Parallel Algorithms for the Adaptive Refinement and Partitioning

of Unstructured Meshes *

Mark T. Jones
Computer Science Department
University of Tennessee

Knoxville, TN 37996

Abstract

The efficient solution of many large-scale scientific
calculations depends on adaptive mesh strategies. In
this paper we present new parallel algorithms to solve
two significant problems that arise in this context: the
generation of the adaptive mesh and the mesh parti-
toning. The cruzx of our refinement algorithm is the
tdentification of independent sets of elements that can
be refined in parallel. The objective of our partitioning
heuristic is to construct partitions with good aspect ra-
tios. We present run-time bounds and computational
results obtained on the Intel DELTA for these algo-
rithms. These results demonstrate that the algorithms
exhibit scalable performance and have run-times small
m comparison with other aspects of the computation.

1 Introduction

Adaptive mesh refinement techniques have been
shown to be very successful in reducing the computa-
tion and storage requirements for determining approx-
imate solutions to many partial differential equations
(PDEs) [9]. Rather than using a uniform mesh with
grid points evenly spaced on a domain, adaptive mesh
refinement techniques place more grid points in areas
where the solution is changing rapidly. The mesh is
adaptively refined during the computation according to
local error estimates on the domain. This technique is
much more efficient than the use of structured meshes
when the solution is changing much more rapidly in
some areas than in others.

In this paper, we consider only two-dimensional
simplicial meshes (i.e., a mesh of triangles). How-
ever, our algorithms are applicable to higher dimen-

*This work was supported in part by the Office of Scientific
Computing, U.S. Department of Energy, under Contract W-31-
109-Eng-38.

Paul E. Plassmann

Mathematics & Computer Science Division
Argonne National Laboratory

Argonne, 1. 60439

sions. Two basic algorithms exist for the refinement
of triangles: (1) bisection, and (2) regular refinement.
The bisection algorithm in its simplest form bisects
the longest edge of a triangle to form two new tri-
angles with equal area [10]. The regular refinement
algorithm divides a triangle into four similar triangles
or, during a cleanup phase, into two triangles [1]. Both
algorithms must finish with a conforming mesh; in a
conforming mesh the edge of a triangle cannot contain
a vertex other than its endpoints.

In both methods, the refinement of a single trian-
gle usually causes a propagation of refinement to other
mesh elements. This propagation ensures that the fi-
nal mesh is graded and conforming. The two meth-
ods differ in how they handle this propagation. In
Figure 1, we show the operation of both of the algo-
rithms as refinement occurs. The shaded triangles are
triangles that have just been refined. The sequence
of meshes from left to right shows how the refinement
propagates to neighboring triangles.

==
& g &

Figure 1: The refinement of a mesh using regular re-
finement (top row) and bisection of the longest side
(bottom row). Follow the mesh sequences from left to
right. The shaded triangles have just been refined in
that step.

Both of these algorithms have been shown to per-
form well on a variety of problems; it is difficult to
make a choice between the two [9]. We have chosen
to discuss and implement the bisection algorithm be-

cause of its simplicity; however, it is possible to modify
the algorithms given in this paper for use with regular
refinement.

Implicit in a discussion of parallel algorithms for
mesh refinement on distributed-memory computers is
the problem of partitioning the mesh to processors.
Clearly, the performance of the parallel refinement al-
gorithm depends critically on the partitioning used
and on how this partitioning is adjusted as the mesh
is refined. We have developed and implemented a new
parallel partitioning heuristic called unbalanced recur-
sive bisection (URB). The goal of this heuristic is to
maintain partitions with good geometric aspect ratios;
this property helps to minimize interprocessor commu-
nication during both refinement and the repartitioning
of elements after refinement.

In short, we will discuss two algorithms in this pa-
per: (1) a parallel algorithm for adaptively refining
meshes, and (2) an algorithm for partitioning these
perturbed meshes. Our underlying goal for these algo-
rithms and implementations is that their run time for
p processors be small relative to the solution time for
the PDE on p processors, independent of p.

