
Parallel Algorithms for the Adaptive Re�nement and Partitioningof Unstructured Meshes �Mark T. Jones Paul E. PlassmannComputer Science Department Mathematics & Computer Science DivisionUniversity of Tennessee Argonne National LaboratoryKnoxville, TN 37996 Argonne, IL 60439AbstractThe e�cient solution of many large-scale scienti�ccalculations depends on adaptive mesh strategies. Inthis paper we present new parallel algorithms to solvetwo signi�cant problems that arise in this context: thegeneration of the adaptive mesh and the mesh parti-tioning. The crux of our re�nement algorithm is theidenti�cation of independent sets of elements that canbe re�ned in parallel. The objective of our partitioningheuristic is to construct partitions with good aspect ra-tios. We present run-time bounds and computationalresults obtained on the Intel DELTA for these algo-rithms. These results demonstrate that the algorithmsexhibit scalable performance and have run-times smallin comparison with other aspects of the computation.1 IntroductionAdaptive mesh re�nement techniques have beenshown to be very successful in reducing the computa-tion and storage requirements for determining approx-imate solutions to many partial di�erential equations(PDEs) [9]. Rather than using a uniform mesh withgrid points evenly spaced on a domain, adaptive meshre�nement techniques place more grid points in areaswhere the solution is changing rapidly. The mesh isadaptively re�ned during the computation according tolocal error estimates on the domain. This technique ismuch more e�cient than the use of structured mesheswhen the solution is changing much more rapidly insome areas than in others.In this paper, we consider only two-dimensionalsimplicial meshes (i.e., a mesh of triangles). How-ever, our algorithms are applicable to higher dimen-�This work was supported in part by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Contract W-31-109-Eng-38.

sions. Two basic algorithms exist for the re�nementof triangles: (1) bisection, and (2) regular re�nement.The bisection algorithm in its simplest form bisectsthe longest edge of a triangle to form two new tri-angles with equal area [10]. The regular re�nementalgorithm divides a triangle into four similar trianglesor, during a cleanup phase, into two triangles [1]. Bothalgorithms must �nish with a conforming mesh; in aconforming mesh the edge of a triangle cannot containa vertex other than its endpoints.In both methods, the re�nement of a single trian-gle usually causes a propagation of re�nement to othermesh elements. This propagation ensures that the �-nal mesh is graded and conforming. The two meth-ods di�er in how they handle this propagation. InFigure 1, we show the operation of both of the algo-rithms as re�nement occurs. The shaded triangles aretriangles that have just been re�ned. The sequenceof meshes from left to right shows how the re�nementpropagates to neighboring triangles.Figure 1: The re�nement of a mesh using regular re-�nement (top row) and bisection of the longest side(bottom row). Follow the mesh sequences from left toright. The shaded triangles have just been re�ned inthat step.Both of these algorithms have been shown to per-form well on a variety of problems; it is di�cult tomake a choice between the two [9]. We have chosento discuss and implement the bisection algorithm be-

cause of its simplicity; however, it is possible to modifythe algorithms given in this paper for use with regularre�nement.Implicit in a discussion of parallel algorithms formesh re�nement on distributed-memory computers isthe problem of partitioning the mesh to processors.Clearly, the performance of the parallel re�nement al-gorithm depends critically on the partitioning usedand on how this partitioning is adjusted as the meshis re�ned. We have developed and implemented a newparallel partitioning heuristic called unbalanced recur-sive bisection (URB). The goal of this heuristic is tomaintain partitions with good geometric aspect ratios;this property helps to minimize interprocessor commu-nication during both re�nement and the repartitioningof elements after re�nement.In short, we will discuss two algorithms in this pa-per: (1) a parallel algorithm for adaptively re�ningmeshes, and (2) an algorithm for partitioning theseperturbed meshes. Our underlying goal for these algo-rithms and implementations is that their run time forp processors be small relative to the solution time forthe PDE on p processors, independent of p.2 Parallel Adaptive Re�nementThere are several variants of the serial bisection re-�nement algorithm. We consider the version givenby Rivara [10]. This bisection algorithm bisects trian-gles across the largest edge (dividing the largest angle)with division of noncompatible edges after the trian-gle has already been bisected once. This algorithmhas been shown to yield triangulations whose smallestangle is bounded by at worst one-half the smallest an-gle in the inital mesh [11]. The bisection re�nementalgorithm is given in Figure 2.Obviously, the re�nement could propagate throughmany initially unmarked triangles before �nishing. Ri-vara, however, has shown that this loop will terminatein a �nite number of iterations, say LP iterations [10].Our parallel re�nement algorithm is formulatedmainly within the context of the dual graph to themesh, which we de�ne as follows. Let V = fvi ji = 1; : : : ; ng be the set of vertices in the mesh andT = fta j a = 1; : : : ; mg be the set of triangles.Let G = (V;E) be the graph associated with themesh, where E = fei;j = (vi; vj) j vi; vj 2 tag. LetD = (T; F) be the dual graph associated with themesh where F = f(ta; tb) j ei;j 2 ta; tbg.We assume that the vertices are partitioned intodisjoint subsets, V = Spi=1 Vi, such that processor i

