
Parallel Spectral Transform Shallow Water Model:A Runtime{Tunable Parallel Benchmark CodeP. H. Worley I. T. FosterOak Ridge National Laboratory Argonne National LaboratoryP.O. Box 2008 9700 South Cass AvenueOak Ridge, TN 37831-6367 Argonne, IL 60439AbstractFairness is an important issue when benchmarkingparallel computers using application codes. The bestparallel algorithm on one platform may not be the beston another. While it is not feasible to reevaluate par-allel algorithms and reimplement large codes whenevernew machines become available, it is possible to em-bed algorithmic options into codes that allow them tobe \tuned" for a particular machine without requiringcode modi�cations. In this paper, we describe a codein which such an approach was taken.PSTSWM was developed for evaluating parallel al-gorithms for the spectral transform method in atmo-spheric circulation models. Many levels of runtime-selectable algorithmic options are supported. We dis-cuss these options and our evaluation methodology.We also provide empirical results from a number ofparallel machines, indicating the importance of tuningfor each platform before making a comparison.1 IntroductionBenchmarking parallel (and sequential) computersis a varied activity. It includes determining low levelmachine and system characteristics, measuring theperformance of important or representative kernels,and measuring the performance of full or compact ap-plication codes [2]. It is also an activity beset withmany di�culties, for example, when trying to fairlycompare/contrast the performance of di�erent com-puter systems.There are special di�culties when using full or com-pact application code benchmarks in interplatformcomparisons. While it is important to measure theTo appear in: Proc. 1994 Scalable High Performance Com-puting Conf., IEEE Computer Science Press.

performance of speci�c parallel algorithms in the con-text of the application codes, it is equally important tomeasure the performance in solving the stated prob-lem, where the parallel algorithm is allowed to varybetween platforms or as the system characteristicsevolve. One solution to this problem is the \paper andpencil" benchmark, as exempli�ed by the NAS bench-mark suite [1]. For such a benchmark, the numericalalgorithm is speci�ed, but the parallel implementationis left to the researcher or the vendor. But it can bevery time-consuming to develop parallel applicationcodes from scratch, and paper benchmarks are mostuseful for algorithmic kernels.In this paper, we describe the Parallel SpectralTransform Shallow Water Model (PSTSWM) com-pact application code. PSTSWM supports a signi�-cant amount of runtime-selectable algorithm tuning,allowing both the parallel algorithm and the commu-nication protocol used in the code to be speci�ed atruntime. When using PSTSWM for benchmarking,we are able to measure how quickly the numericalsimulation can be run without �xing the parallel im-plementation, but still executing the same numericalcode. Thus we consider PSTSWM to be a compro-mise between paper benchmarks and the usual �xedbenchmarks. We have used PSTSWM successfully todetermine e�cient parallel algorithms for a variety ofmultiprocessor platforms and to compare performanceacross platforms. We feel that encapsulating multipleparallel algorithm options into a code is a very pow-erful approach to benchmarking.2 PSTSWMPSTSWM is a message-passing parallel implemen-tation of the sequential Fortran 77 code STSWM2.0 [7]. STSWM solves the nonlinear shallow wa-



