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Abstract

Some implementations of interior-point algorithms obtain their search directions
by solving symmetric indefinite systems of linear equations. The conditioning of the
coeflicient matrices in these so-called augmented systems deteriorates on later itera-
tions, as some of the diagonal elements grow without bound. Despite this apparent
difficulty, the steps produced by standard factorization procedures are often accurate
enough to allow the interior-point method to converge to high accuracy. When the un-
derlying linear program is nondegenerate, we show that convergence to arbitrarily high
accuracy occurs, at a rate that closely approximates the theory. We also explain and
demonstrate what happens when the linear program is degenerate, where convergence
to acceptable accuracy (but not arbitrarily high accuracy) is usually obtained.

1 Introduction

We focus on the core linear algebra operation in primal-dual interior-point methods for linear
programming: solution of a system of linear equations whose coefficient matrix is large,
sparse, and symmetric. In existing codes, the linear system is formulated in two different
ways. One formulation, usually called the augmented system formulation, has a symmetric
indefinite coefficient matrix. The other involves a more compact (but generally denser)
symmetric positive-definite matrix. A diagonal matrix D is involved in both formulations,
where D has the disconcerting property that some of its elements grow to oo as the iterates
approach the solution set. This blowup in D can produce ill conditioning in the coefficient
matrix of the linear system. In this paper, we examine the augmented system and look at
how various factorization algorithms for this system behave as this ill conditioning develops.

We restrict our study to three standard factorization algorithms — the Bunch-Parlett,
Bunch-Kaufman, and sparse Bunch-Parlett algorithms. The last of these has been used in at

*Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, IL 60439. This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.



least one practical interior-point code for linear programming (see Fourer and Mehrotra [4]).
We assume that no attempt is made to improve the conditioning of the underlying linear
systems by guessing whether each component of the solution is at a bound. Preprocessing of
this kind detracts from the intuitive appeal of interior-point algorithms, namely, that they
avoid explicit guessing about the contents of the basis.

In numerical experiments with feasible linear programs, we find that two distinct scenarios
arise.

1. Even when the iterates are very close to the solution set, the computed search directions
are good enough to produce rapid convergence of the algorithm at nearly the rates
predicted by the theory. This performance is a little surprising. Since the matrix
is poorly conditioned, we might have expected the computed directions to be too
inaccurate to allow the algorithm to make much progress. This scenario usually occurs
when the underlying linear program has a unique primal-dual solution.

2. Near the solution, calculation of the search direction fails because of breakdown of the
matrix factorization, or else the computed search direction is so inaccurate that the
interior-point method can move only a tiny distance along it before violating a bound.
This scenario usually occurs when the underlying linear program is degenerate.

Our analysis in this paper explains these observations through a close examination of the
behavior of factorization algorithms on the highly structured matrices that arise in our
application. The effects of roundoff error are tracked by using fairly standard techniques
from backward error analysis.

The most successtul interior-point methods for practical linear programming problems
are primal-dual methods. The best-known potential-reduction algorithm in this class was
devised by Kojima, Mizuno, and Yoshise [8]; the review paper of Todd [16] contains a
wealth of historical information on potential-reduction methods. Early developments in
path-following methods are surveyed by Gonzaga [6], while Mizuno, Todd, and Ye [14]
describe an important variant of these methods that does not require the iterates to stay
within a cramped neighborhood of the central path. Zhang [24] extended the path-following
approach further, allowing the iterates to be infeasible while retaining global convergence
and polynomial complexity; see also Wright [20]. Some of these developments took place in
the context of linear complementarity, a class of problems that includes linear programming
as a special case.

On the computational side, the OB1 code described by Lustig, Marsten, and Shanno [9]
generated search directions of the type described in this paper. They compute the maximum
step «* that could be taken along this direction without violating the positivity bounds, then
set the actual step length to .995 a*. Mehrotra’s [13] predictor-corrector search direction
differs from the one analyzed in this paper, but under our assumptions below, the difference
vanishes as the solution is approached. Newer codes, such as those described by Mehrotra
[13], Fourer and Mehrotra [4], Lustig, Marsten, and Shanno [11], Vanderbei [17], and Xu,

Hung, and Ye [22] all implement Mehrotra’s predictor-corrector strategy. These newer codes



continue to use step lengths based on a*; hence, we pay particular attention to the effect of
roundoff error on this quantity.

Previous analysis of the ill-conditioned linear systems that arise in interior-point and bar-
rier methods has been carried out by Ponceleén [15] and Wright [21]. Ponceledn [15] showed
that these systems are not too sensitive to structured perturbations from a certain class pro-
vided that the underlying optimization problem is well conditioned. Wright [21] analyzed
Gaussian elimination in the context of interior-point algorithms for linear complementarity
problems.

Simultaneously with the original version of this paper, and independently, Forsgren, Gill,
and Shinnerl [3] performed an analysis of the augmented system in barrier algorithms. Their
analysis tends to be more detailed than ours, and a few of the results overlap. However, they
assume that the factorization algorithms select the large diagonal elements as pivots before
any others, a pattern that does not generally occur in practice.

Vavasis [18] gives an illuminating discussion of the augmented system in other contexts
besides optimization. He presents a solution method that is provably stable in a certain
sense, but which is not guaranteed to produce “useful” steps in the sense of this paper. Duff
[2] also discusses augmented systems in a general context and describes a sparse factorization
procedure.

2 Interior-Point Methods

We consider the linear program in standard form:

min ¢!z, Ax = b, x>0, (1)
where € R" and b € R™. The dual of (1) is
max b7\, ATA4+s=c¢, s >0, (2)

where s € R™ and A € R™. A vector triple (A\*, 2%, s*) is a primal-dual solution if #* is
feasible for (1), (A*,s*) is feasible for (2), and s* and z* are complementary; that is,

2T = e — pTx* = 0. (3)

We denote the set of primal-dual solutions by S.

Each iterate (A, z,s) of a primal-dual interior-point method satisfies the strict inequality
(x,s) > 0. Search directions are found by applying a modification of Newton’s method to
the following system of nonlinear equations:

Ax —b=0, AT 4+ s —c=0, XSe =0, (4)

where X = diag(x1, x2,...,2,) and S = diag(sy, s2,...,8,). Specifically, the search direction
(AX, Az, As) satisfies the linear equations

0 AT T Az —AT)N —s+¢
A 0 0 AN | = b— Ax ) (5)
S 0 X As —XSe+ opue



where o € [0, 1] is known as the centering parameter and the important quantity y is defined
by
pw=zxls/n.

The step length o along the search direction is determined by various factors; minimally, the
updated = and s components are required to stay strictly positive:

(x,s)+ a(Ax,As) > 0. (6)

At least half the components of (x,s) — the eritical components — become very close to
their lower bound of zero during the later stages of the algorithm. Despite this property, the
step length o can be quite close to one without violating the property (6), when the search
direction (AX, Az, As) is an exact solution of (5). If perturbations caused by roundoff are
present in the critical components of (AX, Az, As), the requirement (6) can severely curtail
the allowable step length and slow the convergence. Hence, it is important that the critical
components of (AX, Az, As) be computed to high relative accuracy. This point provides the
focus for much of our error analysis.

Throughout the paper we use u to denote unit roundoff, which we define implicitly by
the statement that when = and y are any two floating-point numbers, op denotes +, —, x, /,
and fl(z) denotes the floating-point approximation of any real number z, we have

Mzopy) = (wopy)(1+4), |6 <u. (7)

Since our concern is with the internal workings of a single interior-point iterate, we omit
iteration counters from all quantities. For this reason, we use the order notation O(-) in a
slightly unconventional way. When ¢ and 7 are two nonnegative numbers, we write £ = O(n)
if there is a positive constant C' (not too large) such that ¢ < Cn. We say that a matrix or
vector is O(n) if its norm is O(n). We say that £ = Q(n) if £ = O(n) and n = O(¢).

For the purposes of this paper, we are mainly interested in how the factorizations behave
relative to g and u. The dimensions m and n are ignored in our use of the notation O(-).

If G is a matrix, GG.; denotes its j-th column, while GG;. denotes the ¢-th row. The matrix
whose elements are |(;;| is denoted by |G|.

We use || - | to denote any one of the equivalent matrix norms || - ||1, || - ||z, or || - ||c-
When G is rectangular, the 2-norm condition number is defined as follows.