i = 0Qi = the set of triangles marked for re�nementRi = ;while (Qi [Ri) 6= ; dobisect the longest edge of each triangle in Qibisect the nonconforming edge of eachtriangle in RiRi+1 = all incompatible trianglesembedded in QiQi+1 = all other incompatible trianglesi = i + 1endwhileFigure 2: The bisection algorithmowns Vi. We choose to partition the vertices ratherthan the triangles because we have found that itmakes the �nite element evaluation, mesh re�nement,and sparse matrix assembly and solution (if neces-sary) more straightforward and e�cient. Based onthe partitioning of V , we determine a partitioning ofT = Spi=1 Ti into disjoint subsets. Each processor, i,stores the set of triangles �Ti = Ti[adj(Ti)[T (Vi) andthe set of vertices �Vi = V (�Ti).
Figure 3: An illustration of (�Vi; �Ti) on processor iGiven (�Vi; �Ti), processor i has all the informationnecessary to evaluate all �nite elements that havevertices in Vi, assemble complete rows/columns of asparse matrix associated with each vertex in Vi, andperform the parallel re�nement algorithm (yet to bespeci�ed) on the triangles in Ti. We give an illustra-tion of these sets for processor i in Figure 3 wherethe subpartition of the domain for processor i is de-�ned by the orthogonal dashed lines. Vi is the set of�lled vertices, �Vi is the set of un�lled and �lled ver-tices, Ti is the set of shaded triangles, and �Ti is theset of unshaded and shaded triangles. Note that �Tican contain a triangle with no vertices in Vi (for ex-ample, the triangle in the far upper right of Figure 3).2

Also note that �Vi can contain a vertex not containedin Ti [adj(Ti) (for example, the vertex in the far leftlower corner of Figure 3).The serial bisection algorithm can run into two syn-chronization problems. First, if processor i re�nes tri-angle ta and processor j re�nes an adjacent triangletb, it is possible that each processor could create a ver-tex at the same position. An example of such a colli-sion is shown in Figure 4, where processors P1 and P2are trying to re�ne adjacent triangles by bisecting thesame edge. Second, to correctly perform operationssuch as sparse matrix assembly, vertices and trianglesin (�Vi � Vi; �Ti � Ti) must be properly updated whenthey are changed by their owners on other processors.An example of a situation where neighbor informa-tion may not be updated properly is given in Figure 5.Here processors P1 and P2 are trying to re�ne adja-cent triangles simultaneously. Triangle U1 may believethatW ratherW1 is its neighbor, and triangleW1 maybelieve that U rather U1 is its neighbor.
V

P

P
1

2Figure 4: An example of a collision of neighbor infor-mation; processors P1 and P2 simultaneously createthe vertex V .
U

W

U

U

1

W

P2

1
P

W
1

2

2Figure 5: An example of incorrect updating of neigh-bor information; simultaneous creation of triangles U1and W1 leads to incorrect neighbor information.We solve these synchronization problems by re�n-ing independent sets of triangles on di�erent proces-sors. Independent sets are chosen according to theMonte Carlo rule: ta 2 I if for each of its neighbors,tb, in D, if (a) tb not 2 Qi [Ri, (b) ta; tb 2 Ti, or(c) �(ta) > �(tb), The complete algorithm is given inFigure 6.