2 Parallel Adaptive Refinement

There are several variants of the serial bisection re-
finement algorithm. We consider the version given
by Rivara [10]. This bisection algorithm bisects trian-
gles across the largest edge (dividing the largest angle)
with division of noncompatible edges after the trian-
gle has already been bisected once. This algorithm
has been shown to yield triangulations whose smallest
angle 1s bounded by at worst one-half the smallest an-
gle in the inital mesh [11]. The bisection refinement
algorithm is given in Figure 2.

Obviously, the refinement could propagate through
many initially unmarked triangles before finishing. Ri-
vara, however, has shown that this loop will terminate
in a finite number of iterations, say Lp iterations [10].

Our parallel refinement algorithm is formulated
mainly within the context of the dual graph to the
mesh, which we define as follows. Let V = {v; |
i=1,..., n} be the set of vertices in the mesh and
T = {t, | a = 1,..., m} be the set of triangles.
Let G = (V,E) be the graph associated with the
mesh, where £ = {e; ; = (v;,vj) | v;,v; € ta}. Let
D = (T,F) be the dual graph associated with the
mesh where F' = {(t4,t) | €ij € ta,ts}.

We assume that the vertices are partitioned into
disjoint subsets, V = |J_, Vi, such that processor i

1=10
(); = the set of triangles marked for refinement
Ri=10
while (Q; UR;) # 0 do
bisect the longest edge of each triangle in);
bisect the nonconforming edge of each
triangle in R;
R;+1 = all incompatible triangles
embedded in @;
Qi+1 = all other incompatible triangles
1=1+1
endwhile

Figure 2: The bisection algorithm

owns V;. We choose to partition the vertices rather
than the triangles because we have found that it
makes the finite element evaluation, mesh refinement,
and sparse matrix assembly and solution (if neces-
sary) more straightforward and efficient. Based on
the partitioning of V', we determine a partitioning of
T = J!_, T; into disjoint subsets. Each processor, i,
stores the set of triangles T; = T;Uadj(T;)UT(V;) and
the set of vertices V; = V(13).

Figure 3: An illustration of (V;,T}) on processor i

Given (V;,T}), processor i has all the information
necessary to evaluate all finite elements that have
vertices in V;, assemble complete rows/columns of a
sparse matrix associated with each vertex in V;, and
perform the parallel refinement algorithm (yet to be
specified) on the triangles in 7;. We give an illustra-
tion of these sets for processor ¢ in Figure 3 where
the subpartition of the domain for processor ¢ is de-
fined by the orthogonal dashed lines. V; is the set of
filled vertices, V; is the set of unfilled and filled ver-
tices, T; is the set of shaded triangles, and 7} is the
set of unshaded and shaded triangles. Note that 7}
can contain a triangle with no vertices in V; (for ex-
ample, the triangle in the far upper right of Figure 3).

Also note that V; can contain a vertex not contained
in T; Uadj(T;) (for example, the vertex in the far left
lower corner of Figure 3).

The serial bisection algorithm can run into two syn-
chronization problems. First, if processor ¢ refines tri-
angle ¢, and processor j refines an adjacent triangle
tp, 1t 1s possible that each processor could create a ver-
tex at the same position. An example of such a colli-
sion is shown in Figure 4, where processors P; and P
are trying to refine adjacent triangles by bisecting the
same edge. Second, to correctly perform operations
such as sparse matrix assembly, vertices and triangles
in (V; — Vi, T; — T;) must be properly updated when
they are changed by their owners on other processors.
An example of a situation where neighbor informa-
tion may not be updated properly is given in Figure 5.
Here processors P; and P are trying to refine adja-
cent triangles simultaneously. Triangle U; may believe
that W rather W is its neighbor, and triangle Wi may
believe that U rather U; is its neighbor.

Figure 4: An example of a collision of neighbor infor-
mation; processors P, and P, simultaneously create
the vertex V.

Figure 5: An example of incorrect updating of neigh-
bor information; simultaneous creation of triangles Uy
and Wi leads to incorrect neighbor information.

We solve these synchronization problems by refin-
ing independent sets of triangles on different proces-
sors. Independent sets are chosen according to the
Monte Carlo rule: ¢, € I if for each of its neighbors,
ty, in D, if (a) ¢ not € @Q; U Ry, (b) tq,tp € T;, or
(¢) p(ta) > p(ty), The complete algorithm is given in
Figure 6.

