
Load-Balancing Algorithms for Climate Models�Ian T. Foster and Brian R. ToonenMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439AbstractImplementations of climate models on scalable par-allel computer systems can su�er from load imbal-ances because of temporal and spatial variations inthe amount of computation required for physical pa-rameterizations such as solar radiation and convec-tive adjustment. We have developed specialized tech-niques for correcting such imbalances. These tech-niques are incorporated in a general-purpose, pro-grammable load-balancing library that allows the map-ping of computation to processors to be speci�ed asa series of maps generated by a programmer-suppliedload-balancing module. The communication requiredto move from one map to another is performed au-tomatically by the library, without programmer inter-vention. In this paper, we describe the load-balancingproblem and the techniques that we have developed tosolve it. We also describe speci�c load-balancing algo-rithms that we have developed for PCCM2, a scalableparallel implementation of the Community ClimateModel, and present experimental results that demon-strate the e�ectiveness of these algorithms on parallelcomputers.1 IntroductionIn recent years, several groups have worked to adaptthe atmospheric circulation models used for weatherand climate modeling for execution on scalable paral-lel computers (e.g., see [5]). Typically, these modelsuse a regular three-dimensional grid to represent thestate of the atmosphere, on which are performed dis-tinct \dynamics" and \physics" computations. Paral-lel algorithms are derived by employing a static, two-dimensional, horizontal domain decomposition of thisgrid.�To appear in: Proc. 1994 Sclable High Performance Comput-ing Conf., IEEE Computer Science Press.

Dynamics computations are concerned with theuid dynamics of the atmosphere. They are typically(although not always) well load balanced. However,they have strong horizontal data dependencies andhence signi�cant communication requirements on aparallel computer. The development of e�cient paral-lel communication algorithms has been a major thrustof research e�orts in this area.Physics computations simulate processes such asclouds, radiation, moist convection, the planetaryboundary layer, and surface processes that are not di-rectly concerned with uid dynamics. These processestypically have no horizontal data dependencies and,hence, can be parallelized easily. However, they canbe subject to signi�cant spatial and temporal varia-tions in the computational load per grid point. For ex-ample, the National Center for Atmospheric Research(NCAR)'s Community Climate Model (CCM2) per-forms radiation computations only in grid points thatare in sunlight and gravity wave calculations only ingrid points that are over land [4]. The resulting loadimbalances can reduce overall e�ciency by 10{20 percent with current physics and are expected to becomemore signi�cant in future models [6, 7]. As climatemodel runs are typically of extremely long duration,solutions to this load-balancing problem are of consid-erable importance.Di�erent climate models incorporate a variety ofphysics modules with di�erent computational loadcharacteristics. Hence, in addition to requiring thatsolutions to the load-balancing problem in climatemodels provide good performance, we require thatthey be as general purpose as possible. We have ad-dressed these 2 requirements by developing a exibleschema-driven load-balancing library. Schemas, whichmay be speci�ed prior to a simulation or computed onthe y, specify the physics data distributions that areto apply at di�erent time steps. The load-balancinglibrary handles automatically the communication re-quired to move from one schema to another. This



is e�ectively a run-time compilation approach to loadbalancing [8], in that schemas are translated at runtime into communication schedules that can then bereused many times.We have used this load-balancing library to apply arange of di�erent load-balancing techniques to a paral-lel climate model. These include one well-known tech-nique (recursive bisection [3]) and others specializedtoward the particular requirements of climate models.The specialized algorithms provide signi�cantly betterperformance. We attribute this to the distinctive char-acteristics of climate models: in particular, the use ofrelatively small grids, rapid changes in load, and (insome cases) regular and predictable changes in loadpatterns.The rest of this paper is as follows. Section 2describes the structure of the parallel climate modelthat we use to evaluate our load-balancing techniquesand the computational load imbalances found in thismodel. Section 3 describes the algorithms that wehave developed to correct these load imbalances andthe structure of the library developed to implementthese algorithms. Finally, Section 4 presents perfor-mance results for the various algorithms, and Section 5presents our conclusions.2 PCCM2While much of the work reported in this paper isindependent of any particular climate model, our im-plementation work and empirical studies have beenperformed in the context of PCCM2, a parallel imple-mentation of the National Center for Atmospheric Re-search (NCAR)'s Community Climate Model (CCM2)developed at Argonne and Oak Ridge national labo-ratories [1]. Hence, we provide a brief introduction tothe structure of this model.2.1 Model structureBoth dynamics and physics operate on a set ofthree-dimensional data structures with size Nglat �Nglon � Ngver, where Nglat, Nglon, and Ngver are thenumber of grid points in the latitudinal, longitudi-nal, and vertical directions, respectively. The paral-lel implementation uses domain decomposition tech-niques to decompose these data structures and associ-ated computation in the 2 horizontal dimensions [1, 2].Some of these data structures are used only by dy-namics or only by physics; others are shared by the 2components. At each time step, a subset of these datastructures are passed between the 2 components of the