Definition 1 Let G be a rectangular matric with full rank, and suppose that svimax (G') and
svimin ((') denote the largest and smallest singular values of G, respectively. The 2-norm

condition number of G s
svmax (G)

k(G) =

svmin (G)’

It GG is square and nonsingular, this definition coincides with the usual definition

K(G) = 1GIIG 2



3 Definitions and Assumptions

We assume throughout that the problems (1), (2) are feasible; that is, there exists at least
one triple (), z,s) satisfying the constraints Az = b, ATA + s = ¢, (z,5) > 0. Feasibility
implies existence of solutions to (1), (2). The following theorem gives another consequence
of feasibility.

Theorem 3.1 Suppose that (1) and (2) are feasible and that (A, x,s) is any point with
(x,8) > 0. Then there exists a solution (AX, Az, As) to (5).

Proof. The proof follows from Section 6 of Wright [20]. See, in particular, Lemma 6.2,
Theorem 6.3, and the remarks in the last two paragraphs of [20]. [
Note that A need not have full rank for Theorem 3.1 to hold.

The set of basic indices B C {1,2,...,n} can be defined as

B={i|s; =0 for all (\*,2*,s*) € S}, (8)
while the nonbasic set A is
N ={i|zf =0 for all (A\*,2*, s*) € S}. 9)

It is well known that B and NV form a partition of {1,2,...,n} and that there is at least one
solution (A\*, z*, %) that is strictly complementary, that is, 2* +s* > 0 (Goldman and Tucker
[5]). The cardinality of B is denoted by |B|. By partitioning the columns of A according to
B and N, we define

B=[Ajljes, N =I[Ajljen, (10)

so that B is m x |[B| and N is m x |[N|. We say that the linear program is nondegenerate if
|B| = m and the primal-dual solution is unique. We assume also that B is reasonably well
conditioned in nondegenerate problems.

We do not confine our analysis to one specific primal-dual algorithm. Rather, we rely on a
set of assumptions that is satisfied by a variety of algorithms. The first of these assumptions
concerns the iterates, the search directions, and the relationship between p and the current
infeasibility.

Assumption 1 The sequence of iterates (A, x,s) generated by the interior-point algorithm
satisfies the following properties when p becomes sufficiently small:

z=Q(1) (i€ B), s = Q1) (i eN), (11a)
v, =Qp) (ieN), si= Q) (¢ € B). (11b)

In addition, the infeasibility is O(u); that is,
b— Ax = O(p), c—ATA =5 =0(u). (12)



Assumption 1 is not very strong. Giiler and Ye [7] study algorithms in which all iterates
are strictly feasible; that is

Az = b, AT+ s=¢, (x,5) > 0. (13)

In fact they require that x and s be slightly separated from the boundary of the positive
orthant, in the sense that
T8 > YU, 1=1,2,...,n, (14)

for some constant v € (0,1). They show that all limit points of such algorithms are strictly
complementary solutions of (1), (2) and that most path-following and potential-reduction
algorithms do in fact satisfy (14). It is easy to infer from their results that (11) holds for
all subsequences that approach these limit points. Moreover, (12) is trivially satisfied for all
feasible algorithms.

The infeasible-interior-point algorithm described by Wright [19] satisfies Assumption 1.
So does the algorithm in [20], provided that the sequence or iterates (x,s) is bounded.
Implemented algorithms such as those of Vanderbei [17], Lustig, Marsten, and Shanno [9, 10],
and Xu, Hung, and Ye [22] usually step a fixed multiple of the distance to the boundary
rather than enforce a potential reduction condition or a condition like (14). Nevertheless,
the iteration sequence usually satisfies the properties of Assumption 1 for most practical
problems.

Finally, we state without proof a technical lemma for use in later sections.

Lemma 3.2 Let H be a square matriz partitioned as

Hyy Hyo
H =
[ Hy Ho ] 7

where Hyy and Hyy are also square. Suppose that Hyy and Hyy— Hyy Hi ' Hyy are nonsingular.
Then H is nonsingular, and

H1_11 + Hﬂlﬂlz(ﬂzz - H21H1_11H12)_1H21H1_11 —Hﬂlle(sz - H21H1_11H12)_1

H ' = _ _ _
—(Hay — H21H111H12)_1H21H111 (Hayo — H21H111H12)_1

4 Exact and Approximate Search Directions

By defining r, = Az — b and r. = ATA 4+ s — ¢ in (5), we obtain

0 A 0 AX —Tp
AT 0 T Az | = —r, ) (15)
0 S X As —XSe+ opue
By eliminating As from this system, we obtain the augmented system formulation:
0 A AN | =T
l AT X198 ] l Az ] o l —r.+s—opXle (16a)
As = —S—I—O‘/LX_IG—X_ISAJ}. (16b)



In Wright [21], we performed an error analysis on a system like (16a), but in the context
of a specific path-following algorithm for the monotone linear complementarity problem.
Some of our results from [21] are relevant to the present case of (16), as we discuss later.

Potential difficulties with the formulation (16) arise from two sources — possible rank-
deficiency in certain submatrices of A, and the fact that some diagonal elements of X 15
and S7'X approach zero while others approach +oo. Despite the effects of ill conditioning
and finite precision, we find that the approximate search directions obtained from (16) by
using standard factorization procedures are often remarkably good. They allow the interior-
point algorithm to take near-unit steps and to make substantial improvements in the duality
measure g. In the following theorem, we specify a set of conditions for which this happy
situation holds. In later sections, we identify situations under which these conditions hold.

In the remainder of the paper, we use o to denote the largest number in [0, 1] such that

(x + aAz, s+ aAs) >0 for all @ € [0, a™]; (17a)
(x + an)T(S + aAs) is decreasing for a € [0, a*]. (17b)

Theorem 4.1 Suppose that Assumptwn 1 holds. Let (AN, Az, As) be the exact solution of
(5) (equivalently, (16)), and let (A)\ Az AS) be an approximation to this step. Suppose that

the centering parameter o in (5) lies in the range [0,1/2] and that the following conditions
hold:

(Az,As) = O(p), (18a)
(Asy, Azp) — (Asy, Azg) = O(u), (18h)
(Asg, Azy) — (Asg, Azy) = O(pu). (18¢)

Define o* as in (17), and suppose &* is obtained by replacing (Ax, As) with (&,Z\S) in
(17). Then for all p sufficiently small, we have

1= a” = 0(p) (19)
& = a” +Ofu) = 1 +O(u) + Olu), (20)

and
(0 + & B2 (s + 6"55)/n = 00() + Ol +w)). 1)

Proof. From (11a) and (18a), we have
sy + aAsy >0, rg + alAxg >0, for all o € [0, 1],

so these components do not restrict the value of a*. Since u is much smaller than 1, we use
(18b) as well to deduce that

SN—I—OéZ\SNZSN—I—OéASN—I—Oé(Z\SN—ASN)>0, for all a € [0,1].



Similarly, we can show that x5 + aAzg > 0 for all o € [0, 1].

For the decrease condition (17b) we show that the duality gap actually decreases over the
entire interval [0, 1] for both exact and approximate search directions, so that this condition
does not play a role in determining o or &*. For the exact direction, we have from (5),

(18a), and o € [0,1/2] that

di (x + an)T(S + alAs) = 2TAs + sTAx + 2aA2T As
«
—(1 = o)np + 2||Az||||As||

<
< —npf2+ O(?),

for all a € [0,1]. Hence, for u sufficiently small, the duality gap is decreasing over [0, 1].
For the approximate direction (&;, Z\S), this bound can be modified slightly to account for
the inexactness. We omit the details, which are straightforward but messy, and state the
conclusion as

d — .
T (x + an)T(S + alAs) < —nu/2 + O(pu + ,uz).

Again, we find that the duality gap is decreasing over the whole interval o € [0, 1].
Hence, the only condition that can bound a* and &* away from 1 is (17a), and then only
for the A-components of x and the B-components of s. In fact, o* satisfies

1 ASZ' AJ}Z
— = max (1, max — ,max — ) . (22)

« ieB S;  EN T;
From (5), we have a;As; + s;Ax; = —a;8; + opu. Hence, since x;5; = Q(p) from (11), we have

— =14 — .
S; T; T;S8; Ty

For ¢ € B we have from (11a) and (18a) that |Axz;/x;| = O(p) and therefore

ASZ'

max —
1€B S;

<1+ 0(p).
An identical argument can be used for the other term in (22), so we have
1 %
— <max(1,1+0(u)) = 1—-a =0(p),
«
proving (19). o
For the maximum step length &* along the approximate direction (Ax, As), we have from

(18¢) and (11b) that

1\82' ASZ' . O(,uu) . . &}Z AJ?Z . .
5 - 5 - Q(N) - O(u)v (l < B)v z; - z; - O(u)v (l S N)




Hence, from (22), we have

a €B 8;  1EN z; o

As; Az 1
— = max (l,max— i ,max — ’ ) = — 4 O(u). (23)

For all sufficiently small g, the estimates (20) follow immediately from this last expression.
Finally, for the estimate of potential decrease (21), we have from (5) that

(x + a&)T(S + ozz\s)
= [:1; + aAx + a(& — AJ})]T [5 + aAs + a(z\s — AS)]
< w1 — afl — o)) + Olp) + O, (24)

where we have used Assumption 1 and (18) to estimate the remainder terms. Finally, we
obtain (21) by substituting a = &* = 1+ O(p + u) into (24). m

5 The Augmented System

In the remainder of the paper, we focus on the procedure based on (16) for finding the search
directions. In this section, we define a generalized form of the matrix in (16a) which we call
a canonical matriz. We show that if the backward error analysis of the solution procedure
satisfies a certain condition — Condition 1 below — then the approximate step (@, &;, 1\3)
obtained from (16) in a finite-precision environment is “useful” in the sense of Theorem 4.1.