ter equations on a rotating sphere using the spectraltransform method. The nonlinear shallow water equa-tions constitute a simpli�ed atmospheric-like 
uid pre-diction model that exhibits many of the features ofmore complete models and that has been used to in-vestigate numerical methods and benchmark a num-ber of machines. The spectral transform algorithm ofSTSWM follows closely how CCM2, the NCAR Com-munity Climate Model, handles the dynamical part ofthe primitive equations [6].PSTSWM di�ers from STSWM in one major re-spect: �ctitious vertical levels have been added inorder to get the correct communication and compu-tation granularity for three-dimensional weather andclimate codes and to allow parallel algorithms that de-compose the vertical dimension to be evaluated. Thenumber of vertical levels is an input parameter. In allother respects, we changed the algorithmic aspects ofSTSWM as little as possible. While the algorithmicstructure of STSWM was maintained, the code struc-ture was altered radically in developing PSTSWM.These changes were made to support the algorithmcomparison and to support reuse of the code devel-oped in implementing the parallel algorithms.PSTSWM uses the spectral transform method tosolve the shallow water equations. During eachtimestep, the state variables of the problem are trans-formed between the physical domain, where the phys-ical forces are calculated, and the spectral domain,where the terms of the di�erential equation are eval-uated. The physical domain is a tensor productlongitude-latitude-vertical grid. The spectral domainis the set of spectral coe�cients in a truncated spher-ical harmonic expansion of the state variables. Whena \triangular" truncation of the spectral coe�cients isused, as is common, the indices for the spectral coef-�cients for a single vertial level make up a triangulararray.Transforming from physical coordinates to spectralcoordinates involves performing a real fast Fouriertransform (FFT) for each line of constant latitude,followed by integration over latitude using Gaussianquadrature (approximating the Legendre transform(LT)) to obtain the spectral coe�cients. The inversetransformation involves evaluating sums of spectralharmonics and inverse real FFTs, analogous to theforward transform. The basic outline of each timestepis the following:1) Evaluate nonlinear product and forcing terms.2) Fourier transform nonlinear terms as a blocktransform.

3) Compute forward Legendre transforms and ad-vance in time the spectral coe�cients for statevariables. (Much of the calculation of the timeupdate is \bundled" with the Legendre transformfor e�ciency.)4) Transform state variables back to gridpoint spaceusinga) an inverse LT and associated computationsandb) an inverse real block FFT.For more details on the steps in solving the shallow wa-ter equations using the spectral transform algorithm,see [7].3 Parallel Algorithm OptionsParallel algorithms are used to compute the FFTsand to compute the vector sums used to approximatethe forward and inverse Legendre transforms. Thereare four \levels" of runtime options supported in thecode.3.1 Processor GridThe physical and spectral domains are decomposedover a logical two-dimensional processor mesh of sizePX � PY . The longitude dimension of the physicaldomain is decomposed over PX processors, and thelatitude dimension is decomposed over PY processors.Thus, FFTs in di�erent processor \rows" are inde-pendent, and each row of PX processors collaboratesin computing a block FFT. Similarly, the Legendretransforms in di�erent processor \columns" are inde-pendent, and each column of PY processors collabo-rates in computing a block of Legendre transforms.The total number of processors and the logical aspectratio, and thus the number of processors dedicated tocomputing the di�erent parallel transforms, are inputparameters. While \squarish" meshes are generallybest, the FFT and LT algorithms have di�erent com-putational and communication complexities, and non-square meshes are sometimes better, depending on theproblem size and the multiprocessor.The mapping of the logical grid to physical pro-cessors is also a runtime option. A set of standardmappings is provided, suitable for hypercube and formesh interconnect topologies, as well as the options toinput an arbitrary mapping.



3.2 Parallel AlgorithmsTwo classes of parallel algorithms are available foreach transform: distributed algorithms, using a �xeddata decompostion and computing results where theyare assigned, and transpose algorithms, remapping thedomains to allow the transforms to be calculated se-quentially. These represent four classes of parallel al-gorithms:1. distributed FFT/distributed LT2. transpose FFT/distributed LT3. distributed FFT/transpose LT4. transpose FFT/transpose LTThere are two transpose algorithms, which di�erprimarily in the number of messages sent and the cu-mulative message volume. Assume that the trans-pose algorithms are implemented on Q processors andthat each processor contains D data to be transposed.Then the per processor communication costs for thetwo algorithms can be characterized by� �(Q) messages, �(D) total volume, and� �(logQ) messages, �(D logQ) total volume,respectively. In the �rst (�(Q) transpose) algorithm,every processor sends data to every other processor.In the second (�(logQ) transpose) algorithm, everyprocessor exchanges data with its neighbors in a logi-cal log2Q dimensional hypercube.There are also two distributed Legendre algorithms.Assume that the Legendre transform is parallelizedover Q processors and that each processor will containD spectral coe�cients when the transform is complete.Then the per processor communication costs for thesetwo algorithms can be characterized by� �(Q) messages, �(DQ) total volume, and� �(logQ) messages, �(DQ) total volume,respectively. The �(Q) algorithm works on a log-ical ring, sending messages to and receiving themfrom nearest neighbors only. The �(logQ) algorithmuses the same communication pattern as the �(logQ)transpose algorithm.There is only one distributed FFT algorithm. Ithas the same characterization of communication costsand communication pattern as the �(logQ) transposealgorithm.All parallel algorithms execute essentially the samecomputations and, modulo load imbalances, di�er

