissa is of the form(j1; j2; : : : ; js)=2k; ji 2 [0; 2k):10



Thus, each of these points may be expressed in the formx = � i12�1 ; i22�2 ; : : : ; is2�s� ; (5:1)where either ij is an odd integer and �j 2 [1; k] or ij = 0 and �j = 1. Note that �jis the number of binary digits after the "point" in the binary representation of the j-thcomponent, except that, if this component is zero, then �j is set to 1 (and not, as mighthave been expected, to zero).De�nition 5.1 The length l(x) of a point x expressed in the form (5.1), with ij an oddinteger and �j 2 [1; k] or ij = 0 and �j = 1, isl(x) = �1 + �2 + : : :+ �s:We refer to points that can be expressed in this form as finite length points. In thissection, we shall establish that all points used by Qsk are �nite length points, of lengths � l � s + k � 1.
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Figure 1. Abscissas for S2k , and hence also for the 2-dimensionalrules Q2k, for k = 5. Abscissas of length 2, 3, 4, 5, and 6 are denotedby 4, �, �, �, and �, respectively.De�nition 5.2 The set Ss(l) comprises all points in [0; 1)s of length l.11



We denote a sum of function values over this set bySs(l)f = Xx2Ss(l) f(x): (5:2)Note that this sum is de�ned quite independently of any quadrature rule. It is evident thatSs(l) = X�+�=lSs�1(�)S1(�): (5:3)Theorem 5.3 For k � 1; Sskf = 2�(s+k�1) s+k�1Xl=s as;s+k�lSs(l)f; (5:4)where as;r =  s+ r � 2s� 1 ! =  s+ r� 2r � 1 ! ; r � 1: (5:5)The reader should note that this structure is unexpectedly simple. First, the abscissasof Sskf comprise only points of lengths s through s + k � 1 and comprise all these points.Second, all abscissas of the same length carry the same weight. Third, while the weight ofa point of length l in Ssk depends on s, k, and l, each weight may be readily expressed as2�(s+k�1) multiplied by a function of two parameters only, namely, s and k � l. Moreover,in a sequential calculation, to evaluate Ssk+1f after Sskf , one need treat only one furtherset of points, namely, Ss(k+ s), and one more weight, as;k+1 ; for one simply reassigns theprevious weights (remembering to include an additional 2�1 factor). In Figure 1 we showthe abscissas of S2k , and hence of Q2k, for k = 5, with abscissas of di�erent length shown bydi�erent symbols.Proof. We shall prove Theorem 5.3 by induction on s. This is anchored by thefollowing lemma.Lemma 5.4 For k � 1, Q1kf = S1kf = 2�k kXl=1 S1(l)f: (5:6)Proof. In view of the de�nitions of the preceding section, this rule is simply the 2kpanel rectangle rule. Applying De�nitions 5.1 and 5.2 in one dimension, we �ndS1(1) = n0; 12o ;S1(2) = n14 ; 34o ;S1(3) = n18 ; 38 ; 58 ; 78o ;and so forth. It is obvious that the expression on the right of (5.6) is precisely the rectanglerule, establishing the lemma. 12



The lemma is seen to coincide with Theorem 5.3 in the case that s = 1, since in thiscase the coe�cients as;r required in (5.4) have the value 1.Now we provide the induction step for Theorem 5.3. Suppose the equation (5.4) isvalid for all k with s replaced by s� 1; that is, supposeSs�1k f = 2�(s+k�2) s+k�2Xl=s�1  2s+ k � l � 4s� 2 !Ss�1(l)f; k � 1: (5:7)Now from (4.6) we have Ssr = rXk=1Ss�1k Rr+1�k; r � 1: (5:8)Since Ss�1k contains only points of lengths s � 1 to s + k � 2, and Ri contains only pointsof lengths 1 to i, it follows that the term Ss�1k Rr+1�k contains only points of lengths s tos + r � 1. Now consider a particular point x = (y; z), where y is a point of Ss�1r of length�, and z is a point of Rr of length �, with s � �+ � � s + r � 1. The k-th term of (5.8)involves this point if and only if s� 1 � � � s+k� 2 and 1 � � � r+1�k, which togetherimply �� s+ 2 � k � ��+ r + 1:For k in this range, the weight associated with the point y in Ss�1k is, from (5.7),2�(s+k�2)  2s+ k � �� 4s� 2 ! ;while the weight associated with the point z in Rr+1�k is 2�r�1+k . Thus, the total weightassociated with the point (y; z) in the sum (5.8) is��+r+1Xk=��s+2 2�(s+r�1)  2s+ k � �� 4s� 2 ! = 2�(s+r�1) s+r����Xm=1  s+m� 3s� 2 != 2�(s+r�1)  2s+ r� �� �� 2s � 1 ! ;where in the last step we used the well-known identity aa !+  a+ 1a !+ : : :+  ba ! =  b+ 1a+ 1 ! ;easily proved by induction. Since the length of the point (y; z) is l = � + �, we may use(5.3) and recover (5.4).To obtain an analogous formula for the rule Qsk, we simply apply Theorem 4.5. Thisgives the following corollary to Theorem 5.3.Corollary 5.5 Qskf = 2�(s+k�1) s+k�1Xl=s ws;s+k�lSs(l)f; k � 1; (5:9)13



