Load-Balancing Algorithms for Climate Models

*

lan T. Foster and Brian R. Toonen

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

Abstract

Implementations of climate models on scalable par-
allel computer systems can suffer from load imbal-
ances because of temporal and spatial variations n
the amount of computation required for physical pa-
rameterizations such as solar radiation and convec-
tive adjustment. We have developed specialized tech-
niques for correcting such imbalances. These tech-
niques are incorporated in a general-purpose, pro-
grammable load-balancing library that allows the map-
ping of computation to processors to be specified as
a sertes of maps generated by a programmer-supplied
load-balancing module. The communication required
to move from one map to another is performed au-
tomatically by the library, without programmer inter-
vention. In this paper, we describe the load-balancing
problem and the techniques that we have developed to
solve it. We also describe specific load-balancing algo-
rithms that we have developed for PCCM2, a scalable
parallel implementation of the Community Climate
Model, and present erperimental results that demon-
strate the effectiveness of these algorithms on parallel
computers.

1 Introduction

In recent years, several groups have worked to adapt
the atmospheric circulation models used for weather
and climate modeling for execution on scalable paral-
lel computers (e.g., see [5]). Typically, these models
use a regular three-dimensional grid to represent the
state of the atmosphere, on which are performed dis-
tinct “dynamics” and “physics” computations. Paral-
lel algorithms are derived by employing a static, two-
dimensional, horizontal domain decomposition of this

grid.

*To appear in: Proc. 1994 Sclable High Performance Comput-
ing Conf., IEEE Computer Science Press.

Dynamics computations are concerned with the
fluid dynamics of the atmosphere. They are typically
(although not always) well load balanced. However,
they have strong horizontal data dependencies and
hence significant communication requirements on a
parallel computer. The development of efficient paral-
lel communication algorithms has been a major thrust
of research efforts in this area.

Physics computations simulate processes such as
clouds, radiation, moist convection, the planetary
boundary layer, and surface processes that are not di-
rectly concerned with fluid dynamics. These processes
typically have no horizontal data dependencies and,
hence, can be parallelized easily. However, they can
be subject to significant spatial and temporal varia-
tions in the computational load per grid point. For ex-
ample, the National Center for Atmospheric Research
(NCAR)’s Community Climate Model (CCM2) per-
forms radiation computations only in grid points that
are in sunlight and gravity wave calculations only in
grid points that are over land [4]. The resulting load
imbalances can reduce overall efficiency by 10-20 per
cent with current physics and are expected to become
more significant in future models [6, 7]. As climate
model runs are typically of extremely long duration,
solutions to this load-balancing problem are of consid-
erable importance.

Different climate models incorporate a variety of
physics modules with different computational load
characteristics. Hence, in addition to requiring that
solutions to the load-balancing problem in climate
models provide good performance, we require that
they be as general purpose as possible. We have ad-
dressed these 2 requirements by developing a flexible
schema-driven load-balancing library. Schemas, which
may be specified prior to a simulation or computed on
the fly, specify the physics data distributions that are
to apply at different time steps. The load-balancing
library handles automatically the communication re-
quired to move from one schema to another. This

1s effectively a run-time compilation approach to load
balancing [8], in that schemas are translated at run
time into communication schedules that can then be
reused many times.

We have used this load-balancing library to apply a
range of different load-balancing techniques to a paral-
lel climate model. These include one well-known tech-
nique (recursive bisection [3]) and others specialized
toward the particular requirements of climate models.
The specialized algorithms provide significantly better
performance. We attribute this to the distinctive char-
acteristics of climate models: in particular, the use of
relatively small grids, rapid changes in load, and (in
some cases) regular and predictable changes in load
patterns.

The rest of this paper is as follows. Section 2
describes the structure of the parallel climate model
that we use to evaluate our load-balancing techniques
and the computational load imbalances found in this
model. Section 3 describes the algorithms that we
have developed to correct these load imbalances and
the structure of the library developed to implement
these algorithms. Finally, Section 4 presents perfor-
mance results for the various algorithms, and Section b
presents our conclusions.

2 PCCM2

While much of the work reported in this paper is
independent of any particular climate model, our im-
plementation work and empirical studies have been
performed in the context of PCCM2, a parallel imple-
mentation of the National Center for Atmospheric Re-
search (NCAR)’s Community Climate Model (CCM2)
developed at Argonne and Oak Ridge national labo-
ratories [1]. Hence, we provide a brief introduction to
the structure of this model.

