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Abstract. Automatic differentiation is a technique for generating efficient and reliable derivative codes from
computer programs with minimal human effort. Derivatives of model output with respect to input are obtained
exactly. No intrinsic limits to program length or complexity exist for this procedure. Calculation of derivatives of
complex numerical models is required in system optimization, parameter identification, and systems identification.
We report on our experiences with the ADIFOR (Automatic Differentiation of Fortran) tool on a two-dimensional
groundwater flow and contaminant transport finite-element model, ISOQUAD, and a three-dimensional contaminant
transport finite-element model, TLS3D. Derivative values and computational times for the automatic differentiation
procedure are compared with values obtained from the divided differences and handwritten analytic approaches. The
automatic differentiation tool ADIFOR produced derivative codes that calculated exact derivatives in typically almost
an order of magnitude less CPU time than what is required for the imprecise divided differences method for both
the two- and three-dimensional codes. We also comment on the benefit of automatic differentiation technology with
respect to accelerating the transfer of general techniques developed for using water resource computer models (such
as optimal design, sensitivity analysis, and inverse modeling problems) to field applications.

1 Introduction

This paper describes a procedure that requires little human time for generating computationally
efficient exact derivatives of a generic water resources simulation model. Calculation of derivatives
of computer models is necessary for a wide variety of procedures of interest to numerical modelers.
Sensitivity analysis of output parameters with respect to input parameters of complex computer
models 1s often necessary for modelers who perform uncertainty analysis or create stochastic models.
Many procedures that optimize performance of an engineered system using a model to predict system
performance require derivatives of the same model. Inverse modeling problem methods, in which
the goal is to obtain a best set of model input parameters given an observed system behavior, often
require derivatives of model output with respect to model input parameters.

Several methods have traditionally been used to obtain derivatives of computer model output
with respect to input. Analytical calculation can be used whenever it is reasonable to write analytic
derivatives and then code them by hand. Chang et al., [1992], for example, algebraically derived
and coded derivatives of a finite element groundwater flow and transport code for use in an optimal
control analysis to compute the most cost efficient pumping strategy for groundwater remediation.
Often the procedure of deriving and coding analytical derivatives requires substantial human effort
and affords great opportunity for error. If a code is extremely complex, this approach may be
infeasible.
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Another approach used to obtain derivatives is symbolic differentiation programs (for example,
MAPLE and Mathematica.) Symbolic differentiation often generates very large, inefficient derivative
formulas. Further, symbolic differentiation may be very difficult to apply to computer models.

Still another approach is hand writing an adjoint code to calculate derivatives. Adjoint codes
calculate exact derivatives very efficiently (Leitmann, 1981). However, this method also requires a
potentially large amount of human effort. Once again, if a model code is very large and complex,
this procedure may be infeasible.

Perhaps the most common procedure used to obtain approximate model derivatives of very
complex computer models is the divided difference method. The divided difference method calculates
derivatives by perturbing model input by small amounts and dividing the resulting model output
perturbations by input perturbations (see, for example, Gorelick et al., 1984). This procedure may
fail to give accurate derivatives (Green et al,, 1993) and is inefficient. The method will require at
least as many model simulations as there are input parameters of interest if the Jacobian of interest
is dense. However, in general, the divided difference method does not require much human effort
and, until recently, has been the only universally applicable approach available to obtain derivatives
estimates for very complex computer models.

This paper describes the application of automatic differentiation to obtain codes that efficiently
evaluate exact derivatives of complex computer models with a minimum of human effort ( Griewank,
1989). Automatic differentiation is a method that produces a derivative code given the model code
and a list of parameters that are considered dependent and independent variables with respect to
differentiation. The method produces a code that will evaluate derivatives exactly (to machine preci-
sion). In general, depending on the particular approach chosen, automatic differentiation approaches
can compute derivatives with lower arithmetic complexity than that required by the approximate
divided differences method. There are no inherent limits on program size or complexity.

It is the purpose of this paper to describe automatic differentiation, to explain its usefulness
to water resource problems, and to present numerical results of its application to two groundwater
transport codes. The numerical results presented later indicate that automatic differentiation can
generate a code that can be used to produce accurate derivatives of the transport codes with a
reasonable level of computational efficiency.