In later sections, we define conditions under which these standard algorithms for solving
symmetric indefinite systems satisfy Condition 1 and hence yield useful search directions.
Our sharpened, specialized error analysis yields much stronger results than naive application
of the standard results. We also gain insight into how the algorithms work even when the
nondegeneracy assumptions of Sections 6, 7, and 8 fail to hold, and why they continue to
generate useful search directions even for degenerate problems until g is quite small.

Given a symmetric matrix 7" of order n, the factorization procedures yield

LDLT = PTPT, (25)

where P is a permutation matrix, L is unit lower triangular, and D is a block-diagonal
matrix with 1 x 1 and 2 x 2 diagonal blocks. We denote the counterparts of these matrices
that are actually computed in the finite-precision environment by I and ﬁ, respectively.

Given the system Tz = d and the data P, [A/, and D from the factorization, we find the
computed solution Z by performing two vector permutations with P, triangular substitutions
with L and j/T, and a blockwise inversion of . Each of these operations (except the
permutations) may introduce additional roundoff error, which must be accounted for in the
error analysis.

For each of the methods, we focus on a single step of the factorization procedure applied
to a matrix 17" with properties like those of our given system (16a), which we now define.



Definition 2 A matriz T is a canonical matrix if it is a symmetric permutation of

0 B N
BT 0 0 | +0(u+u), (26)
NT 0 A

where
- >0 andu >0 are small;

A is diagonal with all diagonal elements of magnitude Q(p™');

- B=Q(1) and k(B) = O(1); and
- N=0(1).

We call T' a degenerate canonical matrix if it has the form

[8 2]+OW+U% (27)

where the zero blocks are nonvacuous.

In keeping with our particular application (16a), we use m and n to denote the number of
rows and columns in the composite matrix [B | N], respectively, and n = m + n to denote
the total dimension of T

Corresponding to our canonical matrix, we define a canonical error matrix. We prove
that for each of the factorizations, the error matrix has this form.

Definition 3 Let T be a canonical matriz. The corresponding canonical error matrix A is
a matriz of the same dimension as 1" such that

A] < A+ [T]6 (25)
where 6y and the elements of Ay are O(u).

An important role in the pivot selection process is played by the quantities y;, which
denote the magnitude of the largest off-diagonal element in column ¢, that is,

Xi:maXﬂTinj:1727"'7ﬁ7j7£i}' (29)

A sufficient condition for useful steps

The following condition states the common goal of our backward error analysis of the three
factorization procedures. When this condition is satisfied along with nondegeneracy of the
linear program, the result of Theorem 4.1 holds.

10



Condition 1 Given the system Tz = d, where T is a canonical matriz, the symmetric
factorization and solution process yields a computed solution Z that satisfies

A

(T + A)z=d, (30)
where A is a canonical error matriz associated with T and d — d = O(u).

We allow for a perturbed right-hand side d because of the nature of our particular system
(16a). The residuals r, and r. are computed as the difference of O(1) quantities, so O(u)
perturbations will appear when they are evaluated in the obvious way. Addition of the terms
sy and pXy'e may give rise to errors of similar magnitude.

Theorem 5.1 Suppose that Assumption 1 holds and that the problem is nondegenerate, that
is, |B] = m, with k(B) moderate. Suppose that the procedure for solving (16) satisfies Con-
dition 1, and denote the approximate solution to (16a) by (@, &;) Then for all sufficiently
small p, we have

(AX, Az, As) = O(u) (31)

and

(AN —AXN Az — Azp) = O(u),  Azy — Azy = O(pu). (32)

Proof. We prove (31) by appealing to (5). By partitioning A into B and N according to
(10), and partitioning the diagonal matrices S and X accordingly, we see that the matrix in
(5) is a permutation of

0 B N 0 0
BT 0 0 I 0
NT 0 0 0 I (33)

0 Sg 0 X 0
0 0 Sy 0 Xy

Because of (11), the diagonal elements in Xp and Sy are (1), while the matrices Sp and
Xy are O(p). In addition, B is square and well conditioned, so the matrix (33) is an O(u)
perturbation of a uniformly nonsingular matrix. From (5), we then have

(AX Az, As) = O([lro]| + |Irell + | X Se — apel]),

so the result (31) follows from (11) and (12).
To derive the relative error estimate (32), consider the system (16a). By permuting the
matrix in accord with the B U N partition, we can rewrite (16a) as follows:

0 B N AX —Tp
BT —X3z'Sp Azg | = | —(rd)p+s8 —ouXg'e | . (34)
NT —Xy'Sy Azy —(ro)ny + sy —opuXy'e

From (11), we have for sufficiently small z that the diagonals in X5'Sp are Q(u) while the
diagonals of X5'Sy are Q(u~1), so this coefficient matrix is canonical.

11



By defining

0 B N
MB—[BT _X§15B17 MN_[O]7
_ AN
A =—Xy'S, zy = Awy, ZB = [A:z;B]’
- —Tp _ N -1

we can restate the system as

MB MN ZB o dB

ML A v | dw |
From our assumption on B, we have Mz = O(1) and Mz' = O(1).

Because of Condition 1, the computed solution Z of (35) satisfies

(e %) eo) [ -]

where d — d = O(u) and the canonical error matrix A satisfies

|Mp| |Myl|

Al o+ | L i ow - 0w+ |

By combining this estimate with (35) and (36), we obtain
Mg My ZB — 2B . “B
(R R g E e
Since z = O(p) from (31), we have

o[z

ZN

dp
dy

|

0 0
0 Al

|+l

< (O<U>+ [8 |2| ] O(u)) [SEZ§

<

dg — dg
dy — dy

o

(35)

(36)

~~

38)

so when we add the effect of d — d, we find that the right-hand side of (37) is O(u). For the

coefficient matrix in (37) we use Lemma 3.2 with



Lemma 3.2 yields the following estimates:
-1
(H )y = (sz — H21H1_11H12) =AY (I 4+ 0(u+p)) = O(p),
(H )i = O(w),  (H ')z =0(n),
(H)u = Mg +0(p+u).
By combining these observations with (38), we obtain
tp—zp | _ | (H D (H Y Ofu) = O(u)
N (H™ )21 (H™ )2 O(pu) |’
giving (32). ]
Next, we examine the accuracy of As, which is calculated by substituting AX and Ax
into (16b).

Theorem 5.2 Suppose that the assumptions of Theorem 5.1 are satisfied and that As is
evaluated in floating-point arithmetic from the formula (16b), with Ax replacing Ax. We
then have

Asg—Asp = O(pu), (39a)
Asy —Asy = O(u). (39b)
Proof. Standard roundoff error analysis applied to (16b) shows that
As=—s+opX"e— X7'SAz + [|s| + op| X' |e + [X71S[|Az]] O(u). (40)
By differencing (16b) and (40), we obtain
As — As| < [XT'S[|Az — Az| + [|s] + opl X e + [X 18] Az]] O(u). (41)
If i € B, we have from (11) that
X5 Sl = O(n),  |sBl=0(n),  ou|Xz'le =O(n).

By combining these estimates with (32) and (41), we obtain the desired result (39a). For
i € N, we have from (11) again that
XN Sl =0,  swl=0(1),  ou[Xy'le=0(1),
while from (31) and (32) we have
Ay —Azy =O(pu),  Azy = O(u).

By substituting in (41), we obtain (39b). [

The last two results show that the requirements of Theorem 4.1 are satisfied, so that the
algorithm can make significant progress along these search directions. We summarize the
combination of Theorems 4.1, 5.1, and 5.2 as a corollary.

