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AbstractSome implementations of interior-point algorithms obtain their search directionsby solving symmetric inde�nite systems of linear equations. The conditioning of thecoe�cient matrices in these so-called augmented systems deteriorates on later itera-tions, as some of the diagonal elements grow without bound. Despite this apparentdi�culty, the steps produced by standard factorization procedures are often accurateenough to allow the interior-point method to converge to high accuracy. When the un-derlying linear program is nondegenerate, we show that convergence to arbitrarily highaccuracy occurs, at a rate that closely approximates the theory. We also explain anddemonstrate what happens when the linear program is degenerate, where convergenceto acceptable accuracy (but not arbitrarily high accuracy) is usually obtained.1 IntroductionWe focus on the core linear algebra operation in primal-dual interior-point methods for linearprogramming: solution of a system of linear equations whose coe�cient matrix is large,sparse, and symmetric. In existing codes, the linear system is formulated in two di�erentways. One formulation, usually called the augmented system formulation, has a symmetricinde�nite coe�cient matrix. The other involves a more compact (but generally denser)symmetric positive-de�nite matrix. A diagonal matrix D is involved in both formulations,where D has the disconcerting property that some of its elements grow to 1 as the iteratesapproach the solution set. This blowup in D can produce ill conditioning in the coe�cientmatrix of the linear system. In this paper, we examine the augmented system and look athow various factorization algorithms for this system behave as this ill conditioning develops.We restrict our study to three standard factorization algorithms | the Bunch-Parlett,Bunch-Kaufman, and sparse Bunch-Parlett algorithms. The last of these has been used in at�Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, IL 60439. This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38. 1



least one practical interior-point code for linear programming (see Fourer and Mehrotra [4]).We assume that no attempt is made to improve the conditioning of the underlying linearsystems by guessing whether each component of the solution is at a bound. Preprocessing ofthis kind detracts from the intuitive appeal of interior-point algorithms, namely, that theyavoid explicit guessing about the contents of the basis.In numerical experiments with feasible linear programs, we �nd that two distinct scenariosarise.1. Even when the iterates are very close to the solution set, the computed search directionsare good enough to produce rapid convergence of the algorithm at nearly the ratespredicted by the theory. This performance is a little surprising. Since the matrixis poorly conditioned, we might have expected the computed directions to be tooinaccurate to allow the algorithm to make much progress. This scenario usually occurswhen the underlying linear program has a unique primal-dual solution.2. Near the solution, calculation of the search direction fails because of breakdown of thematrix factorization, or else the computed search direction is so inaccurate that theinterior-point method can move only a tiny distance along it before violating a bound.This scenario usually occurs when the underlying linear program is degenerate.Our analysis in this paper explains these observations through a close examination of thebehavior of factorization algorithms on the highly structured matrices that arise in ourapplication. The e�ects of roundo� error are tracked by using fairly standard techniquesfrom backward error analysis.The most successful interior-point methods for practical linear programming problemsare primal-dual methods. The best-known potential-reduction algorithm in this class wasdevised by Kojima, Mizuno, and Yoshise [8]; the review paper of Todd [16] contains awealth of historical information on potential-reduction methods. Early developments inpath-following methods are surveyed by Gonzaga [6], while Mizuno, Todd, and Ye [14]describe an important variant of these methods that does not require the iterates to staywithin a cramped neighborhood of the central path. Zhang [24] extended the path-followingapproach further, allowing the iterates to be infeasible while retaining global convergenceand polynomial complexity; see also Wright [20]. Some of these developments took place inthe context of linear complementarity, a class of problems that includes linear programmingas a special case.On the computational side, the OB1 code described by Lustig, Marsten, and Shanno [9]generated search directions of the type described in this paper. They compute the maximumstep �� that could be taken along this direction without violating the positivity bounds, thenset the actual step length to .995 ��. Mehrotra's [13] predictor-corrector search directiondi�ers from the one analyzed in this paper, but under our assumptions below, the di�erencevanishes as the solution is approached. Newer codes, such as those described by Mehrotra[13], Fourer and Mehrotra [4], Lustig, Marsten, and Shanno [11], Vanderbei [17], and Xu,Hung, and Ye [22] all implement Mehrotra's predictor-corrector strategy. These newer codes2



continue to use step lengths based on ��; hence, we pay particular attention to the e�ect ofroundo� error on this quantity.Previous analysis of the ill-conditioned linear systems that arise in interior-point and bar-rier methods has been carried out by Poncele�on [15] and Wright [21]. Poncele�on [15] showedthat these systems are not too sensitive to structured perturbations from a certain class pro-vided that the underlying optimization problem is well conditioned. Wright [21] analyzedGaussian elimination in the context of interior-point algorithms for linear complementarityproblems.Simultaneously with the original version of this paper, and independently, Forsgren, Gill,and Shinnerl [3] performed an analysis of the augmented system in barrier algorithms. Theiranalysis tends to be more detailed than ours, and a few of the results overlap. However, theyassume that the factorization algorithms select the large diagonal elements as pivots beforeany others, a pattern that does not generally occur in practice.Vavasis [18] gives an illuminating discussion of the augmented system in other contextsbesides optimization. He presents a solution method that is provably stable in a certainsense, but which is not guaranteed to produce \useful" steps in the sense of this paper. Du�[2] also discusses augmented systems in a general context and describes a sparse factorizationprocedure.2 Interior-Point MethodsWe consider the linear program in standard form:min cTx; Ax = b; x � 0; (1)where x 2 IRn and b 2 IRm. The dual of (1) ismax bT�; AT�+ s = c; s � 0; (2)where s 2 IRn and � 2 IRm. A vector triple (��; x�; s�) is a primal-dual solution if x� isfeasible for (1), (��; s�) is feasible for (2), and s� and x� are complementary; that is,x�T s� = cTx� � bT�� = 0: (3)We denote the set of primal-dual solutions by S.Each iterate (�; x; s) of a primal-dual interior-point method satis�es the strict inequality(x; s) > 0. Search directions are found by applying a modi�cation of Newton's method tothe following system of nonlinear equations:Ax� b = 0; AT�+ s� c = 0; XSe = 0; (4)where X = diag(x1; x2; : : : ; xn) and S = diag(s1; s2; : : : ; sn). Speci�cally, the search direction(��;�x;�s) satis�es the linear equations264 0 AT IA 0 0S 0 X 375264 �x���s 375 = 264 �AT� � s+ cb�Ax�XSe+ ��e 375 ; (5)3



where � 2 [0; 1] is known as the centering parameter and the important quantity � is de�nedby � = xTs=n:The step length � along the search direction is determined by various factors; minimally, theupdated x and s components are required to stay strictly positive:(x; s) + �(�x;�s) > 0: (6)At least half the components of (x; s) | the critical components | become very close totheir lower bound of zero during the later stages of the algorithm. Despite this property, thestep length � can be quite close to one without violating the property (6), when the searchdirection (��;�x;�s) is an exact solution of (5). If perturbations caused by roundo� arepresent in the critical components of (��;�x;�s), the requirement (6) can severely curtailthe allowable step length and slow the convergence. Hence, it is important that the criticalcomponents of (��;�x;�s) be computed to high relative accuracy. This point provides thefocus for much of our error analysis.Throughout the paper we use u to denote unit roundo�, which we de�ne implicitly bythe statement that when x and y are any two 
oating-point numbers, op denotes +;�;�; =,and 
(z) denotes the 
oating-point approximation of any real number z, we have
(x op y) = (x op y)(1 + �); j�j � u: (7)Since our concern is with the internal workings of a single interior-point iterate, we omititeration counters from all quantities. For this reason, we use the order notation O(�) in aslightly unconventional way. When � and � are two nonnegative numbers, we write � = O(�)if there is a positive constant C (not too large) such that � � C�. We say that a matrix orvector is O(�) if its norm is O(�). We say that � = 
(�) if � = O(�) and � = O(�).For the purposes of this paper, we are mainly interested in how the factorizations behaverelative to � and u. The dimensions m and n are ignored in our use of the notation O(�).If G is a matrix, G�j denotes its j-th column, while Gi� denotes the i-th row. The matrixwhose elements are jGijj is denoted by jGj.We use k � k to denote any one of the equivalent matrix norms k � k1, k � k2, or k � k1.When G is rectangular, the 2-norm condition number is de�ned as follows.De�nition 1 Let G be a rectangular matrix with full rank, and suppose that svmax (G) andsvmin (G) denote the largest and smallest singular values of G, respectively. The 2-normcondition number of G is �(G) = svmax (G)svmin (G) :If G is square and nonsingular, this de�nition coincides with the usual de�nition�(G) = kGk2kG�1k2:4