only in communication costs. Load balance issues arediscussed in detail in [4]. Note that the simple char-acterizations described here ignore link contention inthe physical network, and, for example, the �(logQ)distributed Legendre transform algorithm is not auto-matically better than the �(Q) distributed algorithm.In summary, PSTSWM provides 12 di�erent paral-lel algorithms for implementing the spectral transformmethod: 3 FFT � 4 LT.3.3 Parallel Algorithm VariantsEach FFT and LT parallel algorithm also has anumber of implementation options that can be se-lected at runtime.�(Q) transpose. This algorithm proceeds in Q�1steps on Q processors, where, at each step, a proces-sor sends 1=Q of its data to another processor [8]. Tobe e�cient, some care must be taken with the orderof the data communication. We support two di�erentschedules in PSTSWM. In the XOR schedule, proces-sor q swaps data with processor XOR(q; i) at step i.This avoids competition for bandwidth in hypercubeinterconnection networks [8] and is often more e�cientthan a general send/receive pattern on other networks.In the MOD schedule, processor q sends to processorMOD(q + i; Q) at step i.The most robust and portable implementation ofthe �(logQ) transpose is to pair each send requestwith a receive request. But, since all the data to besent is available at the beginning of the transpose, itcan also all be sent immediately (send-ahead), delayingany receive requests until later. Depending on thedetails of the underlying message passing system andthe size of the problem, send-ahead can be an e�cienttechnique, or it can consume all system bu�er spaceand cause deadlock.Since all data that is received is retained and wherethe data is to go is known beforehand, all receive re-quests can be posted before the send requests (receive-ahead) if nonblocking receives are supported by thenative message passing system. Completion of the re-ceive requests would then be checked after individualsend requests, or after all the send requests in a send-ahead implementation.In summary, PSTSWM supports two di�erent com-munication schedules (denoted by the indicated sym-bol): XOR (X) and MOD (M), and four di�er-ent communication options: send/receive (0), recv-ahead/send (1), send-ahead/receive (2), and receive-ahead/send-ahead(3).



�(logQ) transpose. The schedule for this algo-rithm is �xed. Also, each send involves data receivedat the previous step, so a send-ahead implementationis not possible. But, if extra bu�er space is allocated,the receive requests can be posted early, hopefullyeliminating some bu�er copying by guaranteeing thatmessages are placed in user bu�er space when theyarrive. Both send/receive (0) and receive-ahead/send(1) implementations are supported.Distributed FFT. Walker et al. [10] showed thaton computers that permit overlapping of computationand communication, it can be advantageous to dividethe single block FFT into two and interleave the com-munication for one block with the computation forthe other. PSTSWM supports both overlap (O) andnonoverlap (N) versions of the distributed FFT.�(Q) distributed LT. The computation precedingthe communication in this algorithm can be delayedand interleaved with the communication steps, en-abling signi�cant overlap of communication and com-putation. Even if a computer does not support concur-rent computation and communication, overlap tech-niques can still overlap idle time and computation,but contention for shared resources such as the sys-tem bus may reduce overall performance. Also, ifextra bu�er space is allocated, the receive requestscan be posted early. PSTSWM supports both overlap(O) and nonoverlap (N) and both send/receive (0) andreceive-ahead/send (1) implementations of this algo-rithm.�(logQ) distributed LT. Overlap of communica-tion and computation is not e�cient for this algo-rithm. But, if extra bu�er space is allocated, the re-ceive requests can be posted early. Both send/receive(0) and receive-ahead/send (1) implementations aresupported.3.4 Communication ProtocolsAll of the parallel algorithms and their implemen-tations are based on SWAP and SENDRECV primi-tives, where, during each communication step, a pro-cessor sends a message to one processor and receivesa message from another. The send-ahead and receive-ahead implementations use subcommands, for exam-ple, SWAP1, SWAP2, and SWAP3, that together areequivalent to the basic primitive.SWAP and SENDRECV have a number of di�erentcommunication protocols that can be selected at run

