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1 IntroductionWe are interested in solving the global minimization problem for molecularconformation, especially protein folding.How protein folds is one of the key biophysical problems of the decade.Protein folding is fundamental for almost all theoretical studies of proteinsand protein-related life processes. It has many applications in the biotech-nology industry, notably, structure-based drug design for the treatment ofimportant diseases such as cancer and AIDS.Optimization approaches to the protein folding problem are based on thehypothesis that the protein native structure corresponds to the global min-imum of the protein energy. The problem can be attacked computationallyby minimizing the protein energy over all possible protein structures. Thestructure with the lowest energy is presumed to be the most stable proteinstructure.Mathematically, for a protein molecule of n atoms, let x = fxi 2 R3; i =1; : : : ; ng represent the molecular structure with each xi specifying the spatialposition of atom i. Then the energy minimization problem for protein foldingis to globally minimize a nonlinear function f(x) for all x 2 S, namely,minx2S f(x); (1)where S is the set of all possible molecular structures. The objective functionf(x) is the energy function for the protein. The usual form of f(x) isf(x) = nXi=1;j>i hij(krijk); (2)where rij = xi � xj, and hij is the pairwise energy function determined bykrijk, the distance between atoms i and j. A widely used pairwise energyfunction is the Van der Waals energy function,hij(krijk) = �ij "( �ijkrijk)12 � 2( �ijkrijk)6# + qiqj�krijk ; (3)where �ij, �ij, �, qi, and qj are all physical constants (see [2]).Problem (1) is very di�cult to solve in general. The reasons are as fol-lows: First, in theory even simple versions of the problem have been proved2



to be NP-complete [9]. Second, in practice the objective function often con-tains exponentially many local minimizers; therefore, search for the globalminimizer can be computationally intractable. Third, the protein moleculestend to be very large, typically containing O(10,000) atoms. For such largeproblems, the required computation is una�ordable using general global op-timization methods.However, because of its great practical importance, Problem (1) has beenstudied intensively in many areas of computational science and optimiza-tion. New algorithms on both sequential and parallel machines have beendeveloped; a variety of small to medium sizes of problems have been studied[3, 4, 5, 6, 11, 12, 13, 14, 15, 17, 18, 19, 20]. In recent e�orts smoothingtechniques are speci�cally designed for molecular conformation via globalminimization. Examples include the di�usion equation method [11, 14], thepacket annealing method [17, 18], as well as the e�ective energy simulatedannealing method [4, 5]. The basic idea behind these methods is to use spe-cial techniques to smooth a given energy function so that search for a globalminimizer becomes more tractable. The methods usually use function trans-formation schemes to transform a given energy function into a class of newfunctions. A solution tracing procedure is then applied to the new functionsto locate a solution for the original function.In this paper, we discuss an important generalization of the e�ective en-ergy transformation scheme introduced in [4, 5, 17, 18]. Instead of applyingthe transformation to the probability distribution function, we now trans-form the functions directly, generalizing the method to a broader class offunctions. More important, with this generalization, a mathematical theoryfor the transformation as a special continuation approach to global optimiza-tion is established. We show that the method can transform a nonlinearobjective function into a class of gradually deformed, but \smoother" or\easier" functions. An optimization procedure can then be applied to thenew functions successively, to trace their solutions back to the original func-tion. Two types of transformation are de�ned: isotropic and anisotropic.We show that both transformation types can be applied to a large class ofnonlinear partially separable functions which includes typical energy func-tions for molecular conformation. Methods to compute the transformationfor these functions are given.The paper is organized as follows. Section 2 introduces the basic ap-proach and describes the function transformation method. Section 3 studies3