3 De�nitions and AssumptionsWe assume throughout that the problems (1), (2) are feasible; that is, there exists at leastone triple (�; x; s) satisfying the constraints Ax = b, AT� + s = c, (x; s) � 0. Feasibilityimplies existence of solutions to (1), (2). The following theorem gives another consequenceof feasibility.Theorem 3.1 Suppose that (1) and (2) are feasible and that (�; x; s) is any point with(x; s) > 0. Then there exists a solution (��;�x;�s) to (5).Proof. The proof follows from Section 6 of Wright [20]. See, in particular, Lemma 6.2,Theorem 6.3, and the remarks in the last two paragraphs of [20].Note that A need not have full rank for Theorem 3.1 to hold.The set of basic indices B � f1; 2; : : : ; ng can be de�ned asB = fi j s�i = 0 for all (��; x�; s�) 2 Sg; (8)while the nonbasic set N isN = fi jx�i = 0 for all (��; x�; s�) 2 Sg: (9)It is well known that B and N form a partition of f1; 2; : : : ; ng and that there is at least onesolution (��; x�; s�) that is strictly complementary, that is, x�+s� > 0 (Goldman and Tucker[5]). The cardinality of B is denoted by jBj. By partitioning the columns of A according toB and N , we de�ne B = [A�j]j2B; N = [A�j]j2N ; (10)so that B is m� jBj and N is m� jNj. We say that the linear program is nondegenerate ifjBj = m and the primal-dual solution is unique. We assume also that B is reasonably wellconditioned in nondegenerate problems.We do not con�ne our analysis to one speci�c primal-dual algorithm. Rather, we rely on aset of assumptions that is satis�ed by a variety of algorithms. The �rst of these assumptionsconcerns the iterates, the search directions, and the relationship between � and the currentinfeasibility.Assumption 1 The sequence of iterates (�; x; s) generated by the interior-point algorithmsatis�es the following properties when � becomes su�ciently small:xi = 
(1) (i 2 B); si = 
(1) (i 2 N ); (11a)xi = 
(�) (i 2 N ); si = 
(�) (i 2 B): (11b)In addition, the infeasibility is O(�); that is,b�Ax = O(�); c�AT�� s = O(�): (12)5



Assumption 1 is not very strong. G�uler and Ye [7] study algorithms in which all iteratesare strictly feasible; that isAx = b; AT� + s = c; (x; s) > 0: (13)In fact they require that x and s be slightly separated from the boundary of the positiveorthant, in the sense that xisi � 
�; i = 1; 2; : : : ; n; (14)for some constant 
 2 (0; 1). They show that all limit points of such algorithms are strictlycomplementary solutions of (1), (2) and that most path-following and potential-reductionalgorithms do in fact satisfy (14). It is easy to infer from their results that (11) holds forall subsequences that approach these limit points. Moreover, (12) is trivially satis�ed for allfeasible algorithms.The infeasible-interior-point algorithm described by Wright [19] satis�es Assumption 1.So does the algorithm in [20], provided that the sequence or iterates (x; s) is bounded.Implemented algorithms such as those of Vanderbei [17], Lustig, Marsten, and Shanno [9, 10],and Xu, Hung, and Ye [22] usually step a �xed multiple of the distance to the boundaryrather than enforce a potential reduction condition or a condition like (14). Nevertheless,the iteration sequence usually satis�es the properties of Assumption 1 for most practicalproblems.Finally, we state without proof a technical lemma for use in later sections.Lemma 3.2 Let H be a square matrix partitioned asH = " H11 H12H21 H22 # ;where H11 and H22 are also square. Suppose that H11 and H22�H21H�111 H12 are nonsingular.Then H is nonsingular, andH�1 = " H�111 +H�111 H12(H22 �H21H�111 H12)�1H21H�111 �H�111 H12(H22 �H21H�111 H12)�1�(H22 �H21H�111 H12)�1H21H�111 (H22 �H21H�111 H12)�1 # :4 Exact and Approximate Search DirectionsBy de�ning rb = Ax� b and rc = AT�+ s� c in (5), we obtain264 0 A 0AT 0 I0 S X 375264 ���x�s 375 = 264 �rb�rc�XSe+ ��e 375 : (15)By eliminating �s from this system, we obtain the augmented system formulation:" 0 AAT �X�1S # " ���x # = " �rb�rc + s� ��X�1e # (16a)�s = �s+ ��X�1e�X�1S�x: (16b)6



In Wright [21], we performed an error analysis on a system like (16a), but in the contextof a speci�c path-following algorithm for the monotone linear complementarity problem.Some of our results from [21] are relevant to the present case of (16), as we discuss later.Potential di�culties with the formulation (16) arise from two sources | possible rank-de�ciency in certain submatrices of A, and the fact that some diagonal elements of X�1Sand S�1X approach zero while others approach +1. Despite the e�ects of ill conditioningand �nite precision, we �nd that the approximate search directions obtained from (16) byusing standard factorization procedures are often remarkably good. They allow the interior-point algorithm to take near-unit steps and to make substantial improvements in the dualitymeasure �. In the following theorem, we specify a set of conditions for which this happysituation holds. In later sections, we identify situations under which these conditions hold.In the remainder of the paper, we use �� to denote the largest number in [0; 1] such that(x+ ��x; s+ ��s) � 0 for all � 2 [0; ��]; (17a)(x+ ��x)T (s+ ��s) is decreasing for � 2 [0; ��]: (17b)Theorem 4.1 Suppose that Assumption 1 holds. Let (��;�x;�s) be the exact solution of(5) (equivalently, (16)), and let (d��;d�x;d�s) be an approximation to this step. Suppose thatthe centering parameter � in (5) lies in the range [0; 1=2] and that the following conditionshold: (�x;�s) = O(�); (18a)(�sN ;�xB)� (d�sN ;d�xB) = O(u); (18b)(�sB;�xN) � (d�sB;d�xN ) = O(�u): (18c)De�ne �� as in (17), and suppose �̂� is obtained by replacing (�x;�s) with (d�x;d�s) in(17). Then for all � su�ciently small, we have1 � �� = O(�); (19)�̂� = �� +O(u) = 1 +O(�) +O(u); (20)and (x+ �̂�d�x)T (s+ �̂�d�s)=n = �O(�) +O(�(� + u)): (21)Proof. From (11a) and (18a), we havesN + ��sN > 0; xB + ��xB > 0; for all � 2 [0; 1],so these components do not restrict the value of ��. Since u is much smaller than 1, we use(18b) as well to deduce thatsN + �d�sN � sN + ��sN + �(d�sN ��sN) > 0; for all � 2 [0; 1].7



Similarly, we can show that xB + �d�xB > 0 for all � 2 [0; 1].For the decrease condition (17b) we show that the duality gap actually decreases over theentire interval [0; 1] for both exact and approximate search directions, so that this conditiondoes not play a role in determining �� or �̂�. For the exact direction, we have from (5),(18a), and � 2 [0; 1=2] thatdd� (x+ ��x)T (s+ ��s) = xT�s+ sT�x+ 2��xT�s� �(1� �)n�+ 2k�xkk�sk� �n�=2 +O(�2);for all � 2 [0; 1]. Hence, for � su�ciently small, the duality gap is decreasing over [0; 1].For the approximate direction (d�x;d�s), this bound can be modi�ed slightly to account forthe inexactness. We omit the details, which are straightforward but messy, and state theconclusion as dd� (x+ �d�x)T (s+ �d�s) � �n�=2 +O(�u + �2):Again, we �nd that the duality gap is decreasing over the whole interval � 2 [0; 1].Hence, the only condition that can bound �� and �̂� away from 1 is (17a), and then onlyfor the N -components of x and the B-components of s. In fact, �� satis�es1�� = max�1;maxi2B ��sisi ;maxi2N ��xixi � : (22)From (5), we have xi�si+ si�xi = �xisi+��. Hence, since xisi = 
(�) from (11), we have��sisi = 1 + �xixi � � �xisi < 1 + �xixi :For i 2 B we have from (11a) and (18a) that j�xi=xij = O(�) and thereforemaxi2B ��sisi � 1 +O(�):An identical argument can be used for the other term in (22), so we have1�� � max(1; 1 +O(�)) ) 1 � �� = O(�);proving (19).For the maximumstep length �̂� along the approximate direction (d�x;d�s), we have from(18c) and (11b) thatd�sisi � �sisi = O(�u)
(�) = O(u); (i 2 B); d�xixi � �xixi = O(u); (i 2 N ):8