Based on local error estimates, a set of triangles, @,
is marked for refinement.

Each triangle, ¢, in @) is assigned a random
number p(t4)

R=10

While (QU R) # 6 do

Choose an independent set in D, [= U§:1 1,
from triangles in (Q U R), where I; = I N7}

FEach processor, j, bisects the triangles in I;
embedded in () across its longest edge

FEach processor, j, bisects the triangles in I;
embedded in R across a nonconforming edge

For each new triangle, ¢, a new random number,
p(ty), is chosen

Each new triangle, 3, created on processor j
is added to 7}

Each new vertex, v, created on processor j
is added to V;

For each triangle, ¢, in I; on processor j,
notification of bisection is sent to each
processor [for which
(adj(ts) 1 T1) # 0) or ((V(t) A VA) # 0)

Each processor receives notification and
updates its (V;,T;) accordingly

R=(R—(INR))U Any triangles embedded in
() made incompatible

Q= (Q —(INQ))U All other triangles
made incompatible

Endwhile

Figure 6: A practical parallel algorithm for refinement

We also have algorithms for mesh de-refinement (re-
moval of unnecessary triangles and vertices), but we
omit these because of space constraints.

We now show that this algorithm has a fast ex-
pected run time under the P-RAM computational
model. For this analysis we assume that we have as
many processors as we have triangles.

Theorem: The P-RAM version of this algorithm ter-
minates in a finite number of steps and has an expected

run time on a P-RAM ofEO(%golgoggﬁ) x Lp where

Qmar = maxy, |Q| and Lp is the number of levels of
propagation.

Proof: We sketch the proof of this theorem as follows,
a complete version is given in [8]. From [10], we have
that Lp is finite. We know that the graph Dy 1s a
bounded degree graph; in fact, any node (triangle) has
at most three neighbors. Given that this is a bounded

degree graph, we use the algorithms and theorems in
[7] to find FO(80— lo ~—) independent sets in a graph in
time proportlona to the number of independent sets,
where n is the number of vertices in the graph. O

3 Mesh (Re-)Partitioning

In this section we present a new partitioning heuris-
tic that uses geometric information to partition the
vertex set into equal sets. The goal of this heuristic
is to obtain partitions with good aspect ratios. First,
we review the goals of a partitioning heuristic.

Let II be a partitioning of the vertex set V =
(Jf_, Vi. Recall that there exists an edge (V;,V;) in
the quotient graph @ = G/II if and only if there ex-
ists an edge (u,v) in G with v € V; and v € V5. We
would like to determine a partition, II, with the fol-
lowing properties:

1. for load balancing, each partition should be nearly
equal in size;

2. the cardinality of the set of cross edges, C'E =
{eij | vi € Vi,v; € Vi, k # [}, is minimized to
reduce the amount of data that must be commu-
nicated; and

3. the number of edges in @ is minimized to reduce
the number of messages that must be sent, where
Q = (Vg,Eq), Vg is the set of processors, and
E, ={(,j) | Jex1,vx € Vi,v1 € V;}.

Typically, we expect to have an initial partitioning
problem to solve and then many repartitioning prob-
lems that arise as the mesh is adaptively (de-)refined.
Both problems have been studied, and many interest-
ing methods have been proposed. The partitioning
problem in our context has four important features:
(1) the geometric location of every vertex is available,
(2) the perturbations to the meshes caused by refine-
ment are often small and localized, (3) vertices should
be moved from processor to processor as little as pos-
sible, and (4) large amounts of time cannot be spent
partitioning the meshes because we do not wish to
dominate the execution time with mesh algorithms.

We propose an inexpensive method that utilizes ge-
ometric information and allows for existing partitions
to be perturbed when a small perturbation to the mesh
occurs. This method is a variation of the orthogonal
recursive bisection (ORB) algorithm [2]. The ORB
algorithm makes an initial cut to divide the vertices
into two sets of equal size. Orthogonal cuts are then

made recursively in the new subdomains until the ver-
tices are equally distributed among the processors. Al-
though this algorithm obtains good load balancing,
it can result in less than optimal communication re-
quirements. Long, thin partitions may be created that
have a large number of edges crossing the partition
boundaries. In addition, these long, thin partitions
may cause () to be very dense.