time. For brevity, we will restrict our discussion tothe SWAP primitive, but the same options also applyto SENDRECV.First, in a SWAP two processors exchange mes-sages. In a simple SWAP, each processor sends a mes-sage and then receives one. In an ordered SWAP, oneprocessor sends while the other receives, after whichthe �rst processor receives and the second processorssends. The ordered SWAP will work on synchronousmessage passing systems and potentially avoids somebu�er copying. The simple swap takes advantage ofthe full bandwidth in a bidirectional link and concur-rency in initiating the SWAP on the two processors.For each of the two types of SWAP, the exchangecan be implemented with blocking or nonblockingsends, blocking or nonblocking receives, and regular orforcetype messages, as supported by the native mes-sage passing system. The forcetype messages, avail-able on Intel systems, do without the normal hand-shaking protocol that guarantees that messages arenot lost if they arrive before the corresponding receiverequest is made. In certain circumstances, the user canguarantee that a receive request will be posted beforethe send, in which case the forcetype message is muchmore e�cient. Correctness is guaranteed in the SWAPand SENDRECV commands when the forcetype op-tion is chosen.For the ordered SWAP command, there is also asynchronous option, where handshaking messages areused to guarantee that each processor is ready to re-ceive a message before it is sent.In summary, PSTSWM supports six \simple" op-tions and seven \ordered" options. We denote thesimple options by Sn, for some number n, and theordered options by On. The simple options are0: blocking send/blocking receive,1: nonblocking send/blocking receive,2: blocking send/nonblocking receive,3: nonblocking send/nonblocking receive,4: blocking send/nonblocking receive using force-types, and5: nonblocking send/nonblocking receive usingforcetypes.The ordered options are the same six plus6: synchronous blocking send/blocking receive.Note that some options are not supported for somealgorithm variants. For example, it is meaningless tospecify a receive-ahead algorithm that uses blockingreceives.



4 Tuning MethodologyPSTSWM incorporates so many options that acomprehensive study of all possible combinations ofalgorithm parameters, problem size, and processorcount is unreasonable. Instead, we proceed in twostages.In the �rst stage, we perform a series of tuning ex-periments designed to identify an \optimal" set of al-gorithm variants and communication protocol param-eters for each FFT and LT algorithm. These tun-ing experiments are performed with either PX = 1or PY = 1 (i.e., one-dimensional decompositions), al-lowing the FFT and LT algorithms to be studied inisolation. One or more of the problem dimensions isreduced to provide the computation granularity andcommunication volumes that would obtain in a two-dimensional decomposition. For example, when eval-uating the distributed FFT algorithm for a 16�8 pro-cessor grid on a problemwith 16 vertical levels, a 16�1processor grid is used with the number of vertical lev-els reduced by a factor of 8 (from 16 to 2).The number of experiments performed in this �rststage is further reduced by �rst evaluating the fullrange of parameters only on \largest" and \mid-sized"multiprocessor con�gurations for each parallel algo-rithm. For example, P = 512 and P = 64 are consid-ered on the 512-processor Intel Paragon at Oak RidgeNational Laboratory. If these studies all show one setof communication parameters and algorithm variantsto be consistently superior, no further experiments areperformed. We expect the impact of communicationparameters on performance to be relatively insensitiveto the problem granularity and number of processors,and have found this to be true in many cases. Whenthere is a signi�cant di�erence, the purpose of the tun-ing exercise must be taken into account. For bench-marking \peak" performance, we give preference tothe parameters that worked best for the larger con-�gurations. In all cases, subsequent experiments fora given platform and parallel algorithm use a �xedset of communication parameters. The experimentsperformed in the �rst stage are also used to eliminateFFT and LT algorithms from further consideration(on a given platform) if it is clear that they are notcompetitive.Once we have identi�ed optimal communication pa-rameters and promising parallel algorithms, we per-form a second series of experiments that compares allpossible combinations of the remaining FFT and LTalgorithms on all possible aspect ratios for each powerof two number of processors supported by each com-puter. For example, on the Intel Paragon, we use 1,