Hence, from (22), we have1̂�� = max 1;maxi2B �d�sisi ;maxi2N �d�xixi ! = 1�� +O(u): (23)For all su�ciently small �, the estimates (20) follow immediately from this last expression.Finally, for the estimate of potential decrease (21), we have from (5) that(x+ �d�x)T (s+ �d�s)= hx+ ��x+ �(d�x��x)iT hs+ ��s+ �(d�s��s)i� n�(1 � �(1 � �)) +O(�u) +O(�u2); (24)where we have used Assumption 1 and (18) to estimate the remainder terms. Finally, weobtain (21) by substituting � = �̂� = 1 +O(� + u) into (24).5 The Augmented SystemIn the remainder of the paper, we focus on the procedure based on (16) for �nding the searchdirections. In this section, we de�ne a generalized form of the matrix in (16a) which we calla canonical matrix. We show that if the backward error analysis of the solution proceduresatis�es a certain condition | Condition 1 below | then the approximate step (d��;d�x;d�s)obtained from (16) in a �nite-precision environment is \useful" in the sense of Theorem 4.1.In later sections, we de�ne conditions under which these standard algorithms for solvingsymmetric inde�nite systems satisfy Condition 1 and hence yield useful search directions.Our sharpened, specialized error analysis yields much stronger results than naive applicationof the standard results. We also gain insight into how the algorithms work even when thenondegeneracy assumptions of Sections 6, 7, and 8 fail to hold, and why they continue togenerate useful search directions even for degenerate problems until � is quite small.Given a symmetric matrix T of order �n, the factorization procedures yieldLDLT = PTP T ; (25)where P is a permutation matrix, L is unit lower triangular, and D is a block-diagonalmatrix with 1 � 1 and 2 � 2 diagonal blocks. We denote the counterparts of these matricesthat are actually computed in the �nite-precision environment by L̂ and D̂, respectively.Given the system Tz = d and the data P , L̂, and D̂ from the factorization, we �nd thecomputed solution ẑ by performing two vector permutations with P , triangular substitutionswith L̂ and L̂T , and a blockwise inversion of D̂. Each of these operations (except thepermutations) may introduce additional roundo� error, which must be accounted for in theerror analysis.For each of the methods, we focus on a single step of the factorization procedure appliedto a matrix T with properties like those of our given system (16a), which we now de�ne.9



De�nition 2 A matrix T is a canonical matrix if it is a symmetric permutation of264 0 B NBT 0 0NT 0 � 375+O(� + u); (26)where- � > 0 and u � 0 are small;- � is diagonal with all diagonal elements of magnitude 
(��1);- B = 
(1) and �(B) = O(1); and- N = O(1).We call T a degenerate canonical matrix if it has the form" 0 00 � # +O(� + u); (27)where the zero blocks are nonvacuous.In keeping with our particular application (16a), we use m and n to denote the number ofrows and columns in the composite matrix [B jN ], respectively, and �n = m + n to denotethe total dimension of T .Corresponding to our canonical matrix, we de�ne a canonical error matrix. We provethat for each of the factorizations, the error matrix has this form.De�nition 3 Let T be a canonical matrix. The corresponding canonical error matrix � isa matrix of the same dimension as T such thatj�j � �u + jT j�u; (28)where �u and the elements of �u are O(u).An important role in the pivot selection process is played by the quantities �i, whichdenote the magnitude of the largest o�-diagonal element in column i, that is,�i = maxfjTijj j j = 1; 2; : : : ; �n; j 6= ig: (29)A su�cient condition for useful stepsThe following condition states the common goal of our backward error analysis of the threefactorization procedures. When this condition is satis�ed along with nondegeneracy of thelinear program, the result of Theorem 4.1 holds.10



Condition 1 Given the system Tz = d, where T is a canonical matrix, the symmetricfactorization and solution process yields a computed solution ẑ that satis�es(T +�)ẑ = d̂; (30)where � is a canonical error matrix associated with T and d̂� d = O(u).We allow for a perturbed right-hand side d̂ because of the nature of our particular system(16a). The residuals rb and rc are computed as the di�erence of O(1) quantities, so O(u)perturbations will appear when they are evaluated in the obvious way. Addition of the termssN and �X�1N e may give rise to errors of similar magnitude.Theorem 5.1 Suppose that Assumption 1 holds and that the problem is nondegenerate, thatis, jBj = m, with �(B) moderate. Suppose that the procedure for solving (16) satis�es Con-dition 1, and denote the approximate solution to (16a) by (d��;d�x). Then for all su�cientlysmall �, we have (��;�x;�s) = O(�) (31)and (���d��;�xB �d�xB) = O(u); �xN �d�xN = O(�u): (32)Proof. We prove (31) by appealing to (5). By partitioning A into B and N according to(10), and partitioning the diagonal matrices S and X accordingly, we see that the matrix in(5) is a permutation of 26666664 0 B N 0 0BT 0 0 I 0NT 0 0 0 I0 SB 0 XB 00 0 SN 0 XN 37777775 : (33)Because of (11), the diagonal elements in XB and SN are 
(1), while the matrices SB andXN are O(�). In addition, B is square and well conditioned, so the matrix (33) is an O(�)perturbation of a uniformly nonsingular matrix. From (5), we then have(��;�x;�s) = O(krbk+ krck+ kXSe� ��ek);so the result (31) follows from (11) and (12).To derive the relative error estimate (32), consider the system (16a). By permuting thematrix in accord with the B [ N partition, we can rewrite (16a) as follows:264 0 B NBT �X�1B SBNT �X�1N SN 375264 ���xB�xN 375 = 264 �rb�(rc)B + sB � ��X�1B e�(rc)N + sN � ��X�1N e 375 : (34)From (11), we have for su�ciently small � that the diagonals in X�1B SB are 
(�) while thediagonals of X�1N SN are 
(��1), so this coe�cient matrix is canonical.11



By de�ning MB = " 0 BBT �X�1B SB # ; MN = " N0 # ;� = �X�1N SN ; zN = �xN ; zB = " ���xB # ;dB = " �rb�(rc)B + sB � ��X�1B e # ; dN = �(rc)N + sN � ��X�1N e;we can restate the system as " MB MNMTN � # " zBzN # = " dBdN # : (35)From our assumption on B, we have MB = O(1) and M�1B = O(1).Because of Condition 1, the computed solution ẑ of (35) satis�es " MB MNMTN � #+�!" ẑBẑN # = " d̂B̂dN # ; (36)where d̂� d = O(u) and the canonical error matrix � satis�esj�j � O(u) + " jMBj jMN jjMN jT j�j #O(u) = O(u) + " 0 00 j�j #O(u):By combining this estimate with (35) and (36), we obtain " MB MNMTN � #+�!" ẑB � zBẑN � zN # = �� " zBzN #+ " d̂B � dBd̂N � dN # : (37)Since z = O(�) from (31), we have������ " zBzN #����� �  O(u) + " 0 00 j�j #O(u)! " O(�)O(�) # � " O(�u)O(u) # ; (38)so when we add the e�ect of d̂� d, we �nd that the right-hand side of (37) is O(u). For thecoe�cient matrix in (37) we use Lemma 3.2 withH11 = MB +O(u);H12 = MN +O(u) = O(1);H21 = MTN +O(u) = O(1);H22 = O(u) + �(I +O(u)) = �(I +O(u)):12



Lemma 3.2 yields the following estimates:(H�1)22 = �H22 �H21H�111 H12��1 = ��1(I +O(u + �)) = O(�);(H�1)12 = O(�); (H�1)21 = O(�);(H�1)11 = M�1B +O(� + u):By combining these observations with (38), we obtain" ẑB � zBẑN � zN # = " (H�1)11 (H�1)12(H�1)21 (H�1)22 #O(u) = " O(u)O(�u) # ;giving (32).Next, we examine the accuracy of d�s, which is calculated by substituting d�� and d�xinto (16b).Theorem 5.2 Suppose that the assumptions of Theorem 5.1 are satis�ed and that d�s isevaluated in 
oating-point arithmetic from the formula (16b), with d�x replacing �x. Wethen have �sB �d�sB = O(�u); (39a)�sN �d�sN = O(u): (39b)Proof. Standard roundo� error analysis applied to (16b) shows thatd�s = �s+ ��X�1e�X�1Sd�x+ hjsj+ ��jX�1je+ jX�1Sjjd�xjiO(u): (40)By di�erencing (16b) and (40), we obtainj�s�d�sj � jX�1Sjj�x�d�xj+ hjsj+ ��jX�1je+ jX�1Sjjd�xjiO(u): (41)If i 2 B, we have from (11) thatjX�1B SBj = O(�); jsBj = O(�); ��jX�1B je = O(�):By combining these estimates with (32) and (41), we obtain the desired result (39a). Fori 2 N , we have from (11) again thatjX�1N SN j = O(��1); jsN j = O(1); ��jX�1N je = O(1);while from (31) and (32) we have�xN �d�xN = O(�u); d�xN = O(�):By substituting in (41), we obtain (39b).The last two results show that the requirements of Theorem 4.1 are satis�ed, so that thealgorithm can make signi�cant progress along these search directions. We summarize thecombination of Theorems 4.1, 5.1, and 5.2 as a corollary.Corollary 5.3 Suppose that Assumption 1 holds and that the problem is nondegenerate,that is jBj = m with �(B) moderate. Suppose that the procedure for solving (16) satis�esCondition 1. If the approximate step is computed with � 2 [0; 1=2], then for all su�cientlysmall �, the formulae (19), (20), and (21) are satis�ed.13



