Parallel Spectral Transform Shallow Water Model:
A Runtime—Tunable Parallel Benchmark Code

P. H. Worley

Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-6367

Abstract

Fairness is an important tssue when benchmarking
parallel computers using application codes. The best
parallel algorithm on one platform may not be the best
on another. While it is not feasible to reevaluate par-
allel algorithms and reimplement large codes whenever
new machines become avatlable, it 1s possible to em-
bed algorithmic options into codes that allow them to
be “tuned” for a particular machine without requiring
code modifications. In this paper, we describe a code
m which such an approach was taken.

PSTSWM was developed for evaluating parallel al-
gorithms for the spectral transform method in atmo-
spheric circulation models. Many levels of runtime-
selectable algorithmic options are supported. We dis-
cuss these options and our cvaluation methodology.
We also provide empirical results from a number of
parallel machines, indicating the importance of tuning
for each platform before making a comparison.

1 Introduction

Benchmarking parallel (and sequential) computers
i1s a varied activity. It includes determining low level
machine and system characteristics, measuring the
performance of important or representative kernels,
and measuring the performance of full or compact ap-
plication codes [2]. Tt is also an activity beset with
many difficulties; for example, when trying to fairly
compare/contrast the performance of different com-
puter systems.

There are special difficulties when using full or com-
pact application code benchmarks in interplatform
comparisons. While it is important to measure the

To appearin: Proc. 1994 Scalable High Performance Com-
puting Conf., IEEE Computer Science Press.

I. T. Foster

Argonne National Laboratory
9700 South Cass Avenue
Argonne, 1L 60439

performance of specific parallel algorithms in the con-
text of the application codes, it is equally important to
measure the performance in solving the stated prob-
lem, where the parallel algorithm is allowed to vary
between platforms or as the system characteristics
evolve. One solution to this problem is the “paper and
pencil” benchmark, as exemplified by the NAS bench-
mark suite [1]. For such a benchmark, the numerical
algorithm is specified, but the parallel implementation
is left to the researcher or the vendor. But it can be
very time-consuming to develop parallel application
codes from scratch, and paper benchmarks are most
useful for algorithmic kernels.

In this paper, we describe the Parallel Spectral
Transform Shallow Water Model (PSTSWM) com-
pact application code. PSTSWM supports a signifi-
cant amount of runtime-selectable algorithm tuning,
allowing both the parallel algorithm and the commu-
nication protocol used in the code to be specified at
runtime. When using PSTSWM for benchmarking,
we are able to measure how quickly the numerical
simulation can be run without fixing the parallel im-
plementation, but still executing the same numerical
code. Thus we consider PSTSWM to be a compro-
mise between paper benchmarks and the usual fixed
benchmarks. We have used PSTSWM successfully to
determine efficient parallel algorithms for a variety of
multiprocessor platforms and to compare performance
across platforms. We feel that encapsulating multiple
parallel algorithm options into a code is a very pow-
erful approach to benchmarking.

2 PSTSWM

PSTSWM is a message-passing parallel implemen-
tation of the sequential Fortran 77 code STSWM
2.0 [7]. STSWM solves the nonlinear shallow wa-

ter equations on a rotating sphere using the spectral
transform method. The nonlinear shallow water equa-
tions constitute a simplified atmospheric-like fluid pre-
diction model that exhibits many of the features of
more complete models and that has been used to in-
vestigate numerical methods and benchmark a num-
ber of machines. The spectral transform algorithm of
STSWM follows closely how CCM2, the NCAR Com-
munity Climate Model, handles the dynamical part of
the primitive equations [6].

PSTSWM differs from STSWM in one major re-
spect: fictitious vertical levels have been added in
order to get the correct communication and compu-
tation granularity for three-dimensional weather and
climate codes and to allow parallel algorithms that de-
compose the vertical dimension to be evaluated. The
number of vertical levels is an input parameter. In all
other respects, we changed the algorithmic aspects of
STSWM as little as possible. While the algorithmic
structure of STSWM was maintained, the code struc-
ture was altered radically in developing PSTSWM.
These changes were made to support the algorithm
comparison and to support reuse of the code devel-
oped in implementing the parallel algorithms.