2.1 Model structure

Both dynamics and physics operate on a set of
three-dimensional data structures with size Ny X
Nyion X Ngyer, where Ngiar, Ngion, and Ng,e, are the
number of grid points in the latitudinal, longitudi-
nal, and vertical directions, respectively. The paral-
lel implementation uses domain decomposition tech-
niques to decompose these data structures and associ-
ated computation in the 2 horizontal dimensions [1, 2].
Some of these data structures are used only by dy-
namics or only by physics; others are shared by the 2
components. At each time step, a subset of these data
structures are passed between the 2 components of the

model, which are executed one after the other. Hence,
it is most efficient in the absence of load imbalances
to decompose physics data structures in the same way
as dynamics data structures.

Dynamics data structures are decomposed using a
static, uniform decomposition onto Piqs X P, proces-
sors, where P4 1s the number of processors in the lat-
itudinal direction and P, is the number of processors
in the longitudinal direction. In order to exploit sym-
metries in the dynamics computations, each processor
receives data from Ngron X Ngiar/(2 X Prat) latitudes
from the north and symmetrically the same number
of latitudes from the south, for a total of Ny.: =
Ngtat/Prat latitudes. In the longitudinal direction,
each processor receives data from Nion = Ngion [/ Pron
longitudes.

2.2 Load imbalances

In the current release of PCCM2, PCCM2.1,
physics load imbalances account for 8.1 per cent of
total execution time at T42 resolution on the 512-
processor Intel DELTA computer. This proportion
1s expected to increase substantially as other compo-
nents of the model are optimized. (Currently, some
components of dynamics are quite inefficient, a fact
that of course tends to decrease the impact of load
imbalances on performance.)

Load distribution (and hence load balancing)
within PCCM2 is complicated by the fact that there
are 3 quite different types of physics time step: no
radiation, partial radiation, and full radiation [4].

In the current model, the time step is 20 simulated
minutes. Every time step, various computations con-
cerned with precipitation, gravity wave calculations,
convective processes, etc., are performed. These may
lead to both spatial and temporal imbalances (e.g.,
land/sea imbalances, seasonal cycle, and weather pat-
terns such as convection over the Indian subcontinent
during the monsoon); however, in the current CCM2
the magnitude of these imbalances is quite small [7].

Every hour (every 3 time steps) an additional “par-
tial radiation” module is invoked to perform time-
consuming shortwave radiation calculations in grid
points exposed to sunlight. This produces a signifi-
cant load imbalance, as illustrated in Fig. 1. This fig-
ure shows, for each of the 512 processors of the Intel
DELTA | time spent in physics during a single partial
radiation time step. The top part of the figure shows
the spatial distribution of computational load) on the
16 x 32 processor processors, with dark shading rep-
resenting more computation; the histogram shows the
distribution of times. Notice that there is a factor of 5

Latitude

10

12

14

16

5 10 15

20 25 30

Longitude

=
o

Frequency
(6]
T

! [Ming mﬂﬂﬂﬂﬂﬂﬂﬂﬂm I 1000

/1 !ﬂﬂﬂﬂﬂﬂﬂuW_ﬂ

o
o

100 200

400 500 600

Time (msec)

Figure 1: Physics Computation Time: 16 x 32 Processor Mesh on Intel DELTA, No Load Balancing

variation between the least and most loaded processor.

Every twelve hours (36 time steps), an additional
“full radiation” time step module is invoked to com-
pute the absorptivity and emissivity of longwave radi-
ation. This is an extremely time-consuming calcula-
tion but involves the same amount of computation at
every grid point.

It turns out out that in PCCM2, the most signifi-
cant source of load imbalance is the partial radiation
calculation [7]. In addition to the strong spatial load
variation illustrated in Fig. 1, this suffers from a sub-
stantial temporal variation resulting from the diurnal
and seasonal cycles. The earth’s rotation about its
axis causes the area exposed to solar radiation to shift
continuously westward, passing over the whole mesh
once every 24 hours (72 time steps). The revolution
of the earth around the sun results in a cyclic annual
drift of the solar declination between the summer and
winter solstices, causing the latitudes exposed to solar
radiation to change over time.

3 Load-balancing algorithms

We are interested in developing general load-
balancing techniques that can be used to compensate
for load imbalance in PCCM?2 and other similar mod-
els. These must certainly be able to compensate for

load imbalance in PCCMZ2; in addition, because both
future versions of PCCM2 and other models may have
quite different load distributions, it is important to de-
sign load-balancing techniques with a high degree of
generality.