6 The Bunch-Kaufman FactorizationWe show in this section that a procedure for solving (16a) based on the Bunch-Kaufmanfactorization satis�es Condition 1, so that the conclusion of Corollary 5.3 applies. Sincemuch of the analysis of this section can be reused in the analysis of the Bunch-Parlett andsparse Bunch-Parlett algorithms, we give the details here and refer to them in later sections.It is su�cient to describe just the �rst stage of the procedure. Later stages apply thesame technique recursively to the remaining submatrix.The pivot selection procedure for Bunch-Kaufman [1] is as follows.Choose � 2 (0; 1); �nd r such that �1 = jTr1j;if �1 > 0if jT11j � ��11� 1 pivot, P1 = Ielse �nd �r;if �rjT11j � ��211 � 1 pivot, P1 = Ielseif jTrrj � ��r1 � 1 pivot; choose P1 so that (P1TP T1 )11 = Trrelse 2 � 2 pivot; choose P1 so that (P1TP T1 )21 = Tr1endendend.If we denote the 1� 1 or 2 � 2 pivot block by E and writeP1TP T1 = " E CTC T̂ # ; (42)the �rst step of the factorization yieldsP1TP T1 = " ICE�1 I # " E �T # " I E�1CTI # ; (43)where �T = T̂ � CE�1C. The algorithm continues by applying this procedure to �T . Notethat the �i are generally changed by each stage of the factorization. The submatrix CE�1contains the subdiagonals in the �rst one or two columns of the L factor.Bunch and Kaufman [1] show that for the particular choice � = (1 +p17)=8, we havemaxi;j j �Tijj � (2:57)maxi;j jTijj; (44)so there is a modest bound on element growth during each stage of the factorization.14



When applied to canonical matrices, the Bunch-Kaufman procedure selects pivots ofspeci�c types and produces a reduced submatrix that is also canonical. We state theseresults in the following two theorems, whose proofs are tedious and are relegated to theAppendix.Theorem 6.1 Let one step of the Bunch-Kaufman factorization be applied to a canonicalmatrix that is not degenerate. Then(a) The pivot block E will be either(i) a 1� 1 block, chosen from among the diagonal elements of �; or(ii) a 2� 2 block, in which the o�-diagonal element E12 is one of the elements of B;(b) The matrix remaining after the elimination is canonical, and the absolute change inthe elements of � is at most O(1);(c) Using the notation from (42), we have that jCj = O(1), while(i) jEj = O(��1) and jE�1j = O(�) if E is a 1� 1 pivot; and(ii) jEj = O(1) and jE�1j = O(1) if E is a 2� 2 pivot.Theorem 6.2 Let one step of the Bunch-Kaufman factorization be applied to a degeneratecanonical matrix. Then(a) The pivot block E will be either(i) a 1� 1 block, chosen from any of the diagonals (large or small); or(ii) a 2� 2 block, in which all the elements are O(� + u);(b) The matrix remaining after the elimination is canonical (not necessarily degenerate),and the absolute change to the remaining matrix is O(� + u).Because of Assumption 1, our initial matrix in (16a) is canonical. Barring pathologicalgrowth in the remaining submatrices, one of Theorems 6.1 and 6.2 applies at every stage ofthe Bunch-Kaufman factorization.If B is square in the original matrix (corresponding to a nondegenerate linear program),then the remaining matrices encountered at every stage of the factorization are not degen-erate. After a 1� 1 pivot, the dimensions of B are unchanged, while a 2� 2 pivot shrinks Bby exactly one row and column, so it remains square. When a pivot causes B to disappearaltogether, the reduced matrix has the form � + O(� + u). It follows that in the case ofsquare B, Theorem 6.1 is su�cient to analyze the entire factorization. The following resultgives the backward error analysis for the factorization in this case.15



Corollary 6.3 Let the Bunch-Kaufman factorization be applied to a canonical matrix T inwhich B is square. Then, for all su�ciently small �, we obtain computed factors L̂ and D̂such that L̂D̂L̂T = PTP T + P ��P T ; (45)where �� is a canonical error matrix associated with T .Proof. We prove the result by an induction argument on the dimension �n = m + n ofthe matrix T . The induction is made slightly more complex than usual by the form of thecanonical matrix, notably, the presence of the square matrix B of dimension m � n.For �n = 1, we must have m = 0 and so trivially P = 1, L̂ = 1, D̂ = T11. Therefore (45)holds with �� = 0.For �n = 2, we have two cases m = 0 and m = 1. For m = 0, there are two elementsof magnitude 
(��1) on the diagonal, while the o�-diagonals are O(� + u). Hence, a 1� 1pivot is chosen. If there is no pivoting, the �rst step of elimination yieldsL̂21 = T21=T11 + jT21=T11jO(u);D̂11 = T11;D̂22 = T22 � T 221=T11 + (jT22j+ jT 221=T11j)O(u):Since L̂ has unit diagonals, we obtain by expanding the factors thatL̂D̂L̂T = T + " 0 jT21jO(u)jT21jO(u) jT 221=T11jO(u) + jT22jO(u) # = T + ��;where j ��j � jT jO(u) +O(u);so �� is a canonical error matrix associated with T . The same logic applies if pivoting occurs.In the remaining case m = 1, the pivot is 2 � 2, we have L̂ = I, P = I, and D̂ = T , and(45) holds trivially with �� = 0.We now examine a canonical matrix of dimension �n > 2 in whichB is square, and examinethe �rst stage of the factorization. Because the matrix is canonical and nondegenerate,Theorem 6.1 applies. For some permutation matrix P1, we have from (42) and (43) that the�rst stage yields partial factors L̂1 and D̂1, whereL̂1 = " I 0CE�1 +�L I # ; D̂1 = " E 00 �T +�D # ; (46)wherej�Lj � jCjjE�1jO(u); j�Dj � jT̂ jO(u) + jCjjE�1jjCjTO(u) = jT̂ jO(u) +O(u):Note that �D is a canonical error matrix corresponding to T̂ . By the proof of Theorem 6.1,the (2; 2) submatrix of D̂1 is canonical, so we use the inductive hypothesis to deduce thatthe L̂, D̂ factors of this submatrix satisfyL̂2D̂2L̂T2 = P2( �T +�D)P T2 + P2 ��2P T2 (47)16



for some permutation matrix P2 and some canonical error matrix ��2 corresponding to ( �T +�D). We compose the overall factors of T as follows:L̂ = " I 0P2(CE�1 +�L) L̂2 # ; D̂ = " E 00 D̂2 # ; P = " I 00 P2 #P1:Now, L̂D̂L̂T = " E (C +�2)TP T2P2(C +�2) L̂2D̂2L̂T2 + P2CE�1CTP T2 + P2�1P T2 # ; (48)where �1 = �LCT + C�TL +�LE�TL; �2 = �LE;and so j�1j � jCjjE�1jjCjTO(u) = O(u); j�2j � jCjjE�1jjEjO(u) = O(u):By substituting (47) and (46) into (48), we obtainL̂D̂L̂T = " E (C +�2)TP T2P2(C +�2) P2 h �T +�D + CE�1CT +�1 + ��2iP T2 #= " E (C +�2)TP T2P2(C +�2) P2 hT̂ +�D +�1 + ��2iP T2 #= PTP T + P ��P T ;where �� = P T1 " 0 �T2�2 �D +�1 + ��2 #P1:Since j�1j = O(u), j�2j = O(u), and �D and ��2 are canonical error matrices correspondingto T̂ , we have j ��j � P T1 " 0 j�2jTj�2j j�Dj+ j�1j+ j ��2j #P1� O(u) + P T1 " 0 00 jT̂ j #P1O(u)� O(u) + jT jO(u):Hence, �� is a canonical error matrix corresponding to T .We complete the proof by noting that Theorem 6.1 can be applied to the remainingmatrix, because it is also canonical and nondegenerate.Given the system Tz = d and the data P , L̂, and D̂ from the factorization, the computedsolution ẑ is found by performing two vector permutations with P , triangular substitutionswith L̂ and L̂T , and a blockwise inversion of D̂. The 2 � 2 diagonal blocks in D̂ can behandled by the Gaussian elimination procedure outlined in the following technical lemma,which is proved in Appendix A.3. It is easy to show that the elements of the pivot block Esatisfy the condition (49). 17