model, which are executed one after the other. Hence,it is most e�cient in the absence of load imbalancesto decompose physics data structures in the same wayas dynamics data structures.Dynamics data structures are decomposed using astatic, uniform decomposition onto Plat�Plon proces-sors, where Plat is the number of processors in the lat-itudinal direction and Plon is the number of processorsin the longitudinal direction. In order to exploit sym-metries in the dynamics computations, each processorreceives data from Nglon � Nglat=(2 � Plat) latitudesfrom the north and symmetrically the same numberof latitudes from the south, for a total of Nllat =Nglat=Plat latitudes. In the longitudinal direction,each processor receives data from Nllon = Nglon=Plonlongitudes.2.2 Load imbalancesIn the current release of PCCM2, PCCM2.1,physics load imbalances account for 8.1 per cent oftotal execution time at T42 resolution on the 512-processor Intel DELTA computer. This proportionis expected to increase substantially as other compo-nents of the model are optimized. (Currently, somecomponents of dynamics are quite ine�cient, a factthat of course tends to decrease the impact of loadimbalances on performance.)Load distribution (and hence load balancing)within PCCM2 is complicated by the fact that thereare 3 quite di�erent types of physics time step: noradiation, partial radiation, and full radiation [4].In the current model, the time step is 20 simulatedminutes. Every time step, various computations con-cerned with precipitation, gravity wave calculations,convective processes, etc., are performed. These maylead to both spatial and temporal imbalances (e.g.,land/sea imbalances, seasonal cycle, and weather pat-terns such as convection over the Indian subcontinentduring the monsoon); however, in the current CCM2the magnitude of these imbalances is quite small [7].Every hour (every 3 time steps) an additional \par-tial radiation" module is invoked to perform time-consuming shortwave radiation calculations in gridpoints exposed to sunlight. This produces a signi�-cant load imbalance, as illustrated in Fig. 1. This �g-ure shows, for each of the 512 processors of the IntelDELTA, time spent in physics during a single partialradiation time step. The top part of the �gure showsthe spatial distribution of computational load) on the16 � 32 processor processors, with dark shading rep-resenting more computation; the histogram shows thedistribution of times. Notice that there is a factor of 5



5 10 15 20 25 30

2

4

6

8

10

12

14

16

Longitude

La
tit

ud
e

0 100 200 300 400 500 600
0

5

10

Time (msec)

F
re

qu
en

cyFigure 1: Physics Computation Time: 16� 32 Processor Mesh on Intel DELTA, No Load Balancingvariation between the least and most loaded processor.Every twelve hours (36 time steps), an additional\full radiation" time step module is invoked to com-pute the absorptivity and emissivity of longwave radi-ation. This is an extremely time-consuming calcula-tion but involves the same amount of computation atevery grid point.It turns out out that in PCCM2, the most signi�-cant source of load imbalance is the partial radiationcalculation [7]. In addition to the strong spatial loadvariation illustrated in Fig. 1, this su�ers from a sub-stantial temporal variation resulting from the diurnaland seasonal cycles. The earth's rotation about itsaxis causes the area exposed to solar radiation to shiftcontinuously westward, passing over the whole meshonce every 24 hours (72 time steps). The revolutionof the earth around the sun results in a cyclic annualdrift of the solar declination between the summer andwinter solstices, causing the latitudes exposed to solarradiation to change over time.3 Load-balancing algorithmsWe are interested in developing general load-balancing techniques that can be used to compensatefor load imbalance in PCCM2 and other similar mod-els. These must certainly be able to compensate for