PSTSWM uses the spectral transform method to
solve the shallow water equations. During each
timestep, the state variables of the problem are trans-
formed between the physical domain, where the phys-
ical forces are calculated, and the spectral domain,
where the terms of the differential equation are eval-
uated. The physical domain is a tensor product
longitude-latitude-vertical grid. The spectral domain
is the set of spectral coefficients in a truncated spher-
ical harmonic expansion of the state variables. When
a “triangular” truncation of the spectral coefficients is
used, as 1s common, the indices for the spectral coef-
ficients for a single vertial level make up a triangular
array.

Transforming from physical coordinates to spectral
coordinates involves performing a real fast Fourier
transform (FFT) for each line of constant latitude,
followed by integration over latitude using Gaussian
quadrature (approximating the Legendre transform
(LT)) to obtain the spectral coefficients. The inverse
transformation involves evaluating sums of spectral
harmonics and inverse real FFTs, analogous to the
forward transform. The basic outline of each timestep
is the following:

1) Evaluate nonlinear product and forcing terms.

2) Fourier transform nonlinear terms as a block
transform.

3) Compute forward Legendre transforms and ad-
vance in time the spectral coefficients for state
variables. (Much of the calculation of the time
update is “bundled” with the Legendre transform
for efficiency.)

4) Transform state variables back to gridpoint space
using

a) an inverse LT and associated computations
and

b) an inverse real block FFT.

For more details on the steps in solving the shallow wa-
ter equations using the spectral transform algorithm,

see [7].

3 Parallel Algorithm Options

Parallel algorithms are used to compute the FFTs
and to compute the vector sums used to approximate
the forward and inverse Legendre transforms. There
are four “levels” of runtime options supported in the
code.

3.1 Processor Grid

The physical and spectral domains are decomposed
over a logical two-dimensional processor mesh of size
Px x Py. The longitude dimension of the physical
domain 1s decomposed over Px processors, and the
latitude dimension is decomposed over Py processors.
Thus, FFTs in different processor “rows” are inde-
pendent, and each row of Px processors collaborates
in computing a block FFT. Similarly, the Legendre
transforms in different processor “columns” are inde-
pendent, and each column of Py processors collabo-
rates in computing a block of Legendre transforms.
The total number of processors and the logical aspect
ratio, and thus the number of processors dedicated to
computing the different parallel transforms, are input
parameters. While “squarish” meshes are generally
best, the FFT and LT algorithms have different com-
putational and communication complexities, and non-
square meshes are sometimes better, depending on the
problem size and the multiprocessor.

The mapping of the logical grid to physical pro-
cessors 1s also a runtime option. A set of standard
mappings is provided, suitable for hypercube and for
mesh interconnect topologies, as well as the options to
input an arbitrary mapping.

3.2 Parallel Algorithms

Two classes of parallel algorithms are available for
each transform: distributed algorithms, using a fixed
data decompostion and computing results where they
are assigned, and transpose algorithms, remapping the
domains to allow the transforms to be calculated se-
quentially. These represent four classes of parallel al-
gorithms:

1. distributed FFT/distributed LT
2. transpose FFT/distributed LT
3. distributed FFT/transpose LT
4. transpose FFT /transpose LT

There are two transpose algorithms, which differ
primarily in the number of messages sent and the cu-
mulative message volume. Assume that the trans-
pose algorithms are implemented on ¢ processors and
that each processor contains D data to be transposed.
Then the per processor communication costs for the
two algorithms can be characterized by

e O(Q) messages, O(D) total volume, and
e O(log @) messages, O(D log Q) total volume,

respectively. In the first (©(Q) transpose) algorithm,
every processor sends data to every other processor.
In the second (O(log @) transpose) algorithm, every
processor exchanges data with its neighbors in a logi-
cal log,) dimensional hypercube.