Lemma 6.4 Consider the 2� 2 linear system Ey = g in which E is symmetric withjE11j � �jE12j; jE11jjE22j � �2jE12j2; (49)for some � 2 (0; 1). Then if we compute the solution by applying Gaussian elimination tothe permuted system " E12 E22E11 E12 # " y1y2 # = " g2g1 # ; (50)then the computed solution ŷ satis�es (E +�E)ŷ = g;where j�Ej � jEjO(u): (51)The additional error that is introduced during recovery of the solution with the computedfactors L̂, D̂, and L̂T is quanti�ed in the next result.Lemma 6.5 Suppose the assumptions and notation of Corollary 6.3 hold. Then the com-puted solution ẑ to the system L̂D̂L̂T z = Pd satis�es(L̂D̂L̂T + P �̂P T )ẑ = Pd; (52)where �̂ is a canonical error matrix associated with T .Proof. From standard results for triangular substitution, the computed solution of L̂za =Pd satis�es (L̂+ �̂L1)ẑa = Pd; j�̂L1j � jL̂jO(u):A similar result holds for triangular substitution with the transpose L̂T .For solution of D̂zb = ẑa, we note that D̂ is block-diagonal with 1� 1 and 2 � 2 blocks.For the 2 � 2 pivot blocks that arise in the Bunch-Kaufman procedure, the assumptions ofLemma 6.4 hold, so the computed solution ŷ of a 2� 2 subsystem Ey = g satis�es(E +�E)ŷ = g; j�Ej = jEjO(u): (53)When E is a 1� 1 block, the estimate (53) holds trivially. Hence, the computed solution ẑbof D̂zb = ẑa satis�es (D̂ + �̂D)ẑb = ẑa; j�̂Dj � jD̂jO(u):By combining the error expressions for the three component systems, we �nd that ourcomputed solution ẑ satis�es(L̂+ �̂L1)(D̂ + �̂D)(L̂+ �̂L2)T ẑ = Pd:Multiplying the matrix products, we �nd that (52) is satis�ed withP j�̂jP T � jL̂jjD̂jjL̂jTO(u) +O(�u + u2):18



From our earlier discussions on the composition of L̂ and D̂, it is easy to see that theabsolute matrix product jL̂jjD̂jjL̂jT contains allO(1) elements, except for the large diagonals,which occur in the same positions as in PTP T . Hence P �̂P T is a canonical error matrixcorresponding to PTP T , and our proof is complete.We can now summarize the e�ects of roundo� error on the entire solution process for(16) in the following theorem.Theorem 6.6 Suppose T is a canonical matrix in which B is square. Then, for all su�-ciently small �, the Bunch-Kaufman factorization followed by the solution process outlinedabove satis�es Condition 1.Proof. As we noted immediately following Condition 1, the actual right-hand side maydi�er by terms of O(u) from its \theoretical" value d. From (52), the computed solution ẑto Tz = d satis�es (L̂D̂L̂T + P �̂P T )ẑ = d̂;Substituting from (45), we obtain(PTP T + P ��P T + P �̂P T )ẑ = P d̂;so Condition 1 follows when we set � = �� + �̂.We have shown that in the case of a nondegenerate linear program, the procedure basedon applying Bunch-Kaufman to (16a) leads to approximate steps (d��;d�x;d�s) that satisfythe conditions of Theorem 4.1. The estimate (20) implies that during the �nal iterations ofa primal-dual algorithm, near-unit steps can be taken along these directions without leavingthe nonnegative orthant. Moreover, if the centering parameter � is small or zero, a largereduction in the duality gap � can be expected. In the extreme case � = 0 (the \a�ne-scaling" choice), linear convergence with a rate constant of O(u) can be attained if theactual step length is close to �̂�. Most practical algorithms choose the step length to be a�xed multiple | typically :95 or :9995 | of �̂�, and indeed these methods often convergerapidly during their �nal stages. For algorithms that use a more theoretically justi�ablede�nition of step length the story is not, unfortunately, this simple. In [21, Section 4], forinstance, extra restrictions are applied to � to ensure that (12) and (14) continue to hold atthe next iterate. These restrictions may result in � being much smaller than one. This caseis analyzed in [21, Section 4], so we do not repeat it here.7 The Bunch-Parlett FactorizationThe Bunch-Parlett searches the entire remaining matrix for each pivot, not just one or twocolumns. The pivot selection procedure is as follows.Choose � 2 (0; 1), �o� = jTrsj = maxi 6=j jTijj, �diag = jTppj = maxi jTiij;if �diag � ��o� 19



s = 1 and choose P1 so that (P1TP T1 )11 = Tppelse s = 2 and choose P1 so that (P1TP T1 )21 = Trsend.The elimination step is identical to Bunch-Kaufman, and the process of using the LDLTfactorization to solve the system Tz = d is the same as in the preceding section. As inBunch-Kaufman, the value � = (1 +p17)=8 leads to the modest bound of 2:57 on elementgrowth at each stage.When applied to canonical matrices, the Bunch-Parlett factorization proceeds in threestages:1. All the diagonal elements of � are selected as 1 � 1 pivots;2. 2� 2 pivots of the type described in Theorem 6.1(a) are chosen;3. When no more 2 � 2 pivots like this are available and the remaining matrix containsonly elements of size O(� + u), a combination of small 1 � 1 and 2� 2 pivots is usedto complete the factorization process.We prove this assertion in the following lemma.Theorem 7.1 Suppose that the Bunch-Parlett procedure is applied to a canonical matrix.Then the factorization proceeds according to the three-stage outline above. If the canonicalmatrix has B square and is nonvacuous, the factorization is completed by stages 1 and 2;stage 3 is vacuous.Proof. Assuming that � is not vacuous, we have at the pivot selection step that �o� =O(1) and �diag = 
(��1). The pivot element will therefore be one of the large diagonalscorresponding to �. The remaining matrix is updated by subtracting CE�1C, where clearlyC = O(1) and E�1 = O(�). Hence, the remaining matrix retains canonical form.We can apply this argument inductively until all the diagonals in � are exhausted. Atthe end of stage 1, the remaining matrix has the form" 0 BBT 0 #+O(� + u): (54)Stage 2 now begins. If B is not vacuous, we have �o� = O(1) and �diag = O(� + u). Infact, by the assumption B = 
(1), we have �o� = 
(1), and the element Trs that achievesthe maximum comes from B. The 2 � 2 block with o�-diagonal element Trs is selected asthe pivot. After the elimination step, the size of B is reduced by one row and column. Theproof of Theorem 6.1(b) can be applied again here to show that the remaining matrix is alsocanonical, so 2� 2 pivots of this type will continue to be selected until B vanishes.The number of steps in stage 2 is min(rows(B); columns(B)). At the end of this stage,the remaining matrix is square with dimension jrows(B)� columns(B)j, and all its elements20



have size O(�+u). In stage 3, both 1�1 and 2�2 pivots may be used to factor this matrix.If B is square, the factorization is complete after stage 2.The other major results of Section 6 continue to hold when the Bunch-Parlett algorithmis used instead of Bunch-Kaufman; only trivial adjustments to the analysis in Section 6 andAppendix A.1 are necessary. We summarize the conclusions in the following theorem.Theorem 7.2 Suppose T is a canonical matrix in which B is square. Then, for all su�-ciently small �, the Bunch-Parlett factorization followed by the solution process outlined inSection 6 satis�es Condition 1.8 The Sparse Bunch-Parlett FactorizationSeveral authors (notably Fourer and Mehrotra [4]) have proposed a sparse variant of theBunch-Parlett factorization that compromises between maintaining sparsity and limiting el-ement growth in the remaining matrix. We outline the pivot selection procedure as describedby [4], with a slight modi�cation noted below.For each index i = 1; 2; : : : ; �n we de�ne the degree ni to be the number of o�-diagonalnonzeros in row i. We also de�ne an estimate of the joint nonzero content of rows i and j byn̂ij = min(ni + nj � 4; �n� 2):A 2� 2 pivot block E = " Tii TijTij Tjj # (55)is termed oxo if both of Tii and Tjj are zero, tile if one of Tii and Tjj is zero, and full if bothof Tii and Tjj are nonzero. We de�ne a cost associated with using (55) as the pivot block ineach of these three cases byoxo: (ni � 1)(nj � 1),tile: (ni � 1)(n̂ij + 1) if Tii = 0, (nj � 1)(n̂ij + 1) if Tjj = 0,full: n̂2ij,The cost is an estimate of the �ll-in associated with using (55) as the pivot block.For prospective pivots, we de�ne stability criteria in terms of the usual constant � 2 (0; 1)and the o�-diagonal norms �i de�ned in (29). Any 1� 1 pivot must satisfyjT�1ii j�i � 2=�; (56)while a 2� 2 pivot (55) must have������" Tii TijTij Tjj #�1������ " �i�j # � " 1=�1=� # : (57)The pivot selection procedure is as follows. 21



for r = 1; 2; : : :for i with ni = rconsider Tii with degree r;if any of these elements satisfy (56)accept as a 1 � 1 pivot and exit;else label it as unstable;endfor unstable pivots Tii from the previous loopconsider 2� 2 pivots involving Tii, with costs at most(r � 1)2, (r � 1)(2r � 3), and (2r � 4)2for oxo, tile, and full pivots, respectively;if any of these blocks satisfy (57)accept as a 2 � 2 pivot and exit;endend.The pivot selection pattern for the sparse Bunch-Parlett algorithm is essentially the sameas for the Bunch-Kaufman algorithm, as described in Theorems 6.1 and 6.2. We prove thisresult in the appendix, since the analysis di�ers a little from the Bunch-Kaufman case.Theorem 8.1 The results of Theorems 6.1 and 6.2 hold when the sparse Bunch-Parlettfactorization is used in place of the Bunch-Kaufman procedure.To obtain this result, we modi�ed the acceptance condition (56) for 1 � 1 pivots. In thedescription of [4], the right-hand side is 1=� rather than 2=�. With the original choice, thesparse Bunch-Parlett algorithm applied to a degenerate canonical matrix could allow anothertype of pivot: a 2� 2 pivot in which one diagonal is from � and the other has size O(�+u).A pivot of this type is poorly conditioned and will generally lead to instability during theblockwise inversion of D̂.The other major results of Section 6 also continue to hold when the sparse Bunch-Parlettalgorithm is used in place of Bunch-Kaufman. We summarize the conclusions in the followingtheorem.Theorem 8.2 Suppose T is a canonical matrix in which B is square. Then, for all suf-�ciently small �, the sparse Bunch-Parlett factorization followed by the solution processoutlined in Section 6 satis�es Condition 1.9 The Degenerate CaseWhen the linear program (1), (2) is degenerate | jBj 6= m | the three factorization proce-dures can no longer run to completion with just the two kinds of pivots described in Theorem22



