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Another approach used to obtain derivatives is symbolic di�erentiation programs (for example,MAPLE and Mathematica.) Symbolic di�erentiation often generates very large, ine�cient derivativeformulas. Further, symbolic di�erentiation may be very di�cult to apply to computer models.Still another approach is hand writing an adjoint code to calculate derivatives. Adjoint codescalculate exact derivatives very e�ciently (Leitmann, 1981). However, this method also requires apotentially large amount of human e�ort. Once again, if a model code is very large and complex,this procedure may be infeasible.Perhaps the most common procedure used to obtain approximate model derivatives of verycomplex computer models is the divided di�erence method. The divided di�erence method calculatesderivatives by perturbing model input by small amounts and dividing the resulting model outputperturbations by input perturbations (see, for example, Gorelick et al., 1984). This procedure mayfail to give accurate derivatives (Green et al., 1993) and is ine�cient. The method will require atleast as many model simulations as there are input parameters of interest if the Jacobian of interestis dense. However, in general, the divided di�erence method does not require much human e�ortand, until recently, has been the only universally applicable approach available to obtain derivativesestimates for very complex computer models.This paper describes the application of automatic di�erentiation to obtain codes that e�cientlyevaluate exact derivatives of complex computer models with a minimum of human e�ort (Griewank,1989). Automatic di�erentiation is a method that produces a derivative code given the model codeand a list of parameters that are considered dependent and independent variables with respect todi�erentiation. The method produces a code that will evaluate derivatives exactly (to machine preci-sion). In general, depending on the particular approach chosen, automatic di�erentiation approachescan compute derivatives with lower arithmetic complexity than that required by the approximatedivided di�erences method. There are no inherent limits on program size or complexity.It is the purpose of this paper to describe automatic di�erentiation, to explain its usefulnessto water resource problems, and to present numerical results of its application to two groundwatertransport codes. The numerical results presented later indicate that automatic di�erentiation cangenerate a code that can be used to produce accurate derivatives of the transport codes with areasonable level of computational e�ciency.1.1 Advantages of Automatic Di�erentiation for Water Resource ProblemsGeneral techniques that rely on the output of water resource computer models, such as optimaldesign, sensitivity or reliability analysis, and inverse modeling problems in ground and surface waters,can all bene�t from using automatic di�erentiation.Parameter estimationmethods such as those developed by Carrera and Neuman [1986] for estima-tion of aquifer parameters involved the coding of an adjoint �nite element code to obtain Jacobians.If this and similar procedures are transferred to a new predictive model, a new adjoint �nite elementcode must also be produced. Automatic di�erentiation can simplify the process of changing theunderlying model whenever derivatives are required.Reliability analysis techniques such as �rst- and second-order reliability methods applied to wa-ter resource models also require sensitivity information or model derivatives. For example, Jang etal. [1994] apply these methods to contaminant transport in porous media. Again, automatic di�er-2



entiation can simplify changing the underlying model. This has enormous potential for acceleratingthe application of techniques to �eld problems.Automatic di�erentiation can also allow researchers to develop new techniques in less time be-cause little human e�ort is needed to obtain accurate derivatives. The application of gradient typesearch optimization procedures (such those of Chang et al., 1992; Gorelick et al, 1984) can bene�t.Water ow and transport model sensitivity analysis on new models can be conducted relativelyquickly by obtaining derivatives with automatic di�erentiation. Any researcher who will bene�tfrom exact derivative information from large complex computer codes can potentially bene�t fromusing automatic di�erentiation.The following two sections describe the theory behind automatic di�erentiation and the speci�ctool ADIFOR (Automatic Di�erentiation of Fortran) which was tested in the numerical section.2 Automatic Di�erentiationAutomatic di�erentiation techniques rely on the fact that every function, no matter how