There are also two distributed Legendre algorithms.
Assume that the Legendre transform is parallelized
over () processors and that each processor will contain
D spectral coefficients when the transform is complete.
Then the per processor communication costs for these
two algorithms can be characterized by

e O(Q) messages, O(DQ) total volume, and
e O(log Q) messages, ©(DQ) total volume,

respectively. The ©(Q) algorithm works on a log-
ical ring, sending messages to and receiving them
from nearest neighbors only. The ©(log @) algorithm
uses the same communication pattern as the O(log Q)
transpose algorithm.

There 1s only one distributed FFT algorithm. It
has the same characterization of communication costs
and communication pattern as the ©(log @) transpose
algorithm.

All parallel algorithms execute essentially the same
computations and, modulo load imbalances, differ

only in communication costs. Load balance issues are
discussed in detail in [4]. Note that the simple char-
acterizations described here ignore link contention in
the physical network, and, for example, the O(log Q)
distributed Legendre transform algorithm is not auto-
matically better than the ©(Q) distributed algorithm.

In summary, PSTSWM provides 12 different paral-
lel algorithms for implementing the spectral transform
method: 3 FFT x 4 LT.

3.3 Parallel Algorithm Variants

Each FFT and LT parallel algorithm also has a
number of implementation options that can be se-
lected at runtime.

O(Q®) transpose. This algorithm proceeds in Q—1
steps on () processors, where, at each step, a proces-
sor sends 1/Q of its data to another processor [8]. To
be efficient, some care must be taken with the order
of the data communication. We support two different
schedules in PSTSWM. In the XOR, schedule, proces-
sor q swaps data with processor XOR(q,¢) at step i.
This avoids competition for bandwidth in hypercube
interconnection networks [8] and is often more efficient
than a general send/receive pattern on other networks.
In the MOD schedule, processor ¢ sends to processor
MOD(q + ¢,Q) at step <.

The most robust and portable implementation of
the ©(log @) transpose is to pair each send request
with a receive request. But, since all the data to be
sent is available at the beginning of the transpose, it
can also all be sent immediately (send-ahead), delaying
any receive requests until later. Depending on the
details of the underlying message passing system and
the size of the problem, send-ahead can be an efficient
technique, or it can consume all system buffer space
and cause deadlock.

Since all data that is received is retained and where
the data is to go is known beforehand, all receive re-
quests can be posted before the send requests (receive-
ahead) if nonblocking receives are supported by the
native message passing system. Completion of the re-
ceive requests would then be checked after individual
send requests, or after all the send requests in a send-
ahead implementation.

In summary, PSTSWM supports two different com-
munication schedules (denoted by the indicated sym-
bol): XOR (X) and MOD (M), and four differ-
ent communication options: send/receive (0), recv-
ahead/send (1), send-ahead/receive (2), and receive-

ahead/send-ahead(3).

O(log Q) transpose. The schedule for this algo-
rithm is fixed. Also, each send involves data received
at the previous step, so a send-ahead implementation
is not possible. But, if extra buffer space is allocated,
the receive requests can be posted early, hopefully
eliminating some buffer copying by guaranteeing that
messages are placed in user buffer space when they
arrive. Both send/receive (0) and receive-ahead/send
(1) implementations are supported.

Distributed FFT. Walker et al. [10] showed that
on computers that permit overlapping of computation
and communication, it can be advantageous to divide
the single block FFT into two and interleave the com-
munication for one block with the computation for
the other. PSTSWM supports both overlap (O) and
nonoverlap (N) versions of the distributed FFT.

O(®) distributed LT. The computation preceding
the communication in this algorithm can be delayed
and interleaved with the communication steps, en-
abling significant overlap of communication and com-
putation. Even if a computer does not support concur-
rent computation and communication, overlap tech-
niques can still overlap idle time and computation,
but contention for shared resources such as the sys-
tem bus may reduce overall performance. Also, if
extra buffer space is allocated, the receive requests
can be posted early. PSTSWM supports both overlap
(0) and nonoverlap (N) and both send/receive (0) and
receive-ahead/send (1) implementations of this algo-
rithm.

O(log Q) distributed LT. Overlap of communica-
tion and computation is not efficient for this algo-
rithm. But, if extra buffer space is allocated, the re-
ceive requests can be posted early. Both send/receive
(0) and receive-ahead/send (1) implementations are
supported.