the mathematical properties of the transformation as a special continuationprocess. Section 4 characterizes the \smoothness" property and shows thatthe transformed function becomes \smoother" in the sense that the smallhigh-frequency variations in the original function are averaged out after thetransformation. The numerical applicability of the transformation is dis-cussed in Section 5. The transformation is extended to the anisotropic typein Section 6. The formulas to compute the transformation for molecularconformation energy functions are derived. Finally, Section 7 contains con-cluding remarks.2 The ApproachIn this section, we describe our function transformation idea which, in turn,de�nes our basic approach to global optimization.Suppose that we have a \poorly-behaved" nonlinear function with manylocal minimizers. Because of \nonsmoothness," this type of function can bevery hard to minimize either locally or globally. To overcome this di�culty,we suggest using a special technique to transform the objective function intoa class of gradually deformed, but \smoother" or \easier" functions. An op-timization procedure can then be applied to these new functions successively,to trace their solutions back to the original function.To deform the function, we de�ne a parametrized integral transformationas follows:De�nition 1 Given a nonlinear function f , the transformation <f >� forf is de�ned such that for all x,<f>� (x) = C� Z f(x0) e�kx�x0k2=�2 dx0; (4)or equivalently;<f >� (x) = C� Z f(x� x0) e�kx0k2=�2 dx0; (5)where � is a positive number and C� is a normalization constant such thatC� Z e�kxk2=�2 dx = 1: (6)4



Note that in contrast to the approaches in [4, 5, 17, 18], the transfor-mation here applies directly to the given function instead of its probabilitydistribution. This approach simpli�es the transformation, and also makes itmuch easier to compute and analyze.To understand this transformation, consider that, given a random func-tion g(x0) and a probability distribution function p(x0) for the random vari-able x0, the expectation of the function g with respect to p is<g>p= Z g(x0) p(x0) dx0: (7)In light of (7), the transformation (4) yields a function value for <f >� atany x equal to the expectation for f sampled by a Gaussian distributionfunction centered at x.For example, consider the following nonlinear function:f(x) = (x� 1)2 + 0:1 sin 20(x � 1); (8)which is a quadratic function augmented with a \noise" function. The trans-formation for this function can be computed:<f >� (x) = (x� 1)2 + �22 + 0:1e�(20�)2=4 sin 20(x � 1): (9)The function value < f >� (x) for �xed x is equal to the integration withrespect to the product of two functions, the original function f(x0) and theGaussian distribution function p(x0) = C�e�kx�x0k2=�2 (Figure 1 (a)). Theparameter � determines the size of the dominant region of the Gaussian.Since the most signi�cant part of the integration is that within the dominantregion of the Gaussian, <f>� (x) can be viewed as the average value for theoriginal function f within a small �-neighborhood around x. If � is equal tozero, the transformed function is exactly the original function. For positive�, the original function variations in small regions are averaged out, and thetransformed function will become \smoother" (Figure 1 (b)).Figure 2 shows how the function < f >� in (9) behaves with increasing�. Observe that when � = 0:0, the function is the original function; whenwe increase � to 0.1, the function becomes \smoother;" when � is increasedfurther to 0.2, the function becomes entirely \smooth."Figure 3 illustrates what the transformation implies for optimization. Astandard optimization procedure, the quasi-Newton method, is applied to5
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the three functions in Figure 2. Figure 3 (a), (b), and (c) contain the cor-responding solutions x� obtained with di�erent choices of initial guesses x�.Although globally convergent, the method may not �nd the right solutionif the \noise" is large. So for the function in Figure 2 (c), the method con-verged to the right solution only when the initial guess was close enough tothe solution. When the initial guess was far from the solution, the methodfailed to �nd the right solution (Figure 3 (c)). For the function in Figure 2(b), although it is \smoother," the behavior of the method is essentiallyunchanged. However, for the function in Figure 2 (a), the method alwaysconverged to the right solution (Figure 3 (a)). If we apply the procedure tothe functions in Figure 2 (a) to (c) successively, and at each step take thesolution for the previous function as the starting point, the solutions for allthese functions can then be obtained.The experiment above suggests a general global optimization method: tooptimize a di�cult function, use the transformation technique to deform thefunction into a class of \smoother" or \easier" functions, and then apply anoptimization procedure to the functions successively, to trace their solutionsback to the original function.3 ContinuationWhat is the di�erence between the suggested approach and general homo-topy methods? The answer is that this approach is indeed a special type ofhomotopy method. But the transformation is di�erent from conventional ho-motopies, and has the following three special features: First, the transformedfunctions are not arbitrarily deformed functions. They all are approximationsto the original function in the sense that they are coarse estimates. Second,the transformation is de�ned by a special parametrized integral transforma-tion. If we increase the value of the parameter, the transformed functionwill become \smoother" with small variations gradually removed, but main-taining the overall function structure. Finally, if we apply an optimizationprocedure to a transformed function, the obtained solution usually is close tothe solution for the original function. All these features are good for globaloptimization (also for robust local optimization), but are not necessarily theproperties of conventional homotopies.We show in the following that the proposed transformation is indeed8
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a well-de�ned homotopy and determines for any initial solution a uniquesolution curve containing the stationary points for the transformed functions.Assumption 1 The objective function f is twice continuously di�erentiable,and the transformation (4) is well de�ned for the function as well as all itsderivatives.Assumption 2 Let g be the gradient of f , and � the Laplace operator� =Xi @2@x2i : (10)Then the operation � can be applied to g, and the transformation (4) is wellde�ned for all derivatives involved. Also, �g(x) is uniformly bounded andsatis�es a Lipschitz condition:k�g(x1)��g(x2)k � L kx1 � x2k 8x1; x2: (11)Assumption 3 The transformation <r2f >� (x) satis�es a Lipschitz con-dition:k <r2f >� (x1)� <r2f >� (x2)k � L kx1 � x2k 8x1; x2; (12)and its inverse is uniformly bounded.Note that to guarantee Assumptions 1 to 3, a su�cient condition onf is that f and its derivatives are all integrable in terms of parametrizedintegration (4).We �rst state two sets of standard results for the proposed transformationin the following lemmas without proof.Lemma 1 Under Assumption 1, 8�; x,r <f>� (x) = <rf >� (x) (13)r2 <f>� (x) = <r2f >� (x): (14)10