com-plicated, is executed on a computer as a (potentially very long) sequence of elementary operationssuch as additions, multiplications, and elementary functions such as Sine and Cosine. By applyingthe chain rule, @@xf(g(x))jx=xo) = ( @@sf(s)js=g(xo))( @@xg(x)jx=xo); (1)over and over again to the composition of those elementary operations, one can compute derivativeinformation of f exactly and in a completely mechanical fashion.2.1 Simple Example of Automatic Di�erentiationThe idea behind automatic di�erentiation is best understood through an example. Assume thatwe have the sample program shown in Figure 1 for the computation of a function F : <2 ! <2.Here, x1 and x2 are the independent variables, and y1 and y2 the dependent variables: (y1; y2) =F (x1; x2). The program in Figure 1 illustrates the cases when automatic di�erentiation encountersboth if/then and do loop statements. The derivatives of F can be de�ned everywhere except whenx1 6= 2.If we were to execute this program to compute F (x1 = 1; x2 = 1:5), the list of elementaryinstructions shown in the column I of Table 1 would be executed. Here r1 through r3 refer tolocations where intermediate results are stored. The code shown in Table 1 is a trace (list) of thecomputations performed to compute F (1; 1:5). As long as x1 < 2, this trace can be used as ablueprint for the computation of F (x1; x2). To compute derivatives in an automatic fashion, we nowassociate a unique variable ai, i = 1; 13 with each computed value. The variable ai holds the resultof the ith intermediate operation. This value (rounded to three signi�cant digits) is shown in thecolumn II labeled ai in Table 1.Derivatives can now be computed by associating a value di with each intermediate quantity and byusing elementary di�erentiation arithmetic. For example, if we wish to compute @@x1F (x1; x2)j(x1;x2)=(1;1:5),di will hold @ai@x1 for every intermediate quantity ai. Hence, after setting d1 = @x1@x1 = 1 andd2 = @x2@x1 = 0, we can �nd d3, then d4 and so on until we arrive at d12 = @@x1y1(x1 = 1; x2 = 1:5)3



10 read x1,x220 if ((x1 - 2) > 0) then30 b = x140 else50 b = 2*x160 endif70 c = 180 do i = 1,290 c = c + sqrt(c)*b100 enddo110 y1 = c/x2120 y2 = b*x2 Figure 1: Sample program to compute (y1; y2) = F (x1; x2)Table 1: Trace of Function ExecutionI II III IVCode Operation ith intermediate Value of Value of Value ofline number operation operation derivative adjointnumber i gi ai di = @ai@x1 �di = @y1@ai10 1: x1 = 1 1 1 4.4110 2: x2 = 1.5 1.5 0 -2.8720 3: r1 = x1 - 2 -1 � �50 4: b = 2 * x1 2 2 2.2180 5: c = 1 1 0 1.0590 6: r2 = sqrt(c) 1 0 2.1090 7: r3 = r2 * b 2 2 1.0590 8: c = c + r3 3 2 1.0590 9: r2 = sqrt(c) 1.73 0.58 1.3390 10: r3 = r2 * b 3.46 4.61 0.6790 11: c = c + r3 6.46 6.62 0.67110 12: y1 = c / x2 4.31 4.41 1.0120 13: y2 = b * x2 3 3 04



and d13 = @@x1y2(x1 = 1; x2 = 1:5) by simple use of the chain rule. For example,if aj = ak + al; then dj = dk + dl:if aj = ak � al; then dj = ak � dl + al � dk:For univariate functions g = g(a) such as Sin, Cosine, or Sqrt,aj = g(ak) implies dj = @@ak g(ak) � dk:The values of the dj's in our particular example are shown in the column III labeled di in Table 1.After we have traversed all statements, we have computed @@x1F (x1 = 1; x2 = 1:5) = ( @y1@x1 ; @y2@x1 ),that is, the �rst column of the Jacobian matrix. From the last two rows of column III in Table 1,we see that ( @y1@x1 ; @y2@x1 ) is (4.41,3). To obtain the second column of the Jacobian matrix, we initialized1 = @x1@x2 = 0 and d2 = @x2@x2 = 1 and repeat the previous procedure. Since the propagation of thedi's is about as costly as that of the ai's, each Jacobian column calculated costs roughly the sameas the evaluation of the original function.2.2 Forward Mode of Automatic Di�erentiationThis mode of automatic di�erentiation, where wemaintain the derivatives of intermediate quanti-ties with respect to the independent variables, is called the forward mode of automatic di�erentiation.Instead of calculating each column of the Jacobian J separately, we could also have computedall of J in one pass by associating a two-vector storing raj = ( @aj@x1 ; @aj@x2 )T with each intermediatequantity. In general, for a function with n independent variables, we could associate an n-vector witheach intermediate quantity and then perform a vector operation at each step. This is an advantagewhen working with a vector processor. If J is dense, the evaluation of J then requires on the order ofn times the work that is required to evaluate the function F . Often Jacobi matrices are sparse, andsparse storage techniques can be employed rather advantageously. Then the ratio between the costof evaluating J and F is bounded by the maximum number of nonzeros in any row of the