3.4 Communication Protocols

All of the parallel algorithms and their implemen-
tations are based on SWAP and SENDRECYV primi-
tives, where, during each communication step, a pro-
cessor sends a message to one processor and receives
a message from another. The send-ahead and receive-
ahead implementations use subcommands, for exam-
ple, SWAP1, SWAP2, and SWAP3, that together are
equivalent to the basic primitive.

SWAP and SENDRECYV have a number of different

communication protocols that can be selected at run

time. For brevity, we will restrict our discussion to
the SWAP primitive, but the same options also apply
to SENDRECYV.

First, in a SWAP two processors exchange mes-
sages. In a simple SWAP, each processor sends a mes-
sage and then receives one. In an ordered SWAP, one
processor sends while the other receives, after which
the first processor receives and the second processors
sends. The ordered SWAP will work on synchronous
message passing systems and potentially avoids some
buffer copying. The simple swap takes advantage of
the full bandwidth in a bidirectional link and concur-
rency in initiating the SWAP on the two processors.

For each of the two types of SWAP, the exchange
can be implemented with blocking or nonblocking
sends, blocking or nonblocking receives, and regular or
forcetype messages, as supported by the native mes-
sage passing system. The forcetype messages, avail-
able on Intel systems, do without the normal hand-
shaking protocol that guarantees that messages are
not lost if they arrive before the corresponding receive
request 1s made. In certain circumstances, the user can
guarantee that a receive request will be posted before
the send, in which case the forcetype message is much
more efficient. Correctness is guaranteed in the SWAP
and SENDRECV commands when the forcetype op-
tion is chosen.

For the ordered SWAP command, there is also a
synchronous option, where handshaking messages are
used to guarantee that each processor is ready to re-
ceive a message before it is sent.

In summary, PSTSWM supports six “simple” op-
tions and seven “ordered” options. We denote the
simple options by Sn, for some number n, and the
ordered options by On. The simple options are

0: blocking send/blocking receive,
nonblocking send/blocking receive,
blocking send/nonblocking receive,

nonblocking send/nonblocking receive,

=~ W N =

blocking send/nonblocking receive using force-
types, and

5: nonblocking send/nonblocking receive using
forcetypes.

The ordered options are the same six plus
6: synchronous blocking send/blocking receive.

Note that some options are not supported for some
algorithm variants. For example, it is meaningless to
specify a receive-ahead algorithm that uses blocking
receives.

4 Tuning Methodology

PSTSWM incorporates so many options that a
comprehensive study of all possible combinations of
algorithm parameters, problem size, and processor
count is unreasonable. Instead, we proceed in two
stages.

In the first stage, we perform a series of tuning ex-
periments designed to identify an “optimal” set of al-
gorithm variants and communication protocol param-
eters for each FFT and LT algorithm. These tun-
ing experiments are performed with either Px = 1
or Py =1 (i.e., one-dimensional decompositions), al-
lowing the FFT and LT algorithms to be studied in
isolation. One or more of the problem dimensions is
reduced to provide the computation granularity and
communication volumes that would obtain in a two-
dimensional decomposition. For example, when eval-
uating the distributed FFT algorithm for a 16 x 8 pro-
cessor grid on a problem with 16 vertical levels, a 16 x 1
processor grid is used with the number of vertical lev-
els reduced by a factor of 8 (from 16 to 2).

The number of experiments performed in this first
stage is further reduced by first evaluating the full
range of parameters only on “largest” and “mid-sized”
multiprocessor configurations for each parallel algo-
rithm. For example, P = 512 and P = 64 are consid-
ered on the 512-processor Intel Paragon at Oak Ridge
National Laboratory. If these studies all show one set
of communication parameters and algorithm variants
to be consistently superior, no further experiments are
performed. We expect the impact of communication
parameters on performance to be relatively insensitive
to the problem granularity and number of processors,
and have found this to be true in many cases. When
there is a significant difference, the purpose of the tun-
ing exercise must be taken into account. For bench-
marking “peak” performance, we give preference to
the parameters that worked best for the larger con-
figurations. In all cases, subsequent experiments for
a given platform and parallel algorithm use a fixed
set of communication parameters. The experiments
performed in the first stage are also used to eliminate
FFT and LT algorithms from further consideration
(on a given platform) if it is clear that they are not
competitive.