Lemma 2 Under Assumption 1, 8x,lim�!0 <f >� (x) = f(x) (15)lim�!0r <f >� (x) = rf(x) (16)lim�!0r2 <f >� (x) = r2f(x): (17)For convenience, we de�ne a function h(�; x), � 2 �, and x 2 S such that8(�; x) 2 � � S, h(�; x) =<f>� (x); (18)where � = [0; �0] for some �0 < 1 and S is a vector space. With thisde�nition, the condition for x to be a stationary point of < f >� for some� 2 � is h0x(�; x) = 0: (19)Theorem 1 Let f : R ! R and h be de�ned as in (18). Then underAssumptions 1 and 2, h00x�(�; x) exists and is uniformly bounded for all � 2 �and x 2 S, and also satis�es a Lipschitz condition in x:jh00x�(�; x1)� h00x�(�; x2)j � L jx1 � x2j 8x1; x2 2 S: (20)In addition, h00x�(�; x) = �2 < f 000 >� (x): (21)Proof: Let p(�; x) be the Gaussian distribution function de�ned as follows:p(�; x) = c� e�x2=�2; (22)where c� = 1=(�p�). Then by the de�nition of <f>�,h(�; x) =<f>� (x) = Z f(x0)p(�; (x� x0))dx0: (23)11



By Lemma 1, h0x(�; x) = Z g(x0)p(�; (x � x0))dx0: (24)After di�erentiating (24) with respect to �, it follows thath00x�(�; x) = Z g(x0)(2(x� x0)2�3 � 1�)p(�; (x � x0))dx0= 1� Z ( 2�2 (x� x0)2 � 1)g(x0)p(�; (x� x0))dx0= 1�( 2�2 (�1 ��2)� <g>� (x)) (25)where �1 = Z x(x� x0)g(x0)p(�; (x� x0))dx0 (26)�2 = Z x0(x� x0)g(x0)p(�; (x � x0))dx0: (27)It is easy to verify that�1 = ��22 x <g0>� (x) (28)�2 = ��22 (<g>� (x)+ <xg0>� (x)): (29)Also note thatx <g0>� (x) � <xg0>� (x)= Z (x� x0)g0(x0)p(�; (x � x0))dx0= �22 Z g0(x0)dp(�; (x � x0))= �22 (g0(x0)p(�; (x� x0))j+1�1 � Z g00(x0)p(�; (x � x0))dx0)= ��22 <g00> (x): (30)12