6.1. The nonsquare shape of B in the matrix (34) means that pivots of size O(�+u) | either1 � 1 or 2 � 2 | are used at some point in the factorization process. The factorizationsfail only if these pivots are exactly zero, which happens often on small problems but nototherwise. The more common outcome is that the interior-point algorithm makes only slowor erratic progress after � has achieved a certain (small) value. In this section we sketch thereasons for this outcome.In all the factorizations above, the large diagonal elements in X�1N SN are used as 1 � 1pivots. Even though these pivots are not necessarily used before any others (except in theBunch-Parlett algorithm), the factorizations behave as if they were solving the system (16)in the equivalent, partitioned form" NXNS�1N NT BBT �X�1B SB # " ���xB # = " �rb +NS�1N XN [�(rc)N + sN � ��X�1N e]�(rc)B + sB � ��X�1B e # ;(58)�xN = X�1N SN h(rc)N � sN + ��X�1N e+NT��i : (59)The coe�cient matrix in (58) is an O(�) perturbation of the matrix" 0 BBT 0 # : (60)Since B is well conditioned by De�nition 2, the matrix in (60) has 2min(jBj;m) nonzerosingular values of magnitude 
(1). In the nondegenerate case, (60) is well conditioned.Otherwise, it has jm� jBjj zero singular values. When jBj < m, the null space of (60) isspanned by " �Z0 # ; (61)where �Z is an m � (m � jBj) matrix of full rank such that BT �Z = 0. When jBj > m, thenull space of (60) is spanned by the matrix" 0̂Z # ; (62)where Ẑ spans the null space of B. For small �, these null spaces are not altered much by theperturbation of size O(�) that is present in the matrix (58), because the nonzero singularvalues of (60) are well separated from zero. Perturbations in the solution of (58) due toroundo� will occur mainly in the space of small singular values. Hence, when jBj < m, theperturbations occur mostly in the range space of the matrix (61), that is, in the componentsof ��. Similarly, when jBj > m, the perturbations occur in the range space of the matrix(61), that is, in the components of �xB.The main source of di�culty is inaccuracy in the computed residual vectors rb and rcwhich, as mentioned above, contain errors of O(u). In the case jBj > m, these perturbationsare magni�ed by the inverses of the small singular values, usually leading to errors of size23



about O(u=�) in the components of �xB. The large relative errors in �xB induce largerelative errors in �sB through the formula (16b). The step length to the boundary �� maytherefore be sharply curtailed because of the nonnegativity requirements (17a). In the casejBj < m, the large relative errors in �� induce errors in �xN through the formula (59),while in turn induce large relative errors in �sN through (16b). The step length may againbe curtailed as a result.Errors from sources other than the vector r are less signi�cant.If we have a strictly feasible starting point (see (13)), then we can simply set r = 0throughout the algorithm. In this case, we can �x r at zero in the computations and avoidthe problem above. It is usually not easy to �nd such a starting point, however, so somethought should be given to other ways of dealing with the problem.One option is to simply terminate the algorithm when it stalls, declaring success if both �and r are small. This option works well for most purposes, since stalling usually occurs onlyafter � is reduced to O(u), by which time the problem has usually converged to acceptableaccuracy. Fourer and Mehrotra [4] report that the convergence criteria are usually satis�edbefore the ill e�ects of roundo� are seen. Our testing in Section 10 allows a similar conclusion.A second option is to switch to a termination procedure when the interior-point algorithmstalls. A �nite termination procedure (see, for example, Ye [23]) or crossover to the simplexmethod (Meggido [12]) could be activated.A third option is simply to �x r at zero in the computations once it has reached the O(u)level, because at this stage our current point is feasible to within the limits of 
oating-pointarithmetic. By doing so, we are e�ectively introducing a perturbation into the problem tofreeze the infeasibility at its current level. This perturbation has an interesting e�ect: Itmoves the solution to a particular vertex of the previously optimal face, changing the B [Npartition appropriately. If we continue to run the interior-point algorithm to higher accuracy,it eventually converges to this vertex, but only after going through many more iterates (andtaking some sharp turns in the process). The result of this process is similar to what wewould achieve with a crossover to simplex, but the computational cost would generally bemuch higher.10 Computational ExperimentsWe report here on some computational experiments that demonstrate the e�ects describedabove. Our testbed algorithm is the infeasible-interior-point path-following algorithm de-scribed in Wright [20]. In exact arithmetic, this algorithm achieves superlinear convergencebecause it eventually always takes a�ne-scaling steps (� = 0 in (5)) with step length �approaching 1. This algorithm performs well on practical problems, but is not as fast ascodes that use the Mehrotra predictor-corrector heuristic, for which no solid convergencetheory exists, except in the nondegenerate case. The asymptotic behavior in �nite precisionis quite similar for the two algorithms.To show that the �nite precision e�ects are not con�ned to \nice" problems, we generateproblems with fairly wide variations in the components of A, x�B, and s�N . The matrix A is24



dense and random, with elements de�ned byA1j = �106��3; j = 1; : : : ; n;Aij = (� � :5)106��3; i = 2; : : : ;m; j = 1; : : : ; n;where every instance of � is selected from a uniform distribution on the interval [0; 1]. (Wechoose all the elements in the �rst row of A to be positive to ensure that the feasible regionis bounded.) We control the size of the index sets B and N (to control the amount ofdegeneracy) and set N = f1; 2; : : : ; jN jg; B = f1; 2; : : : ; ngnN :We choose a particular solution (��; x�; s�) by setting�� = e; s�B = 0; x�N = 0;s�i = 104��2; i 2 N ; x�i = 103��1; i 2 B;where each � is as before. The vectors b and c are determined by the choices of A and(��; x�; s�).The LAPACK Bunch-Kaufman factorization routines dsytrf and dsytrs are used tosolve (16a). These routines (and the rest of our code) use double-precision arithmetic, givingu � 10�14 on the SPARC-5 on which these results were obtained.We report on problems with m = 6, n = 12. (In problems smaller than this, exactly zeropivots often occur in degenerate cases, leading to breakdown.) Termination occurs when� � 10�30 | an arti�cially stringent criterion, chosen to give us a clear look at asymptotice�ects.The �rst result is for a nondegenerate problem, for which jBj = m = 6. Table 1 shows thesizes of � and krk on each iterate. For the reasons that we outlined immediately followingCondition 1, krk stabilizes at a magnitude of O(u). The duality gap � does not convergesubquadratically (as it would in exact arithmetic) but rather exhibits extremely fast linearconvergence, with a rate constant of about 10�10. This is exactly the e�ect predicted byformula (21) for the a�ne-scaling steps that are taken on the last four iterations.To see that the pivots have the properties predicted by Theorem 6.1, we examine thematrix D from the Bunch-Kaufman factorization. Table 2 shows D at iteration 17, when� � 10�7. As expected, there are six 1� 1 pivots of magnitude 
(��1), and six 2� 2 pivotsin which the diagonals are tiny and the o�-diagonals are 
(1). The same structure is presentin D at every iteration after iteration 15.Our second example is for a dual degenerate problem with jBj = 6 > m. As can beseen from Table 3, the algorithm achieves fairly high accuracy after about 20 iterations, butno further improvement can be made after that point. The behavior is consistent with thediscussion of Section 9. It suggests that the results of Section 6 are \tight," in that we cannotprove that \useful" search directions are obtained for arbitrarily small �.Examination of the D factor for the second example (Table 4) shows that the pivotpattern is in line with the predictions of Theorems 6.1 and 6.2. Together, these results imply25



