
Task Parallelism and High-Performance LanguagesIan FosterMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439AbstractHigh-Performance Fortran as currently de�ned cannot be used to solve all program-ming problems. However, its focus on regular problems and data-parallel algorithmsstems not from a belief that it is only these problems that matter, but rather fromthe fact that it was in this area that it was easiest to build consensus as to what wasrequired in a language for high-performance computing. In future work, this initialconsensus will have to be extended. One direction to be considered in the next roundof HPF Forum meetings is task parallelism. In this paper, we examine and illus-trate the considerations that motivate the use of task parallelism. We also describeone particular approach to task parallelism in Fortran, namely the Fortran M exten-sions. Finally, we contrast Fortran M with other proposed approaches and discuss theimplications of this work for task parallelism and high-performance languages.1 IntroductionThe de�nition of High Performance Fortran (HPF) is a signi�cant event in the maturationof parallel computing: it represents the �rst parallel language that has gained widespreadsupport from vendors and users. If successful, it will advance parallel computing by simpli-fying application development, increasing application portability, and providing a commonframework for both commercial and academic research and development of compilers, de-buggers, performance analyzers, and the other tools that are currently lacking on parallelcomputers. HPF has also stimulated similar developments in other languages, notablypC++ [6]. These languages are commonly referred to as high-performance languages,because they are designed to allow e�cient compilation for high-performance parallelcomputers.HPF as currently de�ned cannot be used to solve all programming problems. Indeed,its focus on regular problems and data-parallel algorithms makes it dangerously limited.However, this focus stems not from a belief that it is only these problems that matter,but rather from the fact that it was in this area that it was easiest to build consensusas to what was required in a Fortran-based language for high-performance computing. Infuture work, this initial consensus will have to be extended to encompass other areas. Thisprocess has already started with the second round of HPF Forum meetings.One promising direction is to de�ne additional directives that can be used to makemore information available to the compiler. Armed with this information, the compilercan parallelize programs that operate on irregular and adaptive data structures, or that1

require pipeline structures for e�cient parallel execution. The goal here is to generalizerather than to abandon the single-program, multiple-data (SPMD) programming modelof HPF.Another important direction, which is the subject of this paper, is to incorporatesupport for task parallelism. The term task parallelism (sometimes called control orfunctional parallelism) refers to the explicit creation of multiple threads of control, ortasks, which synchronize and communicate under programmer control. Task and dataparallelism are complementary rather than competing programming models. While taskparallelism is more general and can be used to implement algorithms that are not amenableto data-parallel solutions, many problems can bene�t from a mixed approach, with forexample a task-parallel coordination layer integrating multiple data-parallel computations.Other problems admit to both data- and task-parallel solutions, with the better solutiondepending on machine characteristics, compiler performance, or personal taste. For thesereasons, we believe that a general-purpose high-performance language should integrateboth task- and data-parallel constructs. The challenge is to do so in a way that providesthe expressivity needed for applications, while preserving the exibility and portability ofa high-level language.In this paper, we examine and illustrate the considerations that motivate the useof task parallelism. We also describe one particular approach to task parallelism inFortran, namely the Fortran M extensions. Finally, we contrast Fortran M with otherproposed approaches and discuss the implications of this work for task parallelism andhigh-performance languages.2 High Performance FortranWe �rst provide a brief review of HPF [8]. As currently de�ned, this is primarily a data-parallel language, meaning that it allows programmers to exploit the concurrency thatderives from the application of the same operations to all or most elements of large datastructures. An HPF program is a sequence of such operations, which may be speci�edusing either explicitly parallel constructs (e.g., array expressions and FORALL) or implic-itly using traditional DO loops. A program can be augmented with distribution directivesspecifying how data is to be mapped to processors. An HPF compiler normally gener-ates a single-program, multiple-data (SPMD) parallel program by applying the \ownercomputes" rule to partition the operations performed by the program; the processor that\owns" a value is responsible for updating its value. The compiler also incorporates com-munication operations when computation assigned to one processor requires data locatedon other processors.In addition to its data-parallel constructs, HPF provides two mechanisms for speci-fying task-parallel execution. The �rst is the PURE function, which when called within aFORALL loop can perform di�erent computations depending on the value of its arguments.However, the utility of this construct is limited by the fact that concurrently-executingfunction calls cannot communicate. The second mechanism is the EXTRINSIC function,which creates a separate execution thread on each processor. These concurrent threadshave access to the data structures of the HPF program and can perform arbitrary com-putation and communication. This is a generic escape mechanism that allows an HPFprogram to call a message-passing library to perform arbitrary task-parallel computa-2