2, 4, 8, 16, 32, 64, 128, 256, and 512 processors; for32 processors, we try the aspect ratios 1� 32, 2� 16,4�8, 8�4, 16�2, and 32�1. While powers of two arenot necessary, they reduce the number of aspect ratioexperiments to a reasonable number without givingup much information. Also, the distributed FFT and�(logQ) transpose algorithms require that the num-ber of processors be a power of two.5 Empirical ResultsIn this section we describe empirical results thatindicate the importance of algorithm tuning on var-ious machines when benchmarking using PSTSWM.Other papers will describe the algorithm comparisonand benchmarking results in detail. Here, we concen-trate on the variance in timings observed during thetuning experiments.We describe experiments run on the four parallelcomputer systems listed below. These systems varyconsiderably in their communication or computationalcapabilities, despite similarities in their architecturesand programming models.Name Processor Network PnCUBE/2 nCUBE 2 hypercube 1024iPSC/860 i860 hypercube 128Paragon:OSF/1 i860SP 16� 32 mesh 512SUNMOS i860SP 16� 32 mesh 512The nCUBE/2 and the Intel iPSC/860 use hyper-cube interconnects in which each of P processors isconnected to log2 P neighbors via bidirectional links.The Intel Paragon use a two-dimensional bidirectionalmesh interconnect and cut-through routing. Measure-ments were run on the Paragon using both R1.1.2, anOSF-based operating system, and SUNMOS, a low-overhead operating system developed at Sandia Na-tional Laboratories and the University of New Mexico.Both of these operating systems are still evolving, andany conclusions as to their performance or optimaltuning parameters will be short-lived.Low-level tuning. The best algorithm variants andcommunication protocols for the di�erent parallel al-gorithms are listed below. The optimal parametersare denoted by (a; b), where a is the algorithm vari-ant and b is the communication protocol. Both aand b are encoded as indicated in earlier sections.The multiprocessors are denoted as follows: nCUBE/2



(N), iPSC/860 (I), Paragon-OSF (P), and Paragon-SUNMOS (S).Transpose AlgorithmsN I P S�(Q) (X2,S0) (X0,S5) (X1,S5) (X0,S0)�(logQ) (0,S0) (0,S5) (0,S5) (0,O6)Distributed AlgorithmsN I P SFFT (O,O0) (O,S5) (N,S5) (N,O6)�(Q) (O0,S0) (O1,S5) (O1,S4) (O1,S2)�(logQ) (0,S0) (0,S5) (1,S4) (1,S5)The important point to notice in these tables isthat the optimal parameters do di�er between plat-forms. Note that the best parameters for one platformmay not be supported on another. For example, thenative message-passing system on the nCUBE/2 doesnot support nonblocking sends or receives, nor does ithave a special forcetype protocol.Of more relevance to this paper is the sensitivity ofperformance to the parameter selection. To indicatethis, we give in the following tables statistics aboutthe range of timings for two problem sizes: twelvetimesteps each of T42L16, which has a physical com-putational grid of size 128�64�16, and T85L32, whichhas a physical computational grid of size 256�128�32.T42 is the design point for CCM2 [6], and T85 isrepresentative of the size of problem that climate re-searchers would like to solve next. The tuning experi-ments reported here were designed assuming a logical16�32 processor for the nCUBE/2 and Intel Paragon,and assuming a logical 8� 16 processor mesh for theIntel iPSC/860. For example, for the Intel Paragon, a1� 32 logical processor grid is used, and the problemsize is scaled by 1=16 when evaluating parallel LT al-gorithms, to get the correct granularity. For brevity,only the transpose FFT tuning experiments are re-ported. The other transpose experiments have similarstatistics.The statistics used are the �rst quartile (Q1) andlargest time (MAX), both normalized by the minimumtime. The MAX statistic indicates how much is to begained by tuning. The Q1 statistic gives some indi-cation as to how important it is to get the optimalparameters. For example, for the �(logQ) transposealgorithm on the iPSC/860, the worst case and the�rst quartile are both between 40% and 50% worsethan the optimal algorithm, indicating that there isa strong optimum. In contrast, on the Paragon, the�rst quartile is only 3% worse than the optimum; and,while tuning is worthwhile, getting the optimal param-eters is not as important.