To address this problem, we have developed a mod-
ification of ORB which we call unbalanced recursive
bisection (URB). Instead of dividing the vertices into
equal sets, we choose the cut that minimizes parti-

tion aspect ratio and divides the vertices into ’;Tk and

ﬂpp;k) sized groups, where n = |V|, p is the total
number of processors, and k € {1,2,....p— 1}. This
algorithm leads to an equal distribution of grid points
with better partition aspect ratios than the ORB algo-
rithm. In fact, we conjecture that the aspect ratio of
the partition generated by the URB heuristic 1s largely
independent of p, the number of processors, for the
meshes arising from refinement algorithms that yield
graded meshes. It has been shown that for the ORB
heuristic, partitions can be adjacent to O(,/p) other
partitions [2].

To repartition a perturbed mesh without massive
movement of vertices, we simply perturb the cuts in
the existing partition to rebalance the sizes of V;. If no
such perturbation exists or if the perturbation would
result in poor aspect ratios, then the mesh is repar-
titioned from scratch. As we will show in the results
section, if the partition can be perturbed, the number
of vertices that must move from one partition to an-
other is small; otherwise most vertices will be moved
(as in most partitioning algorithms).

One point worth noting is that methods, such as
ORB and URB, that yield convex polygonal parti-
tions make the scalable mapping of vertices to par-
titions trivial given the geometric location of a vertex.
For methods that do not yield convex polygons, the
mapping of vertices to partitions in a scalable manner
becomes problematic.

Finally, we note that currently we do not handle
the assignment problem in a sophisticated manner.
We mainly rely on our target architectures to have
wormhole routing that reduces the effect of distance
between communicating nodes. We plan to utilize a
more sophisticated technique such as that given in [5].

4 Experimental Results

We have implemented these algorithms in a library
of routines that is called by an application program.
The software uses Chameleon [4] to achieve porta-
bility across several architectures, including the In-
tel DELTA which is our focus here. We have tested
our algorithms using three different PDEs (Poisson’s
equation, linear elasticity equations, and the nonlinear
Ginzburg-Landau equations) on a variety of geome-
tries. In this paper, we consider results obtained for
the first two problems; results for the latter problem
are presented in [3].

The first problem is given by

0?u 0%u
T o (z,y) on S (1)
u = 0 on boundary (2)

on a square domain where f(z,y) is a Gaussian charge
distribution that forces refinement around a point
(Sz,Sy). To test the implementation we move the
point (Sg,Sy) several times and find a new solu-
tion/mesh from the old solution/mesh. This move-
ment requires mesh refinement around the new posi-
tion and de-refinement around the old position while
the rest of the mesh remains nearly constant. To solve
the linear systems arising from this problem, we use
the parallel conjugate gradient method preconditioned
by an incomplete factorization [6].

The second problem, planar linear elasticity, is
given by the equations (forces are not included in these
equations)

8w 0%u 14+v, 0% 9%v
Toyon = Lrdu, Iy
Az Ay 2 oy dx 0y
R TR
ox? = Oy? 2 9z Ox0y

These equations are solved on an annulus with a con-
stant load on one side and the opposite side fixed. We
use linear basis functions in our finite element formu-
lation. We selectively refine the mesh according to the
element energy norm until the local error estimate at
each triangle is acceptable. The linear systems arising
from the problem are solved with the same code we
used for the Poisson problem.

The maximum sizes of the adaptive meshes gener-
ated for the two problem sets are given in Table 1. The
column labeled |V|max shows the maximum number of
vertices obtained in the sequence of adaptive meshes;
the column labeled |T|max gives the maximum number
of triangles. The final column, labeled Triangle Ratio

gives the maximum sized area ratio between two tri-
angles in the mesh.