Therefore,�1 ��2 = ��22 x <g0>� (x) + �22 (<g>� (x)+ <xg0>� (x))= ��22 (x <g0>� (x)� <xg0>� (x)) + �22 <g>� (x)= �44 <g00>� (x) + �22 <g>� (x): (31)Replacing (�1 ��2) in (25) by (31), we see thath00x�(�; x) = 1�(�22 <g00>� (x)+ <g>� (x)� <g>� (x))= �2 <f 000>� (x): (32)By Assumption 2, < f 000 >� (x) is well de�ned and uniformly bounded.So, h00x�(�; x) exists and is uniformly bounded for all � 2 � and x 2 S. Sincef 000(x) satis�es a Lipschitz condition by Assumption 2, < f 000 >� (x) alsosatis�es a Lipschitz condition:j <f 000>� (x1)� <f 000>� (x2)j � L0 jx1 � x2j 8x1; x2: (33)Let L = �02 L0. Then (20) follows immediately. So h00x�(�; x) satis�es a Lips-chitz condition in x. 2Theorem 2 Let f : Rn ! R and h be de�ned as in (18). Then underAssumptions 1 and 2, h00x�(�; x) exists and is uniformly bounded for all � 2 �and x 2 S, and also satis�es a Lipschitz condition in x:kh00x�(�; x1)� h00x�(�; x2)k � L kx1 � x2k 8x1; x2 2 S: (34)In addition, h00x�(�; x) = �2 < �g >� (x): (35)Proof: Let pn(�; x) be the Gaussian distribution functionpn(�; x) = cn� e�kxk2=�2; (36)13



where cn� = 1=(�p�)n. Then by the de�nition of <f >�,h(�; x) =<f >� (x) = Z f(x0)pn(�; (x� x0))dx0: (37)By Lemma 1, h0x(�; x) = Z g(x0)pn(�; (x� x0))dx0: (38)Di�erentiate (38) with respect to � to obtainh00x�(�; x) = Z g(x0)(2kx� x0k2�3 � n� )pn(�; (x� x0))dx0= 1�( 2�2� � n <g>� (x)); (39)where � = Z kx� x0k2g(x0)pn(�; (x� x0))dx0= nXi=1 Z (xi � x0i)2g(x0)pn(�; (x� x0))dx0= nXi=1 �i: (40)Let �xi = (x1; : : : ; xi�1; xi+1; : : : ; xn)T . Then�i = Z (Z (xi � x0i)2g(x0i; �x0i)p(�; (xi � x0i))dx0i)pn�1(�; (�xi � �x0i))d�x0i= Z (�1i ��2i)pn�1(�; (�xi � �x0i))d�x0i; (41)where �1i = Z xi(xi � x0i)g(x0i; �x0i)p(�; (xi � x0i))dx0i (42)�2i = Z x0i(xi � x0i)g(x0i; �x0i)p(�; (xi � x0i))dx0i: (43)From the proof of Theorem 1,�1i ��2i = �44 Z @2g@x2i (x0i; �x0i)p(�; (xi � x0i))dx0i+�22 Z g(x0i; �x0i)p(�; (xi � x0i))dx0i: (44)14



Substitute (44) back into (41) to obtain�i = �44 < @2g@x2i >� (x) + �22 <g>� (x): (45)Then � = �44 nXi=1< @2g@x2i >� (x) + n�22 <g>� (x) (46)and h00x�(�; x) = �2 nXi=1< @2g@x2i >� (x)= �2 < nXi=1 @2g@x2i >� (x)= �2 <�g>� (x): (47)Similar to the proof of Theorem 1, it follows immediately that h00x�(�; x)exists and is uniformly bounded for all � 2 � and x 2 S, and also satis�es aLipschitz condition in x. 2Finally, we state and prove the main theorem in this section as follows:Theorem 3 Let f be a function for which Assumptions 1, 2, and 3 all hold.Then for any stationary point x0 of < f >�0, there is a continuous anddi�erentiable curve x(�), � 2 �, such that x0 = x(�0) and 8� 2 �, x(�) is astationary point of <f>�. The curve x(�) is also the unique solution of theinitial value problemx0 = ��2 <r2f >�1� (x) <�g>� (x) (48)x0 = x(�0): (49)Proof: Since x0 is a stationary point of <f>�0,h0x(�0; x0) = 0: (50)15