�(Q) Transpose FFT AlgorithmN I P S# of Options 8 50 46 50T42L16 - Q1 1.03 1.22 1.11 1.05T42L16 - MAX 1.16 1.38 1.56 1.49T85L32 - Q1 1.03 1.24 1.11 1.01T85L32 - MAX 1.10 1.37 1.24 1.10�(logQ) Transpose FFT AlgorithmN I P S# of Options 3 19 18 19T42L16 - Q1 { 1.40 1.03 1.05T42L16 - MAX 1.14 1.45 1.29 1.53T85L32 - Q1 { 1.40 1.03 1.01T85L32 - MAX 1.12 1.48 1.37 1.12Distributed FFT AlgorithmN I P S# of Options 5 21 18 21T42L16 - Q1 1.00 1.30 1.04 1.03T42L16 - MAX 1.21 1.76 1.29 1.50T85L32 - Q1 1.00 1.27 1.05 1.04T85L32 - MAX 1.17 1.69 1.37 1.09�(Q) Distributed LT AlgorithmN I P S# of Options 7 64 61 64T42L16 - Q1 1.13 1.44 1.20 1.10T42L16 - MAX 1.41 1.76 1.97 1.85T85L32 - Q1 1.10 1.29 1.09 1.09T85L32 - MAX 1.31 1.70 1.63 3.97�(logQ) Distributed LT AlgorithmN I P S# of Options 3 19 18 19T42L16 - Q1 { 1.35 1.07 1.08T42L16 - MAX 1.15 1.46 1.21 1.73T85L32 - Q1 { 1.29 1.06 1.01T85L32 - MAX 1.11 1.40 1.22 1.12As can be seen from the data, tuning isvery important for performance for some algo-rithm/multiprocesor combinations and is relativelyunimportant for others. Similarly, for some algorithmsand multiprocessors, there are many parameter set-tings that produce good results, while for others thereare few. The way that the statistics change with prob-lem granularity is also strongly algorithmand machinedependent. All of the algorithm variants and commu-nication protocols used in these experiments are ex-pected to be reasonable choices in some environment,and cannot be dismissed out of hand. In particular,the optimal parameters for one of our target machinesare sometimes bad choices for a di�erent target, aswill be described in an expanded paper. Thus, given