1.1 Advantages of Automatic Differentiation for Water Resource Problems

General techniques that rely on the output of water resource computer models, such as optimal
design, sensitivity or reliability analysis, and inverse modeling problems in ground and surface waters,
can all benefit from using automatic differentiation.

Parameter estimation methods such as those developed by Carrera and Neuman [1986] for estima-
tion of aquifer parameters involved the coding of an adjoint finite element code to obtain Jacobians.
If this and similar procedures are transferred to a new predictive model, a new adjoint finite element
code must also be produced. Automatic differentiation can simplify the process of changing the
underlying model whenever derivatives are required.

Reliability analysis techniques such as first- and second-order reliability methods applied to wa-
ter resource models also require sensitivity information or model derivatives. For example, Jang et
al. [1994] apply these methods to contaminant transport in porous media. Again, automatic differ-



entiation can simplify changing the underlying model. This has enormous potential for accelerating
the application of techniques to field problems.

Automatic differentiation can also allow researchers to develop new techniques in less time be-
cause little human effort is needed to obtain accurate derivatives. The application of gradient type
search optimization procedures (such those of Chang et al., 1992; Gorelick et al, 1984) can benefit.
Water flow and transport model sensitivity analysis on new models can be conducted relatively
quickly by obtaining derivatives with automatic differentiation. Any researcher who will benefit
from exact derivative information from large complex computer codes can potentially benefit from
using automatic differentiation.

The following two sections describe the theory behind automatic differentiation and the specific
tool ADIFOR (Automatic Differentiation of Fortran) which was tested in the numerical section.

2 Automatic Differentiation

Automatic differentiation techniques rely on the fact that every function, no matter how com-
plicated, is executed on a computer as a (potentially very long) sequence of elementary operations
such as additions, multiplications, and elementary functions such as Sine and C'osine. By applying
the chain rule,

S F @D leme) = (G F6) e} o)), 0

over and over again to the composition of those elementary operations, one can compute derivative
information of f exactly and in a completely mechanical fashion.

2.1 Simple Example of Automatic Differentiation

The idea behind automatic differentiation is best understood through an example. Assume that
we have the sample program shown in Figure 1 for the computation of a function F : 2 — 2.
Here, z1 and 22 are the independent variables, and y1 and y2 the dependent variables: (yl,y2) =
F(x1,22). The program in Figure 1 illustrates the cases when automatic differentiation encounters
both if/then and do loop statements. The derivatives of F' can be defined everywhere except when
zl # 2.

If we were to execute this program to compute F(xzl = 1,22 = 1.5), the list of elementary
instructions shown in the column I of Table 1 would be executed. Here r1 through r3 refer to
locations where intermediate results are stored. The code shown in Table 1 is a trace (list) of the
computations performed to compute F'(1,1.5). As long as #1 < 2, this trace can be used as a
blueprint for the computation of F(x1,z2). To compute derivatives in an automatic fashion, we now
associate a unique variable a;, i = 1,13 with each computed value. The variable a; holds the result
of the " intermediate operation. This value (rounded to three significant digits) is shown in the
column IT labeled a; in Table 1.

Derivatives can now be computed by associating a value d; with each intermediate quantity and by
using elementary differentiation arithmetic. For example, if we wish to compute %F(rl, 2)|(e1,02)=(1,1.5),

d; will hold gg; for every intermediate quantity a;. Hence, after setting d; = g—zi = 1 and
dy = g—zf = 0, we can find ds, then d4 and so on until we arrive at dio = aixlyl(xl = 1,22 = 1.5)



10 read x1,x2
20 if ((x1 - 2) > 0) then

30 b = x1

40 else

50 b = 2#x1

60 endif

70 c=1

80 doi=1,2

90 ¢ = ¢ + sqrt(c)*b

100 enddo
110 y1 = ¢/x2
120 y2 = b*x2

Figure 1: Sample program to compute (y1,y2) = F(x1, 22)