Based on local error estimates, a set of triangles, Q,is marked for re�nement.Each triangle, ta, in Q is assigned a randomnumber �(ta)R = ;While (Q [R) 6= ; doChoose an independent set in D, I = Spj=1 Ij ,from triangles in (Q [R), where Ij = I \ TjEach processor, j, bisects the triangles in Ijembedded in Q across its longest edgeEach processor, j, bisects the triangles in Ijembedded in R across a nonconforming edgeFor each new triangle, tb, a new random number,�(tb), is chosenEach new triangle, tb, created on processor jis added to TjEach new vertex, vk, created on processor jis added to VjFor each triangle, tb, in Ij on processor j,noti�cation of bisection is sent to eachprocessor l for which((adj(tb) \ Tl) 6= ;) or ((V (tb) \ Vl) 6= ;)Each processor receives noti�cation andupdates its (�Vj ; �Tj) accordinglyR = (R� (I \R))[Any triangles embedded inQ made incompatibleQ = (Q� (I \Q))[All other trianglesmade incompatibleEndwhileFigure 6: A practical parallel algorithm for re�nementWe also have algorithms for mesh de-re�nement (re-moval of unnecessary triangles and vertices), but weomit these because of space constraints.We now show that this algorithm has a fast ex-pected run time under the P-RAM computationalmodel. For this analysis we assume that we have asmany processors as we have triangles.Theorem: The P-RAM version of this algorithm ter-minates in a �nite number of steps and has an expectedrun time on a P-RAM of EO(logQmaxlog logQmax)�LP whereQmax = maxk jQkj and LP is the number of levels ofpropagation.Proof: We sketch the proof of this theorem as follows,a complete version is given in [8]. From [10], we havethat LP is �nite. We know that the graph Dk is abounded degree graph; in fact, any node (triangle) hasat most three neighbors. Given that this is a bounded3

degree graph, we use the algorithms and theorems in[7] to �nd EO(lognlog logn) independent sets in a graph intime proportional to the number of independent sets,where n is the number of vertices in the graph. 23 Mesh (Re-)PartitioningIn this section we present a new partitioning heuris-tic that uses geometric information to partition thevertex set into equal sets. The goal of this heuristicis to obtain partitions with good aspect ratios. First,we review the goals of a partitioning heuristic.Let � be a partitioning of the vertex set V =Spi=1 Vi. Recall that there exists an edge (Vi; Vj) inthe quotient graph Q = G=� if and only if there ex-ists an edge (u; v) in G with u 2 V1 and v 2 V2. Wewould like to determine a partition, �, with the fol-lowing properties:1. for load balancing, each partition should be nearlyequal in size;2. the cardinality of the set of cross edges, CE =fei;j j vi 2 Vk; vj 2 Vl; k 6= lg, is minimized toreduce the amount of data that must be commu-nicated; and3. the number of edges in Q is minimized to reducethe number of messages that must be sent, whereQ = (VQ; EQ), VQ is the set of processors, andEv = f(i; j) j 9ek;l; vk 2 Vi; vl 2 Vjg.Typically, we expect to have an initial partitioningproblem to solve and then many repartitioning prob-lems that arise as the mesh is adaptively (de-)re�ned.Both problems have been studied, and many interest-ing methods have been proposed. The partitioningproblem in our context has four important features:(1) the geometric location of every vertex is available,(2) the perturbations to the meshes caused by re�ne-ment are often small and localized, (3) vertices shouldbe moved from processor to processor as little as pos-sible, and (4) large amounts of time cannot be spentpartitioning the meshes because we do not wish todominate the execution time with mesh algorithms.We propose an inexpensive method that utilizes ge-ometric information and allows for existing partitionsto be perturbed when a small perturbation to the meshoccurs. This method is a variation of the orthogonalrecursive bisection (ORB) algorithm [2]. The ORBalgorithm makes an initial cut to divide the verticesinto two sets of equal size. Orthogonal cuts are then