It is almost always the case in atmospheric circu-
lation models that within physics, computation per-
formed at each grid point (vertical column) is indepen-
dent of that performed at other points. This means
that grid points and their associated computation
can easily be migrated between processors. Unfortu-
nately, these modified decompositions cannot easily be
used (and probably will not be efficient) in dynamics.
Hence, the use of load balancing leads to a need for
separate dynamics and physics grids. Communication
is required at each time step to move data between
these grids.

In some parallel programs, load imbalances can be
addressed by a static mapping of computation to pro-
cessors that minimizes total execution time. However,
this does not appear feasible in climate models in gen-
eral and in PCCM2 in particular. The rapid tempo-
ral changes in PCCM2 load distribution and the dif-
fering load distribution characteristics of the 3 types
of time step would make any static mapping ineffi-
cient. Instead, we require load-balancing algorithms
that change mapping frequently—in fact, on almost

every time step.
3.1 Library

To provide a flexible framework for the investiga-
tion of load-balancing algorithms, we have developed
a general-purpose, configurable load-balancing library.
The programmer need specify just the mapping of
physics grid points to processors that is to apply at
each time step; the library then organizes the move-
ment of data required to support this mapping. A
mapping is specified by a schema, a two-dimensional
array in which each entry is an integer processor num-
ber, and a program, which indicates which schema is
to apply at each time step. The load-balancing li-
brary uses schedule and schema information to gen-
erate communication schedules which are executed to
actually move data between processors. Data move-
ment is required for 3 purposes:

Input: Grid points modified by dynamics and
shared with physics must be communicated prior to
calling physics if the dynamics and physics grid distri-
butions place that grid point on different processors.

Qutput: Similarly, grid points modified by physics
and shared with dynamics must be communicated
prior to calling dynamics if the dynamics and physics
grid distributions place that grid point on a different
processor.

State: Grid points used only by physics must be
communicated when moving from one physics grid dis-
tribution to another.

3.2 Algorithms

The various load-balancing algorithms that we have
developed for PCCM?2 are primarily intended to com-
pensate for the load imbalance because of the diurnal
cycle. Hence, they migrate grid points only within lat-
itudes; there is little purpose in migrating grid points
within longitudes, because there is little load imbal-
ance in the north/south direction. The algorithms do
not compensate explicitly for land/sea imbalances or
for imbalances because of the seasonal cycle. However,
the pairing of symmetric north-south latitudes in the
initial distribution compensates for most of the latter
variation.

In the following, we describe 4 different load-
balancing algorithms. These differ in both migration
frequency and migration patterns.

Swapping. The simplest algorithm that we consider
swaps every second data column with the processor di-
rectly opposite itself within its latitude. This column

will be located on the processor that is longitudinally
Pion /2 processors away. The algorithm causes a con-
tiguous block of grid points exposed to daylight to
be dispersed to processors that contain few or no day
points and, hence, does an excellent job of load bal-
ancing. Because each processor moves half of its data
to another processor, it has the disadvantage of always
moving a large amount of data. On the other hand,
the communication pattern i1s predictable and hence
amenable to optimization.

The other algorithms that we consider seek to
achieve a similar quality of load balance while moving
fewer points. To achieve this, they require an estimate
of the amount of computation per grid point. We base
this estimate on whether grid points are in sunlight or
darkness.

Swapping 2. Given information about which grid
points are exposed to solar radiation, a second swap-
ping algorithm can be considered. The algorithm de-
termines the difference d in the number of day points
on a given processor and the processor P, /2 proces-
sors to the west. Then, d/2 day points from the more
heavily loaded processor are exchanged for an equal
number of night points from the opposing processor.
This method reduces the number of grid points being
transmitted but requires that a separate mapping be
generated for each radiation time step. These map-
pings must either be cached or be computed on the
fly. While caching is sufficient for the trial runs asso-
ciated with this study, it is infeasible for the extended
runs common to climate models.

Movement. Slightly more complex is the algorithm
that moves grid points rather than simply swapping
them. This requires that we estimate computation
costs associated with a column, as follows. First, we
determine the ratio of the average computation times
for day and night grid points. We refer to this ra-
tio as the day-night ratio or d/n. This ratio is com-
puted in a calibration step, prior to running the model.
Using this information and the exposure information
discussed previously, we can estimate the cost of com-
putation associated with the grid points on every lat-
itude and processor. The cost for any given latitude
and processor is simply (d/n) X Naay + 1 X Npight,
where Ngqy is the number of points exposed to day-
light and Npigne is the number of points in complete
darkness.