Once we have identified optimal communication pa-
rameters and promising parallel algorithms, we per-
form a second series of experiments that compares all
possible combinations of the remaining FFT and LT
algorithms on all possible aspect ratios for each power
of two number of processors supported by each com-
puter. For example, on the Intel Paragon, we use 1,

2,4, 8, 16, 32, 64, 128, 256, and 512 processors; for
32 processors, we try the aspect ratios 1 x 32, 2 x 16,
4x8,8x4, 16x2,and 32 x 1. While powers of two are
not necessary, they reduce the number of aspect ratio
experiments to a reasonable number without giving
up much information. Also, the distributed FFT and
O(log Q) transpose algorithms require that the num-
ber of processors be a power of two.

5 Empirical Results

In this section we describe empirical results that
indicate the importance of algorithm tuning on var-
ious machines when benchmarking using PSTSWM.
Other papers will describe the algorithm comparison
and benchmarking results in detail. Here, we concen-
trate on the variance in timings observed during the
tuning experiments.

We describe experiments run on the four parallel
computer systems listed below. These systems vary
considerably in their communication or computational
capabilities, despite similarities in their architectures
and programming models.

Name Processor Network P
nCUBE/2 | nCUBE 2 hypercube 1024
iPSC/860 1860 hypercube 128
Paragon:
OSF/1 1860SP 16 x 32 mesh | 512
SUNMOS 1860SP 16 x 32 mesh | 512

The nCUBE/2 and the Intel iPSC/860 use hyper-
cube interconnects in which each of P processors is
connected to log, P neighbors via bidirectional links.
The Intel Paragon use a two-dimensional bidirectional
mesh interconnect and cut-through routing. Measure-
ments were run on the Paragon using both R1.1.2; an
OSF-based operating system, and SUNMOS, a low-
overhead operating system developed at Sandia Na-
tional Laboratories and the University of New Mexico.
Both of these operating systems are still evolving, and
any conclusions as to their performance or optimal
tuning parameters will be short-lived.

Low-level tuning. The best algorithm variants and
communication protocols for the different parallel al-
gorithms are listed below. The optimal parameters
are denoted by (a,b), where a is the algorithm vari-
ant and b is the communication protocol. Both a
and b are encoded as indicated in earlier sections.
The multiprocessors are denoted as follows: nCUBE/2

(N), iPSC/860 (I), Paragon-OSF (P), and Paragon-
SUNMOS (S).

Transpose Algorithms

N I P S
0(Q) (X2,50) | (X0,S5) | (X1,55) | (X0,50)
O(log@) | (0,50) (0,S5) (0,S5) (0,06)
Distributed Algorithms

N I P S
FFT (0,00) | (0,85) | (N,S5) | (N,06)
0(Q) (00,50) | (01,S5) | (0O1,54) | (01,52)
O(log@) | (0,50) (0,S5) (1,54) (1,55)

The 1mportant point to notice in these tables is
that the optimal parameters do differ between plat-
forms. Note that the best parameters for one platform
may not be supported on another. For example, the
native message-passing system on the nCUBE/2 does
not support nonblocking sends or receives, nor does it
have a special forcetype protocol.

Of more relevance to this paper is the sensitivity of
performance to the parameter selection. To indicate
this, we give in the following tables statistics about
the range of timings for two problem sizes: twelve
timesteps each of T42L16, which has a physical com-
putational grid of size 128 x64x 16, and T85L32, which
has a physical computational grid of size 256 x 128 x 32.
T42 is the design point for CCM2 [6], and T85 is
representative of the size of problem that climate re-
searchers would like to solve next. The tuning experi-
ments reported here were designed assuming a logical
16 x 32 processor for the nCUBE/2 and Intel Paragon,
and assuming a logical 8 x 16 processor mesh for the
Intel iPSC/860. For example, for the Intel Paragon, a
1 x 32 logical processor grid is used, and the problem
size is scaled by 1/16 when evaluating parallel LT al-
gorithms, to get the correct granularity. For brevity,
only the transpose FFT tuning experiments are re-
ported. The other transpose experiments have similar
statistics.