load imbalance in PCCM2; in addition, because bothfuture versions of PCCM2 and other models may havequite di�erent load distributions, it is important to de-sign load-balancing techniques with a high degree ofgenerality.It is almost always the case in atmospheric circu-lation models that within physics, computation per-formed at each grid point (vertical column) is indepen-dent of that performed at other points. This meansthat grid points and their associated computationcan easily be migrated between processors. Unfortu-nately, these modi�ed decompositions cannot easily beused (and probably will not be e�cient) in dynamics.Hence, the use of load balancing leads to a need forseparate dynamics and physics grids. Communicationis required at each time step to move data betweenthese grids.In some parallel programs, load imbalances can beaddressed by a static mapping of computation to pro-cessors that minimizes total execution time. However,this does not appear feasible in climate models in gen-eral and in PCCM2 in particular. The rapid tempo-ral changes in PCCM2 load distribution and the dif-fering load distribution characteristics of the 3 typesof time step would make any static mapping ine�-cient. Instead, we require load-balancing algorithmsthat change mapping frequently|in fact, on almost



every time step.3.1 LibraryTo provide a exible framework for the investiga-tion of load-balancing algorithms, we have developeda general-purpose, con�gurable load-balancing library.The programmer need specify just the mapping ofphysics grid points to processors that is to apply ateach time step; the library then organizes the move-ment of data required to support this mapping. Amapping is speci�ed by a schema, a two-dimensionalarray in which each entry is an integer processor num-ber, and a program, which indicates which schema isto apply at each time step. The load-balancing li-brary uses schedule and schema information to gen-erate communication schedules which are executed toactually move data between processors. Data move-ment is required for 3 purposes:Input: Grid points modi�ed by dynamics andshared with physics must be communicated prior tocalling physics if the dynamics and physics grid distri-butions place that grid point on di�erent processors.Output: Similarly, grid points modi�ed by physicsand shared with dynamics must be communicatedprior to calling dynamics if the dynamics and physicsgrid distributions place that grid point on a di�erentprocessor.State: Grid points used only by physics must becommunicated when moving from one physics grid dis-tribution to another.3.2 AlgorithmsThe various load-balancing algorithms that we havedeveloped for PCCM2 are primarily intended to com-pensate for the load imbalance because of the diurnalcycle. Hence, they migrate grid points only within lat-itudes; there is little purpose in migrating grid pointswithin longitudes, because there is little load imbal-ance in the north/south direction. The algorithms donot compensate explicitly for land/sea imbalances orfor imbalances because of the seasonal cycle. However,the pairing of symmetric north-south latitudes in theinitial distribution compensates for most of the lattervariation.In the following, we describe 4 di�erent load-balancing algorithms. These di�er in both migrationfrequency and migration patterns.Swapping. The simplest algorithm that we considerswaps every second data columnwith the processor di-rectly opposite itself within its latitude. This column

will be located on the processor that is longitudinallyPlon=2 processors away. The algorithm causes a con-tiguous block of grid points exposed to daylight tobe dispersed to processors that contain few or no daypoints and, hence, does an excellent job of load bal-ancing. Because each processor moves half of its datato another processor, it has the disadvantage of alwaysmoving a large amount of data. On the other hand,the communication pattern is predictable and henceamenable to optimization.The other algorithms that we consider seek toachieve a similar quality of load balance while movingfewer points. To achieve this, they require an estimateof the amount of computation per grid point. We basethis estimate on whether grid points are in sunlight ordarkness.Swapping 2. Given information about which gridpoints are exposed to solar radiation, a second swap-ping algorithm can be considered. The algorithm de-termines the di�erence d in the number of day pointson a given processor and the processor Plon=2 proces-sors to the west. Then, d=2 day points from the moreheavily loaded processor are exchanged for an equalnumber of night points from the opposing processor.This method reduces the number of grid points beingtransmitted but requires that a separate mapping begenerated for each radiation time step. These map-pings must either be cached or be computed on they. While caching is su�cient for the trial runs asso-ciated with this study, it is infeasible for the extendedruns common to climate models.Movement. Slightly more complex is the algorithmthat moves grid points rather than simply swappingthem. This requires that we estimate computationcosts associated with a column, as follows. First, wedetermine the ratio of the average computation timesfor day and night grid points. We refer to this ra-tio as the day-night ratio or d=n. This ratio is com-puted in a calibration step, prior to running the model.Using this information and the exposure informationdiscussed previously, we can estimate the cost of com-putation associated with the grid points on every lat-itude and processor. The cost for any given latitudeand processor is simply (d=n) � Nday + 1 � Nnight,where Nday is the number of points exposed to day-light and Nnight is the number of points in completedarkness.The movement algorithm also requires that thedata arrays used within physics be extended to pro-vide room for more than Nllon points per latitude.Because PCCM2 dynamics assume Nllon points perlatitude and cannot easily be modi�ed, data must be