made recursively in the new subdomains until the ver-tices are equally distributed among the processors. Al-though this algorithm obtains good load balancing,it can result in less than optimal communication re-quirements. Long, thin partitions may be created thathave a large number of edges crossing the partitionboundaries. In addition, these long, thin partitionsmay cause Q to be very dense.To address this problem, we have developed a mod-i�cation of ORB which we call unbalanced recursivebisection (URB). Instead of dividing the vertices intoequal sets, we choose the cut that minimizes parti-tion aspect ratio and divides the vertices into nkp andn(p�k)p sized groups, where n = jV j, p is the totalnumber of processors, and k 2 f1; 2; :::; p� 1g. Thisalgorithm leads to an equal distribution of grid pointswith better partition aspect ratios than the ORB algo-rithm. In fact, we conjecture that the aspect ratio ofthe partition generated by the URB heuristic is largelyindependent of p, the number of processors, for themeshes arising from re�nement algorithms that yieldgraded meshes. It has been shown that for the ORBheuristic, partitions can be adjacent to O(pp) otherpartitions [2].To repartition a perturbed mesh without massivemovement of vertices, we simply perturb the cuts inthe existing partition to rebalance the sizes of Vi. If nosuch perturbation exists or if the perturbation wouldresult in poor aspect ratios, then the mesh is repar-titioned from scratch. As we will show in the resultssection, if the partition can be perturbed, the numberof vertices that must move from one partition to an-other is small; otherwise most vertices will be moved(as in most partitioning algorithms).One point worth noting is that methods, such asORB and URB, that yield convex polygonal parti-tions make the scalable mapping of vertices to par-titions trivial given the geometric location of a vertex.For methods that do not yield convex polygons, themapping of vertices to partitions in a scalable mannerbecomes problematic.Finally, we note that currently we do not handlethe assignment problem in a sophisticated manner.We mainly rely on our target architectures to havewormhole routing that reduces the e�ect of distancebetween communicating nodes. We plan to utilize amore sophisticated technique such as that given in [5].4

4 Experimental ResultsWe have implemented these algorithms in a libraryof routines that is called by an application program.The software uses Chameleon [4] to achieve porta-bility across several architectures, including the In-tel DELTA which is our focus here. We have testedour algorithms using three di�erent PDEs (Poisson'sequation, linear elasticity equations, and the nonlinearGinzburg-Landau equations) on a variety of geome-tries. In this paper, we consider results obtained forthe �rst two problems; results for the latter problemare presented in [3].The �rst problem is given by�@2u@x2 � @2u@y2 = f(x; y) on S (1)u = 0 on boundary (2)on a square domain where f(x; y) is a Gaussian chargedistribution that forces re�nement around a point(Sx; Sy). To test the implementation we move thepoint (Sx; Sy) several times and �nd a new solu-tion/mesh from the old solution/mesh. This move-ment requires mesh re�nement around the new posi-tion and de-re�nement around the old position whilethe rest of the mesh remains nearly constant. To solvethe linear systems arising from this problem, we usethe parallel conjugate gradient method preconditionedby an incomplete factorization [6].The second problem, planar linear elasticity, isgiven by the equations (forces are not included in theseequations)@2u@x2 + @2u@y2 = 1 + �2 (@2u@y2 + @2v@x@y) (3)@2v@x2 + @2v@y2 = 1 + �2 (@2v@x2 + @2u@x@y) :These equations are solved on an annulus with a con-stant load on one side and the opposite side �xed. Weuse linear basis functions in our �nite element formu-lation. We selectively re�ne the mesh according to theelement energy norm until the local error estimate ateach triangle is acceptable. The linear systems arisingfrom the problem are solved with the same code weused for the Poisson problem.The maximum sizes of the adaptive meshes gener-ated for the two problem sets are given in Table 1. Thecolumn labeled jV jmax shows the maximumnumber ofvertices obtained in the sequence of adaptive meshes;the column labeled jT jmax gives the maximumnumberof triangles. The �nal column, labeled Triangle Ratio