The statistics used are the first quartile (Q1) and
largest time (MAX), both normalized by the minimum
time. The MAX statistic indicates how much is to be
gained by tuning. The Q1 statistic gives some indi-
cation as to how important it is to get the optimal
parameters. For example, for the O(log @) transpose
algorithm on the iPSC/860, the worst case and the
first quartile are both between 40% and 50% worse
than the optimal algorithm, indicating that there is
a strong optimum. In contrast, on the Paragon, the
first quartile is only 3% worse than the optimum; and,
while tuning is worthwhile, getting the optimal param-
eters 1s not as important.

O(®) Transpose FFT Algorithm

N I P S
of Options 8 50 46 50
T42L16 - Q1 1.03 | 1.22 | 1.11 | 1.05
T421L16 - MAX | 1.16 | 1.38 | 1.56 | 1.49
T85L32 - Q1 1.03 | 1.24 | 1.11 | 1.01
T8HL32 - MAX | 1.10 | 1.37 | 1.24 | 1.10
O(log Q) Transpose FFT Algorithm
N I P S

of Options 3 19 18 19
T421.16 - Q1 - 1.40 | 1.03 | 1.05
T42116 - MAX | 1.14 | 1.45 | 1.29 | 1.53
T85L32 - Q1 - 1.40 | 1.03 | 1.01

T851.32 - MAX | 1.12 | 1.48 | 1.37 | 1.12
Distributed FFT Algorithm
N I P S

of Options 5 21 18 21

T421.16 - Q1 1.00 | 1.30 | 1.04 | 1.03
T421.16 - MAX | 1.21 | 1.76 | 1.29 | 1.50
T851.32 - Q1 1.00 | 1.27 | 1.05 | 1.04
T851.32 - MAX | 1.17 | 1.69 | 1.37 | 1.09
O(Q®) Distributed LT Algorithm
N I P S

of Options 7 64 61 64

T421.16 - Q1 1.13 | 1.44 | 1.20 | 1.10
T421.16 - MAX | 1.41 | 1.76 | 1.97 | 1.85
T851.32 - Q1 1.10 | 1.29 | 1.09 | 1.09
T851.32 - MAX | 1.31 | 1.70 | 1.63 | 3.97
O(log Q) Distributed LT Algorithm
N I P S

of Options 3 19 18 19
T421.16 - Q1 - 1.35 | 1.07 | 1.08
T42116 - MAX | 1.15 | 146 | 1.21 | 1.73
T85L32 - Q1 - 1.29 | 1.06 | 1.01

T85L32 - MAX | 1.11 | 1.40 | 1.22 | 1.12

As can be seen from the data, tuning is
very important for performance for some algo-
rithm /multiprocesor combinations and is relatively
unimportant for others. Similarly, for some algorithms
and multiprocessors, there are many parameter set-
tings that produce good results, while for others there
are few. The way that the statistics change with prob-
lem granularity is also strongly algorithm and machine
dependent. All of the algorithm variants and commu-
nication protocols used in these experiments are ex-
pected to be reasonable choices in some environment,
and cannot be dismissed out of hand. In particular,
the optimal parameters for one of our target machines
are sometimes bad choices for a different target, as
will be described in an expanded paper. Thus, given

the complexity of the behavior, we feel that empirical
low-level tuning experiments are an important step in
benchmarking when using PSTSWM.

Note that twelve timsteps results in .5-20 second
times for these experiments. We have observed longer
runs to have exactly the same behavior, and we are
confident of the validity of these experiments. While
there is some variability in the run times for some
of the experiments, all of the good parameter set-
tings show little variability in the time to compute
a timestep, and the minimum timings are very consis-
tent.

High-level tuning. Unlike the low-level tuning pa-
rameters (algorithm variants and communication pro-
tocols), it is unreasonable to choose a single aspect
ratio or parallel algorithm for all problem sizes and
machine configurations. The different parallel algo-
rithms have different asymptotic behaviors, and the
best choices vary significantly as problem and machine
sizes change.