Table 1: Trace of Function Execution

I 1T 11T v
Code Operation i*" intermediate Value of Value of Value of
line number operation operation derivative adjoint
number 7 gi a; d; = gg; di = gﬁ
10 1: xl =1 1 1 4.41
10 2: x2 =1.5 1.5 0 -2.87
20 3: rl =x1-2 -1 — —
50 4: b=2%*xl 2 2 2.21
80 5: c=1 1 0 1.05
90 6: r2 = sqrt(c) 1 0 2.10
90 7 13=12*%b 2 2 1.05
90 8: c=c+ 13 3 2 1.05
90 9: r2 = sqrt(c) 1.73 0.58 1.33
90 10: 13=12*%b 3.46 4.61 0.67
90 11: c=c+ 713 6.46 6.62 0.67
110 12: vl=c/x2 4.31 4.41 1.0
120 13: y2=D>b* x2 3 3 0




and di3 = %y?(rl = 1,22 = 1.5) by simple use of the chain rule. For example,

if a; = ap + ay, then dj:dk—l—dl.
if a; = ap * ay, then dj:ak*dl—i—al*dk.

For univariate functions ¢ = g(a) such as Sin, Cosine, or Sqrt,

o 9
a; = g(ak) implies d]' = Eg(ak) * dy.

The values of the d;’s in our particular example are shown in the column III labeled d; in Table 1.

After we have traversed all statements, we have computed 6%1 (x1 = 1,29 = 1.5) = (%;%, %;/—?),

that is, the first column of the Jacobian matrix. From the last two rows of column IIT in Table 1,

we see that (g—ii, g—i?) is (4.41,3). To obtain the second column of the Jacobian matrix, we initialize
di = g—z; =0 and dy = g—zz = 1 and repeat the previous procedure. Since the propagation of the

d;’s 1s about as costly as that of the a;’s, each Jacobian column calculated costs roughly the same
as the evaluation of the original function.

2.2 Forward Mode of Automatic Differentiation

This mode of automatic differentiation, where we maintain the derivatives of intermediate quanti-
ties with respect to the independent vartables, is called the forward mode of automatic differentiation.

Instead of calculating each column of the Jacobian J separately, we could also have computed
all of J in one pass by associating a two-vector storing Va; = (g%j, %)T with each intermediate
quantity. In general, for a function with n independent variables, we could associate an n-vector with
each intermediate quantity and then perform a vector operation at each step. This is an advantage
when working with a vector processor. If J is dense, the evaluation of J then requires on the order of
n times the work that is required to evaluate the function F'. Often Jacobi matrices are sparse, and
sparse storage techniques can be employed rather advantageously. Then the ratio between the cost
of evaluating J and F' is bounded by the maximum number of nonzeros in any row of the Jacobian.
We also mention that if one does not need J per se, but instead Jv for some vector v, the fact
that differentiation 1s a linear operator allows us to compute this quantity in one step by initializing
dl' IUZ',Z'I 1,...,77,.

2.3 Reverse Mode of Automatic Differentiation

Another way to compute derivatives is the so-called reverse mode of automatic differentiation.
Here we maintain the derivative of the final result with respect to an intermediate quantity. These
quantities are usually called adjoints, and they measure the sensitivity of the final result with
respect to some intermediate quantity. This approach is closely related to the aforementioned adjoint
approach. The discrete analog used in automatic differentiation was apparently first discovered by
Linnainmaa [1976] in the context of rounding error estimates.

In the reverse mode we associate a scalar Jj (say) with each intermediate quantity. We interpret
each Jj as the derivative of a dependent variable F' with respect to the intermediate variable a;



d; = 2£ ) As a consequence of the chain rule it can be shown that for an intermediate quantity
J da
7
a; whose value is used in the computation of az, we have

_ dg
dj=> 8a]; dy (2)

kel

where gy, is the elementary operation that defines ay. The set Iisthe set {k : k > j, and gy is a function of a;}.
As an example, assume that we wish to compute Vy (21 = 1,22 = 1.5) = (g—ii, g—i;), that is, the
first row of the Jacobian of F' (where F is the example given in Figure 1.) We then initialize dis = 1
and di5 = 0. Since as (= @2 in Table 1) is used only in the computation of a1 (= y1) and a13 (=y2),
we can compute from (2)
Qgi 7 9912
6902