copied from dynamics arrays to new \extended arrays"prior to calling physics. This requirement representsadditional overhead not required in the swapping al-gorithms.The movement algorithm attempts to move gridpoints between a given processor and the processor o�-set 180 degrees in longitude, as this was found to com-pensate well for the diurnal cycle imbalance. Specif-ically, day points are moved from the more heavilyloaded processor until cost di�erence between the 2processors is minimized. Then, the same technique isused for night points, thus providing a �ne-grain ad-justment. Since physics requires the grid points oneach processor to be contiguous, points may need tomove locally. To minimize this local movement, thepoints selected for transportation to opposing proces-sors are chosen from right to left in the data arrays.Recursive Bisection. For comparison purposes, wealso implemented a version of the well-known recur-sive bisection algorithm. From the same per-columncost estimates as the movement algorithm, this recur-sively divides the grid points within a latitude into2 groups with approximately equal costs. The recur-sion continues until each processor has been assigneda contiguous set of points.Since all 4 algorithms are designed to deal with thediurnal cycle, they are applied only during radiationtime steps: that is, once every hour. During nonradia-tion time steps, physics data structures remain in theirinitial decomposition. Hence, the �rst swapping algo-rithm alternates between 2 mappings (schemas): theinitial mapping and a swapped mapping. The otheralgorithms use a di�erent mapping for each radiationtime step.4 Empirical studiesWe now describe the empirical studies performedto evaluate the e�ectiveness of our load-balancing al-gorithms in PCCM2.4.1 MethodWe measured the performance of our 4 algorithmsusing an instrumented version of PCCM2. This in-strumented version is based on an early release ofPCCM2 in which the dynamics algorithms are quiteine�cient. These ine�ciencies reduce the proportionof total time taken in physics and hence the apparentimpact of the load-balancing algorithms, but do notinvalidate the algorithm comparison. In Section 4.4,

we present the performance results when the �rstswapping algorithm is incorporated into a more op-timized PCCM2.Initially, we performed several calibration runs todetermine the daypoint-nightpoint ratio required forthe movement and recursive bisection algorithms.These runs were performed for a range of processorcounts. Schema sets along with schedules were thengenerated and stored for each algorithm.Performance runs were then performed for each al-gorithm and for a range of processor counts, from 32 to512. Each run was performed once without instrumen-tation to measure overall performance, and once withinstrumentation to gather information about load bal-ancing overhead. The repeated runs ensured that in-strumentation costs did not e�ect overall performancemeasurements. Because there is a certain variabilityin the times measured, however, a disadvantage of thisapproach is that the total times and measured over-heads are not always consistent.Each run was performed for forty time steps on theIntel DELTA at T42 resolution (a 64� 128 grid). Allalgorithms were speci�ed by schema sets and schedulesloaded from �les. A forty-step run was chosen becauseit encompasses all types of time steps and a full diurnalcycle, without requiring that an excessive number oflayouts be bu�ered in memory. It does not, however,allow us to observe the e�ects of the seasonal cycle.4.2 ResultsDespite additional overhead from load balancing,we found that load balancing succeeded in reducingtotal execution time. From Fig. 2, we see that all load-balancing algorithms reduced total execution time.The bisection algorithm was signi�cantly less e�cientthan the movement or swapping algorithms. The sec-ond swapping algorithm was somewhat more e�cientthan the movement or other swapping algorithm inmost cases.As can be seen in Fig. 2, the best load-balancing al-gorithm improves overall performance by ten per centon 128 processors, eight per cent on 256 processors,and 4.3 per cent on 512 processors. (Recall that theseresults are with ine�cient dynamics; results with anoptimized model are given in Section 4.4 below.) On512 processors, idle time because of load imbalanceis reduced from 6.8 per cent to 0.8 per cent of totalexecution time; physics execution time, excluding theoverhead of the load-balancing system, is reduced by22.8 per cent. This almost total elimination of loadimbalance is apparent in Fig. 3. The di�erence be-tween the 6.8 per cent reduction in idle time and the