where ws;r = min(r;s)�1Xj=0 (�1)j  s � 1j ! 2jas;r�j ; r � 1: (5:10)Note that Qsk uses the weights ws;1; ::::; ws;k; the weight ws;k is associated with the abscissasof shortest length s, the weight ws;1 with the abscissas of greatest length s + k � 1. Thereare simple generating functions for these weights.Theorem 5.6 The weights as;r and ws;r of (5.5) and (5.10) are generated byA(x; y) := xy(1� x� y)�1 = 1Xr=1 1Xs=1 as;rxrys (5:11)and W (x; y) := xy(1� x � y + 2xy)�1 = 1Xr=1 1Xs=1ws;rxrys: (5:12)Proof. Using the binomial expansion and the elementary relation(�1)j  �sj ! =  s+ j � 1s � 1 ! ;we �nd x(1� x)�s = 1Xj=0 s+ j � 1s� 1 !xj+1: (5:13)Setting j = r � 1 in this and inserting expression (5.5) for as;r givesx(1� x)�s = 1Xr=1 as;rxr: (5:14)After multiplying by ys and summing over s, we �nd a geometric series on the left-handside. Simplifying this yields (5.11), establishing the �rst part of this theorem.It follows directly from (5.10) that1Xr=1ws;rxr = 1Xr=1 xr min(r;s)�1Xj=0 (�1)j  s � 1j ! 2jas;r�j : (5:15)Inverting the summation order, we �nd after a minor rearrangement that the right-handside is s�1Xj=0 xj(�1)j  s� 1j ! 2j 1Xr=j+1 as;r�jxr�j : (5:16)The reader will recognize the sum over r as the one in (5.14), after which the sum over jgives (1� 2x)s�1, establishing1Xr=1ws;rxr = x(1� x)�s(1� 2x)s�1: (5:17)14



When treated in the same way as we treated (5.14) above, this yields (5.12).All of the weights as;r, being binomial coe�cients, are positive. Some of the weightsws;r are negative and some zero. Note that (5.17) is also a generating function, which mayin some cases be more convenient than the more elegant (5.12).Corollary 5.7 as;r = ar;s and ws;r = wr;s, and for even s, ws;s is zero.Proof. The symmetry of the coe�cients is an immediate consequence of the symmetry ofthe generating functions (5.11), (5.12). (The symmetry of as;r is also apparent in (5.5).) The�nal part follows from elementary manipulation of the generating function (5.12). First, weestablish that W (x; y) = 1Xr=1 1Xs=1ws;rxsyr = 1Xt=1(�1)t�1[xy=(1� x)(1� y)]t: (5:18)Then, applying the binomial theorem to each individual element (1� x)�t and (1� y)�t inthis sum and extraction of the coe�cient of (xy)s givesws;s = sXt=1(�1)t�1 s� 1t � 1 !2 :The right-hand side is identical to the coe�cient of zs�1 in the expansion of (1+ z)s�1(1�z)s�1. Since this is an even function of z, when s is even the coe�cient of zs�1 is zero,implying ws;s = 0.The authors have encountered no other cases of zero ws;r. For s and r � 8, theweights ws;r are tabulated in the Appendix.6 The Number of AbscissasThis section is concerned with the number of points required by the meritorious rule Qsk .We shall generally denote by �(P ) the number of points required by an operator P . Further,we abbreviate N sk = �(Ssk);�(Ss(l)) = �s(l):As in preceding sections, we deal �rst with the symmetric operator Ssk . This may begenerated by the use of (4.6), which statesSsk = kXi=1 Ss�1k+1�iRi: (6:1)Here Ri is the 2i panel rectangle rule, which as in Lemma 5.4 may be expressed asRif = 12i iXj=1S1(j)f; i � 1; (6:2)15



where S1(j) is the set of one-dimensional points of length j. Substitution of (6.2) into (6.1)and a rearrangement of the order of summation giveSsk = kXj=1 kXi=j 12iSs�1k+1�iS1(j): (6:3)In this sum the terms with di�erent index j represent distinct points, as the xs-components of points with di�erent values of j have di�erent lengths, and so are distinct.Associated with each index j is a sum of symmetric operators Ss�1k+1�i. These form embeddedsets: all points of Ss�1k+1�i with i > j are included in Ss�1k+1�j . Consequently, in determiningthe number of distinct points, we need consider only those elements in this sum havingi = j. This gives �(Ssk) = kXj=1 �(Ss�1k+1�j)�(S1(j)); (6:4)where �(S1(j)) = �1(j) = �j;1 + 2j�1 is the number of one-dimensional points of length j.For N sk = �(Ssk), we �nd the recursion relationN sk = N s�1k + kXj=1N s�1k+1�j2j�1; k � 1; s � 2: (6:5)(Note that the j = 1 term occurs twice.) This is anchored byN1k = 2k; k � 1: (6:6)The values N sk for s � 4 and k � 8 are listed in the Appendix. Expressions for the rules ofdimension up to four are N1k = 2k;N2k = 2k(k + 1);N3k = 2k(k2 + 5k + 2)=2;N4k = 2k(k3 + 12k2 + 29k + 6)=6:To obtain a convenient bound, we proceed as follows. We setN sk = 2kps�1(k); k � 1: (6:7)Then substitution into (6.5) and (6.6) givesps(k) = ps�1(k) + kXj=1 ps�1(j); k � 1; s � 1;p0(k) = 1:This, in fact, de�nes a set of polynomials, ps, of degree indicated by the subscript. Sinceps�1(k) is a positive integer, it is clear from (6.7) that N sk � 2k = �, with equality only ifs = 1. Computation of the values of ps�1(k) is most easily e�ected by means of the identityps(k) = ps(k� 1) + 2ps�1(k)� ps�1(k � 1); k � 1; s � 1; with ps(0) = 1; s � 1:(6:8)16