Note terms involving 3 < k£ < 11 in the sum (2) do not appear for this example because these values
of k are not elements of the set I. Now g2 = a11/as, and g13 = a4 * as, so

0
89;22 = —an/(a>)’

and
0g13

8a2

By starting from the dependent variables in this fashion, and traversing the computation in reverse
order, we emerge at the independent variables with Vy;. The adjoint quantities are shown in column

IV labeled d; in Table 1. The first value under column IV is the reverse mode result % =441

and the second value under column IV is the reverse mode result for %

Vya(x1 = 1,22 = 1.5) by repeating this procedure beginning with dis = % —=0and di3 = 252 =
Exploiting the sparsity of these vectors, one can bound the ratio between the cost of evaluating J
row-wise and that of evaluating F' by the maximum number of nonzeros in any column.

We also mention that, in addition to the forward and reverse mode, there are many ways of
accumulating derivatives, as a result of the associativity of the chain rule (Griewank and Reese,
1991). For example ADIFOR, the tool discussed in the next section uses a combination of both

forward and reverse modes.

= 4.

—2.87. We can compute

3 The ADIFOR Automatic Differentiation Tool

There have been various implementations of automatic differentiation; an extensive survey can be
found in Juedes [1991]. In particular, we mention GRESS (Horwedel, 1991), and PADRE-2 (Kubota,
1991) for Fortran Programs and ADOL-C (Griewank et al., 1990) and ADIC (Bischof and Mauer,
1994) for C programs. GRESS, PADRE-2, and ADOL-C implement both the forward and reverse
mode. The reverse mode requires one to save or recompute all intermediate values that nonlinearly
impact the final result, and to this end these tools generate in some form or another a trace of the
computation. The interpretation overhead of this trace and its potentially very large size can be a
serious computational bottleneck (Soulie, 1991).



Recently, a “source transformation” approach to automatic differentiation has been explored in
the ADIFOR (Bischof et al., 1992a; Bischof et al., 1992b), ADIC (Bischof and Mauer, 1994) and
ODYSSEE (Rostaing et al., 1993) projects. These tools transform code, applying the rules of au-
tomatic differentiation, generating new code, which, when executed, computes derivatives without
the overhead associated with “tape interpretation” schemes. We employed the ADIFOR tool in
our experiments, which, as we will describe shortly, mainly uses the forward mode. In contrast,
ODYSSEE employs the reverse mode. The potential “storage explosion” associated with apply-
ing the reverse mode to highly nonlinear codes has not been addressed in any tool yet, but the
“snapshotting approach” suggested by Griewank [1992] has great potential.

ADIFOR provides automatic differentiation for programs written in Fortran 77. Given a Fortran
subroutine (or collection of subroutines) describing a “function,” and an indication which variables
in parameter lists or common blocks correspond to “independent” and “dependent” variables with
respect to differentiation, ADIFOR, produces Fortran 77 code that allows the computation of the
derivatives of the dependent variables with respect to the independent ones. ADIFOR produces
portable Fortran 77 code and accepts almost all of Fortran 77, in particular, arbitrary calling se-
quences, nested subroutines, common blocks, and equivalences. The ADIFOR-generated code tries
to preserve vectorization and parallelism in the original code, and employs a consistent subroutine
naming scheme which allows for code tuning, the exploitation of domain-specific knowledge, and
the use of vendor-supplied libraries. ADIFOR will soon be available via electronic means. Detailed
information can be obtained on the world-wide web under URL http://www.mcs.anl.gov/autodiff
or by contacting bischof@mecs.anl.gov or carle@cs.rice.edu.

ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives. In this
way ADIFOR can achieve some of the computational advantages of both the forward and reverse
methods. For each assignment statement, it generates code for computing the partial derivatives of
the result with respect to the variables on the right-hand side using the reverse mode approach, and
then employs the forward mode to propagate overall derivatives. For example, the single Fortran
statement

y = x(1) * x(2) * x(3) * x(4) * x(5) (3)

embedded in some larger code gets transformed into the code segment shown in Figure 2. ADIFOR
uses “$” in naming the new variables required to calculate derivatives. Note that in the reverse mode
section of Figure 2, none of the common subexpressions z(%) * z(j) are computed twice even though

they are required for the computation of more than one of the derivatives y. ,t=1,2,...,5. This

is characteristic of the reverse mode’s efficiency when the number of depen}ée;t variables is smaller
than the number of independent variables. The variable g$p$ in Figure 2 denotes the number of
directional derivatives to be computed (i.e. the number of columns of the desired Jacobian or the
desired projection of the Jacobian.) For example, if gp$ = 5, and the 5 x 5 array g$p is the 5 x 5
identity matrix, i.e. gép = g—z, then upon execution of these statements, g$y (i) equals %. This

would be the case if (3) constituted the entire code, and we used ADIFOR to calculate %.

On the other hand, assume that overall we wished only to compute derivatives with respect to a
single scalar parameter s which appears in statements preceding (3), so gép$ = 1, and, on entry to



r$1 = x(1) * x(2)
152 = 1$1 * x(3) Reverse Mode for computin :
r$3 = r$2 * x(4) PHHRS 52 (1)
154 = x(5) * x(4) dy
r$5 = 184 * x(3) rfibar = ——, i =1
r$1bar = r$5 * x(2) J0x(i)
r$2bar = r$5 * x(1) ay
r$3bar = r$4 * r$1 r$3 =
r$4bar = x(5) * r$2 aX(S)
doj=1, gbp$

¢$y(j) = r$1bar * gSx(j, 1) Forward Mode:
+ r$2bar x(j, 2) :
e 9 Assembling Vy from
+ r§4bar * g$x(j, 4) Vx(@)7
+ 183 7 g8x(j, 5) i=1,...,5.

4

9o ey

dy
J0x (1)

and

* o$
* o

enddo
y =133 * x(5) } Computing function value

Figure 2: Sample Segment of an ADIFOR-generated derivative code corresponding to
the FORTRAN statement given in (3).

this code segment, g$x(1,1) = Mdsﬁ. Then the do-loop in Figure 2 in effect computes fl—z as

dy_dyds
ds — dz ds’

The ADIFOR-generated code can be used in various ways (Bischof and Hovland, 1991): Tnstead
of simply producing code to compute the Jacobian J, ADIFOR can produce code to compute J *.5,
where the “seed matrix” S is initialized by the user. If the user desires the full Jacobian then S
can be input as the identity and the ADIFOR-generated code will compute the full Jacobian. If the
user only requires the value of the Jacobian times a given vector (as is necessary for some Newton
procedures for example) then S can be input as just a vector and the ADIFOR-generated code will
compute the product of the Jacobian by that vector. “Compressed” versions of sparse Jacobians can
be computed by exploiting the same graph coloring techniques that are used for divided difference
approximations of sparse Jacobians (Averick et al., 1994) by carefully selecting the seed matrix S.
The running time and storage requirements of the ADIFOR-generated code are roughly proportional
to the numbers of columns of S, which equals the g$p$ variable in the sample code in Figure 2.
Hence the computation of Jacobian-vector products and compressed Jacobians requires much less
time and storage than the generation of the full Jacobian matrix.

Experiences with ADIFOR, on aeronautics fluid and structures codes have been reported in
Barthelemy and Hall, [1992]; Bischof et al., [1992¢]; Bischof et al., [1994]; Carle et al., [1994]; and
Green et al., [1993]. In Bischof et al., [1994] it is also shown how one can use the flexibility of the
ADIFOR interface to exploit parallelism to decrease turnaround time for Jacobian computations.



4 Differentiated Models: Two- and Three-dimensional Finite Element Models

Finite element models were chosen to test ADIFOR due to the inherent complexity of finite
element codes and the corresponding difficulty of obtaining exact derivative information. Two finite
element models were chosen to differentiate. We tested the accuracy and computational speed of
the code produced by ADIFOR. One two- and one three-dimensional model were selected. Several
different mesh sizes were used to test the scalability of the derivative code produced by ADIFOR.