The movement algorithm also requires that the
data arrays used within physics be extended to pro-
vide room for more than Ny,, points per latitude.
Because PCCM2 dynamics assume Ny, points per
latitude and cannot easily be modified, data must be

copied from dynamics arrays to new “extended arrays”
prior to calling physics. This requirement represents
additional overhead not required in the swapping al-
gorithms.

The movement algorithm attempts to move grid
points between a given processor and the processor off-
set 180 degrees in longitude, as this was found to com-
pensate well for the diurnal cycle imbalance. Specif-
ically, day points are moved from the more heavily
loaded processor until cost difference between the 2
processors is minimized. Then, the same technique is
used for night points, thus providing a fine-grain ad-
justment. Since physics requires the grid points on
each processor to be contiguous, points may need to
move locally. To minimize this local movement, the
points selected for transportation to opposing proces-
sors are chosen from right to left in the data arrays.

Recursive Bisection. For comparison purposes, we
also implemented a version of the well-known recur-
sive bisection algorithm. From the same per-column
cost estimates as the movement algorithm, this recur-
sively divides the grid points within a latitude into
2 groups with approximately equal costs. The recur-
sion continues until each processor has been assigned
a contiguous set of points.

Since all 4 algorithms are designed to deal with the
diurnal cycle, they are applied only during radiation
time steps: that is, once every hour. During nonradia-
tion time steps, physics data structures remain in their
initial decomposition. Hence, the first swapping algo-
rithm alternates between 2 mappings (schemas): the
initial mapping and a swapped mapping. The other
algorithms use a different mapping for each radiation
time step.

4 Empirical studies

We now describe the empirical studies performed
to evaluate the effectiveness of our load-balancing al-
gorithms in PCCM2.

4.1 Method

We measured the performance of our 4 algorithms
using an instrumented version of PCCM2. This in-
strumented version is based on an early release of
PCCM2 in which the dynamics algorithms are quite
inefficient. These inefficiencies reduce the proportion
of total time taken in physics and hence the apparent
impact of the load-balancing algorithms, but do not
invalidate the algorithm comparison. In Section 4.4,

we present the performance results when the first
swapping algorithm is incorporated into a more op-
timized PCCM2.

Initially, we performed several calibration runs to
determine the daypoint-nightpoint ratio required for
the movement and recursive bisection algorithms.
These runs were performed for a range of processor
counts. Schema sets along with schedules were then
generated and stored for each algorithm.

Performance runs were then performed for each al-
gorithm and for a range of processor counts, from 32 to
512. Each run was performed once without instrumen-
tation to measure overall performance, and once with
instrumentation to gather information about load bal-
ancing overhead. The repeated runs ensured that in-
strumentation costs did not effect overall performance
measurements. Because there is a certain variability
in the times measured, however, a disadvantage of this
approach is that the total times and measured over-
heads are not always consistent.

Each run was performed for forty time steps on the
Intel DELTA at T42 resolution (a 64 x 128 grid). All
algorithms were specified by schema sets and schedules
loaded from files. A forty-step run was chosen because
it encompasses all types of time steps and a full diurnal
cycle, without requiring that an excessive number of
layouts be buffered in memory. It does not, however,
allow us to observe the effects of the seasonal cycle.

4.2 Results

Despite additional overhead from load balancing,
we found that load balancing succeeded in reducing
total execution time. From Fig. 2, we see that all load-
balancing algorithms reduced total execution time.
The bisection algorithm was significantly less efficient
than the movement or swapping algorithms. The sec-
ond swapping algorithm was somewhat more efficient
than the movement or other swapping algorithm in
most cases.

As can be seen in Fig. 2, the best load-balancing al-
gorithm improves overall performance by ten per cent
on 128 processors, eight per cent on 256 processors,
and 4.3 per cent on 512 processors. (Recall that these
results are with inefficient dynamics; results with an
optimized model are given in Section 4.4 below.) On
512 processors, idle time because of load imbalance
is reduced from 6.8 per cent to 0.8 per cent of total
execution time; physics execution time, excluding the
overhead of the load-balancing system, is reduced by
22.8 per cent. This almost total elimination of load
imbalance is apparent in Fig. 3. The difference be-
tween the 6.8 per cent reduction in idle time and the

0.98

0.96

0.94

Relative Time

092 F

09 r

0.88 . :

bisection ——
movement --+---
swapping & |
swapping2 -

origina -&--

32 64 128

Figure 2: Relative Overall Performance on the Intel DELTA

4.3 per cent reduction in execution time corresponds
to load-balancing overhead.