Jacobian.We also mention that if one does not need J per se, but instead Jv for some vector v, the factthat di�erentiation is a linear operator allows us to compute this quantity in one step by initializingdi = vi; i = 1; : : : ; n.2.3 Reverse Mode of Automatic Di�erentiationAnother way to compute derivatives is the so-called reverse mode of automatic di�erentiation.Here we maintain the derivative of the �nal result with respect to an intermediate quantity. Thesequantities are usually called adjoints, and they measure the sensitivity of the �nal result withrespect to some intermediate quantity. This approach is closely related to the aforementioned adjointapproach. The discrete analog used in automatic di�erentiation was apparently �rst discovered byLinnainmaa [1976] in the context of rounding error estimates.In the reverse mode we associate a scalar �dj (say) with each intermediate quantity. We interpreteach �dj as the derivative of a dependent variable F with respect to the intermediate variable aj5



( �dj = @F@aj .) As a consequence of the chain rule it can be shown that for an intermediate quantityaj whose value is used in the computation of ak, we have�dj =Xk2I @gk@aj �dk ; (2)where gk is the elementary operation that de�nes ak. The set I is the set fk : k > j; and gk is a function of ajg.As an example, assume that we wish to compute ry1(x1 = 1; x2 = 1:5) = ( @y1@x1 ; @y1@x2 ), that is, the�rst row of the Jacobian of F (where F is the example given in Figure 1.) We then initialize �d12 = 1and �d13 = 0. Since a2 (= x2 in Table 1) is used only in the computation of a12 (= y1) and a13 (=y2),we can compute from (2) @y1@x2 = �d2 = @g12@a2 � �d12 + @g13@a2 � �d13:Note terms involving 3 � k � 11 in the sum (2) do not appear for this example because these valuesof k are not elements of the set I. Now g12 = a11=a2, and g13 = a4 � a2, so@g12@a2 = �a11=(a2)2and @g13@a2 = a4:By starting from the dependent variables in this fashion, and traversing the computation in reverseorder, we emerge at the independent variables with ry1. The adjoint quantities are shown in columnIV labeled �di in Table 1. The �rst value under column IV is the reverse mode result @y1@x1 = 4:41and the second value under column IV is the reverse mode result for @y1@x2 = �2:87. We can computery2(x1 = 1; x2 = 1:5) by repeating this procedure beginning with �d12 = @y2@y1 = 0 and �d13 = @y2@y2 = 1.Exploiting the sparsity of these vectors, one can bound the ratio between the cost of evaluating Jrow-wise and that of evaluating F by the maximum number of nonzeros in any column.We also mention that, in addition to the forward and reverse mode, there are many ways ofaccumulating derivatives, as a result of the associativity of the chain rule (Griewank and Reese,1991). For example ADIFOR, the tool discussed in the next section uses a combination of bothforward and reverse modes.3 The ADIFOR Automatic Di�erentiation ToolThere have been various implementations of automatic di�erentiation; an extensive survey can befound in Juedes [1991]. In particular, we mention GRESS (Horwedel, 1991), and PADRE-2 (Kubota,1991) for Fortran Programs and ADOL-C (Griewank et al., 1990) and ADIC (Bischof and Mauer,1994) for C programs. GRESS, PADRE-2, and ADOL-C implement both the forward and reversemode. The reverse mode requires one to save or recompute all intermediate values that nonlinearlyimpact the �nal result, and to this end these tools generate in some form or another a trace of thecomputation. The interpretation overhead of this trace and its potentially very large size can be aserious computational bottleneck (Soulie, 1991). 6



Recently, a \source transformation" approach to automatic di�erentiation has been explored inthe ADIFOR (Bischof et al., 1992a; Bischof et al., 1992b), ADIC (Bischof and Mauer, 1994) andODYSSEE (Rostaing et al., 1993) projects. These tools transform code, applying the rules of au-tomatic di�erentiation, generating new code, which, when executed, computes derivatives withoutthe overhead associated with \tape interpretation" schemes. We employed the ADIFOR tool inour experiments, which, as we will describe shortly, mainly uses the forward mode. In contrast,ODYSSEE employs the reverse mode. The potential \storage explosion" associated with apply-ing the reverse mode to highly nonlinear codes has not been addressed in any tool yet, but the\snapshotting approach" suggested by Griewank [1992] has great potential.ADIFOR provides automatic di�erentiation for programs written in Fortran 77. Given a Fortransubroutine (or collection of subroutines) describing a \function," and an indication which variablesin parameter lists or common blocks correspond to \independent" and \dependent" variables withrespect to