Table 1: The problem set

Problem Triangle
Name |V |max |T | max Ratio
POISSON1 2,673 5,268 256
POISSON2 5,176 10,260 512
POISSON3 10,238 20,330 512
POISSON4 20,296 40,412 1,024
POISSONbH 40,292 80,294 1,024
POISSONG6 80,116 159,872 2,048
POISSONT || 159,758 318,948 2,048
POISSONS || 318,796 636,882 4,096
POISSON9 || 636,738 | 1,272,344 4,096
Problem Triangle
Name |V |max |T | max Ratio
ELASTIC1 1,460 2,767 156
ELASTIC2 2,798 5,382 419
ELASTIC3 5,634 | 10,766 512
ELASTIC4 10,736 | 21,043 1,677
ELASTICH 21,329 | 42,049 2,048
ELASTIC6 41,936 | 82,997 4,096
ELASTICT 83,349 | 165,468 6,443
ELASTICS || 165,253 | 328,736 16,384
ELASTICY || 329,201 | 655,919 12,886

In Table 2 we show the number of times each mesh
was refined during the solution process; the number of
processors used is given in the column labeled P. In
addition, we show the number of iterations through
the loop in the algorithm in Figure 6. We observe
that, as expected, it takes more mesh refinement steps
to construct the larger meshes. We also see that the
number of loop iterations needed is a slowly growing
function of the number of processors. This result in-
dicates that we can, in general, expect scalable per-
formance. Such a result is not surprising given the
run-time results of theorem in the preceding section.

Note that a good partitioning of the vertices for
each of these problems is necessary for our refinement
algorithm to perform efficiently. In Table 3 we give
the average number of subpartitions that are adjacent
to a given subpartition (average degree of the quo-
tient graph,). This measure gives some sense of the
number of processors each processors overlaps trian-
gles with and must exchange information with. Also
given 1s the percentage of the total triangle edges that
have endpoints on two different processors. This gives

Table 2: The number of refinement stages and average
number of loop iteration per stage

Problem Num. of | Avg. Num.
Name P | Ref. Steps Loop Its.
POISSON1 1 14 1.64
POISSON2 2 14 2.14
POISSON3 4 17 2.24
POISSONA4 8 18 2.17
POISSON5 16 19 2.47
POISSONG6 32 20 2.40
POISSONT7 64 23 2.57
POISSONS || 128 24 2.46
POISSON9 || 256 23 2.35
Problem Num. of | Avg. Num.
Name P | Ref. Steps Loop Its.
ELASTIC1 1 6 4.00
ELASTIC?2 2 8 4.13
ELASTIC3 4 9 4.67
ELASTIC4 8 9 4.56
ELASTIC5 16 10 5.00
ELASTIC6 32 11 4.91
ELASTICT 64 12 5.67
ELASTICS || 128 15 5.13
ELASTICY || 256 12 5.00

some sense of the number of triangles each processor
has that must be coordinated with some other proces-
sor. We see that these values rapidly rise, as one would
expect, until approximately 16 processors. After this
point, they very slowly increase with the number of
processors.

Our experiments were run on up to 256 nodes of
the Intel DELTA. The DELTA is a mesh-connected,
16 x 32 array of Intel 1860 microprocessors. Because
of constraints on the amount of time available to us
on the DELTA, we did not run the 512-processor case.
We believe, however, that the results presented con-
vincingly demonstrate the effectiveness of our algo-
rithms. All of our experimental rates and times given
in Tables 5 and 6 are computed in seconds. Opera-
tions rates indicate the number of bisections and ver-
tex deletions (note that vertex deletions correspond to
de-refinement and constitute a small percentage of the
total) per second.

To demonstrate the scalability of our algorithm
and implementation, we ran both problem sets on the
DELTA in such a way that the number of vertices in
the final mesh assigned to an individual processor was

Table 3: Experimental results showing the quality of
the final partition obtained with the URB heuristic

Problem Avg. Degree | Percent. of
Name P of Q) Cross Edges
POISSON1 1 0.00 0.00
POISSON2 2 1.00 1.20
POISSON3 4 2.50 1.77
POISSON4 8 3.25 2.79
POISSON5 || 16 4.63 2.38
POISSONG6 || 32 5.06 2.60
POISSONT || 64 5.53 2.70
POISSONS || 128 5.64 2.78
POISSONO9 || 256 5.76 2.78
Problem Avg. Degree | Percent. of
Name P of @) | Cross Edges
ELASTIC1 1 0.00 0.00
ELASTIC2 2 1.00 0.24
ELASTIC3 4 2.00 2.02
ELASTIC4 8 3.50 2.52
ELASTIC)H 16 4.00 3.56
ELASTIC6 32 4.38 3.99
ELASTICT 64 4.75 4.26
ELASTICS || 128 5.20 4.27
ELASTICY || 256 5.34 4.35