Tables 1 and 2 give execution and overhead times
measured on 512 processors, averaged over forty-step
runs. Times are given both for each of the 3 types of
time step and for an average time step. It should be
noted that the latter value is not simply the average of
the other 3 columns but is a weighted average, where
the weights are based on the number of time steps of
each type executed within a 24-hour period.

The overhead data in Table 2 breaks down load-
balancing costs into 4 categories. The first 3 corre-
spond to the input, output, and state communication
operations described in Section 3.1, while the fourth is
the copying required when moving data from the dy-
namics arrays to the extended arrays used in physics
in the nonswapping algorithms. Note that the swap-
ping algorithms do not incur these latter costs.

The recursive bisection algorithm improved overall
performance by only 1.0 per cent. There are 2 reasons
for this algorithm’s poor performance. First, it moves
more grid points: typically, most grid points will move.
Second, the large spatial imbalance resulting from the
diurnal cycle is not easily removed without reorder-
ing points within a latitude. Not having the ability
to intersperse night points among the day points, this
algorithm fails to make the fine-grain adjustments nec-
essary to balance the radiation calculations.

In theory, one would expect the movement algo-
rithm to outperform the swapping algorithms; how-

ever, the empirical data shows it to be less effective
than expected. Although this algorithm communi-
cates less data than either of the swapping algorithms,
it has the additional overhead of extending the physics
arrays. It also proves to be slightly less effective in
balancing load, because it expects the computational
costs associated with a day or night grid point to be
constant. However, physics contains other imbalances
besides the diurnal cycle. Although smaller in magni-
tude, they do have an impact which is compensated
for by swapping but not by movement.

4.3 Other issues

The algorithms utilized in this study switch to
an identity mapping during nonradiation time steps.
Hence, physics state data is reorganized both before
and after each radiation time step. In principle, this
data could be cached on each processor in the swap-
ping algorithm, avoiding the need for the reorgani-
zation. As Table 2 shows, the state data reorganiza-
tion is a large proportion of total communication time.
Hence, this is expected to have a significant impact on
performance. We will investigate this optimization in
future work.

Extended arrays are a source of overhead in the
PCCM2 implementation of the data movement algo-
rithms, because data must be copied to and from the
extended arrays at each time step. This overhead
could be avoided in a climate model that used ex-

Table 1: Load-Balancing Results on 16 x 32 Intel DELTA Processors

Time (msec) Relative

Section | Algorithm | Full | Partial | None | Average | Speedup
Overall | bisection 3589.0 | 1179.5 | 858.6 1032.5 1.010
movement | 3592.0 | 1103.5 | 847.3 1001.8 1.041
swapping | 3489.0 | 1111.6 | 846.7 1001.0 1.042
swapping2 | 3473.0 | 1102.8 | 848.2 998.9 1.044

original 3740.0 | 1276.5 | 823.9 1043.2 1.000

Physics | bisection 2829.0 346.5 | 63.7 226.9 1.185
movement | 2826.0 294.1 63.8 210.9 1.275
swapping | 2702.0 306.4 | 62.9 210.6 1.276
swapping2 | 2700.0 296.5 | 63.0 207.6 1.295

original 2998.0 504.5 | 47.0 268.8 1.000

tended arrays throughout both physics and dynamics.
Our results suggest, however, that the swapping al-
gorithms would still outperform the data movement
algorithm.

While it would be possible to devise a new move-
ment algorithm that was aware of the other imbalances
that result in inefficiencies in the current movement al-
gorithm, the additional overhead associated with this
awareness would likely cancel out any improvements.
In addition, we would then encounter the problem of
generating and storing the associated communication
schedules.

4.4 Optimized PCCM2

Further enhancements were made to PCCM2 inde-
pendent of the version used for development of the
load-balancing libraries. Many modifications were
made in the dynamics portion of the code, but the
physics remained relatively untouched. The modifi-
cations made to the newer version of the code have
resulted in a substantial performance improvement
within dynamics and thus have made the physics im-
balances more significant to the overall execution time.
Trial runs using the first swapping algorithm indicate
an overall improvement of 5.9 per cent as a result of
the load-balancing code’s being added to the current
version of the model.

