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21. Introduction and NotationThis paper is concerned with the determination of the best constant K1 forthe inequality Z 10 y0 2 � K1�Z 10 jyj� max(0;1) jy00j ; (1.1)where y; y0 are locally absolutely continuous (\ACloc") real functions such thatthe right-hand side of the inequality is �nite. Equation (1.1) is a limiting case ofthe inequality Z 10 y0 2 � Kp�Z 10 jyjp�1=p�Z 10 jy00jp0�1=p0 ; (1.2)where 1 � p � 1 and 1=p+ 1=p0 = 1. Equation (1.2) in turn is a special case ofof a higher-order multiplicative inequality known as Gabushin's inequality, whichstates that�Z 10 jy(k)jq�1=q � Kq;p;r;m;k �Z 10 jyjp��=p�Z 10 jy(m)jr��=r ; (1.3)where y(m�1) 2 ACloc, 0 � k �m� 1, 1 � q; p; r � 1 andmq � m� kp + jr� = m� k � 1=r + 1=qm� 1=r + 1=p� = 1� � :The best constants Kp for the family of inequalities (1.2) were �rst studied byEveritt and Giertz [5]. Thus far, the value of Kp has been discovered in only twocases: p = 2 is the classic inequality of Hardy and Littlewood [4, Theorem 239]and K2 = 2; p =1 is a special case of an inequality considered by Arestov|hereK1 is also 2 (cf. [10]).For general p and in most cases of Gabushin's inequality (1.3) the determi-nation of Kp, the existence and determination of extremals, or even questionsone might reasonably ask about the behavior of Kp as a function of p | Is Kpcontinuous, di�erentiable, monotone, etc.? | are di�cult and mostly unsolvedproblems. The situation does not improve much if one considers the problem of�nding good (i.e., small) upper bounds for Kp (a lower bound on Kp is plainly1). Using numerical methods, Everitt and Giertz estimated Kp in the range1:1 � p � 2; examples of the bounds they obtained areK1:1 � 13:53; K1:5 � 6:98,and K2 � 5. More recently in [4], Brown and Hinton found numerical evidence



3that K1 � 4:1, that Kp is bounded above by a monotonically decreasing function�(p) such that limp!1�(p) = 2. Further discussion of some of these examples aswell as a surveys of known results concerning best constants and extremals ofother instances of (1.3) may be found in [10],[11].Here, although we leave the general problem of estimating Kp or Kq;p;r;m;kunsolved, we obtain exact results for two cases. We prove �rst the followingtheorem.Theorem 1. K1 = 4p3=3. Moreover a unique extremal exists for inequality(1.2), which is a certain quadratic polynomial.In the �nal section of the paper, we show how the methods of Theorem 1 may beapplied to determine K2p;p;1;2;1. In subsequent work we hope to show that thesemethods can be further extended to other cases of (1.2) or (1.3). To establishsome motivation for our e�orts, we remark that estimates of the best constantof this and other types of multiplicative inequalities can be used to establishnonoscillation criteria as well as spectral lower bounds for di�erential operators(cf. [1], [6], [12]).Let I be [0;1) or any �nite closed interval [a; b], and denote by W (I) thespace of functions y de�ned on I such that y0 is locally absolutely continuous inI, and y 2 L1(I); y0 2 L2(I), and y00 2 L1(I). For a given subfamily of functionsZ �W (I) and a function z 2 Z, we de�neQ(z) = RI z0 2�RI jzj�maxI jz00j ;and K(Z) = supz2ZQ(z) :We often abbreviate RI f(x) dx by RI f , where the variable x involved is under-stood.In the special case when I = [0;1) and Z = W (I), K(Z) = K1 is the bestconstant for the inequality under study; we will often abbreviate it simply by K.Let y be a function de�ned on some interval I and J � I be a subinterval. Weuse yJ to denote the restriction of y on J . Finally, we will frequently speak offunctions that have been originally de�ned on some �nite interval I as if they werede�ned on a di�erent �nite interval I 0, with the understanding that we actuallyrefer to these functions after a suitable translation and scaling. For instance, letZ be a subset of W ([0; 1]) and y be de�ned on [2; 4]. We will say that y 2 Z,where in reality we mean that y(x�22 ) 2 Z.