By Assumptions 1, 2, 3, Lemmas 1, 2, and Theorem 2, function h0x is con-tinuously di�erentiable at all (�; x) 2 � � S. So by the Implicit FunctionTheorem, there is a continuously di�erentiable function x(�) at a neighbor-hood of �0, such that x0 = x(�0) andh0x(�; x(�)) = 0 (51)for all � in the neighborhood.We now show that x(�) also is de�ned uniquely in �.By di�erentiating (51), we see that x(�) is a solution to the initial valueproblem: x0 = �h00xx(�; x)�1h00x�(�; x) (52)x0 = x(�0); (53)which, by Lemma 1 and Theorem 2, is equivalent to the problem (48)�(49).Then it su�ces to show that the right-hand side of (52) satis�es a Lipschitzcondition in x on � � S, which guarantees a unique solution x(�) in � bystandard ordinary di�erential equation theory [10].Under Assumption 3, for h00xx(�; x)�1, 9M1; L1, such thatkh00xx(�; x)�1k � M1 8(�; x) 2 �� S (54)kh00xx(�; x1)�1 � h00xx(�; x2)�1k � L1 kx1 � x2k 8x1; x2 2 S: (55)By Theorem 2, for h00x�(�; x), 9M2; L2, such thatkh00x�(�; x)k � M2 8(�; x) 2 � � S (56)kh00x�(�; x1) � h00x�(�; x2)k � L2 kx1 � x2k 8x1; x2 2 S: (57)Let G(�; x) = �h00xx(�; x)�1h00x�(�; x): (58)Then it is easy to verify that G(�; x) satis�es a Lipschitz condition in x on� � S: kG(�; x1)�G(�; x2)k � L kx1 � x2k 8x1; x2 2 S (59)with L = M1L2 +M2L1, which completes the proof. 216



4 SmoothnessIn Section 2 we illustrated that the transformed functions are \smoother"than the original function in the sense that they vary slower and may evenhave fewer local minimizers. In the following, we characterize more rigorouslythe \smoothness" of the transformation.Let f̂ be the Fourier transformation for function f , and d<f>� for function<f >�. Recall that the transformation <f >� for f is just a convolution off and p, where p is the Gaussian distribution functionp(x) = C� e�kxk2=�2: (60)Therefore, the Fourier transformation of < f >� is equal to the product ofthe Fourier transformations of f and p. The Fourier transformation of theGaussian distribution function isĝ(!) = e��2k!k24 ; (61)where ! is the frequency. So, we haved<f>�(!) = e��2k!k24 f̂ (!): (62)We see from (62) that if �! 0, then d<f >� converges to f̂ , and <f >�converges to f . This is exactly the fact we stated in Lemma 2.Also by (62), d<f>�(!) will be very small if ! is large and � is �xed.This implies that high-frequency components of the original function becomevery small after the transformation. This is why the transformed function is\smoother." In addition, for larger � values, wider ranges of high-frequencycomponents of the original function practically vanish after the transforma-tion, and therefore the transformed function becomes increasingly smooth as� increases. We state these properties formally in the following theorem.Theorem 4 Let f , f̂ , < f >�, and d<f >� all be given and well de�ned.Then 8" > 0, 9� / 1=� for �xed �, such that 8! with k!k > �,j d< f >�(!)jj bf (!)j < ": (63)17



Proof: Given " > 0, for �xed �, let � = 2qln (1=")=�. Then 8! withk!k > �, j d< f >�(!)jj bf(!)j = e��2k!k24 < e��2�24 = ": (64)2From this theorem we learn that the relative size of d< f >�(!) can bemade arbitrarily small for all ! with k!k greater than a small value �. Since �is inversely proportional to �, high-frequency components are removed when� is large.5 Numerical ApplicabilityThe de�nition of the transformation (4) involves high-dimensional integrationwhich cannot be computed in general (except perhaps by the Monte Carlomethod, which is not appropriate for our purposes because it is too expen-sive). So the transformation may not be applicable to arbitrary functions, atleast numerically. However, this transformation is computationally feasiblefor a large class of nonlinear partially separable functions, and especially totypical molecular conformation and protein-folding energy functions.We state several useful properties of the transformation in the following:First, for the sum of functionsf =Xi fi; (65)the transformation of f is equal to the sum of the transformations of the fi's:<f>�=Xi <fi>�: (66)Second, for the product of functionsg =Yi gi; (67)18