Corollary 5.3 Suppose that Assumption 1 holds and that the problem is nondegenerate,
that is |B| = m with x(B) moderate. Suppose that the procedure for solving (16) satisfies
Condition 1. If the approximate step is computed with o € [0,1/2], then for all sufficiently
small p, the formulae (19), (20), and (21) are satisfied.

13



6 The Bunch-Kaufman Factorization

We show in this section that a procedure for solving (16a) based on the Bunch-Kaufman
factorization satisfies Condition 1, so that the conclusion of Corollary 5.3 applies. Since
much of the analysis of this section can be reused in the analysis of the Bunch-Parlett and
sparse Bunch-Parlett algorithms, we give the details here and refer to them in later sections.
It is sufficient to describe just the first stage of the procedure. Later stages apply the
same technique recursively to the remaining submatrix.
The pivot selection procedure for Bunch-Kaufman [1] is as follows.

Choose ¢ € (0,1); find r such that x; = |T,1];

if y; >0
if |T11] > 6xa
1 x1pivot, P, =1
else
find x,;
if XT|T11| > 5X%
1 x1 pivot, P, =1
elseif |T,.,| > 6y,
1 x 1 pivot; choose P; so that (P, TPl =T,
else
2 x 2 pivot; choose Py so that (P, TPL)y = Ty
end
end
end.

If we denote the 1 x 1 or 2 x 2 pivot block by £ and write

T
PlTPlT:lE ¢ ]

c T (42)

the first step of the factorization yields

R | L (K AR

where T = 7' — CE*C. The algorithm continues by applying this procedure to T. Note
that the y; are generally changed by each stage of the factorization. The submatrix C'E~!
contains the subdiagonals in the first one or two columns of the L factor.

Bunch and Kaufman [1] show that for the particular choice é = (1 ++/17)/8, we have
max [ T| < (2.57) max [Ty, (44)
1,7 J
so there is a modest bound on element growth during each stage of the factorization.
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When applied to canonical matrices, the Bunch-Kaufman procedure selects pivots of
specific types and produces a reduced submatrix that is also canonical. We state these
results in the following two theorems, whose proofs are tedious and are relegated to the
Appendix.

Theorem 6.1 Let one step of the Bunch-Kaufman factorization be applied to a canonical
matrixz that is not degenerate. Then

(a) The pivot block E will be either

(i) a1l x1 block, chosen from among the diagonal elements of A; or

(i) a2 x 2 block, in which the off-diagonal element E13 is one of the elements of B;

(b) The matriz remaining after the elimination is canonical, and the absolute change in
the elements of A is at most O(1);

(¢) Using the notation from (42), we have that |C| = O(1), while

(i) |[E| =O0(p™) and |[E7Y = O(p) if E is a1 x 1 pivot; and
(i) |[E| = O(1) and |[E7'| = O(1) if E is a 2 X 2 pivot.

Theorem 6.2 Let one step of the Bunch-Kaufman factorization be applied to a degenerate
canonical matriz. Then

(a) The pivot block E will be either

(i) al x1 block, chosen from any of the diagonals (large or small); or
(ii) a2 x 2 block, in which all the elements are O(p + u);

(b) The matriz remaining after the elimination is canonical (not necessarily degenerate),
and the absolute change to the remaining matriz is O(p + ).

Because of Assumption 1, our initial matrix in (16a) is canonical. Barring pathological
growth in the remaining submatrices, one of Theorems 6.1 and 6.2 applies at every stage of
the Bunch-Kaufman factorization.

If B is square in the original matrix (corresponding to a nondegenerate linear program),
then the remaining matrices encountered at every stage of the factorization are not degen-
erate. After a 1 x 1 pivot, the dimensions of B are unchanged, while a 2 x 2 pivot shrinks B
by exactly one row and column, so it remains square. When a pivot causes B to disappear
altogether, the reduced matrix has the form A + O(p + u). It follows that in the case of
square B, Theorem 6.1 is sufficient to analyze the entire factorization. The following result
gives the backward error analysis for the factorization in this case.
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Corollary 6.3 Let the Bunch-Kaufman factorization be applied to a canonical matriz T in
which B is square. Then, for all sufficiently small p, we obtain computed factors L and D
such that )

LDL" = PTPT + PAPT, (45)
where A is a canonical error matriz associated with T

Proof. We prove the result by an induction argument on the dimension n = m + n of
the matrix T'. The induction is made slightly more complex than usual by the form of the
canonical matrix, notably, the presence of the square matrix B of dimension m < n.

For n = 1, we must have m = 0 and so trivially P = 1, L = 1, D = T};. Therefore (45)
holds with A = 0.

For n = 2, we have two cases m = 0 and m = 1. For m = 0, there are two elements
of magnitude Q(x~') on the diagonal, while the off-diagonals are O(x + u). Hence, a 1 x 1
pivot is chosen. If there is no pivoting, the first step of elimination yields

jle = To1/Th1 + |To1/T11|0O(0),
Dll - T117

A

Doy = Top = T5y/Tha + (| Toa] + 15,/ T1a|)O(u).
Since L has unit diagonals, we obtain by expanding the factors that

0 |T21|O(U)

=T+ A
Tn|O(u) |T2/T1|O() + [Tp]O(u) 5

LDLT =T +
where )
|A[ < [T'|O(u) + O(u),

so A is a canonical error matrix associated with 7. The same logic applies if pivoting occurs.

In the remaining case m = 1, the pivot is 2 x 2, we have L= I, P=1,and D= T, and
(45) holds trivially with A = 0.

We now examine a canonical matrix of dimension n > 2 in which B is square, and examine
the first stage of the factorization. Because the matrix is canonical and nondegenerate,
Theorem 6.1 applies. For some permutation matrix Py, we have from (42) and (43) that the
first stage yields partial factors Ly and ﬁl, where

R I 0 A F 0
Ll:lCE‘l—I—AL 1]’ Dlzlo T‘|‘AD]7 (46)
where
ALl < |C[|E7YO(u), |Ap| < [T10(u) + |C||E7H|CI"O(u) = |T|0(u) + O(u).

Note that Ap is a canonical error matrix corresponding to T By the proof of Theorem 6.1,
the QQ, 2) submatrix of D is canonical, so we use the inductive hypothesis to deduce that
the L, D factors of this submatrix satisty

LyDy LY = Py(T 4+ Ap)PL + P, AP (47)
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for some permutation matrix P, and some canonical error matrix A, corresponding to (T +
Ap). We compose the overall factors of T as follows:

. 1 0 . E 0
L:[E¢E4+Am@]’ D:[o m]’ P:[ééib%
Now, -
IR E Ag)' P,
MHF:[}MC+AQ Lbﬂg+gzgigﬁ%+gAJ§]’ (48)
where
Ay = ALCT + CAT 4+ ALEAT, Ay = ALE,
and so

A < CHETICITO(u) = Ofu), || < [CIETY|E[O(u) = O(u).
By substituting (47) and (46) into (48), we obtain

it E (C+2q) Py
P(C+20) Py [T +Ap+CETCT 4 A+ A PY

B E (C+ AP

T PO+ BT+ Ap+ A+ Ay PF

= PTPT + PAPT,

where .

~_por| O Aj B
A=h [Az Ap + A1+ A, £

Since |A1] = O(u), |A;] = O(u), and Ap and A; are canonical error matrices corresponding
to T, we have

Al < pr| Y . P
|Ag| |Ap| 4+ |Ar] 4 |Ag]

0 0
0 |T
< O(u) +|T|0(u).

< 0@U+f¥[ 130@0

Hence, A is a canonical error matrix corresponding to 7T'.

We complete the proof by noting that Theorem 6.1 can be applied to the remaining
matrix, because it is also canonical and nondegenerate. [

Given the system Tz = d and the data P, [A/, and D from the factorization, the computed
solution 2 is found by performing two vector permutations with P, triangular substitutions
with L and j/T, and a blockwise inversion of D). The 2 x 2 diagonal blocks in D can be
handled by the Gaussian elimination procedure outlined in the following technical lemma,
which is proved in Appendix A.3. It is easy to show that the elements of the pivot block ¥
satisfy the condition (49).

17



Lemma 6.4 Consider the 2 x 2 linear system Ey = g in which E is symmetric with
|Evi] < 6[Eha|, | Eyy||Ea| < 6%|Evaf?, (49)

for some 6 € (0,1). Then if we compute the solution by applying Gaussian elimination to

the permuted system
Eiy Ea Y1 92
= ) 50
[En E12][?Jz] [91 (50)

then the computed solution § satisfies

(E+Agp)y =g,

where

As] < [E|O(). (51)

The additional error that is introduced during recovery of the solution with the computed
factors L, D, and LT is quantified in the next result.