One may obtain a simple upper bound on N sk by showing �rst by induction thatps(k) � (k+ 2s� 1)(k+ 2s� 2) : : :(k + s)=s!; (6:9)and then applying the arithmetic mean, geometric mean inequality to obtainps(k) < (k + 32s � 12)s=s!: (6:10)Substituting this in (6.7) givesN sk < 2k �k + 3s� 42 �s�1 /(s� 1)! : (6:11)As remarked earlier, it is known that ws;s = 0 when s is even. On recalling (4.12),this leads to the bounds�(Qsk) � N sk ; s odd; or s even and k < s;�(Qsk) � N sk � �s(k); s even and k � s:A numerical investigation con�rms that for s < 8 all coe�cients ws;r other than ws;s foreven s are nonzero. Thus the inequalities may be replaced by equalities for all s < 8; weconjecture they may always be replaced by equalities.Note that the bound (1.1) follows from (6.11), since the merit is � = 2k.A procedure similar to the one described above may be used to construct formu-las analogous to (6.5) to (6.8) for �s(l), the number of s�dimensional points of length l.Alternatively, an immediate corollary of Theorem 5.3 is thatN sk = �s(s) + �s(s + 1) + ::::+ �s(s+ k � 1); s; k � 1; (6:12)giving immediately�s(s) = N s1 = 2s; �s(l) = N sl�s+1 �N sl�s; l > s � 1: (6:13)Invoking (6.7), we �nd, after some manipulation, that�s(l) = 2l�sqs�1(l) + �l;s; l � s � 1; (6:14)where qs�1(l) = 2ps�1(l � s+ 1)� ps�1(l� s); l � s � 1: (6:15)These polynomials satisfy recursion relations similar in form to those satis�ed by ps(k).AcknowledgmentWe are indebted to Dr. Michael D. Hirschhorn of the University of New South Wales forTheorem 5.6 and Corollary 5.7. 17



APPENDIXWeights and AbscissasThe cubature rule Qsk of Section 4 is an s-dimensional quadrature rule for [0; 1)shaving merit � = 2k. It has the formQskf = 2�(s+k�1) s+k�1Xl=s ws;s+k�lSs(l)f:Here Ss(l)f is the sum of function values over all distinct s-dimensional points of length l,as de�ned in De�nition 5.1, and the weights are given by (5.10). Some numerical values aregiven in the following tables.
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Table 1. Weight coe�cients ws;rr = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8s = 1 1 1 1 1 1 1 1 1s = 2 1 0 -1 -2 -3 -4 -5 -6s = 3 1 -1 -2 -2 -1 1 4 8s = 4 1 -2 -2 0 3 6 8 8s = 5 1 -3 -1 3 6 6 2 -6s = 6 1 -4 1 6 6 0 -10 -20s = 7 1 -5 4 8 2 -10 -20 -20s = 8 1 -6 8 8 -6 -20 -20 0Table 2. The number �s(l) of points of length ll = s l = s+ 1 l = s + 2 l = s+ 3 l = s + 4 l = s+ 5 l = s + 6 l = s+ 7s = 1 2 2 4 8 16 32 64 128s = 2 4 8 20 48 112 256 576 1280s = 3 8 24 72 200 528 1344 3328 8064s = 4 16 64 224 704 2064 5760 15488 40448s = 5 32 160 640 2240 7200 21792 63040 176000s = 6 64 384 1728 6656 23232 75648 233792 693504s = 7 128 896 4480 18816 70784 246400 809088 2537600s = 8 256 2048 11264 51200 206336 763904 2653184 8763392Table 3. The number N sk of abscissas required by Sskk = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8s = 1 2 4 8 16 32 64 128 256s = 2 4 12 32 80 192 448 1024 2304s = 3 8 32 104 304 832 2176 5504 13568s = 4 16 80 304 1008 3072 8832 24320 64768s = 5 32 192 832 3072 10272 32064 95104 271104s = 6 64 448 2176 8832 32064 107712 341504 1035108s = 7 128 1024 5504 24320 95104 341504 1150592 3688192s = 8 256 2304 13568 64768 271104 1035108 3688192 1245158419
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