tion; however, it lacks exibility and modularity and is not an adequate mechanism forgeneral-purpose task-parallel programming.An important advantage of the current HPF model is that programs have sequential(single-threaded) semantics. A program that adheres to the HPF standard and that doesnot use extrinsic functions can be read as if it were a sequential Fortran program; theparallel constructs and distribution directives a�ect performance but not correctness. Inprinciple, this feature simpli�es program development and debugging, as many conceptsand tools from sequential programming can be reused. It is unclear to what extent thissequential semantics can be maintained as HPF is extended to address a wider range ofproblems.3 The Role of Task ParallelismThe data-parallel constructs incorporated in high-performance languages exploit a com-mon attribute of computations in science and engineering, namely homogeneity. Com-putations that apply the same operation to all elements of regular data structures canbe expressed elegantly using data-parallel constructs and can be compiled e�ciently forparallel computers. For these problems, there is plentiful evidence that data parallelismis an e�ective solution [7].Unfortunately, heterogeneity | whether in data structures, computation, or data de-pendencies | appears to be equally prevalent, particularly as high-performance computersare used to solve more complex problems and as scientists and engineers use more sophis-ticated algorithms. Heterogeneity does not prevent the use of data parallelism; however,depending on the degree of heterogeneity, a data-parallel program may be overly compli-cated (because the programmer is forced to use inappropriate abstractions) or ine�cient(because the compiler, lacking information available to the programmer, cannot infer e�-cient execution and communication schedules). The programmer may then �nd it simpleror more e�cient to specify parallel algorithms explicitly, using task-parallel constructs.In this section, we examine what appear to be the principal considerations motivatingthe use of task parallelism, illustrating each with examples. These are as follows:1. Software Engineering. Independent of issues relating to parallel computing, theremay be software engineering bene�ts from treating separate programs as independenttasks. These bene�ts may relate to modularity or to the need to execute in aheterogeneous system.2. Locality. Task parallelism can allow the programmer to enhance locality and henceperformance by executing di�erent components of a problem concurrently on disjointsets of processors.3. Scheduling. Task parallelism can allow the programmer to enhance performance byspecifying computation and communication schedules that could not be discoveredby a compiler.3.1 Software Engineering 3

Atmospheric Model

Land Surface Model

Hydrology
 Model Ocean

ModelFigure 1: An environmental modeling system, incorporating four submodels; a realisticmodel might incorporate many more components. Arrows represent data transfer.In the �rst set of applications that we consider, the use of task parallelism is motivatedprimarily by software engineering concerns, rather than performance: in particular, theneed to construct complex parallel programs in a modular fashion or to execute di�erentprogram components on di�erent computers in a heterogeneous network.These concerns often arise in multidisciplinary simulations, in which a computer modelof a complex system (such as an automobile, regional air quality, or an electricity distri-bution system) is constructed from models of system components (Fig. 1). The systemmodel may itself form part of a design or management system that incorporates optimiz-ers, databases, external control functions, etc. In principle, the various component modelscould be integrated into a single (data-parallel) program, which would call components assubroutines. However, this approach su�ers from a lack of modularity. Program develop-ment, validation, and modi�cation all tend to be more di�cult when program componentsare tightly interconnected, particularly if the components were not originally designed tobe integrated in this manner.An alternative approach is to treat the components of a multidisciplinary simulation asseparate programs that execute concurrently and exchange information using an \arms-length" mechanism such as message passing or �les: in other words, to structure theapplication as a task-parallel program. Interfaces between components are then simpleand well de�ned, and components can be executed on di�erent computers if required.Components can also be executed in parallel to improve performance; however, this is nota prerequisite for task parallelism to be useful.In simple problems of this sort, there are a �xed number of component models thatcan themselves be expressed as data-parallel programs. Hence, heterogeneity is restrictedto an outer \coordination layer" which orchestrates the execution of data-parallel compu-tations. In more complex problems, subcomputations may themselves be heterogeneousin structure.3.2 LocalityA second motivation for the use of task parallelism is to enhance locality so as to makemore e�cient use of resources such as cache, memory, or communication bandwidth. Thisis achieved by executing di�erent parts of a problem on disjoint subsets of available pro-4