di�erentiation, ADIFOR produces Fortran 77 code that allows the computation of thederivatives of the dependent variables with respect to the independent ones. ADIFOR producesportable Fortran 77 code and accepts almost all of Fortran 77, in particular, arbitrary calling se-quences, nested subroutines, common blocks, and equivalences. The ADIFOR-generated code triesto preserve vectorization and parallelism in the original code, and employs a consistent subroutinenaming scheme which allows for code tuning, the exploitation of domain-speci�c knowledge, andthe use of vendor-supplied libraries. ADIFOR will soon be available via electronic means. Detailedinformation can be obtained on the world-wide web under URL http://www.mcs.anl.gov/autodi�or by contacting bischof@mcs.anl.gov or carle@cs.rice.edu.ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives. In thisway ADIFOR can achieve some of the computational advantages of both the forward and reversemethods. For each assignment statement, it generates code for computing the partial derivatives ofthe result with respect to the variables on the right-hand side using the reverse mode approach, andthen employs the forward mode to propagate overall derivatives. For example, the single Fortranstatement y = x(1) � x(2) � x(3) � x(4) � x(5) (3)embedded in some larger code gets transformed into the code segment shown in Figure 2. ADIFORuses \$" in naming the new variables required to calculate derivatives. Note that in the reverse modesection of Figure 2, none of the common subexpressions x(i) � x(j) are computed twice even thoughthey are required for the computation of more than one of the derivatives @ y@ x(i) , i = 1; 2; :::;5. Thisis characteristic of the reverse mode's e�ciency when the number of dependent variables is smallerthan the number of independent variables. The variable g$p$ in Figure 2 denotes the number ofdirectional derivatives to be computed (i.e. the number of columns of the desired Jacobian or thedesired projection of the Jacobian.) For example, if g$p$ = 5, and the 5� 5 array g$p is the 5 � 5identity matrix, i.e. g$p = dxdx , then upon execution of these statements, g$y(i) equals dydx(i) . Thiswould be the case if (3) constituted the entire code, and we used ADIFOR to calculate dydx(i) .On the other hand, assume that overall we wished only to compute derivatives with respect to asingle scalar parameter s which appears in statements preceding (3), so g$p$ = 1, and, on entry to7



r$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2 9>>>>>>>>>>=>>>>>>>>>>; Reverse Mode for computing @ y@ x(i):r$ibar = @ y@ x(i); i = 1; : : : ; 4r$3 = @ y@ x(5)do j = 1, g$p$g$y(j) = r$1bar * g$x(j, 1)+ r$2bar * g$x(j, 2)+ r$3bar * g$x(j, 3)+ r$4bar * g$x(j, 4)+ r$3 * g$x(j, 5)enddo 9>>>>>>=>>>>>>; Forward Mode:Assembling ry from @ y@ x(i) andrx(i),i = 1; : : : ; 5.y = r$3 * x(5) 	 Computing function valueFigure 2: Sample Segment of an ADIFOR-generated derivative code corresponding tothe FORTRAN statement given in (3).this code segment, g$x(1,i) = dx(i)ds . Then the do-loop in Figure 2 in e�ect computes dyds asdyds = dydx dxds :The ADIFOR-generated code can be used in various ways (Bischof and Hovland, 1991): Insteadof simply producing code to compute the Jacobian J , ADIFOR can produce code to compute J �S,where the \seed matrix" S is initialized by the user. If the user desires the full Jacobian then Scan be input as the identity and the ADIFOR-generated code will compute the full Jacobian. If theuser only requires the value of the Jacobian times a given vector (as is necessary for some Newtonprocedures for example) then S can be input as just a vector and the ADIFOR-generated code willcompute the product of the Jacobian by that vector. \Compressed" versions of sparse Jacobians canbe computed by exploiting the same graph coloring techniques that are used for divided di�erenceapproximations of sparse Jacobians (Averick et al., 1994) by carefully selecting the seed matrix S.The running time and storage requirements of the ADIFOR-generated code are roughly proportionalto the numbers of columns of S, which equals the g$p$ variable in the sample code in Figure 2.Hence the computation of Jacobian-vector products and compressed Jacobians requires much lesstime and storage than the generation of the full Jacobian matrix.Experiences with ADIFOR on aeronautics uid and structures codes have been reported inBarthelemy and Hall, [1992]; Bischof et al., [1992c]; Bischof et al., [1994]; Carle et al., [1994]; andGreen et al., [1993]. In Bischof et al., [1994] it is also shown how one can use the exibility of theADIFOR interface to exploit parallelism to decrease turnaround time for Jacobian computations.8