42. Two Finite-Interval Equivalent ProblemsFinite-interval equivalent problemswere �rst used to study Landau inequalitieson (�1;1) in [8], and the method was later extended to inequalities on [0;1)in [9]. A comprehensive account of these results can be found in [11]. In thissection we derive two �nite-interval equivalent problems for the inequality beingstudied. Further reductions will be given in the next section.Lemma 1. Let I = [0;1) and y 2 W (I) be such that Q(y) � K � �. Thenthere exists a function z 2W (I) of compact support such thatQ(z) � Q(y) � � � K � 2� : (2.1)Proof. This lemma can be easily proved by using the classical technique ofapproximating the given function by its convolution with an approximate identity.We give below a more elementary proof.Let � be a C1 function with support in [0; 2) such that 0 � �(t) � 1 and�(t) = 1 if t 2 [0; 1]. Set z = �(t=t0)y for some �xed t0 > 0 which we willdetermine. It follows from the de�nition of z and the fact y 2 L1(I), that forany given �1 > 0, we can choose t0 su�ciently large so that jjy � zjj1;[t0;1) � �1.Since z0(t) = �(t=t0)y0(t) + �0(t=t0)y(t)=t0 ; (2.2)we can also choose t0 su�ciently large thatjj�(t=t0)z0jj2;[t0;1) � �2 ;for any given �2. On the other hand it is possible to prove (cf. [2, Lemma 2.1])that there is a constant C independent of y and � such that if t 2 [t0; t0+�], thenjy(t)j � C1 ��1 Z t0+�t0 jyj+ Z t0+�t0 jy0j! : (2.3)Hence, for t 2 [t0;1),jy(t)j � C1 ��1 ZI jyj+ �1=2�ZI y0 2�1=2! : (2.4)Since � is arbitrary, minimization of the right side of this inequality as a functionof � gives the multiplicative inequalityjy(t)j � C2�ZI jyj�1=3�ZI y0 2�1=3 : (2.5)



5It follows from substituting (2.5) into (2.2) that given �3 we can choose t0 solarge that jjz0 � y0jj2;[t0;1) � �3. Finally, considerz00(t) = �(t=t0)y00 + 2�0(t=t0)y0(t)=t0 + �00(t=t0)y(t)=t20 : (2)In the same way as in the derivation of (2.3) and (2.4), one can show �rst thatjy0(t)j � C3���2 ZI jyj+ �jjy00jj1;I�and then that jy0(t)j � C4�ZI jyj�1=3 jjy00jj2=31;I : (2.7)Substituting the bounds (2.5) and (2.7) into (2.6) and taking t0 su�ciently largeyield that jjz00jj1;I � jjy00jj1;I + �3. If y is chosen so that Q(y) > K � �, astraightforward calculation allows us to �nd �1, �2, �3 so thatRI y0 2 � �21�RI jyj+ �2� (jjy00jj 1;I + �3) � Q(y) � � :The conclusion (2.1) follows becauseQ(z) � RI y0 2 � �21�RI jyj+ �2� (jjy00jj infty;I + �3) :�Lemma 2. De�neZ1 = fz 2W ([0; 1]) : z(0) � 0; z(1) = z0(1) = 0gand Z2 = fz 2W ([0; 1]) : z(1) � 0; z(0) = z0(0) = 0g :Then K = K(Z1) = K(Z2).Proof. Let y 2W ([0;1) and z be as asserted in Lemma 1 such thatQ(z) � Q(y) � � � K � 2� : (2.8)



6By replacing z by �z if necessary, we may assume without loss of generality thatz(0) � 0. After scaling we can consider z to be in Z1. HenceK(Z1) � Q(z) � K � 2� :Letting � ! 0, we get K(Z1) � K. Conversely, if z 2 Z1, we extend it to bezero in [1;1). The extended function, which we call ẑ, belongs to W ([0;1)).Now K � Q(ẑ) = Q(z). Taking the supremum over Z1 gives K � K(Z1) so thatK = K(Z1).Functions in Z2 are merely re
ections of those in Z1, and they have the samequotient values; hence K(Z2) = K(Z1). �3. Further ReductionsOur basic strategy in determining K will be to reduce the problem of �ndingK(Z2) to a sequence of simpler �nite-interval equivalent problems. The reduc-tions are e�ected either by throwing away a large subclass of functions in theprevious problem or by �nding another family of functions that satisfy more con-ditions without a�ecting the value of K. These procedures can be justi�ed bythe obvious facts stated in the following lemma.Lemma 3. Given Y and Z � W (I), if for every function z 2 Z we can �nd ay 2 Y such that Q(y) � Q(z), and for every y 2 Y we can �nd a z 2 Z such thatQ(y) � Q(z), then K(Y ) = K(Z) :In particular, given Y � Z, if for every z 2 Z we can �nd a y 2 Y such thatQ(y) � Q(z), then K(Y ) = K(Z). Alternatively, if we can show that for everyz 2 Z n Y , Q(z) < K(Z), then K(Y ) = K(Z).One technique to produce from a given function z another function y with agreater quotient value is to restrict z to a suitable subinterval, using the nextlemma.Lemma 4. Let z be a function de�ned on I which is the sum of two disjointsubintervals I1 and I2, and let z1 and z2 be the restrictions of z on I1 and I2,respectively. Then Q(z) � maxfQ(z1); Q(z2)g :In general, if I = [1n=1In, where In are mutually disjoint, and for each restrictionzn of z onto In, Q(zn) � q, then Q(z) � q.Proof. Let q = maxfQ(z1); Q(z2)g :