Table 1: Nondegenerate problem: m = 6; n = 12k log10 �k log10 krkk1 A�ne Step?1 5.4 3.12 4.7 2.33 4.3 1.64 3.8 0.85 3.1 -12.0... ... ...15 -3.2 -14.016 -4.6 -13.7 �17 -7.2 -14.4 �18 -12.3 -14.1 �19 -22.1 -13.8 �20 -33.3 -14.2 terminationTable 2: The D factor at iteration 17 of the nondegenerate test problem (� = magnitudeless than 10�6) Row/Column Pivot Block1,2 � .94(1).94(1) �3,4 � -.91(2)-.91(2) �5 .26(7)6 .30(11)7 .33(10)8 .47(7)9,10 -.30(-5) .71(2).71(2) �11,12 -.27(-3) -.15(2)-.15(2) �13,14 � -.31(0)-.31(0) -.49(-5)15,16 � .16(0).16(0) �17 .27(4)18 .32(6)26



Table 3: Dual degenerate problem: m = 6; n = 12; jBj = 8k log10 �k log10 krkk1 A�ne Step?1 5.4 3.1... ... ...19 -6.0 -13.820 -9.8 -14.1 �21 -13.6 -14.2 �22 -14.8 -13.8 �23 -15.4 -13.2 �... ... ...99 -17.5 -13.5100 -17.5 -13.4... ... ...that there are exactly min(m; jBj) of the stable 2 � 2 pivots with an o�-diagonal from B,and jN j = n � jBj of the large 1 � 1 pivots. Together, these stable pivots account for2min(m; jBj) + jN j = n+m� jm� jBjj (63)stages of the factorization, so unstable pivots are used on the remaining submatrix whosedimension is jm� jBjj. In Table 4, we see that the last two 1 � 1 pivots are unstable, asexpected. As we described in the �rst part of Section 9, the errors in d�xB and d�sB arepreventing further progress. On iteration 100, the computed a�ne step has kd�xBk1 =:17(6), while its exact counterpart would have k�xBk1 = O(�). By comparing componentsof d�sB with sB, we �nd that the step to the boundary is sharply curtailed by the restrictionsB+�d�sB � 0 (cf. (23)). The remaining components of the step do not contain deleteriouserrors; we havekd�xNk1 = :59(�18); kd��k1 = :66(�14); kd�sNk1 = :11(�12):Finally, we consider a primal degenerate problem with jBj = 4 < m. The iterationschedule in Table 5 shows similar behavior to the dual degenerate problem. The D factorfrom iteration 100 is shown in Table 6. All pivots are stable except for the last two 1 � 1blocks, which again matches the prediction (63). As discussed in Section 9, the deleteriouserrors occur in the subvector d��, so errors are induced ind�sN and d�xN through formulas 59and (16b). On iteration 100, we have kd��k1 = :32(5) and kd�sNk1 = :30(7) for the a�nescaling step. The components d�xB and d�sB are not a�ected; their 1-norms are :17(�18)and :51(�12), respectively.A Proofs of Theorems from Sections 6 and 8A.1 Proof of Theorem 6.1We prove (a) by systematically excluding the other possible choices for pivots:27



Table 4: The D factor at iteration 17 of the degenerate test problem with m = 6; n =12; jBj = 8 (� = magnitude less than 10�6)Row/Column Pivot Block1,2 � .95(1).95(1) �3,4 � -.92(2)-.92(2) �5,6 � .26(2).26(2) �7 .86(23)8 .85(18)9 .55(20)10 .29(17)11,12 � .71(2).71(2) �13,14 � -.30(0)-.30(0) �15,16 � .15(0).15(0) �17 .20(-13)18 -.60(-19)Table 5: Primal degenerate problem: m = 6; n = 12; jBj = 4k log10 �k log10 krkk1 A�ne Step?1 5.4 3.1... ... ...15 -5.3 -13.916 -8.8 -13.7 �17 -13.7 -14.2 �18 -14.0 -11.6 �... ... ...99 -17.6 -13.9100 -17.6 -14.0... ... ...28



Table 6: The D factor at iteration 17 of the degenerate test problem with m = 6; n =12; jBj = 8 (� =magnitude less than 10�6)Row/Column Pivot Block1,2 � .95(1).95(1) �3 .49(23)4 .53(19)5 .58(19)6 .27(20)7 .53(9)8 .12(21)9,10 � .71(2).71(2) �11,12 � -.15(2)-.15(2) �13 .25(18)14 .76(17)15,16 � -.16(1)-.16(1) �17 -.15(-8)18 -.52(-18)(iii) The pivot is 1 � 1 and is a diagonal element from either the (1; 1) or (2; 2) blocks ofthe canonical matrix. Inspection of the Bunch-Kaufman algorithm shows that T11 ischosen as pivot if either�1 � jT11j� or �1 � s�rjT11j� : (64)Now, since �r is the maximum o�-diagonal in some column of (26), we have �r =O(1), while since T11 comes from either the (1; 1) or (2; 2) block of (26), we havejT11j = O(� + u). Since � 2 (0; 1) is �xed, we have from (64) that�1 = O(�1=2 + u1=2): (65)Since �1 is the magnitude of the largest o�-diagonal in some row/column of (26), wehave that �1 is the 1-norm of some row or column of B. But (65) is incompatiblewith B = O(1) and �(B) = O(1). Hence jT11j from the (1; 1) or (2; 2) blocks cannotbe used as a pivot.A similar argument holds when Trr is chosen as pivot, where Trr is one of the smalldiagonals.(iv) The pivot is 2� 2 and involves at least one element from �. Since all the o�-diagonalsin (26) are O(1), the quantities �i, i = 1; 2; : : : ; �n are all O(1). A 2 � 2 pivot withdiagonal elements T11 and Trr must havejT11j � ��1; jTrrj � ��r;29



which implies that T11 and Trr are both O(1). Since all the diagonals of � are 
(��1),they cannot be candidates for T11 and Trr.(v) The pivot is 2 � 2, and the pivot block is drawn either entirely from the (1; 1) blockof (26) or entirely from the (2; 2) block. In this case, T1r | the element for whichjT1rj = �1 | is O(� + u). Since T1r has the largest magnitude in its column of (26),and since its column includes either a row or column of B, we have that one of the rowsor columns of B is O(� + u). As in (iii), we have a contradiction, since this estimateis incompatible with B = 
(1) and �(B) = O(1).This completes the proof of part (a).We turn to (b), examining the e�ects of one step of elimination performed with pivotselection corresponding to the two cases (i) and (ii). For (i), suppose the (i; i) element of �is chosen as the pivot. After symmetric permutation of the canonical matrix, to place thepivot in the (1; 1) position, we obtain" 1 ~P # 266664 (� +O(� + u))ii NT�i 0 0N�i 0 B ~N0 BT 0 00 ~NT 0 ~� 377775 " 1 ~P T #+O(� + u);where ~P is some permutation matrix, N�i denotes the i-th column of N , ~N is obtained fromN by removing N�i, and ~� is obtained from � by removing its i-th row and column. Sincej(� +O(� + u))�1ii j = O(�), the submatrix that remains after elimination is~P 264 0 B ~NBT 0 0~NT 0 ~� 375 ~P T � ~P 264 N�i00 375��1ii h NT�i 0 0 i ~P T +O(� + u)= ~P 264 0 B ~NBT 0 0~NT 0 ~� 375 ~P T +O(� + u): (66)It is easy to see that (66) is canonical, so our result is proved for case (i).For case (ii), the proof is a little messier. Suppose the diagonals of the 2 � 2 pivot arethe (i; i) element of E1 and the (j; j) element of E2. After symmetric rearrangement to putthis pivot in the upper left corner, (26) becomes" I P̂ # 26666664 0 Bij 0 Bi�;j Ni�Bij 0 BT�j;i 0 00 B�j;i 0 B̂ N̂BTi�;j 0 B̂T 0 0NTi� 0 N̂T 0 � 37777775 " I P̂ T # +O(� + u);where 30