where the gi's do not share common variables, the transformation of g isequal to the product of the transformations of the gi's:<g>�=Yi <gi>�: (68)Finally, for a large subclass of nonlinear partially separable functions,called the generalized multilinear functions,f =Xi Yj gij ; (69)where the gij's are one-dimensional nonlinear functions, we have<f >�=Xi Yj <gij>�: (70)Since transformation < gij >� for all i and j involves only one-dimensionalintegration, the transformation for a generalized multilinear function can becomputed using a standard quadrature rule.In particular, let us consider a typical n-atom molecular conformationenergy function, f(x) = nXi=1;j>ihij(kxi � xjk); (71)where x = fxi 2 R3; i = 1; : : : ; ng and hij is the pairwise energy functiondetermined by kxi � xjk, the distance between atoms i and j. By (66), thetransformation of this energy function is equal to the sum of the transfor-mations of the pairwise energy functions. However, the computation for thepairwise transformation still cannot be carried out directly, because there isstill more than one variable in each term. Nevertheless, the following theoremprovides a feasible way to compute the molecular energy transformation:Theorem 5 Let f be de�ned as in (71). Then the transformation of f canbe computed using the formula<f>� (x) = nXi=1;j>i<hij>p2� (krijk); (72)where rij = xi � xj and<hij>p2� (krijk) = cp2� Z hij(krij � r0ijk)e�kr0ijk2=2�2dr0ij : (73)19



Proof: We show the case when xi 2 R, 8i. The general case can be provedsimilarly.By the de�nition of <f>�, in form (5), for any x,<f >� (x)= nXi=1;j>i<hij>� (kxi � xjk)= nXi=1;j>i c2� Z hij(k(xi � x0i)� (xj � x0j)k)e� kx0ik2+kx0jk2�2 dx0idx0j ; (74)where c� is such thatc� Z e�kxik2=�2dxi = 1; 8i: (75)Make the following variable transformation:rij = xi � xj; �rij = xi + xj: (76)Then it is easy to verify that<f >� (x) = nXi=1;j>i c2� Z hij(k(xi � x0i)� (xj � x0j)k)e� kx0ik2+kx0jk2�2 dx0idx0j= nXi=1;j>i c2�2 Z hij(krij � r0ijk)e� r02ij+�r02ij2�2 dr0ijd�r0ij= nXi=1;j>i cp2� Z hij(krij � r0ijk)e�kr0ijk2=2�2dr0ij= nXi=1;j>i<hij>p2� (krijk): (77)2The integral for <hij >p2� (krijk) involves only variable rij and can becomputed with a standard numerical integration technique; therefore, thetransformation <f >� (x) can be computed in this fashion.Note that the integral for <f >� (x) must exist, for otherwise the trans-formation will have no de�nition. In practice, if the integral for a given f20



does not exist, a modi�ed function may need to be considered instead. Forexample, the energy function given in (3) cannot be integrated directly be-cause the function goes to in�nity when rij becomes very small. Usually, thiscan be cured by replacing the function for small rij with �nite interpolation(see [4, 11, 17]).Note also that the result in Theorem 5 applies only to energy functionsthat can be formulated in form (71). Most popularly used energy functionsfor molecular conformation and protein folding can be expressed as pairwiseforms, for example, the Lennard-Jones potential, the electrostatic potential,the interaction potential for bonded atoms, etc. [2, 16]. However, some en-ergy functions do contain terms that are not pairwise distance functions; forinstance, the torsional potential usually is given as a function of the dihedralangle. Special approximation techniques may be needed to transform thistype of function, We will not address this issue in this work.6 Anisotropic vs. IsotropicThe transformation we have discussed so far is of the isotropic type in thesense that it averages function variations equally along all directions in thevariable space. In practice, we might wish to average di�erent sizes of func-tion variations along di�erent directions (i.e., use di�erent � values for dif-ferent variables) in order to obtain a more accurate overall structure of thefunction. For this purpose, we can de�ne a more general transformation,called the anisotropic transformation.De�nition 2 Given a nonlinear function f , the anisotropic transformation<f>� for f is de�ned such that for all x,<f>� (x) = C� Z f(x0) e�kx�x0� k2 dx0; (78)or equivalently;<f >� (x) = C� Z f(x� x0) e�kx0� k2 dx0; (79)where � is a diagonal matrix with positive diagonal elements:� = diag([�1; �2 : : :]); (80)21