constant. By nature, each of the test problems is re-
fined in localized regions of the mesh; therefore, we
expect that some processors will have more work than
others. This is reflected in Table 4, where we give the
average number of operations per processors per step
and the average of the maximum number of operations
on a single processor per step. The average number of
operations falls as the number of processors increases;
this is because we are taking more refinement steps
to achieve the same number of vertices per processor
in the final mesh. The average maximum number of
operations increases because, as we increase the mesh
size, more refinement is concentrated in the same size
area in which a limited number of processors are work-
ing.

Even given these handicaps, we show that the algo-
rithm performs quite well. In Table 5 we concentrate
on two different rates of refinement per processor. The
first rate is the average number of refinement oper-
ations per second per processor. If refinement were
occurring uniformly over all the processors, we could
expect this to be nearly constant; however, in our test
problems, as in most practical problems, this is not

Table 4: The average number of operations per pro-
cessor per step and the average maximum number of
operations on a single processor per step

Table 5: The total time (sec) required for the sequence
of adaptive meshes, the average rates of element refine-
ment per processor, and the maximum rates of refine-

ment

Problem Avg. Num. | Avg. Max.
Name P of Ops. | Num. Ops.
POISSON1 1 201 201
POISSON2 2 193 214
POISSON3 4 160 205
POISSON4 8 150 284
POISSONbH 16 142 416
POISSONG6 32 134 53b
POISSONT 64 116 500
POISSONS || 128 111 573
POISSONO9 || 256 116 691
Problem Avg. Num. | Avg. Max.
Name P of Ops. | Num. Ops.
ELASTIC1 1 214 214
ELASTIC2 2 164 166
ELASTIC3 4 149 108
ELASTIC4 8 147 273
ELASTIC)H 16 132 276
ELASTIC6 32 118 297
ELASTICT 64 108 284
ELASTICS || 128 86 263
ELASTICY || 256 107 304
the case. The second, and more interesting rate, is

the maximum number of refinement operations per
second per processor. We would expect this rate to
remain constant, or nearly so, if the algorithm were
perfectly scalable. In the POISSON problem set, we
see very little degradation. In fact, we should expect
some degradation as a result of the increasing number
of neighbors each processor must exchange informa-
tion with as the number of processors increases. This
degradation is offset, however, by the rapidly increas-
ing maximum number of operations per processor we
see in Table 5. In the ELASTIC problem set we see
the reasonable degradation that we expect because we
do not have the rapidly increasing maximum number
of operations per processor. After reaching 16 pro-
cessors, the number of processor neighbors and the
percentage of cross-edges stop this rapid increase, and
we see approximately a 20% degradation in the rate
of refinement from 16 to 256 processors.

In the final table of results, Table 6, we demonstrate
that for a reasonably complex set of problems, the
time to solve the linear systems dominates the time to

Total | Avg. Rate | Max. Rate
Problem Ref. Ref. per Ref. per
Name P | Time | Processor Processor
POISSON1 1 8.2 342 342
POISSON2 2 8.8 306 339
POISSON3 4 11.6 233 300
POISSONA4 8 15.3 176 334
POISSONb 16 22.8 118 346
POISSONG6 32 31.2 86 344
POISSONT7 64 33.8 79 340
POISSONS || 128 | 41.3 65 333
POISSONY || 256 | 47.9 55 332

Total | Avg. Rate | Max. Rate
Problem Ref. Ref. per Ref. per
Name P | Time | Processor Processor
ELASTIC1 1 2.4 553 553
ELASTIC2 2 2.9 449 453
ELASTIC3 4 4.5 298 417
ELASTIC4 8 5.4 246 458
ELASTIC)H 16 6.9 192 400
ELASTIC6 32 8.2 160 399
ELASTICT 64 9.4 138 362
ELASTICS || 128 11.9 108 331
ELASTICY || 256 11.8 109 310

refine the mesh for any number of processors. In fact,
we can see that the total refinement time is always less
than one percent of the total execution time.