0.88

0.9

0.92

0.94

0.96

0.98

1

32 64 128 256 512

R
el

at
iv

e 
T

im
e

Processors

bisection
movement
swapping

swapping2
original

Figure 2: Relative Overall Performance on the Intel DELTA4.3 per cent reduction in execution time correspondsto load-balancing overhead.Tables 1 and 2 give execution and overhead timesmeasured on 512 processors, averaged over forty-stepruns. Times are given both for each of the 3 types oftime step and for an average time step. It should benoted that the latter value is not simply the average ofthe other 3 columns but is a weighted average, wherethe weights are based on the number of time steps ofeach type executed within a 24-hour period.The overhead data in Table 2 breaks down load-balancing costs into 4 categories. The �rst 3 corre-spond to the input, output, and state communicationoperations described in Section 3.1, while the fourth isthe copying required when moving data from the dy-namics arrays to the extended arrays used in physicsin the nonswapping algorithms. Note that the swap-ping algorithms do not incur these latter costs.The recursive bisection algorithm improved overallperformance by only 1.0 per cent. There are 2 reasonsfor this algorithm's poor performance. First, it movesmore grid points: typically, most grid points will move.Second, the large spatial imbalance resulting from thediurnal cycle is not easily removed without reorder-ing points within a latitude. Not having the abilityto intersperse night points among the day points, thisalgorithm fails to make the �ne-grain adjustments nec-essary to balance the radiation calculations.In theory, one would expect the movement algo-rithm to outperform the swapping algorithms; how-

ever, the empirical data shows it to be less e�ectivethan expected. Although this algorithm communi-cates less data than either of the swapping algorithms,it has the additional overhead of extending the physicsarrays. It also proves to be slightly less e�ective inbalancing load, because it expects the computationalcosts associated with a day or night grid point to beconstant. However, physics contains other imbalancesbesides the diurnal cycle. Although smaller in magni-tude, they do have an impact which is compensatedfor by swapping but not by movement.4.3 Other issuesThe algorithms utilized in this study switch toan identity mapping during nonradiation time steps.Hence, physics state data is reorganized both beforeand after each radiation time step. In principle, thisdata could be cached on each processor in the swap-ping algorithm, avoiding the need for the reorgani-zation. As Table 2 shows, the state data reorganiza-tion is a large proportion of total communication time.Hence, this is expected to have a signi�cant impact onperformance. We will investigate this optimization infuture work.Extended arrays are a source of overhead in thePCCM2 implementation of the data movement algo-rithms, because data must be copied to and from theextended arrays at each time step. This overheadcould be avoided in a climate model that used ex-



Table 1: Load-Balancing Results on 16� 32 Intel DELTA ProcessorsTime (msec) RelativeSection Algorithm Full Partial None Average SpeedupOverall bisection 3589.0 1179.5 858.6 1032.5 1.010movement 3592.0 1103.5 847.3 1001.8 1.041swapping 3489.0 1111.6 846.7 1001.0 1.042swapping2 3473.0 1102.8 848.2 998.9 1.044original 3740.0 1276.5 823.9 1043.2 1.000Physics bisection 2829.0 346.5 63.7 226.9 1.185movement 2826.0 294.1 63.8 210.9 1.275swapping 2702.0 306.4 62.9 210.6 1.276swapping2 2700.0 296.5 63.0 207.6 1.295original 2998.0 504.5 47.0 268.8 1.000tended arrays throughout both physics and dynamics.Our results suggest, however, that the swapping al-gorithms would still outperform the data movementalgorithm.While it would be possible to devise a new move-ment algorithm that was aware of the other imbalancesthat result in ine�ciencies in the current movement al-gorithm, the additional overhead associated with thisawareness would likely cancel out any improvements.In addition, we would then encounter the problem ofgenerating and storing the associated communicationschedules.4.4 Optimized PCCM2Further enhancements were made to PCCM2 inde-pendent of the version used for development of theload-balancing libraries. Many modi�cations weremade in the dynamics portion of the code, but thephysics remained relatively untouched. The modi�-cations made to the newer version of the code haveresulted in a substantial performance improvementwithin dynamics and thus have made the physics im-balances more signi�cant to the overall execution time.Trial runs using the �rst swapping algorithm indicatean overall improvement of 5.9 per cent as a result ofthe load-balancing code's being added to the currentversion of the model.5 ConclusionsThe results of this work are encouraging. The swap-ping algorithms succeeded in signi�cantly reducing theload imbalance, improving the total execution time by