gives the maximum sized area ratio between two tri-angles in the mesh.Table 1: The problem setProblem TriangleName jV jmax jT jmax RatioPOISSON1 2,673 5,268 256POISSON2 5,176 10,260 512POISSON3 10,238 20,330 512POISSON4 20,296 40,412 1,024POISSON5 40,292 80,294 1,024POISSON6 80,116 159,872 2,048POISSON7 159,758 318,948 2,048POISSON8 318,796 636,882 4,096POISSON9 636,738 1,272,344 4,096Problem TriangleName jV jmax jT jmax RatioELASTIC1 1,460 2,767 156ELASTIC2 2,798 5,382 419ELASTIC3 5,534 10,766 512ELASTIC4 10,736 21,043 1,677ELASTIC5 21,329 42,049 2,048ELASTIC6 41,936 82,997 4,096ELASTIC7 83,349 165,468 6,443ELASTIC8 165,253 328,736 16,384ELASTIC9 329,201 655,919 12,886In Table 2 we show the number of times each meshwas re�ned during the solution process; the number ofprocessors used is given in the column labeled P . Inaddition, we show the number of iterations throughthe loop in the algorithm in Figure 6. We observethat, as expected, it takes more mesh re�nement stepsto construct the larger meshes. We also see that thenumber of loop iterations needed is a slowly growingfunction of the number of processors. This result in-dicates that we can, in general, expect scalable per-formance. Such a result is not surprising given therun-time results of theorem in the preceding section.Note that a good partitioning of the vertices foreach of these problems is necessary for our re�nementalgorithm to perform e�ciently. In Table 3 we givethe average number of subpartitions that are adjacentto a given subpartition (average degree of the quo-tient graph, Q). This measure gives some sense of thenumber of processors each processors overlaps trian-gles with and must exchange information with. Alsogiven is the percentage of the total triangle edges thathave endpoints on two di�erent processors. This gives5

Table 2: The number of re�nement stages and averagenumber of loop iteration per stageProblem Num. of Avg. Num.Name P Ref. Steps Loop Its.POISSON1 1 14 1.64POISSON2 2 14 2.14POISSON3 4 17 2.24POISSON4 8 18 2.17POISSON5 16 19 2.47POISSON6 32 20 2.40POISSON7 64 23 2.57POISSON8 128 24 2.46POISSON9 256 23 2.35Problem Num. of Avg. Num.Name P Ref. Steps Loop Its.ELASTIC1 1 6 4.00ELASTIC2 2 8 4.13ELASTIC3 4 9 4.67ELASTIC4 8 9 4.56ELASTIC5 16 10 5.00ELASTIC6 32 11 4.91ELASTIC7 64 12 5.67ELASTIC8 128 15 5.13ELASTIC9 256 12 5.00some sense of the number of triangles each processorhas that must be coordinated with some other proces-sor. We see that these values rapidly rise, as one wouldexpect, until approximately 16 processors. After thispoint, they very slowly increase with the number ofprocessors.Our experiments were run on up to 256 nodes ofthe Intel DELTA. The DELTA is a mesh-connected,16 � 32 array of Intel i860 microprocessors. Becauseof constraints on the amount of time available to uson the DELTA, we did not run the 512-processor case.We believe, however, that the results presented con-vincingly demonstrate the e�ectiveness of our algo-rithms. All of our experimental rates and times givenin Tables 5 and 6 are computed in seconds. Opera-tions rates indicate the number of bisections and ver-tex deletions (note that vertex deletions correspond tode-re�nement and constitute a small percentage of thetotal) per second.To demonstrate the scalability of our algorithmand implementation, we ran both problem sets on theDELTA in such a way that the number of vertices inthe �nal mesh assigned to an individual processor was