the complexity of the behavior, we feel that empiricallow-level tuning experiments are an important step inbenchmarking when using PSTSWM.Note that twelve timsteps results in .5-20 secondtimes for these experiments. We have observed longerruns to have exactly the same behavior, and we arecon�dent of the validity of these experiments. Whilethere is some variability in the run times for someof the experiments, all of the good parameter set-tings show little variability in the time to computea timestep, and the minimum timings are very consis-tent.High-level tuning. Unlike the low-level tuning pa-rameters (algorithm variants and communication pro-tocols), it is unreasonable to choose a single aspectratio or parallel algorithm for all problem sizes andmachine con�gurations. The di�erent parallel algo-rithms have di�erent asymptotic behaviors, and thebest choices vary signi�cantly as problem and machinesizes change.For climate modeling, the problem size seldomchanges. Once the optimal low-level parameters havebeen determined, it is straightforward to evaluate allrelevant machine con�gurations to determine the bestaspect ratio and parallel algorithms for a given numberof processors. This information can then be saved andused whenever a given number of processors becomesavailable for a run.We defer the complete description of the algorithmcomparison to [4], and discuss only the high-level tun-ing for the largest con�gurations on each of the targetmachines.The best parallel algorithm combinations and log-ical aspect ratios are listed below. The parallel algo-rithms are denoted as follows: �(Q) transpose (TQ),�(logQ) transpose (TL), distributed FFT (DF), �(Q)distributed Legendre transform (DQ), and �(logQ)distributed Legendre transform (DL). Remember thata PX �PY aspect ratio indicates, among other things,that PX processors collaborate to compute a blockFFT and PY processors collaborate to compute ablock LT.T42L16 N I P SFFT DF TQ TL TLLT DL DQ TL DLaspect 32� 32 16� 8 16� 32 16� 32T85L32 N I P SFFT TQ TQ TQ TQLT TQ DQ TQ TQaspect 32� 32 16� 8 32� 16 32� 16

As before, the important point to be drawn from thisdata is that the best algorithms can di�er with theproblem size and the multiprocessor. In almost allcases, there is a cluster of \good" algorithms closeto the optimal one, and the particular one mentionedhere is not particularly important. But the membersof this \optimal set" vary with problem size and be-tween multiprocessors.The following tables give statistics about the sensi-tivity of performance to the high level tuning. Sincelarge numbers of processors allow us to examine ex-treme logical aspect ratios that are expected to bepoor performers, we give both the largest time (MAX)and the largest time in the set of experiments using1:1, 1:2, and 2:1 aspect ratios (MAXSQ). We also givethe time for a \generic" algorithm (GEN), one that hasoptimal asymptotic behavior and a simple protocolthat is supported on all message-passing systems thatthe authors have experience with. This algorithm uses�(Q) transpose FFT and LT algorithms, a 1:1 or 1:2logical aspect ratio, a MOD communication schedule,and an ordered, blocking communicationprotocol, i.e.,(M0,O0) using our earlier encoding. The generic algo-rithm is meant to represent what a reasonable choicewould have been if we had forgone tuning. As before,all statistics are normalized by the minimumexecutiontime. N I P ST42L16 - GEN 1.48 1.53 1.43 1.95T42L16 - MAXSQ 2.11 1.59 2.47 2.20T42L16 - MAX 3.95 7.69 6.40 6.75T85L32 - GEN 1.12 1.50 1.19 1.06T85L32 - MAXSQ 1.92 1.46 2.28 1.92T85L32 - MAX 3.95 2.75 4.43 8.74As would be expected, the generic algorithm is verygood for the cases where the optimal algorithm is thetuned version of �(Q) transpose FFT/�(Q) transposeLT, and is signi�cantly worse otherwise. The MAXSQvalues indicate that high-level tuning can lead to sig-ni�cant improvements (50%{100%). As before, all ofthe parallel algorithms, if not the aspect ratios, are ex-pected to be reasonable choices in some environment,and cannot be dismissed out of hand. Even nonsquareaspect ratios are optimal for smaller numbers of pro-cessors. See [4] for more details.6 Summary and ConclusionsWe found runtime tuning options to be a usefultechnique for determining e�cient programming tech-