5 Conclusions

The results of this work are encouraging. The swap-
ping algorithms succeeded in significantly reducing the
load imbalance, improving the total execution time by

5.9 per cent on 512 processors. The overhead associ-
ated with the load-balancing code, however, is still
rather high. Some of this overhead is inevitable given
the use of a general-purpose library; however, part of
the overhead can be avoided with tuning. In future
work, we will both tune the existing library and in-
vestigate alternative structures for the library, with
the goal of reducing overhead. For example, we will
consider the feasibility of caching state data. We also
hope to extend this work to consider other physics
modules and other climate models.

Acknowledgments

This work was supported by the Atmospheric and
Climate Research Division of the Office of Energy Re-
search, U.S. Department of Energy. We are grateful
to members of the CHAMMP Interagency Organiza-
tion for Numerical Simulation, a collaboration involv-
ing Argonne National Laboratory, the National Center
for Atmospheric Research, and Oak Ridge National
Laboratory, for sharing codes and results.

References

[1] Drake, J., Foster, I., Hack, J., Michalakes, J., Semer-
aro, B., Toonen, B., Williamson, D., and Worley, P.,
PCCM2: A GCM Adapted for Scalable Parallel Com-
puters. Proc. AMS Annual Meeting, AMS, 1994.

[2] Foster, 1., Gropp, W., and Stevens, R., The paral-
lel scalability of the spectral transform method, Mon.
Wea. Rev., 125, 835-850, 1992.

Latitude

5 10 15 20 25 30
Longitude

> 10 T T T T T
(8]
c
S i ~
<
VR

0 I L0 I I I

0 100 200 30! 400 500 600
Time (msec)

Figure 3: Physics Computation Time after Load Balancing with the “Swapping 2”7 Algorithm

[3] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon,)
J., and Walker, D., Solving Problems on Concurrent Table 2: Load-Balancing Overhead on 16 x 32 Intel

Processors. Prentice-Hall. 1988. DELTA Processors
[4] J. Hack, B. Boville, B. Briegleb, J. Kiehl, P. Rasch,

and D. Williamson, Description of the NCAR Commu-

!) Time (msec)
nity Climate Model (CCM2), NCAR Tech. Note TN-

Ph Algorith Full | Part. | N M
3824-STR, National Center for Atmospheric Research, ase gorihm 4 | ar | one | can

Boulder, Colo., 1992. Input bisection 9.0 | 383 2.2 13.4

[5] Hoffmann, G.-R., and Kauranne, T. (eds.), Parallel Su- movement 4.0 19.0 2.5 7.6

percomputing in the Atmospheric Sciences, World Sci- swapp}ng 20.0 19.4 2.2 8.0
entific, 1993. swapping?2 | 18.0 19.4 2.2 7.9

tput | bisecti . 44.2 2. 15.1

[6] Michalakes, J., Analysis of Workload and Load Balanc- Outpu fsection ¢ 2 8 19.7 9 8 i 5
ing Issues in the NCAR Community Climate Model, movemen ’ ’ ’ ’

ANL/MCS-TM-144. Argonne National Laboratory, swapping 20.0 20.0 2.0 8.0

Argonne, IHiIlOiS, 1991. swapping2 19.0 19.6 2.0 7.9

[7] Michalakes, J., and Nanjundiah, R., Computational State blsectlont 128 ggg ?g;l ?;g
Load in Model Physics of the Parallel NCAR Com- movemen : : : :
munity Climate Model, ANL/MCS-TM-186, Argonne swapping | 26.0 | 27.1 | 145 18.6

National Laboratory, Argonne, Illinois, 1994. swapping2 | 26.0 26.5 13.9 18.1

Extend | bisection 8.0 8.5 8.4 8.4

Runtime-Compilation Techniques for Data Partition- movement 8.0 8.9 8.4 8.5
ing and Communication Schedule Reuse, Proc. Super- swapp}ng 0.0 0.0 0.0 0.0
computing 93, 1993. swapping?2 0.0 0.0 0.0 0.0

[8] Ponnusamy, R., Saltz, J., and Choudhary, A,

Total bisection 35.0 | 146.0 43.0 74.3
movement | 19.0 76.9 26.1 41.4
swapping | 66.0 | 66.5 18.7 34.6
swapping2 | 63.0 | 65.5 18.1 33.9