Table 3: Experimental results showing the quality ofthe �nal partition obtained with the URB heuristicProblem Avg. Degree Percent. ofName P of Q Cross EdgesPOISSON1 1 0.00 0.00POISSON2 2 1.00 1.20POISSON3 4 2.50 1.77POISSON4 8 3.25 2.79POISSON5 16 4.63 2.38POISSON6 32 5.06 2.60POISSON7 64 5.53 2.70POISSON8 128 5.64 2.78POISSON9 256 5.76 2.78Problem Avg. Degree Percent. ofName P of Q Cross EdgesELASTIC1 1 0.00 0.00ELASTIC2 2 1.00 0.24ELASTIC3 4 2.00 2.02ELASTIC4 8 3.50 2.52ELASTIC5 16 4.00 3.56ELASTIC6 32 4.38 3.99ELASTIC7 64 4.75 4.26ELASTIC8 128 5.20 4.27ELASTIC9 256 5.34 4.35constant. By nature, each of the test problems is re-�ned in localized regions of the mesh; therefore, weexpect that some processors will have more work thanothers. This is re
ected in Table 4, where we give theaverage number of operations per processors per stepand the average of the maximumnumber of operationson a single processor per step. The average number ofoperations falls as the number of processors increases;this is because we are taking more re�nement stepsto achieve the same number of vertices per processorin the �nal mesh. The average maximum number ofoperations increases because, as we increase the meshsize, more re�nement is concentrated in the same sizearea in which a limited number of processors are work-ing.Even given these handicaps, we show that the algo-rithm performs quite well. In Table 5 we concentrateon two di�erent rates of re�nement per processor. The�rst rate is the average number of re�nement oper-ations per second per processor. If re�nement wereoccurring uniformly over all the processors, we couldexpect this to be nearly constant; however, in our testproblems, as in most practical problems, this is not6

Table 4: The average number of operations per pro-cessor per step and the average maximum number ofoperations on a single processor per stepProblem Avg. Num. Avg. Max.Name P of Ops. Num. Ops.POISSON1 1 201 201POISSON2 2 193 214POISSON3 4 160 205POISSON4 8 150 284POISSON5 16 142 416POISSON6 32 134 535POISSON7 64 116 500POISSON8 128 111 573POISSON9 256 116 691Problem Avg. Num. Avg. Max.Name P of Ops. Num. Ops.ELASTIC1 1 214 214ELASTIC2 2 164 166ELASTIC3 4 149 108ELASTIC4 8 147 273ELASTIC5 16 132 276ELASTIC6 32 118 297ELASTIC7 64 108 284ELASTIC8 128 86 263ELASTIC9 256 107 304the case. The second, and more interesting rate, isthe maximum number of re�nement operations persecond per processor. We would expect this rate toremain constant, or nearly so, if the algorithm wereperfectly scalable. In the POISSON problem set, wesee very little degradation. In fact, we should expectsome degradation as a result of the increasing numberof neighbors each processor must exchange informa-tion with as the number of processors increases. Thisdegradation is o�set, however, by the rapidly increas-ing maximum number of operations per processor wesee in Table 5. In the ELASTIC problem set we seethe reasonable degradation that we expect because wedo not have the rapidly increasing maximum numberof operations per processor. After reaching 16 pro-cessors, the number of processor neighbors and thepercentage of cross-edges stop this rapid increase, andwe see approximately a 20% degradation in the rateof re�nement from 16 to 256 processors.In the �nal table of results, Table 6, we demonstratethat for a reasonably complex set of problems, thetime to solve the linear systems dominates the time to

Table 5: The total time (sec) required for the sequenceof adaptive meshes, the average rates of element re�ne-ment per processor, and the maximum rates of re�ne-ment Total Avg. Rate Max. RateProblem Ref. Ref. per Ref. perName P Time Processor ProcessorPOISSON1 1 8.2 342 342POISSON2 2 8.8 306 339POISSON3 4 11.6 233 300POISSON4 8 15.3 176 334POISSON5 16 22.8 118 346POISSON6 32 31.2 86 344POISSON7 64 33.8 79 340POISSON8 128 41.3 65 333POISSON9 256 47.9 55 332Total Avg. Rate Max. RateProblem Ref. Ref. per Ref. perName P Time Processor ProcessorELASTIC1 1 2.4 553 553ELASTIC2 2 2.9 449 453ELASTIC3 4 4.5 298 417ELASTIC4 8 5.4 246 458ELASTIC5 16 6.9 192 400ELASTIC6 32 8.2 160 399ELASTIC7 64 9.4 138 362ELASTIC8 128 11.9 108 331ELASTIC9 256 11.8 109 310re�ne the mesh for any number of processors. In fact,we can see that the total re�nement time is always lessthan one percent of the total execution time.5 ConclusionsWe have presented two new parallel algorithms: analgorithm for the adaptive re�nement of meshes, anda partitioning heuristic. We have reviewed a resultshowing that the re�nement algorithm has a provablyfast running time under a P-RAM model of compu-tation. In addition, we described an e�cient methodof implementation for this algorithm on a practical,distributed-memory parallel computer. We have givenresults for two problems that demonstrate the scalablenature of the re�nement algorithm and the good geo-metric properties of the URB partitioning heuristic.7