Figure 2: Task-parallel computation in a two-dimensional FFT. Two subcomputationsexecute as a pipeline, with processors in the �rst phase operating on columns of eacharray, and processors in the second phase operating on rows.cessors. (A side e�ect is to increase available concurrency; this can be equally importantin some problems.)This situation often arises in signal processing when applying sequences of transfor-mations to streams of pixel arrays. Data sets cannot easily be scaled as the number ofprocessors increase, and di�erent inputs cannot be transformed independently. Hence,while a purely data-parallel solution is possible, in which the various transformations areapplied sequentially, communication costs can often be reduced signi�cantly by comput-ing each transformation on a separate set of processors. Di�erent inputs can then owthrough this pipeline concurrently. Each transformation can be performed by a task- ordata-parallel program.A simple example of a pipelined computation is a two-dimensional fast Fourier trans-form (2-D FFT).When applied to an array of sizeN�N , this performs �rstN independent1-D FFTs, one on each column of the array, and then a second set of N independent 1-DFFTs, one on each row. A data-parallel solution might initially decompose the array bycolumns so that the �rst set of 1-D FFTs could proceed without communication, thentranspose the array before performing the second set of FFTs. A task-parallel solutionmight construct a pipeline of two stages, with the �rst stage performing FFTs on columnsand the second FFTs on rows (Fig. 2). The same amount of data must be communicatedin both cases: in the data-parallel program, the entire array is transposed, while in thetask-parallel program, the entire array is forwarded in the pipeline. However, the task-parallel program sends only about one-quarter as many messages, because rather thaneach of the P processors sending to each other processor (in the transpose), each of theP=2 processors in the �rst pipeline stage must send only to the P=2 processors in thesecond stage. This can improve overall performance.Other problems in which locality can motivate the use of task parallelism includemultiblock and nested grid codes, and (in many cases) multidisciplinary simulations.3.3 SchedulingIn a third class of applications, the use of task parallelism is motivated by a need toimprove performance by explicitly controlling the scheduling of computation and com-munication operations. This requirement arises frequently in applications with irregular,data-dependent computation and communication requirements.Data-parallel language compilers have proven to be most successful when computa-5

do i = 1,nido j = 1,njdo k = 1,nkdo l = 1,nlI = compute_integral(i,j,k,l)F(i,j) = F(i,j) + I*D(k,l)F(k,l) = F(k,l) + I*D(i,j)F(i,k) = F(i,k) + I*D(j,l)F(i,l) = F(i,l) + I*D(k,l)F(j,l) = F(j,l) + I*D(i,k)F(j,k) = F(j,k) + I*D(i,l)enddoenddoenddoenddo Figure 3: Logic for Fock matrix construction problemtion and communication requirements are either predictable at compile time or easilydetermined at run time. This predictability allows the compiler and/or runtime system todetermine a static execution schedule for each processor. In more heterogeneous problems,the computation and communication performed by a program are irregular, either in timeor space, and a compiler may not be able to discover an e�cient mapping of computationto processors, scheduling of computation within processors, and organization of commu-nication between processors. However, a programmer may be able to use task-parallelconstructs to implement e�ective application-speci�c mapping and scheduling strategies.A task-parallel problem formulation can also underspecify scheduling constraints, allow-ing the use of data-driven execution models in which the ordering of computation on eachprocessor is determined by the availability of data.A simple problem of this sort is the Fock matrix construction problem from compu-tational chemistry. The core of this problem is the quadruple-nested loop illustrated inFig. 3. Approximately N4 integrals must be computed; each requires data from six ele-ments of a density matrix, D, and contributes to six elements of a Fock matrix, F . BothD and F have size N � N and must be distributed. The cost of an integral is stronglydata dependent. An e�cient parallel algorithm must both map integrals to processorsdynamically and block integrals and communications so that fewer than 6N4 messages arerequired to communicate the D and F values.A data-parallel formulation of this problem is possible if the data-parallel languageprovides an \accumulate" operation. However, the problems of mapping and blockingintegrals remain. A task-parallel solution can de�ne distinct compute and data serverthreads, placing one thread of each type on each processor (Fig. 4). The compute threadsperform computation and generate requests for data to the data server threads, while thedata server threads handle requests for data. The desired behavior is that a computethread executes when no requests are pending, and that execution switches to a data6