- P̂ is some permutation matrix;- Ni� is the i-th row of N ;- N̂ is N with Ni� removed;- Bi�;j is the i-th row of B, with its j-th element removed;- B�j;i is the j-th column of B, with its i-th element removed;- B̂ is B with its i-th and j-th column removed.By the choice of Bij , it is either the largest element in its row or the largest element in itscolumn of B. From our assumptions on B, we deduce that jBijj = 
(1). Denoting the pivotblock by E, we haveE = Bij " 0 11 0 #+O(� + u); E�1 = 1Bij " 0 11 0 #+O(� + u): (67)Therefore the elimination step yields the remaining matrixP̂ 2664 0 B̂ N̂B̂T 0 0N̂T 0 � 3775 P̂ T � 1Bij P̂ 264 0 B�j;iBTi�;j 0NTi� 0 375 " 0 11 0 # " 0 Bi�;j Ni�BT�j;i 0 0 # P̂ T +O(� + u)= P̂ 2664 0 B̂ N̂B̂T 0 0N̂T 0 � 3775 P̂ T +O(� + u); (68)where �B = B̂ � 1BijB�j;iBi�;j; �N = N̂ � 1BijB�j;iNi�:It is obvious that (68) satis�es De�nition 2, except possibly for the conditioning of theremaining matrix �B. This matrix is obtained by pivoting the (i; j) element of B to the(1; 1) position and then doing one step of Gaussian elimination. In fact, we are doing partialpivoting since, as noted above, Bij is the largest element in either its row or its column.Hence, the conditioning of the reduced submatrix �B is unlikely to di�er much from �(B), soit is reasonable to assert that �( �B) = O(1).We have shown that our stated result holds for both cases (i) and (ii), so our proof ofpart (b) is complete.For part (c), note that C = O(1) whether the pivot block is 1 � 1 or 2 � 2. For 1 � 1pivots, we have jEj = 
(��1) and jE�1j = 
(�). For 2 � 2 pivots, we have from (67) andjBijj = 
(1) that jEj = O(1) and jE�1j = O(1).31



A.2 Proof of Theorem 6.2Again, we prove (a) by excluding the other possible choice for a pivot:(iii) The pivot is 2� 2 and contains at least one element from �. In a degenerate canonicalmatrix, we have �i = O(� + u), i = 1; 2; : : : ; �n. A 2 � 2 pivot with diagonal elementsT11 and Trr must have jT11j � ��1; jTrrj � ��r;which implies that both diagonals are O(�+ u), so neither element can come from �.In the case of either a 1� 1 or 2� 2 pivot made up of elements of size O(�+ u), we canuse the standard argument about element growth in Bunch-Kaufman (that is, the argumentthat leads to (44)) to deduce the result (b). In the remaining case, where the pivot is asingle diagonal element from �, we have in the notation of (42) that jCj = O(� + u) andjEj = 
(��1). Hence, the update to the remaining submatrix is bounded byjCjjE�1jjCjT = O(�(� + u)2);which certainly has size O(� + u).A.3 Proof of Lemma 6.4Proof. In 
oating-point arithmetic, the LU factorization of (50) yields the following approx-imate LU factors:" 1 0E11=E12 + �1 1 # ; " E12 E220 E12 � E11E22=E12 + �2 # ; (69)where �1 = ����E11E12 ����O(u); �2 = jE12jO(u) + jE11E22=E12jO(u):It is well known that for triangular substitution applied to any triangular system Uz = h,the computed solution ẑ satis�es (U +�U)ẑ = h, where jEU j = jU jO(u). By applying thisobservation to each of the matrices in (69), we �nd that the computed solution ŷ of (50)satis�es " 1 0E11=E12 + �3 1 # " E12 + �4 E22 + �50 E12 � E11E22=E12 + �6 # " ŷ1̂y2 # = " g2g1 # ; (70)where �3 = �1 + jE11=E12jO(u) = jE11=E12jO(u);�4 = jE12jO(u);�5 = jE22jO(u);�6 = �2 + (jE12j+ jE11E22=E12j)O(u) = jE12jO(u) + jE11E22=E12jO(u):32



By multiplying out the coe�cient matrix in (70), we obtain" E12 + �4 E22 + �5E11 + �7 E12 + �8 # ; (71)where �7 = jE12j�3 + jE11=E12j �4 = jE11jO(u);�8 = jE11=E12j �5 + jE22j�3 + �+ (jE12j+ jE11E22=E12j)O(u)= jE11jO(u) + jE11E22=E12jO(u) + jE12jO(u):= jE12jO(u):(The last equality follows from (49).) Hence, (71) can be written as" 0 11 0 # (E +�E);where �E satis�es the bound (51).A.4 Proof of Theorem 8.1Proof. We start by proving the analog of Theorem 6.1(a). As in the earlier proof, wesystematically exclude the three other possible choices of pivots.(iii) The pivot is 1 � 1 and is a diagonal element from either the (1; 1) or (2; 2) blocks of(26). Then this pivot (Tii, say) will be O(� + u). According to the stability criterion(56) we then have �i = O(�+ u), which implies that one of the rows or columns of Bis O(�+ u). However, this estimate is incompatible with B = 
(1) and �(B) = O(1),so this kind of pivot cannot occur.(iv) The pivot is 2 � 2 and involves at least one diagonal element from �. First, we showthat we cannot have both diagonals from �. If this were the case, then at least oneof these diagonals (Tii, say) would have been considered as a 1 � 1 pivot at an earlierpoint in the algorithm. But if it was considered, it would have been accepted, sincejT�1ii j�i = O(�)O(1) = O(�) � 2=�for su�ciently small �. Hence, at most one of the diagonals is from �.Without loss of generality, suppose in (57) that Tii is from � while the remainingdiagonal Tjj is O(� + u). In fact, we haveTii = 
(��1); Tjj = O(� + u); Tij = O(1);and so ������" Tii TijTij Tjj #�1������ = 1jTiiTjj � T 2ijj �����" Tjj �Tij�Tij Tii #����� :33



Hence, from (57), we have�����" Tjj �Tij�Tij Tii #����� " �i�j # � jTiiTjj � T 2ijj " 1=�1=� # = " O(1)O(1) # :From the second row of this inequality, we have�j � 1jTiijO(1) = O(�):But �j is the1-norm of one of the rows or columns of B, so this estimate contradictsour assumptions on B. Hence, this type of pivot cannot occur.(v) The pivot is 2� 2, and the pivot block E is drawn either entirely from the (1; 1) blockof (26) or entirely from the (2; 2) block. In this case, all elements of E are O(� + u).From (57), we have as above that�����" Tjj �Tij�Tij Tii #����� " �i�j # � jTiiTjj � T 2ijjO(1):Taking the second row of this relation, we obtainjTijj�i + jTiij�j � jTiiTjj � T 2ijjO(1) � �jTiiTjjj+ jTijj2�O(1); (72)where, by de�nition, �i and �j are both nonnegative. Consider two cases. WhenjTijj2 � jTiiTjjj we have from (72) thatjTijj�i � jTijj2O(1) =) �i = O(jTijj) = O(� + u):For the reasons outlined earlier, the assumptions on B are inconsistent with this boundon �i, so this case cannot hold. For the other case jTijj2 < jTiiTjjj, we havejTiij�j � jTiiTjjjO(1) =) �j = O(jTjjj) = O(� + u);which is also disallowed by our assumptions. Hence, pivots of this type cannot occur.The proof of the remaining parts (b) and (c) of Theorem 6.1 is identical in this case.Turning now to the case of a degenerate canonical matrix and the analog of Theorem6.2, we start by showing that no 2� 2 pivots may contain diagonal elements from �.Note that for a degenerate matrix, the o�-diagonals, and hence the quantities �i, allhave size O(� + u). If the pivot is a 2 � 2 block in which both diagonals are from �, thenone of them (Tii, say) must have been considered previously as a 1 � 1 pivot. But if it wasconsidered, it would have been accepted, sincejT�1ii j�i = O(�)O(� + u) � 2=�:Hence, this type of pivot cannot occur. 34



If just one of the diagonals is from �, this diagonal element (Tjj, say) must not havebeen considered earlier as a 1 � 1 pivot, since then it would have been accepted for thereason described above. Hence, the other pivot Tii, which has size O(�+u), must have beenconsidered as a 1 � 1 pivot and rejected. Because of (56), Tii must satisfyjTiij < �2�i: (73)On the other hand, since the 2� 2 pivot is accepted, we must have�����" Tjj �Tij�Tij Tii #����� " �i�j # � jTiiTjj � T 2ijj " 1=�1=� # : (74)Consider �rst the case of T 2ij � jTiiTjjj. Then from the �rst block row in (74), this inequalityimplies that jTjjj�i � jTiiTjj � T 2ijj1� � 2T 2ij 1� :Since jTijj � �i, we have jTjjj � 2jTijj1� = O(� + u);which contradicts our assumption that Tjj has size 
(��1). The remaining case has T 2ij <jTiiTjjj. From (74) and (73), we havejTjjj�i � 2jTiiTjjj1� < 2jTjj j1� �2�i = jTjjj�i;which is a contradiction. Hence this kind of pivot | in which exactly one of the diagonalscomes from � | cannot occur either, and we are done.For the analog of part (b) of Theorem 6.2, we have from (56) and (57) and the de�nitionof C and E in (42) that jE�1CT j � jE�1jjCT j = O(1=�) = O(1):Hence, the update matrix CE�1CT is bounded as follows:jCE�1CT j = kCkO(1) = O(� + u);giving the result.References[1] J. Bunch and L. Kaufman, Some stable methods for calculating inertia and solvingsymmetric linear systems, Mathematics of Computation, 31 (1977), pp. 163{179.[2] I. S. Duff, The solution of augmented systems, Technical Report RAL{93{084, Ruther-ford Appleton Laboratory, Oxon, U. K., November 1993.35
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