For climate modeling, the problem size seldom
changes. Once the optimal low-level parameters have
been determined, it is straightforward to evaluate all
relevant machine configurations to determine the best
aspect ratio and parallel algorithms for a given number
of processors. This information can then be saved and
used whenever a given number of processors becomes
available for a run.

We defer the complete description of the algorithm
comparison to [4], and discuss only the high-level tun-
ing for the largest configurations on each of the target
machines.

The best parallel algorithm combinations and log-
ical aspect ratios are listed below. The parallel algo-
rithms are denoted as follows: ©(Q) transpose (TQ),
O(log Q) transpose (TL), distributed FFT (DF), O(Q)
distributed Legendre transform (DQ), and ©(logQ)
distributed Legendre transform (DL). Remember that
a Px x Py aspect ratio indicates, among other things,
that Px processors collaborate to compute a block
FFT and Py processors collaborate to compute a

block LT.

T42L16 N I P S
FFT DF TQ TL TL
LT DL DQ TL DL
aspect | 32x32 | 16 x8 | 16 x 32 | 16 x 32
T35L32 N I P S
FFT TQ TQ TQ TQ
LT TQ DQ TQ TQ
aspect | 32x32 | 16 x8 | 32x 16 | 32x 16

As before, the important point to be drawn from this
data 1s that the best algorithms can differ with the
problem size and the multiprocessor. In almost all
cases, there is a cluster of “good” algorithms close
to the optimal one, and the particular one mentioned
here is not particularly important. But the members
of this “optimal set” vary with problem size and be-
tween multiprocessors.

The following tables give statistics about the sensi-
tivity of performance to the high level tuning. Since
large numbers of processors allow us to examine ex-
treme logical aspect ratios that are expected to be
poor performers, we give both the largest time (MAX)
and the largest time in the set of experiments using
1:1, 1:2, and 2:1 aspect ratios (MAXSQ). We also give
the time for a “generic” algorithm (GEN), one that has
optimal asymptotic behavior and a simple protocol
that is supported on all message-passing systems that
the authors have experience with. This algorithm uses
O(Q®) transpose FFT and LT algorithms, a 1:1 or 1:2
logical aspect ratio, a MOD communication schedule,
and an ordered, blocking communication protocol, 1.e.,
(M0,00) using our earlier encoding. The generic algo-
rithm is meant to represent what a reasonable choice
would have been if we had forgone tuning. As before,
all statistics are normalized by the minimum execution
time.

N I P S

T42L16 - GEN 148 | 1.53 | 1.43 | 1.95
T42L16 - MAXSQ | 2.11 | 1.59 | 2.47 | 2.20
T42L16 - MAX 3.95 | 7.69 | 6.40 | 6.75
T85L32 - GEN 1.12 | 1.50 | 1.19 | 1.06
T85L32 - MAXSQ | 1.92 | 1.46 | 2.28 | 1.92
T85L32 - MAX 3.95 | 2.75 | 443 | 8.74

As would be expected, the generic algorithm is very
good for the cases where the optimal algorithm is the
tuned version of ©(Q) transpose FFT/O(Q) transpose
LT, and is significantly worse otherwise. The MAXSQ
values indicate that high-level tuning can lead to sig-
nificant improvements (50%-100%). As before, all of
the parallel algorithms, if not the aspect ratios, are ex-
pected to be reasonable choices in some environment,
and cannot be dismissed out of hand. Even nonsquare
aspect ratios are optimal for smaller numbers of pro-
cessors. See [4] for more details.

6 Summary and Conclusions

We found runtime tuning options to be a useful
technique for determining efficient programming tech-

niques (low-level tuning) and for determining appro-
priate parallel algorithms (high-level tuning). Our ex-
perience with PSTSWM has also convinced us that
conventional benchmark studies, using fixed algo-
rithms, can be very misleading. PSTSWM is not
an exceptionally complex code, yet relatively minor
changes in the algorithms can change performance by
a factor of two or more. In particular, for climate
modeling research, a fair comparison of multiproces-
sors requires the use of optimized parallel algorithms.