Lemma 6.5 Suppose the assumptions and notation of Corollary 6.3 hold. Then the com-
puted solution % to the system LDLTz = Pd salisfies

(LDLY + PAPT)z = Pd, (52)
where A is a canonical error matriz associated with T

Proof. From standard results for triangular substitution, the computed solution of Lz, =
Pd satisfies o ) )
(L+ Ap1)z, = Pd, |Az1| < |L|O(u).

A similar result holds for triangular substitution with the transpose IT.

For solution of ﬁzb = Z,, we note that D is block-diagonal with 1 x 1 and 2 x 2 blocks.
For the 2 x 2 pivot blocks that arise in the Bunch-Kaufman procedure, the assumptions of
Lemma 6.4 hold, so the computed solution 7 of a 2 x 2 subsystem Ey = ¢ satisfies

(E+Arp)j=g, |Agl=|E|O(u). (53)

When F is a 1 x 1 block, the estimate (53) holds trivially. Hence, the computed solution Z,
of Dz, = %, satisfies

(D + Ap)zy = Za, |Ap| < |D|O(u).

By combining the error expressions for the three component systems, we find that our
computed solution Z satisfies

(L+Ap)(D+Ap)(L 4 Apy)T2 = Pd.
Multiplying the matrix products, we find that (52) is satisfied with

P|AIPT <|L|ID||L]TO(u) 4+ O(pu + u?).
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From our earlier discussions on the composition of L and D, it is easy to see that the
absolute matrix product |L||D]|L|T contains all O(1) elements, except for the large diagonals,
which occur in the same positions as in PTPT. Hence PAPT is a canonical error matrix
corresponding to PT PT, and our proof is complete. [

We can now summarize the effects of roundoff error on the entire solution process for
(16) in the following theorem.

Theorem 6.6 Suppose T' is a canonical matriz in which B ts square. Then, for all suffi-
ciently small p, the Bunch-Kaufman factorization followed by the solution process outlined
above satisfies Condition 1.

Proof. As we noted immediately following Condition 1, the actual right-hand side may
differ by terms of O(u) from its “theoretical” value d. From (52), the computed solution 2
to Tz = d satisfies o ) )

(LDL™ + PAPT): = d,
Substituting from (45), we obtain
(PTPT + PAPT + PAPT): = Pd,

so Condition 1 follows when we set A = A + A. n

We have shown that in the case of a nondegenerate linear program, the procedure based
on applying Bunch-Kaufman to (16a) leads to approximate steps (@,&;, 1\3) that satisfy
the conditions of Theorem 4.1. The estimate (20) implies that during the final iterations of
a primal-dual algorithm, near-unit steps can be taken along these directions without leaving
the nonnegative orthant. Moreover, if the centering parameter o is small or zero, a large
reduction in the duality gap p can be expected. In the extreme case o = 0 (the “affine-
scaling” choice), linear convergence with a rate constant of O(u) can be attained if the
actual step length is close to &*. Most practical algorithms choose the step length to be a
fixed multiple — typically .95 or .9995 — of &*, and indeed these methods often converge
rapidly during their final stages. For algorithms that use a more theoretically justifiable
definition of step length the story is not, unfortunately, this simple. In [21, Section 4], for
instance, extra restrictions are applied to « to ensure that (12) and (14) continue to hold at
the next iterate. These restrictions may result in « being much smaller than one. This case
is analyzed in [21, Section 4], so we do not repeat it here.

7 The Bunch-Parlett Factorization

The Bunch-Parlett searches the entire remaining matrix for each pivot, not just one or two
columns. The pivot selection procedure is as follows.

Choose 6 € (0,1), Xot = |T}s] = maxiz; |15, Xaiag = |Tpp| = max; |Ty);
if Xdiag Z 5X0ff
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s =1 and choose P, so that (P, TPl); =T,
else

s =2 and choose P, so that (P, TPl)y = T,
end.

The elimination step is identical to Bunch-Kaufman, and the process of using the LDLT
factorization to solve the system Tz = d is the same as in the preceding section. As in
Bunch-Kaufman, the value 6 = (1 + \/ﬁ)/S leads to the modest bound of 2.57 on element
growth at each stage.

When applied to canonical matrices, the Bunch-Parlett factorization proceeds in three
stages:

1. All the diagonal elements of A are selected as 1 x 1 pivots;
2. 2 x 2 pivots of the type described in Theorem 6.1(a) are chosen;

3. When no more 2 x 2 pivots like this are available and the remaining matrix contains
only elements of size O(u + u), a combination of small 1 x 1 and 2 x 2 pivots is used
to complete the factorization process.

We prove this assertion in the following lemma.

Theorem 7.1 Suppose that the Bunch-Parlett procedure is applied to a canonical matriz.
Then the factorization proceeds according to the three-stage outline above. If the canonical
matriz has B square and is nonvacuous, the factorization is completed by stages 1 and 2;
stage 3 s vacuous.

Proof. Assuming that A is not vacuous, we have at the pivot selection step that y.g =
O(1) and Ydiag = Q(p™'). The pivot element will therefore be one of the large diagonals
corresponding to A. The remaining matrix is updated by subtracting C E~1C, where clearly
C'=0(1) and E~!' = O(p). Hence, the remaining matrix retains canonical form.

We can apply this argument inductively until all the diagonals in A are exhausted. At
the end of stage 1, the remaining matrix has the form

0 B
BT 0

] + O(p +u). (54)

Stage 2 now begins. If B is not vacuous, we have yor = O(1) and Xaiag = O(pt +u). In
fact, by the assumption B = (1), we have xox = (1), and the element T, that achieves
the maximum comes from B. The 2 x 2 block with off-diagonal element T, is selected as
the pivot. After the elimination step, the size of B is reduced by one row and column. The
proof of Theorem 6.1(b) can be applied again here to show that the remaining matrix is also
canonical, so 2 x 2 pivots of this type will continue to be selected until B vanishes.

The number of steps in stage 2 is min(rows(B), columns(B)). At the end of this stage,
the remaining matrix is square with dimension |rows(B) — columns(B)|, and all its elements
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have size O(y+u). In stage 3, both 1 x 1 and 2 x 2 pivots may be used to factor this matrix.
It B is square, the factorization is complete after stage 2. [
The other major results of Section 6 continue to hold when the Bunch-Parlett algorithm
is used instead of Bunch-Kaufman; only trivial adjustments to the analysis in Section 6 and
Appendix A.1 are necessary. We summarize the conclusions in the following theorem.

Theorem 7.2 Suppose T' is a canonical matriz in which B ts square. Then, for all suffi-
ciently small p, the Bunch-Parlett factorization followed by the solution process outlined in
Section 6 satisfies Condition 1.

8 The Sparse Bunch-Parlett Factorization

Several authors (notably Fourer and Mehrotra [4]) have proposed a sparse variant of the
Bunch-Parlett factorization that compromises between maintaining sparsity and limiting el-
ement growth in the remaining matrix. We outline the pivot selection procedure as described
by [4], with a slight modification noted below.

For each index : = 1,2,...,n we define the degree n; to be the number of off-diagonal
nonzeros in row ¢. We also define an estimate of the joint nonzero content of rows ¢ and j by

ﬁij = mm(m + n; — 4, n — 2)

A 2 x 2 pivot block
T. T.
E — k3 17 55
[ T Tj ] ()
is termed oxo if both of T}; and T}; are zero, tile if one of T}; and T}; is zero, and full if both
of T;; and T}; are nonzero. We define a cost associated with using (55) as the pivot block in
each of these three cases by

oxo: (n; —1)(n; — 1),
tile: (TLZ — 1)(ﬁ2] + 1) if T“ == 0, (n]‘ — 1)(ﬁ2] + 1) if T]‘]‘ == 0,
full: 2

(¥R
The cost is an estimate of the fill-in associated with using (55) as the pivot block.

For prospective pivots, we define stability criteria in terms of the usual constant 6 € (0,1)
and the off-diagonal norms y; defined in (29). Any 1 x 1 pivot must satisfy

T3 [y < 2/6, (56)
while a 2 x 2 pivot (55) must have
-1
Ty T Xi 1/é ]
< ) 57
HTM Tjj] [Xj]_[lw (57)

The pivot selection procedure is as follows.
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for r=1,2,...
for ¢ withn; =7
consider T}; with degree r;
if any of these elements satisfy (56)
accept as a 1 x 1 pivot and exit;
else label it as unstable;
end

for unstable pivots T}; from the previous loop
consider 2 x 2 pivots involving T};, with costs at most
(r—1)%, (r —1)(2r — 3), and (2r — 4)?
for oxo, tile, and full pivots, respectively;
if any of these blocks satisfy (57)
accept as a 2 x 2 pivot and exit;
end
end.