Figure 4: Task-parallel computation in a Fock matrix computation. Each box represents aprocessor; distinct compute tasks (represented by unshaded circles) and data server tasks(shaded) interact to provide asynchronous access to distributed data structures.
Figure 5: Task parallelism in a search problem. Each leaf node evaluation (shaded) involvesa data-parallel computation; the shape of the tree is determined only at run time.server thread when a request arrives. The scheduling of computation and communicationis then under programmer control. In particular, integrals can be allocated to computethreads using a load balancing strategy, and compute threads can block requests to dataserver threads.As a second example, we consider search problems in which a search tree of unknownsize and shape must be explored, with an evaluation function applied at each node andpruning used to limit the number of nodes explored (Fig. 5). In this case, both the com-munication and computation structure of the application are irregular. E�cient parallelalgorithms typically use dynamic load balancing algorithms to allocate computation toprocessors. In some situations, the evaluation function can be su�ciently complex to ben-e�t from a data-parallel formulation, in which case the problem involves a task-parallelcollection of data-parallel computations.Other examples of problems in which programmer control of scheduling may be nec-essary for performance are discrete event simulation, reactive computations that mustrespond to input from users or sensors, and adaptive mesh re�nment problems, in whichmeshes may be created, destroyed, or moved over time. We can also point to multidis-ciplinary and image-processing applications in which the amount of computation in eachcomponent, or the structure of the computation, adapts during program execution.7

3.4 SummaryThis brief examination of task-parallel applications has suggested at least three reasonsfor using task parallelism in addition to data parallelism: software engineering, locality,and scheduling. Of course, we can also identify problems in which several of these motiva-tions apply. For example, there can be software engineering advantages to formulating amultigrid code as a task-parallel collection of interacting data-parallel programs; task par-allelism can also be used to improve performance by executing multiple grids concurrentlyto improve locality, and by scheduling these computations e�ciently.4 The Fortran M ApproachThe Fortran M (FM) extensions to Fortran [5] represent a particularly simple approachto task parallelism in Fortran. FM has also been used as a task-parallel coordinationlanguage for HPF [4].FM is a small set of extensions to Fortran 77 (F77) for specifying concurrent execution,communication, synchronization, and resource management. A major design goal was tode�ne extensions consistent with F77 concepts. This means, for example, that because F77lacks structured data and dynamic memory allocation, these concepts are not used in theextended language. As we note below, the richer set of constructs available in Fortran 90(F90) can enable more exible approaches. The FM extensions can be characterized asfollows:1. Processes, modeled on F77's subroutine construct, provide the basic building blockfrom which parallel programs are constructed. They encapsulate data and the codethat operates on that data.2. Parallel block and parallel do-loop constructs are used to create instances of pro-cesses.3. Processes can communicate and synchronize both by passing data to subprocessesand by sending and receiving data on channels. The channel operations are modeledon F77's �le I/O constructs, and indeed channels can be thought of as \virtual �les."4. Both processes and channels can be created and deleted, and channels can be re-connected, dynamically; nevertheless, a compiler and runtime system can enforcedeterministic execution.5. Resource management constructs allow the programmer to control how processes aremapped to processors. These constructs are modeled on F77's array constructs: aprogrammer can de�ne a virtual processor array, locate processes within this array,and invoke subcomputations on subarrays.It should be clear that the extensions are extremely simple: they are modeled mostlyon existing Fortran ideas, with the main conceptual extension being dynamic process andchannel creation. Nevertheless, they have proved su�cient for a wide variety of problemsand, in addition, provide modularity properties needed to support the de�nition of parallelparadigm libraries, as described below. (The M in FM stands for \Modular".)8

program aerodynamicsprocessors p(128)inport (integer, real x(100,200), real y(100,200)) pi, qioutport (integer, real x(100,200), real y(100,200)) po, qo...channel(in=pi,out=po)channel(in=qi,out=qo)...processesprocesscall controls(pi,qo) submachine(p(1:64))processcall structures(qi,po) submachine(p(65:128))endprocessesendprocess controls(inp,outp)processors p(64)inport (integer, real x(100,200), real y(100,200)) inpoutport (integer, integer, real x(100,100)) outp...send(outp) i, a, breceive(inp) nstep, u, v...end Figure 6: Sketch of an FM multidisciplinary program
9