5.9 per cent on 512 processors. The overhead associ-ated with the load-balancing code, however, is stillrather high. Some of this overhead is inevitable giventhe use of a general-purpose library; however, part ofthe overhead can be avoided with tuning. In futurework, we will both tune the existing library and in-vestigate alternative structures for the library, withthe goal of reducing overhead. For example, we willconsider the feasibility of caching state data. We alsohope to extend this work to consider other physicsmodules and other climate models.AcknowledgmentsThis work was supported by the Atmospheric andClimate Research Division of the O�ce of Energy Re-search, U.S. Department of Energy. We are gratefulto members of the CHAMMP Interagency Organiza-tion for Numerical Simulation, a collaboration involv-ing Argonne National Laboratory, the National Centerfor Atmospheric Research, and Oak Ridge NationalLaboratory, for sharing codes and results.References[1] Drake, J., Foster, I., Hack, J., Michalakes, J., Semer-aro, B., Toonen, B., Williamson, D., and Worley, P.,PCCM2: A GCM Adapted for Scalable Parallel Com-puters. Proc. AMS Annual Meeting, AMS, 1994.[2] Foster, I., Gropp, W., and Stevens, R., The paral-lel scalability of the spectral transform method, Mon.Wea. Rev., 125, 835{850, 1992.



5 10 15 20 25 30

2

4

6

8

10

12

14

16

Longitude

La
tit

ud
e

0 100 200 300 400 500 600
0

5

10

Time (msec)

F
re

qu
en

cyFigure 3: Physics Computation Time after Load Balancing with the \Swapping 2" Algorithm[3] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon,J., and Walker, D., Solving Problems on ConcurrentProcessors. Prentice-Hall. 1988.[4] J. Hack, B. Boville, B. Briegleb, J. Kiehl, P. Rasch,and D. Williamson, Description of the NCAR Commu-nity Climate Model (CCM2), NCAR Tech. Note TN{382+STR, National Center for Atmospheric Research,Boulder, Colo., 1992.[5] Ho�mann, G.-R., and Kauranne, T. (eds.), Parallel Su-percomputing in the Atmospheric Sciences, World Sci-enti�c, 1993.[6] Michalakes, J., Analysis of Workload and Load Balanc-ing Issues in the NCAR Community Climate Model,ANL/MCS-TM-144. Argonne National Laboratory,Argonne, Illinois, 1991.[7] Michalakes, J., and Nanjundiah, R., ComputationalLoad in Model Physics of the Parallel NCAR Com-munity Climate Model, ANL/MCS-TM-186, ArgonneNational Laboratory, Argonne, Illinois, 1994.[8] Ponnusamy, R., Saltz, J., and Choudhary, A.,Runtime-Compilation Techniques for Data Partition-ing and Communication Schedule Reuse, Proc. Super-computing '93, 1993.
Table 2: Load-Balancing Overhead on 16 � 32 IntelDELTA Processors Time (msec)Phase Algorithm Full Part. None MeanInput bisection 9.0 38.3 2.2 13.4movement 4.0 19.0 2.5 7.6swapping 20.0 19.4 2.2 8.0swapping2 18.0 19.4 2.2 7.9Output bisection 8.0 44.2 2.0 15.1movement 3.0 19.7 2.0 7.5swapping 20.0 20.0 2.0 8.0swapping2 19.0 19.6 2.0 7.9State bisection 10.0 55.0 30.4 37.4movement 4.0 29.3 13.2 17.8swapping 26.0 27.1 14.5 18.6swapping2 26.0 26.5 13.9 18.1Extend bisection 8.0 8.5 8.4 8.4movement 8.0 8.9 8.4 8.5swapping 0.0 0.0 0.0 0.0swapping2 0.0 0.0 0.0 0.0Total bisection 35.0 146.0 43.0 74.3movement 19.0 76.9 26.1 41.4swapping 66.0 66.5 18.7 34.6swapping2 63.0 65.5 18.1 33.9