The pivot selection pattern for the sparse Bunch-Parlett algorithm is essentially the same
as for the Bunch-Kaufman algorithm, as described in Theorems 6.1 and 6.2. We prove this
result in the appendix, since the analysis differs a little from the Bunch-Kaufman case.

Theorem 8.1 The results of Theorems 6.1 and 6.2 hold when the sparse Bunch-Parlett
factorization is used in place of the Bunch-Kaufman procedure.

To obtain this result, we modified the acceptance condition (56) for 1 x 1 pivots. In the
description of [4], the right-hand side is 1/6 rather than 2/6. With the original choice, the
sparse Bunch-Parlett algorithm applied to a degenerate canonical matrix could allow another
type of pivot: a 2 x 2 pivot in which one diagonal is from A and the other has size O(y +u).
A pivot of this type is poorly conditioned and will generally lead to instability during the
blockwise inversion of D.

The other major results of Section 6 also continue to hold when the sparse Bunch-Parlett
algorithm is used in place of Bunch-Kaufman. We summarize the conclusions in the following
theorem.

Theorem 8.2 Suppose T' is a canonical matriz in which B is square. Then, for all suf-
ficitently small p, the sparse Bunch-Parlett factorization followed by the solution process
outlined in Section 6 satisfies Condition 1.

9 The Degenerate Case

When the linear program (1), (2) is degenerate — |B| # m — the three factorization proce-
dures can no longer run to completion with just the two kinds of pivots described in Theorem
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6.1. The nonsquare shape of B in the matrix (34) means that pivots of size O(u+u) — either
1 x1or2x2— are used at some point in the factorization process. The factorizations
fail only if these pivots are exactly zero, which happens often on small problems but not
otherwise. The more common outcome is that the interior-point algorithm makes only slow
or erratic progress after p has achieved a certain (small) value. In this section we sketch the
reasons for this outcome.

In all the factorizations above, the large diagonal elements in X' Sy are used as 1 x 1
pivots. Even though these pivots are not necessarily used before any others (except in the
Bunch-Parlett algorithm), the factorizations behave as if they were solving the system (16)
in the equivalent, partitioned form

NXnySyNT B AN | —ry + NS Xn[—(ro)n + sy — ouXy'e]
BT —X3z'55 Azg | —(r)p +sp —ouXg'e

Azy = X5'Sn [(TC)N—SN—I—U/LX]QIe—I—NTA)\]. (59)

The coefficient matrix in (58) is an O(p) perturbation of the matrix

Edt )

Since B is well conditioned by Definition 2, the matrix in (60) has 2min(|B]|,m) nonzero
singular values of magnitude (1). In the nondegenerate case, (60) is well conditioned.
Otherwise, it has |m — |B|| zero singular values. When |B| < m, the null space of (60) is

spanned by B
VA
Kt (61)

where 7 is an m x (m — |B]) matrix of full rank such that BTZ = 0. When |B| > m, the
null space of (60) is spanned by the matrix

5

where 7 spans the null space of B. For small u, these null spaces are not altered much by the
perturbation of size O(u) that is present in the matrix (58), because the nonzero singular
values of (60) are well separated from zero. Perturbations in the solution of (58) due to
roundofl will occur mainly in the space of small singular values. Hence, when |B| < m, the
perturbations occur mostly in the range space of the matrix (61), that is, in the components
of AX. Similarly, when |B| > m, the perturbations occur in the range space of the matrix
(61), that is, in the components of Axp.

The main source of difficulty is inaccuracy in the computed residual vectors r, and r.
which, as mentioned above, contain errors of O(u). In the case |[B| > m, these perturbations
are magnified by the inverses of the small singular values, usually leading to errors of size
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about O(u/p) in the components of Azg. The large relative errors in Azp induce large
relative errors in Asp through the formula (16b). The step length to the boundary o* may
therefore be sharply curtailed because of the nonnegativity requirements (17a). In the case
|B| < m, the large relative errors in AX induce errors in Axy through the formula (59),
while in turn induce large relative errors in Asy through (16b). The step length may again
be curtailed as a result.

Errors from sources other than the vector r are less significant.

If we have a strictly feasible starting point (see (13)), then we can simply set r = 0
throughout the algorithm. In this case, we can fix r at zero in the computations and avoid
the problem above. It is usually not easy to find such a starting point, however, so some
thought should be given to other ways of dealing with the problem.

One option is to simply terminate the algorithm when it stalls, declaring success if both p
and r are small. This option works well for most purposes, since stalling usually occurs only
after p is reduced to O(u), by which time the problem has usually converged to acceptable
accuracy. Fourer and Mehrotra [4] report that the convergence criteria are usually satisfied
before the ill effects of roundoff are seen. Our testing in Section 10 allows a similar conclusion.

A second option is to switch to a termination procedure when the interior-point algorithm
stalls. A finite termination procedure (see, for example, Ye [23]) or crossover to the simplex
method (Meggido [12]) could be activated.

A third option is simply to fix r at zero in the computations once it has reached the O(u)
level, because at this stage our current point is feasible to within the limits of floating-point
arithmetic. By doing so, we are effectively introducing a perturbation into the problem to
freeze the infeasibility at its current level. This perturbation has an interesting effect: It
moves the solution to a particular vertex of the previously optimal face, changing the B UN
partition appropriately. If we continue to run the interior-point algorithm to higher accuracy,
it eventually converges to this vertex, but only after going through many more iterates (and
taking some sharp turns in the process). The result of this process is similar to what we
would achieve with a crossover to simplex, but the computational cost would generally be
much higher.

10 Computational Experiments

We report here on some computational experiments that demonstrate the effects described
above. Our testbed algorithm is the infeasible-interior-point path-following algorithm de-
scribed in Wright [20]. In exact arithmetic, this algorithm achieves superlinear convergence
because it eventually always takes affine-scaling steps (o = 0 in (5)) with step length «
approaching 1. This algorithm performs well on practical problems, but is not as fast as
codes that use the Mehrotra predictor-corrector heuristic, for which no solid convergence
theory exists, except in the nondegenerate case. The asymptotic behavior in finite precision
is quite similar for the two algorithms.

To show that the finite precision effects are not confined to “nice” problems, we generate
problems with fairly wide variations in the components of A, x5, and s3. The matrix A is
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dense and random, with elements defined by

Ay o= 710973 j=1,...,n,
Ay = (r=5)107° i=2....m, j=1,...,n,

where every instance of 7 is selected from a uniform distribution on the interval [0,1]. (We
choose all the elements in the first row of A to be positive to ensure that the feasible region
is bounded.) We control the size of the index sets B and A (to control the amount of
degeneracy) and set

N ={1,2,...,|N|}, B={1,2,....n}\N.
We choose a particular solution (A*, 2*, s*) by setting

)\*267 S*B:O7 x}ﬂ\f:()v
S =102 se N,  ar=10""", ieB,

K3

where each 7 is as before. The vectors b and ¢ are determined by the choices of A and
(A, 2, s%).

The LAPACK Bunch-Kautman factorization routines dsytrf and dsytrs are used to
solve (16a). These routines (and the rest of our code) use double-precision arithmetic, giving
u ~ 107! on the SPARC-5 on which these results were obtained.

We report on problems with m = 6, n = 12. (In problems smaller than this, exactly zero
pivots often occur in degenerate cases, leading to breakdown.) Termination occurs when
p < 1072 — an artificially stringent criterion, chosen to give us a clear look at asymptotic
effects.

The first result is for a nondegenerate problem, for which |B| = m = 6. Table 1 shows the
sizes of p and ||r]| on each iterate. For the reasons that we outlined immediately following
Condition 1, ||r|| stabilizes at a magnitude of O(u). The duality gap p does not converge
subquadratically (as it would in exact arithmetic) but rather exhibits extremely fast linear
convergence, with a rate constant of about 1071°. This is exactly the effect predicted by
formula (21) for the affine-scaling steps that are taken on the last four iterations.

To see that the pivots have the properties predicted by Theorem 6.1, we examine the
matrix D from the Bunch-Kaufman factorization. Table 2 shows D at iteration 17, when
1~ 1077, As expected, there are six 1 x 1 pivots of magnitude Q(p™!), and six 2 x 2 pivots
in which the diagonals are tiny and the off-diagonals are ©(1). The same structure is present
in D at every iteration after iteration 15.

Our second example is for a dual degenerate problem with |[B| = 6 > m. As can be
seen from Table 3, the algorithm achieves fairly high accuracy after about 20 iterations, but
no further improvement can be made after that point. The behavior is consistent with the
discussion of Section 9. It suggests that the results of Section 6 are “tight,” in that we cannot
prove that “useful” search directions are obtained for arbitrarily small p.