Figure 6 illustrates the use of several FM constructs. The main program uses thechannel statement to create two channels; a process block (delineated by processes andendprocesses statements) is used to create processes called controls and structures.The new processes execute concurrently, with the submachine annotations specifying thatthey should execute on disjoint sets of 64 virtual processors. The second code fragmentimplements the controls process; it uses the send and receive statements to send andreceive data on the ports passed as arguments. Message formats are de�ned by the portdeclarations, allowing an FM compiler to generate e�cient communication code and toreformat data in a heterogeneous environment. Although controls has been invoked ona submachine of 64 processors, it is de�ned here to execute sequentially; a parallel block(or a call to a message-passing or HPF procedure) would be required to invoke parallelexecution.4.1 Paradigm IntegrationIn both the multidisciplinary simulation and image processing problems presented as moti-vating examples, we pointed out that programs can usefully be structured as task-parallelcollections of data-parallel programs. These are simple examples of problems that canbene�t from the use of multiple parallel paradigms. In other situations, it can be usefulto integrate program components developed using message-passing libraries (e.g., linearalgebra libraries) or using shared-memory models (e.g., distributed data structures). Inte-gration can be achieved using a single language that combines all the various paradigms.However, this approach tends to be complex. Alternatively, we can de�ne a language thatprovides just a few basic mechanisms, which we then use to develop libraries implementingthe di�erent paradigms. In this section, we outline how FM can be used as a frameworkof this sort.The key to using FM to implement multidisciplinary frameworks of this sort is itssupport for compositionality. FM processes specify concurrency, synchronization, com-munication, and process mapping with respect to logical resources (processes, channels,virtual processors) rather than physical resources. This means that an FM process canbe reused in di�erent situations without concern for its internal concurrency, communica-tion, and mapping; hence, we can develop separate program components using librariesimplementing message-passing libraries, distributed shared data structures, etc., and thencompose these components to form a complete program.We use a simple example to illustrate how this integration is achieved. A message-passing (MP) compatibility library allows MP programs to be invoked from FM andpermits MP programs to call FM routines. An invoking FM program uses FM virtualcomputer constructs to specify the resources (virtual processors) available to the MP pro-gram; the MP program executes as if these virtual processors were physical processors, andperforms ordinary MP calls, which, however, are implemented by an FM library ratherthan direct message passing. (Experimental studies indicate that the overhead of thisapproach is small.) FM data structures can be passed as arguments to the MP program.These data structures can be either replicated or partitioned over virtual processors. Portspassed as arguments allow an MP program to communicate with other program compo-nents. The following code fragment illustrates some of these ideas.10

YX YX YX YX

YXFigure 7: Invoking a message-passing program from FMprocess execute_mp(X,Y)processors p(4)real X(512,4), Yprocessdo i = 1, 4processcall mp_program(X(:,i), Y) location(p(i))endprocessdoAs illustrated in Fig. 7, this program invokes an MP program (mp program) on fourvirtual processors, with argument X partitioned and Y replicated. In the �gure, the en-closing oval represents the FM process execute mp while the execution graph representsthe encapsulated MP computation. For brevity, we do not show the code required to setup the channels used for message-passing communication; however, this is simple, and canbe incorporated automatically using a source transformation.The same basic concepts can be used to integrate HPF into the multiparadigm frame-work. This integration has been demonstrated in a prototype compilation system devel-oped with Bhaven Avalani and Alok Choudhary of Syracuse University [4]. HPF proce-dures are compiled to message-passing code using an HPF compiler; the message-passingcode is then linked with both FM coordination code and interface routines that handledata transfer between the two languages. This system has been used to implement avariety of pipeline algorithms similar to those referred to earlier.In summary, the techniques outlined in this section allow FM to be used as a coordi-nation framework. This in turn allows us to construct multidisciplinary applications suchas those illustrated in Figs. 1 and 6, with component models implemented using HPF ora message-passing library such as p4, Express, or MPI.4.2 ExperiencesWe have developed an FM compiler that generates code for a variety of parallel com-puter platforms, including IBM SP, Intel Paragon, Cray T3D, Cray C90, and Ethernet-and ATM-connected workstations. Heterogeneous collections of these machines are alsosupported. Whenever possible, the compiler uses lightweight threads to implement FMprocesses, so as to reduce the cost of switching between multiple FM processes executing11