5 Conclusions

We have presented two new parallel algorithms: an
algorithm for the adaptive refinement of meshes, and
a partitioning heuristic. We have reviewed a result
showing that the refinement algorithm has a provably
fast running time under a P-RAM model of compu-
tation. In addition, we described an efficient method
of implementation for this algorithm on a practical,
distributed-memory parallel computer. We have given
results for two problems that demonstrate the scalable
nature of the refinement algorithm and the good geo-
metric properties of the URB partitioning heuristic.

Table 6: Timing results (sec) for the entire sequence of
adaptive meshes for the planar linear elasticity prob-

lem

Problem Total Ref. | Total Matrix | Total
Name P Time Solve Time | Time
ELASTIC1 1 2.4 275 278
ELASTIC?2 2 2.9 433 437
ELASTIC3 4 4.5 604 612
ELASTIC4 8 5.4 677 688
ELASTICS 16 6.9 971 989
ELASTIC6 32 8.2 1434 | 1461
ELASTIC7 64 94 2054 | 2090
ELASTICS || 128 11.9 4391 | 4458
ELASTICYO || 256 11.8 5120 | 5196

The results given in this paper are for two-
dimensional triangular meshes. However, the use of
independent sets for parallel synchronization general-
izes to the three-dimensional case and can be used to
implement other refinement algorithms. The next log-
ical step in this work is to develop theoretical results
for three-dimensional tetrahedralizations as well as
a practical, parallel implementation for three dimen-
sions. In addition, we note that the use of higher-order
basis functions is straightforward in this methodology;
we expect to include this functionality in the current
parallel implementation.

References

[1] Randolph E. Bank, Andrew H. Sherman, and
Alan Weiser. Refinement algorithms and data
structures for regular local mesh refinement. In
R. Stepleman et al., editor, Secientific Comput-
ing, pages 3—17. IMACS/North-Holland Publish-
ing Company, Amsterdam, 1983.

[2] Marsha J. Berger and Shahid H. Bokhari. A
partitioning strategy for nonuniform problems on
multiprocessors. ITEEFE Transactions on Comput-

ers, C-36:570-580, 1987.

[3] Lori A. Freitag, Mark T. Jones, and Paul E.
Plassmann. New advances in the modeling of
high-temperature superconductors. In 71994 In-
ternational Stmulation Conference — Grand Chal-
lenges in Computer Simulation, La Jolla, Cali-

[4]

fornia, April 11-15. The Society for Computer
Simulation, 1994 (to appear).

William Gropp and Barry Smith. User’s Manual
for Chameleon Parallel Programming Tools. ANL
Report ANT-93/23, Mathematics and Computer
Science Division, Argonne National Laboratory,

Argonne, I11., 1993.

Steven Warren Hammond. Mapping Unstructured
Grid Computations to Masswely Parallel Com-
puters. Ph.D. thesis, Department of Computer
Science, Rensselaer Polytechnic Institute, 1989.

Mark T. Jones and Paul E. Plassmann. Block-
Solve v1.0: Scalable library software for the paral-
lel solution of sparse linear systems. ANL Report
ANL-92/46, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne,

1., 1992.

Mark T. Jones and Paul E. Plassmann. A par-
allel graph coloring heuristic. STAM Journal on
Scientific and Statistical Computing, 14:654-669,
May 1993.

Mark T. Jones and Paul E. Plassmann. Par-
allel algorithms for adaptive mesh refinement.
Preprint MCS-P421-0394, Mathematics and
Computer Science Division, Argonne National
Laboratory, Argonne, Il1., 1994.

William F. Mitchell. A comparison of adap-
tive refinement techniques for elliptic problems.
ACM Transactions on Mathematical Software,
15(4):326-347, December 1989.

Maria-Cecilia Rivara. Mesh refinement processes
based on the generalized bisection of simplices.
SIAM Journal of Numerical Analysis, 21(3):604—
613, June 1984.

Ivo G. Rosenberg and Frank Stenger. A lower
bound on the angles of triangles constructed by
bisecting the longest side. Mathematics of Com-

putation, 29(130):390-395, April 1975.