4.1 ISOQUAD: 2D Groundwater Flow and Transport Models

ISOQUAD is a two-dimensional (vertical dimension averaged) Galerkin finite-element model of
groundwater transient flow and transport (see Pinder and Frind [1972] and Pinder and Gray [1977].)
The flow equation assumed by the model represents a two-dimensional confined aquifer with storage,
which, employing the nomenclature of Table 2, can be expressed as

T _ oh
Vo (BEVR)+ Y Gb (e, vi) — bS5 = 0. (4)
i€Q

The governing equation for transport used by the model represents conservative transport with a
choice of adsorbtion isotherms. We used a linear isotherm:
0S ., Oc

V~(9bD~Vc)—bv~Vc—b(9—|—pB%)5:0. (5)

Table 2: Flow and Transport Model Variables

b saturated vertical thickness of the aquifer

c contaminant concentration

D hydrodynamic dispersion tensor

8(xs, y;) two-dimensional Dirac delta function centered at x;,y;
h vertically averaged hydraulic head

K hydraulic conductivity tensor

7 pumping rate for well ¢ located at (z;, y;)

B bulk density of the porous media

S mass of adsorbed pollutant per unit mass of porous medium
Ss specific storage

0 porosity

v Darcy velocity defined as v = —K - VA.

ISOQUAD is written in Fortran 77 and is on the order of two thousand lines of code. The model
assumes the aquifer is confined but can allow for leakage. The model has been used extensively in

the optimal design research (Chang et al. [1992], Culver and Shoemaker [1992], and Whiffen and



Shoemaker [1993].) Analytic expressions that can be coded for the derivatives of ISOQUAD are
provided by Chang et al. [1992]. These hand-coded, validated derivatives have been optimized for
performance and allow a comparison and validation of ADIFOR, generated derivatives and divided
differences derivatives.

The model ISOQUAD is used in its implicit time-stepping mode. In general, implicit time
stepping results in difficult-to-derive, dense Jacobians. Explicit time stepping will, in general, result
in easier-to-derive, sparse Jacobians. The model has as input the hydraulic heads and single species
concentrations at n active nodes and the pumping rates of wells located on m computational nodes.
Outputs include contaminant concentrations and hydraulic head values at each of n active nodes for
an advanced time step of the simulation. Automatic differentiation was used to obtain the following
derivatives:

3;;;1 ¢ gnxn (6)
3;;:;1 ¢ gnxn (7)
3;;;1 o (8)
b 0
6;—;-:1 e MM, (10)

The vectors ¢; and ¢;41 € R” are the values of the contaminant concentration at model time steps
t and t + 1. The vectors hy and hypq € R” are the hydraulic heads at times ¢ and ¢ + 1. The vector
q¢ € R™ is the pumping rate at each designated well node at time step t. The evaluation of these
derivatives is necessary for the optimal control analysis used by Chang et al. [1992]. The evaluation
of all five derivatives, (6)—(10), together is considered one derivative evaluation in the numerical
results that follow.

We choose a mesh of 60 elements and 77 nodes to test automatic differentiation (see Figure 3).
In this example, n = 63, the number of active nodes. We choose m = 18 nodes to locate pumping
wells. For this example there were 144 independent variables and 126 dependent variables.

As shown in Figure 4, automatic differentiation provided a code that calculated model derivatives
exactly in much less time than the imprecise divided differences method. The ADIFOR-generated
code produced derivatives that were the same as the validated handwritten code to the order of the
machine precision. In particular, for the 77-node mesh, the ADIFOR, code calculated derivatives
(6)—(10) in about the time it would take to run the original simulation model 17 times. The
same derivatives using the one-sided divided-differences approach require 144 simulations, one for
each independent variable. All codes were run on an IBM ES-9000 Mainframe. Figure 4 presents
a comparison of CPU times for the ISOQUAD example. If the more accurate centered divided
differences approach is used, 288 simulations are necessary. The automatic differentiation code was
somewhat slower than the optimized handwritten code by Chang et al. [1992], which requires about
the same CPU time as 5 simulations.