Table 6: Timing results (sec) for the entire sequence ofadaptive meshes for the planar linear elasticity prob-lemProblem Total Ref. Total Matrix TotalName P Time Solve Time TimeELASTIC1 1 2.4 275 278ELASTIC2 2 2.9 433 437ELASTIC3 4 4.5 604 612ELASTIC4 8 5.4 677 688ELASTIC5 16 6.9 971 989ELASTIC6 32 8.2 1434 1461ELASTIC7 64 9.4 2054 2090ELASTIC8 128 11.9 4391 4458ELASTIC9 256 11.8 5120 5196The results given in this paper are for two-dimensional triangular meshes. However, the use ofindependent sets for parallel synchronization general-izes to the three-dimensional case and can be used toimplement other re�nement algorithms. The next log-ical step in this work is to develop theoretical resultsfor three-dimensional tetrahedralizations as well asa practical, parallel implementation for three dimen-sions. In addition, we note that the use of higher-orderbasis functions is straightforward in this methodology;we expect to include this functionality in the currentparallel implementation.References[1] Randolph E. Bank, Andrew H. Sherman, andAlan Weiser. Re�nement algorithms and datastructures for regular local mesh re�nement. InR. Stepleman et al., editor, Scienti�c Comput-ing, pages 3{17. IMACS/North-Holland Publish-ing Company, Amsterdam, 1983.[2] Marsha J. Berger and Shahid H. Bokhari. Apartitioning strategy for nonuniform problems onmultiprocessors. IEEE Transactions on Comput-ers, C-36:570{580, 1987.[3] Lori A. Freitag, Mark T. Jones, and Paul E.Plassmann. New advances in the modeling ofhigh-temperature superconductors. In 1994 In-ternational Simulation Conference { Grand Chal-lenges in Computer Simulation, La Jolla, Cali-

fornia, April 11-15. The Society for ComputerSimulation, 1994 (to appear).[4] William Gropp and Barry Smith. User's Manualfor Chameleon Parallel ProgrammingTools. ANLReport ANL-93/23, Mathematics and ComputerScience Division, Argonne National Laboratory,Argonne, Ill., 1993.[5] Steven Warren Hammond.Mapping UnstructuredGrid Computations to Massively Parallel Com-puters. Ph.D. thesis, Department of ComputerScience, Rensselaer Polytechnic Institute, 1989.[6] Mark T. Jones and Paul E. Plassmann. Block-Solve v1.0: Scalable library software for the paral-lel solution of sparse linear systems. ANL ReportANL-92/46, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne,Ill., 1992.[7] Mark T. Jones and Paul E. Plassmann. A par-allel graph coloring heuristic. SIAM Journal onScienti�c and Statistical Computing, 14:654{669,May 1993.[8] Mark T. Jones and Paul E. Plassmann. Par-allel algorithms for adaptive mesh re�nement.Preprint MCS-P421-0394, Mathematics andComputer Science Division, Argonne NationalLaboratory, Argonne, Ill., 1994.[9] William F. Mitchell. A comparison of adap-tive re�nement techniques for elliptic problems.ACM Transactions on Mathematical Software,15(4):326{347, December 1989.[10] Maria-Cecilia Rivara. Mesh re�nement processesbased on the generalized bisection of simplices.SIAM Journal of Numerical Analysis, 21(3):604{613, June 1984.[11] Ivo G. Rosenberg and Frank Stenger. A lowerbound on the angles of triangles constructed bybisecting the longest side. Mathematics of Com-putation, 29(130):390{395, April 1975.
8