niques (low-level tuning) and for determining appro-priate parallel algorithms (high-level tuning). Our ex-perience with PSTSWM has also convinced us thatconventional benchmark studies, using �xed algo-rithms, can be very misleading. PSTSWM is notan exceptionally complex code, yet relatively minorchanges in the algorithms can change performance bya factor of two or more. In particular, for climatemodeling research, a fair comparison of multiproces-sors requires the use of optimized parallel algorithms.Structuring PSTSWM so as to support multi-ple parallel algorithms e�ciently was not a sim-ple task, but maintaining and porting the code toother message-passing systems will be straightfor-ward. PSTSWM is primarily written in standardFortran 77, with message passing implemented us-ing the PICL message passing libraries [5]. All mes-sage passing is encapsulated in three high-level rou-tines for broadcast, global minimum, and global max-imum; two classes of low level routines represent-ing variants and/or stages of the swap operation andthe send/receive operation, respectively; and one syn-chronization primitive. Porting the code to anothermessage-passing system will require simply portingthe PICL library or reimplementing the few com-munication routines in PSTSWM using either na-tive message-passing primitives or the proposed MPImessage-passing standard [9], which supports all ofthe communication protocols currently implementedin PSTSWM.A similar e�ort to ours to introduce runtime algo-rithm options into a parallel code may not always bereasonable, but some options are simple to insert andcan make a big di�erence on some machines. It isgenerally a good idea to encapsulate message passingprimitives in parallel codes [3], and once that is accom-plished, a variety of communication protocols and al-gorithm variants can be embedded easily. In summary,it is our opinion that the low-level tuning describedin this paper is a generally applicable technique thatshould be used before commencing any benchmarkinge�ort on message-passing systems. Depending on theapplication code, it may also be useful to support avariety of multiple algorithms in the same code.AcknowledgmentsThis work was supported in part by the Atmo-spheric and Climate Research Division and in part bythe O�ce of Scienti�c Computing, both of the O�ce ofEnergy Research, U.S. Department of Energy. We aregrateful to members of the CHAMMP Interagency Or-ganization for Numerical Simulation, a collaboration

involving Argonne National Laboratory, the NationalCenter for Atmospheric Research, and Oak Ridge Na-tional Laboratory, for sharing codes and results; toBrian Toonen for help with the computational exper-iments; and to the SUNMOS development team forhelp in getting PSTSWM running under SUNMOS onthe Intel Paragon.This research was performed using Intel iPSC/860and Paragon multiprocessor systems at Oak RidgeNational Laboratory (ORNL), nCUBE/2 and IntelParagon systems at Sandia National Laboratories, andthe nCUBE/2 system at Ames National Laboratory.References[1] D. H. Bailey et al., The NAS Parallel Benchmarks,Internat. J. Supercomputer Applications, 5 (1991),pp. 63{73.[2] J. J. Dongarra and W. Gentzsch, eds., ComputerBenchmarks, North-Holland, Amsterdam, 1993.[3] I. T. Foster, Language constructs for modular parallelprograms, MCS-P391-1093, Argonne National Labo-ratory, Argonne, IL, 1993.[4] I. T. Foster and P. H. Worley, Parallel algorithmsfor the spectral transform method, ORNL/TM{12507,Oak Ridge National Laboratory, Oak Ridge, TN,May1994.[5] G. A. Geist, M. T. Heath, B. W. Peyton, andP. H. Worley, PICL: a portable instrumented com-munication library, ORNL/TM-11130, Oak RidgeNational Laboratory, Oak Ridge, TN, July 1990.[6] J. J. Hack et al., Description of the NCAR Commu-nity Climate Model (CCM2), NCAR/TN{382+STR,National Center for Atmospheric Research, Boulder,CO, 1992.[7] J. J. Hack and R. Jakob, Description of a globalshallow water model based on the spectral transformmethod, NCAR/TN-343+STR, National Center forAtmospheric Research, Boulder, CO, February 1992.[8] S. L. Johnsson and C.-T. Ho, Algorithms for matrixtransposition on Boolean N-cube con�gured ensemblearchitectures, SIAM J. Matrix Anal. Appl., 9 (1988),pp. 419{454.[9] D. W. Walker, The design of a standard messagepassing interface for distributed memory concurrentcomputers, Parallel Computing, (1994) (to appear).[10] D.W.Walker, P. H. Worley, and J. B. Drake, Par-allelizing the spectral transform method. Part II, Con-currency: Practice and Experience, 4 (1992), pp. 509{531.