10



4.2 TLS3D: 3D Advection Diffusion Model

TLS3D is a model of the three-dimensional advection diffusion equation. TLS3D employs a
Taylor least-squares finite element procedure to solve the unsteady advection diffusion equation

%:V0~V6+V~DVC. (11)
The model uses a three-dimensional serendipity Hermite element for an eight-node hexahedron and
was developed to produce accurate results for advection-dominated problems. For a complete de-
scription of the Taylor least-squares finite element procedure and three-dimensional model, see Park
and Liggett [1991]. The code provided to the authors was written in Fortran 77 and is approximately
2300 lines in length.

The model was used on three-dimensional meshes ranging in size from 3 to 128 rectangular box
elements to test the scalability of the of the code generated by ADIFOR. The model has as input the
three-dimensional flow field velocity vectors v; for each simulation time step ¢, and initial contaminant
concentration at each of n nodes, ¢;. Model output is single-species contaminant concentrations at
each active node, c¢41. Automatic differentiation was used to evaluate the following derivative:

6Ct+1
3vt

€ R (12)

Automatic differentiation provided a code that can calculate model derivatives exactly in much
less time than the imprecise divided differences. Five different-sized discretizations consisting of 3,
7,32, 72 and 128 three-dimensional elements were used to compare derivative performances. Figure
5 presents a perspective of the 128-element mesh. The number of independent variables (velocity
components) equals three times the number of nodes in the model. The number of independent
variables with respect to differentiation for the 3, 7, 32, 72, and 128 element cases are 48, 96, 243,
432, and 675, respectively.

Table 3 and Figure 6 show the results on a SPARCstation 10 model 30 and a single node of
the IBM SP1 parallel computer. The columns of Table 3 labeled “1 Simulation” show the run time
(in seconds) of the simulation, the columns labeled % show the average time required for the
ADIFOR code derivatives with respect to one independent variable divided by the time necessary for
one simulation. This ratio is equivalent to the ratio of the CPU time required by the ADIFOR, code
to the CPU time required by the one sided divided differences procedure. These results were obtained
when the ADIFOR-generated code is used to generate derivatives with respect to 48 independent
variables at a time using an appropriate seed matrix S and then dividing the CPU time by 48 times
the CPU time for a single simulation.

We see that the ADIFOR-generated code is more than 5 (7) times faster than the one-sided
divided difference approximations on the SPARCstation 10 (SP1 node). The ratio between the
ADIFOR-generated derivative code and one-sided divided differences generally decreases with in-
creasing mesh size, from .21 for the 7-element case to .13 for the 128-element case on a single node
of a SP1. No hand-coded analytic derivatives of TLS3D are available for comparison. ADIFOR
derivative values were nearly exactly the same as the divided differences derivative values using
small perturbations.
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Table 3: Performance results for TLS3D, simulation times are given in seconds

Number of Elements SPARCstation 10 SP/1 Node
(Number of independents) 1 Simulation % 1 Simulation | %
3 (48) 2.0 0.20 0.27 0.17
7(96) 15 0.21 051 0.21
39 (243) 30.9 0.20 172 0.15
72 (432) 779 0.10 133 0.14
128 (675) 140.8 0.19 22.8 0.13

5 Conclusions

We found that automatic differentiation can provide accurate and efficient derivative codes for
the complex finite element codes ISOQUAD and TLS3D. In particular, we found ADIFOR, generated
codes that calculated derivatives in approximately 13% of the time required by divided differences for
the two-dimensional model ISOQUAD, and between 13% and 21% of the time required by divided
differences for the three-dimensional model, TLS3D. As a result of our investigations, we believe
that automatic differentiation can greatly reduce the computational and human time necessary to
obtain exact sensitivity informatioe for complex models. Further, automatic differentiation can
facilitate model changes by providing a mechanism for generating accurate and efficient derivative
codes for new models with very little human effort. Automatic differentiation technology can greatly
accelerate the transfer of general techniques developed for using water resource computer models
(such as optimal design, sensitivity analysis, and inverse modeling problems) to field problems.
Automatic differentiation can also accelerate the rate at which algorithm and model development
and testing can occur by providing exact sensitivity information that may not otherwise be available
for complex models.
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