on the same processor. Performance studies show that communication performance isgenerally competitive with low-level message-passing libraries.Programmers have used FM's task-parallel constructs for each of the three reasonsdiscussed in the preceding section: software engineering, locality, and scheduling. In thesoftware engineering area, an air quality model developed by Donald Dabdub and RajitManohar at Caltech is constructed from separate atmospheric transport and chemistrycomponents. In another project, the ADIFOR automatic di�erentiation system generatesFM code to exploit parallelism in derivative calculations. Task parallelism is used forlocality in various pipelined task/data-parallel codes developed at Syracuse University. Aparallel Fock matrix construction code uses the structure illustrated in Fig. 4 to achievedata-driven scheduling of computation and communication.Several projects have used FM mechanisms to develop reusable libraries. For exam-ple, a Fock matrix program encapsulates concurrency and communication in a portable\global array" library, derived from a code originally developed by Robert Harrison usinga nonportable interrupt-driven receive on Intel computers. This library is used in an abinitio quantum chemistry code which also incorporates a matrix diagonalization libraryintegrated using the message-passing compatibility library. At Caltech, Dan Meiron andhis colleagues have developed reusable templates for spectral computations.5 DiscussionFM represents a conservative approach to task parallelism: its basic constructs are chosento be simple and consistent with F77 concepts. Nevertheless, these concepts introducepowerful capabilities: dynamic process and communication structures; support for data-driven computation; programmer-control of resource allocation; compile-time guaranteesof deterministic execution; and the compositionality required for library development.In this section, we examine various aspects of the language and contrast them with somealternative approaches. We also discuss the implications of this work for high-performancelanguages.5.1 Explicit ParallelismFM provides an explicitly parallel programming model. That is, its extensions have se-mantic content, and programs cannot easily be executed using a single thread of control.In other approaches, task parallelism is introduced via directives that, as in HPF, have nosemantic content. If used correctly, a program compiled with and without directives willcompute the same result. The directives serve merely to provide additional informationto the compiler which helps it identify opportunities for parallel execution.For example, the Fx Fortran compiler supports directives which can be used to specifypipeline algorithms [10]. The directives allow the programmer to supply data depen-dency information for iterative programs which apply a sequence of transformations toa stream of input data; the compiler uses this information to convert the program intoa pipeline that streams data through data-parallel tasks responsible for performing thevarious transformations. Performance models are used to determine whether to generatepure data-parallel or mixed task/data-parallel code. The approach is illustrated in Fig. 8.The code on the left is a sequential program that performs a sequence of m two-dimensional12

C$ begin paralleldo i=1,m do i=1,mcall cffts(A) call cffts(A)===> C$ output Acall rffts(A) call rffts(A)C$ input Aenddo enddoC$ end parallelFigure 8: Using directives to specify pipeline algorithms in Fx FortranFFTs; the code on the right incorporates the directives needed for pipelined execution.The directives begin parallel and end parallel delineate the parallel loop; the direc-tives output and �input indicate that the array A is produced by cffts and consumedby rffts. Additional HPF-like directives in the FFT routines themselves specify datadistributions.This example illustrates two important advantages of directive-based approaches: ex-isting sequential code need not be rewritten, and a compiler can tailor the generated codeto problem size and machine characteristics. Disadvantages include the restricted set ofapplications that can be handled using any one directive, the complex compilers neededto exploit the information provided by directives, and the large semantic gap between theapplication program and the generated code.We believe that while directives-based approaches are important, they do not avoidthe need for explicit task parallelism. In our view, there will always remain both softwareengineering motivations for explicit task parallelism and problems that cannot be handledusing directive-based approaches. In addition, even programs that can be compiled auto-matically must eventually be translated into executable task-parallel code. In both cases,it is useful to have an architecture-independent parallel notation, whether for use by theprogrammer or the compiler.5.2 DeterminismWhile an explicitly parallel program may not have a straightforward sequential reading,it can still be possible to guarantee that it is deterministic: that is, that every executionof that program with a given input will produce the same output. In the vast majorityof cases, this is the desired behavior: few parallel algorithms in science and engineeringare nondeterministic, and indeed unwanted nondeterminism (\race conditions") in parallelprograms has historically been a major source of problems [9].Motivated by these observations, we chose when designing FM to make determinismthe default behavior. To this end, we de�ned restrictive semantics for communicationoperations that ensure, for example, that each channel always has a single writer and asingle reader. (The restrictions also have the advantage of simplifying implementation.)Nondeterminism is also supported, but must be introduced explicitly using specializedconstructs. 13