Examination of the D factor for the second example (Table 4) shows that the pivot
pattern is in line with the predictions of Theorems 6.1 and 6.2. Together, these results imply
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Table 1: Nondegenerate problem: m = 6,n = 12

k| logiope  logiglr*[li  Affine Step?
1 5.4 3.1

2 4.7 2.3

3 4.3 1.6

4 38 0.8

5) 3.1 -12.0

15 -3.2 -14.0

16 -4.6 -13.7 *

17 -7.2 -14.4 *

18 -12.3 -14.1 *

19 -22.1 -13.8 *

20 -33.3 -14.2  termination

Table 2: The D factor at iteration 17 of the nondegenerate test problem (% = magnitude
less than 107°)

Row/Column Pivot Block
12 ¥ 94(1)
94(1) «
3.4 « -91(2)
91(2) o«
5 .26(7)
6 30(11)
7 .33(10)
8 A7(7)
9,10 -.30(-5)  .T1(2)
71(2) h
11,12 _27(-3)  -.15(2)
15(2) o«
13,14 «  -31(0)
-.31(0)  -.49(-5)
15,16 * .16(0)
.16(0) *
17 27(4)
18 .32(6)
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Table 3: Dual degenerate problem: m = 6,n =12, |B| = 8

k| logigpe  logiolr*]l  Affine Step?
1 5.4 3.1
19 -6.0 -13.8
20 -9.8 -14.1 *
21 -13.6 -14.2 *
22 -14.8 -13.8 *
23 -15.4 -13.2 *
99 -17.5 -13.5
100 -17.5 -13.4

that there are exactly min(m, |B|) of the stable 2 X 2 pivots with an off-diagonal from B,
and |N| =n — |B] of the large 1 x 1 pivots. Together, these stable pivots account for

2 min(m, |B]) + V] = n +m — |m — |B] (63)

stages of the factorization, so unstable pivots are used on the remaining submatrix whose
dimension is |m — |B]|. In Table 4, we see that the last two 1 x 1 pivots are unstable, as
expected. As we described in the first part of Section 9, the errors in Azp and Asp are
preventing further progress. On iteration 100, the computed affine step has H&BHOO =
17(6), while its exact counterpart would have ||Azgl|l.c = O(p). By comparing components
of Asp with sp, we find that the step to the boundary is sharply curtailed by the restriction
sg+alsg >0 (cf. (23)). The remaining components of the step do not contain deleterious
errors; we have

1Azx ]l = 39(=18),  [[AN]o = 66(=14),  [Asx]e = 11(—12).

Finally, we consider a primal degenerate problem with |B| = 4 < m. The iteration
schedule in Table 5 shows similar behavior to the dual degenerate problem. The D factor
from iteration 100 is shown in Table 6. All pivots are stable except for the last two 1 x 1
blocks, which again matches the prediction (63). As discussed in Section 9, the deleterious
errors occur in the subvector E\, SO errors are induced in Z\SN and &;N through formulas 59
and (16b). On iteration 100, we have ||AX||. = .32(5) and HZ\SNHOO = .30(7) for the affine
scaling step. The components Azp and Asp are not affected; their oo-norms are .17(—18)
and .51(—12), respectively.

A Proofs of Theorems from Sections 6 and 8

A.1 Proof of Theorem 6.1

We prove (a) by systematically excluding the other possible choices for pivots:
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Table 4: The D factor at iteration 17 of the degenerate test problem with m = 6.,n
12,|B| = 8 (* = magnitude less than 107°)

Row/Column Pivot Block
12 ¥ 95(1)
.95(1) *
3.4 v -92(2)
~.92(2) «
5,6 * .26(2)
26(2) "
7 .86(23)
8 .85(18)
9 .55(20)
10 29(17)
11,12 N 71(2)
71(2) h
13,14 h ~.30(0)
-.30(0) *
15,16 * 15(0)
15(0) *
17 20(-13)
18 -.60(-19)

Table 5: Primal degenerate problem: m = 6,n = 12, |B| =4

k| logigpe  logiolr*]l  Affine Step?
1 5.4 3.1
15 -5.3 -13.9
16 -8.8 -13.7 *
17 -13.7 -14.2
18 -14.0 -11.6
99 -17.6 -13.9
100 -17.6 -14.0
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Table 6: The D factor at iteration 17 of the degenerate test problem with m = 6.,n

12,|B| = 8 (x =magnitude less than 107°)

Row/Column Pivot Block
12 ¥ 95(1)
.95(1) *
3 49(23)
4 53(19)
5 58(19)
6 27(20)
7 53(9)
8 12(21)
9,10 * T1(2)
71(2) h
11,12 h ~.15(2)
~15(2) "
13 25(18)
14 T6(17)
15,16 N ~16(1)
~16(1) *
17 -.15(-8)
18 ~52(-18)

(iii) The pivot is 1 x 1 and is a diagonal element from either the (1,1) or (2,2) blocks of

(iv)

the canonical matrix. Inspection of the Bunch-Kaufman algorithm shows that Ti; is
chosen as pivot if either

T | T
X1 < | ;1| or X1 < |511|

. (64)

Now, since x, is the maximum off-diagonal in some column of (26), we have y, =
O(1), while since Ty; comes from either the (1,1) or (2,2) block of (26), we have
|T11] = O(pr 4+ u). Since ¢ € (0,1) is fixed, we have from (64) that

‘1 = 02 + w2, (65)

Since y; is the magnitude of the largest off-diagonal in some row/column of (26), we
have that y; is the co-norm of some row or column of B. But (65) is incompatible
with B = O(1) and (B) = O(1). Hence |T14| from the (1,1) or (2,2) blocks cannot
be used as a pivot.

A similar argument holds when 7)., is chosen as pivot, where 7)., is one of the small
diagonals.

The pivot is 2 X 2 and involves at least one element from A. Since all the off-diagonals
in (26) are O(1), the quantities x;, ¢ = 1,2,...,n are all O(1). A 2 x 2 pivot with
diagonal elements T7; and 7)., must have

|T11| < 5X17 |T7°7°| < 5XT7
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which implies that Ty; and T, are both O(1). Since all the diagonals of A are Q(p™1),
they cannot be candidates for T} and T,,.

The pivot is 2 x 2, and the pivot block is drawn either entirely from the (1,1) block
of (26) or entirely from the (2,2) block. In this case, Ti, — the element for which
|T1.| = x1 — is O(p 4+ u). Since Ty, has the largest magnitude in its column of (26),
and since its column includes either a row or column of B, we have that one of the rows
or columns of B is O(p 4+ u). As in (iii), we have a contradiction, since this estimate

is incompatible with B = (1) and x(B) = O(1).

This completes the proof of part (a).

We turn to (b), examining the effects of one step of elimination performed with pivot
selection corresponding to the two cases (i) and (ii). For (i), suppose the (¢,¢) element of A
is chosen as the pivot. After symmetric permutation of the canonical matrix, to place the
pivot in the (1, 1) position, we obtain

(A+O0(u+w)u |[NF 0 0
1 N, 0 B N 1
0 NT 0 A

where P is some permutation matrix, V,; denotes the i-th column of N, N is obtained from
N by removing N,;, and A is obtained from A by removing its :-th row and column. Since
(A + O(p +));'| = O(p), the submatrix that remains after elimination is

0 B N N
PIBY 0 0 |PT—P| 0 [AF[NT 0 0]PT+0(u+u)
NT 0 A 0
0 B N
=P| B 0 0 |PT+0(u+n). (66)
NT 0 A

It is easy to see that (66) is canonical, so our result is proved for case (i).

For case (ii), the proof is a little messier. Suppose the diagonals of the 2 x 2 pivot are
the (7,7) element of Fy and the (j, ) element of Fy. After symmetric rearrangement to put
this pivot in the upper left corner, (26) becomes

0 BZ']‘ 0 BZ'.;]‘ NZ'.
By 0 |BL. 0 0
I it I
[4’—15] 0 B 0 B N l"—PT] +O0(p + ),
BL. 0 | BT 0 0
NE o |[NT 0 A

where
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- P 1s some permutation matrix;

- N,. is the ¢-th row of N;

A

- Nis N with N;. removed;

- B, 1s the :-th row of B, with its j-th element removed;

- B, is the j-th column of B, with its ¢-th element removed;
- Bis B with its i-th and j-th column removed.