4 Di�erentiated Models: Two- and Three-dimensional Finite Element ModelsFinite element models were chosen to test ADIFOR due to the inherent complexity of �niteelement codes and the corresponding di�culty of obtaining exact derivative information. Two �niteelement models were chosen to di�erentiate. We tested the accuracy and computational speed ofthe code produced by ADIFOR. One two- and one three-dimensional model were selected. Severaldi�erent mesh sizes were used to test the scalability of the derivative code produced by ADIFOR.4.1 ISOQUAD: 2D Groundwater Flow and Transport ModelsISOQUAD is a two-dimensional (vertical dimension averaged) Galerkin �nite-element model ofgroundwater transient ow and transport (see Pinder and Frind [1972] and Pinder and Gray [1977].)The ow equation assumed by the model represents a two-dimensional con�ned aquifer with storage,which, employing the nomenclature of Table 2, can be expressed asr � (bKrh) +Xi2Q qi�(xi; yi)� bSs @h@t = 0: (4)The governing equation for transport used by the model represents conservative transport with achoice of adsorbtion isotherms. We used a linear isotherm:r � (�bD � rc)� bv � rc� b(� + �B @S@c )@c@t = 0 : (5)Table 2: Flow and Transport Model Variablesb saturated vertical thickness of the aquiferc contaminant concentrationD hydrodynamic dispersion tensor�(xi; yi) two-dimensional Dirac delta function centered at xi; yih vertically averaged hydraulic headK hydraulic conductivity tensorqi pumping rate for well i located at (xi; yi)�B bulk density of the porous mediaS mass of adsorbed pollutant per unit mass of porous mediumSs speci�c storage� porosityv Darcy velocity de�ned as v = �K � rh:ISOQUAD is written in Fortran 77 and is on the order of two thousand lines of code. The modelassumes the aquifer is con�ned but can allow for leakage. The model has been used extensively inthe optimal design research (Chang et al. [1992], Culver and Shoemaker [1992], and Whi�en and9



Shoemaker [1993].) Analytic expressions that can be coded for the derivatives of ISOQUAD areprovided by Chang et al. [1992]. These hand-coded, validated derivatives have been optimized forperformance and allow a comparison and validation of ADIFOR generated derivatives and divideddi�erences derivatives.The model ISOQUAD is used in its implicit time-stepping mode. In general, implicit timestepping results in di�cult-to-derive, dense Jacobians. Explicit time stepping will, in general, resultin easier-to-derive, sparse Jacobians. The model has as input the hydraulic heads and single speciesconcentrations at n active nodes and the pumping rates of wells located on m computational nodes.Outputs include contaminant concentrations and hydraulic head values at each of n active nodes foran advanced time step of the simulation. Automatic di�erentiation was used to obtain the followingderivatives: @ht+1@ht � <n�n (6)@ct+1@ht � <n�n (7)@ct+1@ct � <n�n (8)@ct+1@qt � <n�m (9)@ht+1@qt � <n�m: (10)The vectors ct and ct+1 2 <n are the values of the contaminant concentration at model time stepst and t+ 1. The vectors ht and ht+1 2 <n are the hydraulic heads at times t and t+ 1. The vectorqt 2 <m is the pumping rate at each designated well node at time step t. The evaluation of thesederivatives is necessary for the optimal control analysis used by Chang et al. [1992]. The evaluationof all �ve derivatives, (6)|(10), together is considered one derivative evaluation in the numericalresults that follow.We choose a mesh of 60 elements and 77 nodes to test automatic di�erentiation (see Figure 3).In this example, n = 63, the number of active nodes. We choose m = 18 nodes to locate pumpingwells. For this example there were 144 independent variables and 126 dependent variables.As shown in Figure 4, automatic di�erentiation provided a code that calculated model derivativesexactly in much less time than the imprecise divided di�erences method. The ADIFOR-generatedcode produced derivatives that were the same as the validated handwritten code to the order of themachine precision. In particular, for the 77-node mesh, the ADIFOR code calculated derivatives(6)|(10) in about the time it would take to run the original simulation model 17 times. Thesame derivatives using the one-sided divided-di�erences approach require 144 simulations, one foreach independent variable. All codes were run on an IBM ES-9000 Mainframe. Figure 4 presentsa comparison of CPU times for the ISOQUAD example. If the more accurate centered divideddi�erences approach is used, 288 simulations are necessary. The automatic di�erentiation code wassomewhat slower than the optimized handwritten code by Chang et al. [1992], which requires aboutthe same CPU time as 5 simulations. 10