Other approaches to task parallelism in Fortran do not enforce determinism. For ex-ample, in the shared-memory extensions proposed by ANSI committee X3H5 [1], programscan create explicit threads, which execute concurrently and interact by reading and writ-ing shared data structures. It is the programmer's responsibility to prevent unwanted raceconditions by using explicit locks or other mutual exclusion constructs to control accessto shared data. Chapman et al. [3] have proposed mechanisms based on \spawn" and\shared data abstraction" constructs. The shared data abstraction, a form of monitor, isused to control interactions between tasks created using spawn. Again, the programmermust use these constructs in a structured fashion to ensure deterministic execution.We believe that determinism is fundamental to parallel programming and that a com-piler or runtime system must either prevent unwanted nondeterministic execution or beable to warn the programmer when it occurs. The FM approach to this problem appearsto work well, although in some cases we fear that it is too draconian: in more complexnondeterministic executions (e.g., those involving the dynamic scheduling of a variablenumber of tasks) the FM restrictions can lead to convoluted code. We are investigatingways of relaxing these restrictions while maintaining the ability to enforce determinismwhen it is required.5.3 Task Parallelism and HPFWe have described how FM can be used as a task-parallel coordination language for data-parallel HPF computations. This approach has proved quite e�ective, particularly formultidisciplinary and pipeline problems. However, we do not believe that it representsa satisfactory long-term solution to the problem of task parallelism in high-performancelanguages. Instead, we argue for a single language that integrates task- and data-parallelconstructs.A single language is preferable for several reasons. First, programming tools such ascompilers, debuggers, and performance analyzers are more e�ective when they have accessto information about all aspects of program behavior. A partitioning of computationsinto separate task-parallel and data-parallel worlds makes this more di�cult. Second,many computations appear to require a fairly close intermingling of task and data paral-lelism. Again, this is hindered by the use of separate languages. Finally, we suspect thatprogrammers are happier with an integrated programming model.If we accept that task-parallel constructs are required in HPF, then FM suggests atleast two directions that can be pursued in their design. First, we can build on FM syntaxand introduce constructs that would allow an HPF computation to acquire processors, toinitiate computation on these processors, and to connect computations on di�erent sets ofprocessors with virtual �les on which read and write (or send and receive) operations couldbe performed. Notice that as these virtual �le operations involve HPF processes, and eachHPF process may execute on multiple processors, the communication logic required toimplement even simple \write" and \read" operations can be complex.Alternatively, we can build on FM concepts and de�ne HPF extensions that supportexplicit task parallelism, modularity, determinism, and library construction, but usingF90 rather than F77 constructs. For example, F90's dynamic, recursively-de�ned datastructures provide a base on which we can build communication and synchronizationmechanisms more exible than the restrictive (but F77-like) channel construct of FM.14

These mechanisms can then be used to implement libraries implementing virtual �les orother higher-level interaction mechanisms. One candidate set of mechanisms uses singleassignment variables for synchronization and remote procedure calls for communication [2].Runtime and compiler design issues must also be addressed. An integrated task/data-parallel language may create concurrent task- and data-parallel computations on the sameor di�erent processors. The programmer, compiler, and runtime system need to cooperateto ensure e�cient scheduling of these di�erent computations. Important issues includemapping of computations to processors, coscheduling of threads of control belonging tothe same data-parallel computation, and e�cient organization of collective communicationoperations.AcknowledgmentsI am grateful to Mani Chandy, Alok Choudhary, Carl Kesselman, and Rob Schreiber fordiscussions on these topics. This work was supported by the National Science Foundation'sCenter for Research in Parallel Computation under Contract CCR-8809615 and by theO�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.References[1] ANSI Technical Committee X3H5, Parallel Processing Model for High Level Program-ming Models, 1992.[2] K. M. Chandy and C. Kesselman, CC++: A declarative concurrent object-orientedprogramming notation, Research Directions in Concurrent Object-Oriented Program-ming, Gul Agha, Peter Wegner, and Akinori Yonezawa (eds.), MIT Press, 1993.[3] B. Chapman, P. Mehrotra, J. van Rosendale, and H. Zima, A software architecturefor multidisciplinary applications: Integrating task and data parallelism, TechnicalReport 94-18, ICASE, MS 132C, NASA Langley Research Center, Hampton, Va.,1994.[4] I. Foster, B. Avalani, A. Choudhary, and M. Xu, A compilation system that integratesHigh Performance Fortran and Fortran M, Proc. 1994 Scalable High PerformanceComputing Conf., IEEE, 1994.[5] I. Foster and K. M. Chandy. Fortran M: A language for modular parallel program-ming, J. Parallel and Distributed Computing, 1994.[6] D. Gannon et al., Implementing a parallel C++ runtime system for scalable parallelsystems, Proc. Supercomputing '93, IEEE, 1993.[7] P. Hatcher and M. Quinn, Data-Parallel Programming on MIMD Computers, MITPress, 1991.[8] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel, The High PerformanceFortran Handbook, MIT Press, 1994. 15

[9] C. Pancake and D. Bergmark, Do parallel languages respond to the needs of scienti�cprogrammers?, Computer 23(12), 13{23, 1990.[10] J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross, Exploiting task and dataparallelism on a multicomputer, Proc. 4th ACM SIGPLAN PPoPP, ACM, 1993.