and C� = Qi c�i with c�i determined such thatc�i Z e�kxik2=�2i dxi = 1; 8i: (81)Note also that in this de�nition,kx=�k2 = nXi=1 kxik2=�2i : (82)From this de�nition, we see that the anisotropic transformation will bereduced to the isotropic transformation when the diagonal elements of � areall identical.Many of the important properties of the isotropic transformation carryover to the anisotropic case. We state these properties in the following:First, for the sum of the functionsf =Xi fi; (83)we have <f>�=Xi <fi>�: (84)Second, for the product of the functionsg =Yi gi; (85)where the gi's do not share common variables, we have<g>�=Yi <gi>�i ; (86)where �i's are small diagonal matrices. If gi is a function of j variablesxi1; : : : ; xij, �i = diag([�i1; : : : ; �ij]) for j positive numbers �i1; : : : ; �ij.Third, for the generalized multilinear functions,f =Xi Yj gij ; (87)22



where the gij's are one dimensional nonlinear functions, we have<f >�=Xi Yj <gij>�j : (88)We can also derive a simple formula to compute the anisotropic transfor-mation for the molecular conformation energy function:Theorem 6 Let f be de�ned as in (71). Then the anisotropic transforma-tion of f can be computed using the formula<f>� (x) = nXi=1;j>i<hij>p�2i+�2j (krijk) (89)where rij = xi � xj and<hij>p�2i+�2j (krijk) = cp�2i+�2j Z hij(krij � r0ijk)e� kr0ijk2�2i+�2j dr0ij : (90)Proof: We show only the case when xi 2 R, 8i. The general case can beproved similarly.By the de�nition of <f>�, in form (79), for any x,<f>� (x)= nXi=1;j>i<hij>� (kxi � xjk)= nXi=1;j>i c�ic�j Z hij(k(xi � x0i)� (xj � x0j)k)e�( kx0ik2�2i + kx0jk2�2j )dx0idx0j;(91)where c�i is such thatc�i Z e�kxik2=�2i dxi = 1; 8i: (92)Make the following variable transformation:rij = xi � xj; �rij = �2jxi + �2ixj: (93)23



Then we have xi�i = 1�2i + �2j ( �rij�i + �irij) (94)xj�j = 1�2i + �2j ( �rij�j � �jrij): (95)Using these relations we can verify that<f>� (x)= nXi=1;j>i c�ic�j Z hij(k(xi � x0i)� (xj � x0j)k)e�( kx0ik2�2i + kx0jk2�2j )dx0idx0j= nXi=1;j>i cp�2i+�2j Z hij(krij � r0ijk)e� kr0ijk2�2i +�2j dr0ij= nXi=1;j>i<hij>p�2i+�2j (krijk); (96)which completes the proof. 2The anisotropic transform determines for any initial solution a uniquesolution function x(�) for the transformed functions, and therefore can alsobe used as a continuation process for optimization, more general and powerfulthan the isotropic transform. We state these results in Theorem 7 and 8. Thedetails for the proof are quite similar to those for Theorem 2 and 3, so wewill not present them.Parallel to Assumptions 1, 2 and 3 for Theorem 2 and 3, we make thefollowing assumptions:Assumption 4 The objective function f is twice continuously di�erentiable,and transformation (78) is well de�ned for the function as well as its deriva-tives.Assumption 5 Let g be the gradient of f , and 	 an operator,	 = ( @2@x21 ; @2@x22 ; : : :): (97)24