4.2 TLS3D: 3D Advection Di�usion ModelTLS3D is a model of the three-dimensional advection di�usion equation. TLS3D employs aTaylor least-squares �nite element procedure to solve the unsteady advection di�usion equationdcdt = rv � rc+r �Drc: (11)The model uses a three-dimensional serendipity Hermite element for an eight-node hexahedron andwas developed to produce accurate results for advection-dominated problems. For a complete de-scription of the Taylor least-squares �nite element procedure and three-dimensional model, see Parkand Liggett [1991]. The code provided to the authors was written in Fortran 77 and is approximately2300 lines in length.The model was used on three-dimensional meshes ranging in size from 3 to 128 rectangular boxelements to test the scalability of the of the code generated by ADIFOR. The model has as input thethree-dimensional ow �eld velocity vectors vt for each simulation time step t, and initial contaminantconcentration at each of n nodes, ct. Model output is single-species contaminant concentrations ateach active node, ct+1. Automatic di�erentiation was used to evaluate the following derivative:@ct+1@vt � <n�3n: (12)Automatic di�erentiation provided a code that can calculate model derivatives exactly in muchless time than the imprecise divided di�erences. Five di�erent-sized discretizations consisting of 3,7, 32, 72 and 128 three-dimensional elements were used to compare derivative performances. Figure5 presents a perspective of the 128-element mesh. The number of independent variables (velocitycomponents) equals three times the number of nodes in the model. The number of independentvariables with respect to di�erentiation for the 3, 7, 32, 72, and 128 element cases are 48, 96, 243,432, and 675, respectively.Table 3 and Figure 6 show the results on a SPARCstation 10 model 30 and a single node ofthe IBM SP1 parallel computer. The columns of Table 3 labeled \1 Simulation" show the run time(in seconds) of the simulation, the columns labeled ADIFORDivDiff show the average time required for theADIFOR code derivatives with respect to one independent variable divided by the time necessary forone simulation. This ratio is equivalent to the ratio of the CPU time required by the ADIFOR codeto the CPU time required by the one sided divided di�erences procedure. These results were obtainedwhen the ADIFOR-generated code is used to generate derivatives with respect to 48 independentvariables at a time using an appropriate seed matrix S and then dividing the CPU time by 48 timesthe CPU time for a single simulation.We see that the ADIFOR-generated code is more than 5 (7) times faster than the one-sideddivided di�erence approximations on the SPARCstation 10 (SP1 node). The ratio between theADIFOR-generated derivative code and one-sided divided di�erences generally decreases with in-creasing mesh size, from .21 for the 7-element case to .13 for the 128-element case on a single nodeof a SP1. No hand-coded analytic derivatives of TLS3D are available for comparison. ADIFORderivative values were nearly exactly the same as the divided di�erences derivative values usingsmall perturbations. 11



Table 3: Performance results for TLS3D, simulation times are given in secondsNumber of Elements SPARCstation 10 SP/1 Node(Number of independents) 1 Simulation ADIFORDivDiff 1 Simulation ADIFORDivDiff3 (48) 2.0 0.20 0.27 0.177 (96) 4.5 0.21 0.51 0.2132 (243) 30.9 0.20 4.72 0.1572 (432) 77.9 0.19 13.3 0.14128 (675) 140.8 0.19 22.8 0.135 ConclusionsWe found that automatic di�erentiation can provide accurate and e�cient derivative codes forthe complex �nite element codes ISOQUAD and TLS3D. In particular, we found ADIFOR generatedcodes that calculated derivatives in approximately 13% of the time required by divided di�erences forthe two-dimensional model ISOQUAD, and between 13% and 21% of the time required by divideddi�erences for the three-dimensional model, TLS3D. As a result of our investigations, we believethat automatic di�erentiation can greatly reduce the computational and human time necessary toobtain exact sensitivity informatioe for complex models. Further, automatic di�erentiation canfacilitate model changes by providing a mechanism for generating accurate and e�cient derivativecodes for new models with very little human e�ort. Automatic di�erentiation technology can greatlyaccelerate the transfer of general techniques developed for using water resource computer models(such as optimal design, sensitivity analysis, and inverse modeling problems) to �eld problems.Automatic di�erentiation can also accelerate the rate at which algorithm and model developmentand testing can occur by providing exact sensitivity information that may not otherwise be availablefor complex models.
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