16

Sidebar: RequirementsA workshop on \Task Parallelism in Fortran" held in Pasadena, February 9{10 1994, andsponsored by the NSF Center for Research on Parallel Computation, brought togetherparticipants from industry, universities, and federal laboratories to discuss requirementsfor task parallelism in Fortran. The workshop was intended not to discuss standardsbut to share information and to provide input for the second round of the HPF Forum.A detailed report is in preparation and will be published both electronically and in thejournal Scienti�c Programming.Participants in the workshop exchanged information regarding a wide range of ap-proaches, including shared-memory extensions (SVM Fortran), directives (Fortran D, FxFortran, CHAOS) and explicit task-parallelism (Fortran M, Vienna Fortran, Large-GrainDataow). There was considerable consensus on requirements for a task-parallel Fortran,if not on actual mechanisms:1. Thread creation. Most participants believed that dynamic thread creation is needed,although the SPMD model had some adherents. Both unstructured \spawn" andthe more structured \parbegin/parend" constructs were considered useful.2. User-level resource management. Most participants believed that programmers re-quire control over how computational resources (processors) are allocated to compu-tations, as well as the ability to specify mapping with respect to virtual rather thanphysical resources.3. Name spaces. All agreed that some form of hierarchical name space is required, sothat subcomputations can de�ne and use local names.4. Thread interaction. This was the area in which there was least consensus. Clearly,threads must be able to exchange data; however, there was no agreement whetherthis should be achieved by a shared address space with locks, channels, monitors, orother mechanisms. Many present felt that determinism was important.Sidebar: For More InformationA World Wide Web/Mosaic information server at Argonne National Laboratory providespointers to a range of research projects in the area of task and data parallelism in For-tran, and a database of applications requiring task and data parallelism. Its URL ishttp://www.mcs.anl.gov/tpf.More information about the Fortran M language described in this article can be ob-tained via WWW/Mosaic at URL http://www.mcs.anl.gov/fortran-m. A Fortran Mcompiler and on-line documentation can also be obtained via anonymous ftp from info.mcs.anl.gov,in directory pub/fortran-m.Sidebar: Languages or Libraries?Parallelism can be either a second-class or �rst-class citizen in a programming language.That is, it can be incorporated via either libraries or language extensions. Each approachhas its adherents. 17

In library-based approachs, parallelism is supported not in the language but in separatelibraries that invoke machine-speci�c mechanisms to create threads of control, communi-cate, synchronize, etc. Programmers call functions de�ned by these libraries to createthreads and to manage their execution. Numerous such libraries have been developedover the years, providing mechanisms for both shared-memory and distributed-memorycomputers (monitors, message passing, etc.), often in a portable fashion. The Argonnemacros, p4, PVM, Linda, and MPI are just �ve examples. Proponents of libraries em-phasize their simplicity and low cost: a new parallel library can be developed without theneed to develop compiler technology, and the issue of standards is less critical.Language-based approaches provide explicit language constructs for specifying paral-lel computation; these are translated by a compiler into appropriate low-level operations.Hence, the programmer uses a parallel block or a spawn statement to create a thread, com-munication operations or remote procedure calls to transfer data, and so on. Proponents oflanguage extensions argue that programs are clearer when parallelism is speci�ed using ex-plicitly parallel constructs, and point to the bene�ts of compiler-based error detection andoptimization. They also argue that the apparent simplicity of library-based approachesis misleading: the complexity associated with parallel programming does not disappearwhen a library is used, but is pushed up a level to be dealt with by the programmer usingthe library.To some extent this controversy relates to the question of whether concurrency is re-garded as a fundamental or incidental aspect of programming. In sequential programming,data structures and control structures tend to be viewed as fundamental and supported inlanguages, while incidentals such as input/output are relegated to libraries. Believing thattask parallelism is fundamental rather than incidental, we focus on language extensionsrather than libraries in this paper.

18