Then the operation 	 can be applied to g, and 	g is a matrix with(	g)ij = 	jgi = @2gi@x2j : (98)Transformation (78) is well de�ned for all derivatives involved in 	g. Also,	g(x) is uniformly bounded and satis�es a Lipschitz condition:k	g(x1)�	g(x2)k � L kx1 � x2k 8x1; x2: (99)Assumption 6 The transformation <r2f >� (x) satis�es a Lipschitz con-dition:k <r2f >� (x1)� <r2f >� (x2)k � L kx1 � x2k 8x1; x2; (100)and its inverse is uniformly bounded.Let S be a vector space, and for a positive vector �0 < 1, let � =Qi [0; �0i]. Then we de�ne function h(�; x) such that 8(�; x) 2 �� S,h(�; x) =<f>� (x); (101)where � is the diagonal vector of �, that is,� = diag(�): (102)Theorem 7 Let f be a given function and h be de�ned as in (101). Thenunder Assumptions 4 and 5, h00x�(�; x) exists and is uniformly bounded for all� 2 � and x 2 S, and also satis�es a Lipschitz condition in x:kh00x�(�; x1)� h00x�(�; x2)k � L kx1 � x2k 8x1; x2 2 S: (103)In addition, h00x�(�; x)T = �2 < 	g >T� (x): (104)25



Theorem 8 Let f be a function for which Assumptions 4, 5, and 6 all hold.Then for any stationary point x0 of < f >�0 , �0 = diag(�0), there is acontinuous and di�erentiable function x(�), � 2 �, such that x0 = x(�0) and8� 2 �, x(�) is a stationary point of <f >�. The function x(�) is also theunique solution of the initial value problemx0 T = ��2 [<r2f >�1� (x) <	g>� (x)]T (105)x0 = x(�0): (106)7 Concluding RemarksIn this paper, we have discussed a generalization of the e�ective energy trans-formation scheme used in [4, 5, 17, 18] for the global energy minimizationapplied to molecular conformation. Instead of applying the transformationto the probability distribution, here we transform the functions directly, gen-eralizing the scheme in [4, 5, 17, 18] to a broader class of functions. Amathematical theory for the transformation as a special continuation ap-proach to global optimization is established. We have established that theproposed method transforms a given nonlinear objective function into a classof gradually deformed, but \smoother" or \easier" functions. A continuationprocedure can then be applied to these \smoother" or \easier" functions, totrace their solutions back to the original function. Two types of transforma-tion are de�ned: isotropic and anisotropic. We have demonstrated that bothtransformation types can be applied to a large sub-class of nonlinear partiallyseparable functions, and in particular, the energy functions for molecular con-formation. Methods to compute the transformation for these functions aregiven.We believe that the proposed method provides a powerful and e�ectivetool for global or robust local optimization. We can see this partially from thework in [4, 5], which can be viewed as a special application of the method.In [4, 5], the transformation method, combined with simulated annealing,was applied to the global energy minimization problem for molecular confor-mation. Promising results were observed even if only simple algorithms andapproximated transformation were implemented.26



More numerical work will be done in our future research. We will im-plement a group of algorithms based on the theory presented in this paper.While the transformation can now be computed with provided formulas, trac-ing the solution curve can be carried out using advanced numerical methods.There are at least three choices for the implementation of the tracing proce-dures:1. Use a general random search procedure to trace the changes of theglobal solution when the transformed function is gradually changedback to the original function.2. Apply only local optimization procedures to each transformed functionto trace a set of solution curves, and choose the best among all solutionsobtained.3. Solve the initial value problems for a set of solution curves, and choosethe best solution.The �rst method is similar to the approach in [4, 5] where a simulatedannealing procedure was applied to the transformed functions. This methodconverges to the global solution with certain probability, but a large num-ber of random trials usually are required to obtain the convergence. Thesecond approach is the most simple and e�cient method, but the solutioncurves to be traced must be selected cleverly, for otherwise the global solu-tion will not be guaranteed. The third method provides a more accurate andreliable way to trace the solution curves. As we have shown in this paper,the curves are solutions to well de�ned initial value problems. So standardnumerical IVP-methods can be used (e.g., predictor-corrector methods) [1].The implementation of all three tracing procedures and the numerical com-parison among them will be of great interest for the further development ofthe algorithms.We are especially interested in applying these methods to the global en-ergy minimization problems for molecular conformation, especially proteinfolding. A set of test problems will be considered including the Lennard-Jones microcluster conformation problem, the distance geometry problem,and several protein conformation problems.While searching for native structures of protein molecules is certainlyvery important, the proposed methods can also provide information about27
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