By the choice of B;j, it is either the largest element in its row or the largest element in its
column of B. From our assumptions on B, we deduce that |B;;| = ©(1). Denoting the pivot
block by F, we have

01

_ 1 0 1
E:BZ][10]+O(M+U), El:—ll()

B ] +O(p + ). (67)

Therefore the elimination step yields the remaining matrix

0 B N 0 B ’
Pl B" 0 o |PT—LP|BL 0 [(1) éHBOT Béf ZXZ']PT+O(ﬂ+u)
NT 0 A N0 s
0 B N
=P| BT 0 0 |PT+0(u+n), (68)
NT 0 A
where . !
B=B—-—B,;B.;, N=N-——Bj,N,.
i i

It is obvious that (68) satisfies Definition 2, except possibly for the conditioning of the
remaining matrix B. This matrix is obtained by pivoting the (z,7) element of B to the
(1,1) position and then doing one step of Gaussian elimination. In fact, we are doing partial
pivoting since, as noted above, B;; is the largest element in either its row or its column.
Hence, the conditioning of the reduced submatrix B is unlikely to differ much from x(B), so
it is reasonable to assert that x(B) = O(1).

We have shown that our stated result holds for both cases (i) and (ii), so our proof of
part (b) is complete.

For part (c), note that C' = O(1) whether the pivot block is 1 x 1 or 2 x 2. For 1 x 1
pivots, we have |E| = Q(g™) and |E~| = Q(u). For 2 x 2 pivots, we have from (67) and

1Bi;| = Q(1) that |E| = O(1) and |E~'| = O(1).
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A.2 Proof of Theorem 6.2

Again, we prove (a) by excluding the other possible choice for a pivot:

(iii) The pivot is 2 x 2 and contains at least one element from A. In a degenerate canonical
matrix, we have y; = O(p +u), ¢ = 1,2,...,n. A 2 x 2 pivot with diagonal elements
Ty, and T, must have
11| < 6x1, |T5r ]| < 60,

which implies that both diagonals are O(p + u), so neither element can come from A.

In the case of either a 1 x 1 or 2 x 2 pivot made up of elements of size O(y + u), we can
use the standard argument about element growth in Bunch-Kaufman (that is, the argument
that leads to (44)) to deduce the result (b). In the remaining case, where the pivot is a
single diagonal element from A, we have in the notation of (42) that |C'| = O(x + u) and
|E| = Q(p™!). Hence, the update to the remaining submatrix is bounded by

[CIIETHIC" = O(u(p +)?),

which certainly has size O(p 4 u).

A.3 Proof of Lemma 6.4

Proof. In floating-point arithmetic, the LU factorization of (50) yields the following approx-
imate LU factors:

Ey/Eia+6 17 0 Fis— EnuFsn/FEis+6 |’

where
- [
Eyy
It is well known that for triangular substitution applied to any triangular system Uz = h,
the computed solution Z satisfies (U + Ay)z = h, where |Ey| = |U|O(u). By applying this
observation to each of the matrices in (69), we find that the computed solution g of (50)
satisfies

O(U), 52 = |E12|O(U) + |E11E22/E12| O(U)

1 0 Eis + 64 Eas 4+ 65 Y1 _| 9 (70)
Ey/Ei2+63 1 0 Eyy— By FEyn /By + 66 U2 a |’

where

03 = 01+ |Eyi/E1a| O(u) = |Ey /Ea| O(u),

64 = |E12]0(u),

65 = |FE92]O(u),

03 + (|Erz| + |En1 Eya/ Era]) O(u) = |E|O(u) 4 |Ey1 Eyy / Era| O(u).

>
)
Il
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By multiplying out the coefficient matrix in (70), we obtain

Eig+ 64 Eap+ 05

1
Eyw 467 FEip+6s |’ (1)
where
o7 = |E12|ds + |Er1/ Er2] 64 = |E11|O(0),
0s = |E11/FE12| 65 + |Eaz|ds + 04 (|E1a] + | F11F2a/ Fi2|) O(u)
= [Enu|O(u) + [EiEy/ En| O(a) + [£12|O(u).
= |E12|O(U)
(The last equality follows from (49).) Hence, (71) can be written as
0 1
where Ag satisfies the bound (51). n

A.4 Proof of Theorem 8.1

Proof. We start by proving the analog of Theorem 6.1(a). As in the earlier proof, we
systematically exclude the three other possible choices of pivots.

(iii) The pivot is 1 x 1 and is a diagonal element from either the (1,1) or (2,2) blocks of
(26). Then this pivot (T}, say) will be O(p 4+ u). According to the stability criterion
(56) we then have y; = O(u + u), which implies that one of the rows or columns of B
is O(p 4+ u). However, this estimate is incompatible with B = Q(1) and x(B) = O(1),
so this kind of pivot cannot occur.

(iv) The pivot is 2 x 2 and involves at least one diagonal element from A. First, we show
that we cannot have both diagonals from A. If this were the case, then at least one
of these diagonals (7T}, say) would have been considered as a 1 x 1 pivot at an earlier
point in the algorithm. But if it was considered, it would have been accepted, since

T3 xi = O(p)O(1) = O(p) < 2/6

for sufficiently small p. Hence, at most one of the diagonals is from A.

Without loss of generality, suppose in (57) that T} is from A while the remaining
diagonal T;; is O(p + u). In fact, we have

Ty = Q(ﬂ_l)v Tjj = O(:u + u)v Tij = 0(1)7

-1
5 31l % 21
T Tj =Ty T

and so
B 1
| 15155 — T3]
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Hence, from (57), we have

R
=1 T X

From the second row of this inequality, we have

< |T3Tj; — T [ %g ] = [ 883 ] :

1
Xi < 77 01) = O(p).
| 7]
But y; is the oo-norm of one of the rows or columns of B, so this estimate contradicts

our assumptions on B. Hence, this type of pivot cannot occur.

The pivot is 2 x 2, and the pivot block E is drawn either entirely from the (1, 1) block
of (26) or entirely from the (2,2) block. In this case, all elements of F are O(u + u).
From (57), we have as above that

Ry
—Ti; Ty X

Taking the second row of this relation, we obtain

< |TuTj; — TAO(1).

T + | Tlxs < 1Ty — T30 < (|TaTy| +17,5]) O(1), (72)

where, by definition, y; and x; are both nonnegative. Consider two cases. When
|T:;1* > |T:;T;;| we have from (72) that

T3xi < |T5120(1) = xi = O(|T;]) = O(p + u).

For the reasons outlined earlier, the assumptions on B are inconsistent with this bound
on Yy, so this case cannot hold. For the other case |T;;|* < |T:;T};|, we have

Ty < |T:T510(1) = x5 = O(|T};]) = O(p +u),

which is also disallowed by our assumptions. Hence, pivots of this type cannot occur.

The proof of the remaining parts (b) and (c) of Theorem 6.1 is identical in this case.

Turning now to the case of a degenerate canonical matrix and the analog of Theorem
6.2, we start by showing that no 2 x 2 pivots may contain diagonal elements from A.

Note that for a degenerate matrix, the off-diagonals, and hence the quantities y;, all
have size O(p + u). If the pivot is a 2 x 2 block in which both diagonals are from A, then
one of them (7;, say) must have been considered previously as a 1 x 1 pivot. But if it was

considered, it would have been accepted, since

T xi = O(p)O(p 4 1) < 2/6.

Hence, this type of pivot cannot occur.
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If just one of the diagonals is from A, this diagonal element (7};, say) must not have
been considered earlier as a 1 x 1 pivot, since then it would have been accepted for the
reason described above. Hence, the other pivot Tj;, which has size O(y+u), must have been
considered as a 1 x 1 pivot and rejected. Because of (56), T;; must satisfy

)

On the other hand, since the 2 x 2 pivot is accepted, we must have

Al
—Ti; Ty X
Consider first the case of T > [T;;T};]. Then from the first block row in (74), this inequality
implies that

< -7 15 |- (74)

1 < QT?E

< i
Since |T;;| < i, we have
1
T3] < 2|Ti5l5 = O(p + w),
which contradicts our assumption that T;; has size Q(g~!). The remaining case has TZ% <
|T::T;;|. From (74) and (73), we have
1 16
I Tislxs < 20Tyl 5 < 20Tyl 5500 = [ Thilxa,

which is a contradiction. Hence this kind of pivot — in which exactly one of the diagonals
comes from A — cannot occur either, and we are done.

For the analog of part (b) of Theorem 6.2, we have from (56) and (57) and the definition
of C'and E in (42) that

BCT| < [BYICT| = 0(1/8) = O(1),
Hence, the update matrix C E~'C7 is bounded as follows:
[CETICT = |CllO(1) = Ok + ),

giving the result. [
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