Structuring PSTSWM so as to support multi-
ple parallel algorithms efficiently was not a sim-
ple task, but maintaining and porting the code to
other message-passing systems will be straightfor-
ward. PSTSWM is primarily written in standard
Fortran 77, with message passing implemented us-
ing the PICL message passing libraries [5]. All mes-
sage passing is encapsulated in three high-level rou-
tines for broadcast, global minimum, and global max-
imum; two classes of low level routines represent-
ing variants and/or stages of the swap operation and
the send/receive operation, respectively; and one syn-
chronization primitive. Porting the code to another
message-passing system will require simply porting
the PICL library or reimplementing the few com-
munication routines in PSTSWM using either na-
tive message-passing primitives or the proposed MPI
message-passing standard [9], which supports all of
the communication protocols currently implemented
in PSTSWM.

A similar effort to ours to introduce runtime algo-
rithm options into a parallel code may not always be
reasonable, but some options are simple to insert and
can make a big difference on some machines. It is
generally a good idea to encapsulate message passing
primitives in parallel codes [3], and once that is accom-
plished, a variety of communication protocols and al-
gorithm variants can be embedded easily. In summary,
it 1s our opinion that the low-level tuning described
in this paper is a generally applicable technique that
should be used before commencing any benchmarking
effort on message-passing systems. Depending on the
application code, it may also be useful to support a
variety of multiple algorithms in the same code.

Acknowledgments

This work was supported in part by the Atmo-
spheric and Climate Research Division and in part by
the Office of Scientific Computing, both of the Office of
Energy Research, U.S. Department of Energy. We are
grateful to members of the CHAMMP Interagency Or-
ganization for Numerical Simulation, a collaboration

involving Argonne National Laboratory, the National
Center for Atmospheric Research, and Oak Ridge Na-
tional Laboratory, for sharing codes and results; to
Brian Toonen for help with the computational exper-
iments; and to the SUNMOS development team for
help in getting PSTSWM running under SUNMOS on
the Intel Paragon.

This research was performed using Intel iPSC/860
and Paragon multiprocessor systems at Oak Ridge
National Laboratory (ORNL), nCUBE/2 and Intel
Paragon systems at Sandia National Laboratories, and
the nCUBE/2 system at Ames National Laboratory.

References

[1] D. H. Bailey et al., The NAS Parallel Benchmarks,
Internat. J. Supercomputer Applications, 5 (1991),
pp. 63-73.

[2] J. J. Dongarra and W. Gentzsch, eds., Computer
Benchmarks, North-Holland, Amsterdam, 1993.

[3] I. T. Foster, Language constructs for modular parallel
programs, MCS-P391-1093, Argonne National Labo-
ratory, Argonne, 1L, 1993.

[4] I. T. Foster and P. H. Worley, Parallel algorithms
for the spectral transform method, ORNL/TM-12507,
Oak Ridge National Laboratory, Oak Ridge, TN, May
1994.

[5] G. A. Geist, M. T. Heath, B. W. Peyton, and
P. H. Worley, PICL: a portable instrumented com-
munication library, ORNL/TM-11130, Oak Ridge
National Laboratory, Oak Ridge, TN, July 1990.

[6] J. J. Hack et al., Description of the NCAR Commu-
nity Climate Model (COM2), NCAR/TN-382+STR,
National Center for Atmospheric Research, Boulder,
CO, 1992.

[7] J. J. Hack and R. Jakob, Description of a global
shallow water model based on the spectral transform
method, NCAR/TN-343+STR, National Center for
Atmospheric Research, Boulder, CO, February 1992.

[8] S. L. Johnsson and C.-T. Ho, Algorithms for matriz
transposition on Boolean N-cube configured ensemble
architectures, STAM J. Matrix Anal. Appl., 9 (1988),
pp. 419-454.

[9] D. W. Walker, The design of a standard message
passing interface for distributed memory concurrent
computers, Parallel Computing, (1994) (to appear).

[10] D. W. Walker, P. H. Worley, and J. B. Drake, Par-
allelizing the spectral transform method. Part I, Con-
currency: Practice and Experience, 4 (1992), pp. 509-
531.