7Then ZI1 z0 21 � q�ZI1 jz1j�maxI1 jz001 j � q�ZI1 jz1j�maxI jz00j ; (3.1)and ZI2 z0 22 � q�ZI2 jz2j�maxI2 jz002 j � q�ZI2 jz2j�maxI jz00j : (3.2)Adding (3.1) and (3.2) givesZI z0 2 � q�ZI jzj�maxI jz00j ;which implies that Q(z) � q. A trivial modi�cation of this argument handles thecase I = [1n=1In. �The next lemma gives a lower bound on K. Any function that gives a quotientvalue less than this lower bound can therefore be thrown away, a fact to be usedin our �rst reduction (Lemma 6).Lemma 5. K > 2.Proof. It is easy to see that K � 2 since z = x2 is in Z2 and Q(z) = 2. Toget Q(z) > 2, we substitute the more complicated test function (which, after ahorizontal scaling, can be considered to be in Z2)z = � �x2; in [0; 1]x2 � 4x+ 2; in [1; 6] :Direct computation givesK > Q(z) = 6623 + 4p2 > 2:303 :�Lemma 6. De�ne Z3 = fz 2 Z2 : z(1) > 0; z0(1) > 0g :Then K(Z3) = K.Proof. Case 1: Suppose z 2 Z2 and z(1) = 0. ThenZ 10 z0 2 = �Z 10 zz00 = ����Z 10 zz00���� � �Z 10 jzj�max[0;1] jz00j :



8This gives Q(z) � 1. Since K > 2, by the previous lemma, we need not considerz of this type.Case 2: Suppose z(1) > 0 but z0(1) � 0. ThenZ 10 z0 2 = z(1)z0(1)� Z 10 zz00 :By the de�nition of Z3, the term z(1)z0(1) � 0, so�Z 10 zz00 = Z 10 z0 2 + jz(1)z0(1)j � 0 :But �Z 10 zz00 = ����Z 10 zz00���� � �Z 10 jzj�max[0;1] jz00j :As in Case 1, this implies that Q(z) � 1, so that we can throw away z with theseboundary conditions also. �In several other occasions in the sequel, we shall employ the same argumentsused above in establishing Case 2.Lemma 7. De�ne Z4 = fz 2 Z3 : z � 0gand Z5 = fz 2 Z4 : z0(x) > 0; for all x > 0g :Then K(Z4) = K(Z5) = 2.As a consequence, upon de�ningZ6 = Z3 n Z4 ;we have K = K(Z6): (3.3)Proof. The function z = x2 belongs to Z5. Hence K(Z5) � Q(z) = 2. ThatK(Z5) � K(Z4) follows from the fact that Z5 � Z4. Let z 2 Z4 n Z5. Thenz0(c) = 0 for some c > 0. Since z0(1) > 0 (de�nition of Z3), z is increasing nearx = 1. Let � be the last critical point of z, i.e.. z0(� ) = 0, but z0 > 0 in (�; 1).By Lemma 6, Case 2, Q(z[0;� ]) � 1. If Q(z) � 2, we can throw it away. SupposeQ(z) > 2. Set u = z[�;1]. By Lemma 4,2 < Q(z) � max�Q(z[0;� ]); Q(u)	 :



9Since we have just shown that Q(z[0;� ]) � 1,Q(u) � Q(z) :If we translate the graph of u, namely, setting v(x) = u(x)�u(� ), we obtain thatv 2 Z5. Furthermore, since jjvjj1;[�;1] � jjujj1;[�;1],Q(v) > Q(u) � Q(z) :Consequently, K(Z5) = K(Z4). It remains to show that Q(z) � 2 for all z 2 Z5.Without loss of generality, we take max jz00j = 1. By choosing z as the indepen-dent variable and noting that functions in Z5 are monotonically increasing, andz0 = 0 at z = 0, we obtain(z0)2 = Z z0 d(z0 2)dz dz = Z z0 2z00 dz � Z z0 2 dz = 2z :Therefore z0 � p2z and zz0 �rz2 :It follows that Z 10 z0 2 dx = Z z(0)0 z0 dz � Z z(0)0 p2z dz (3.4)and Z 10 jzj dx = Z z(0)0 zz0 � Z z(0)0 rz2 dz : (3.5)That Q(z) � 2 follows if we divide (3.4) by (3.5).To recapitulate, identity (3.3) means that we need only consider functions zsuch that z(0) = z0(0), z(1) > 0, z0(1) > 0, and z changes sign.The change of variable argument used in the last part of the above proof canbe modi�ed to give a comparison result that we shall need in Lemma 11 below.Lemma 8. Suppose we start out with a function u, de�ned on I, that is mono-tone on a subinterval I1 = [a; b] and we modify u to obtain a new function v,by changing only the portion of u on I1 to another function. The replacementfunction will span a shorter subinterval I2 = [a; c] (c � b), and so we translatethe portion of u to the right of [a; b] to close up the gap. We require that thenew function v remain twice di�erentiable and that max ju00j = max jv00j. Thenif for all x 2 [a; b] and t 2 [a; c] such that u(x) = v(t), we haveu0(x) � v0(t) ;



10it follows that Q(u) � Q(v) :Proof. We need only establish this for the case that u; v � 0 in I1 and I2. Inthe general case, we can apply the result to the positive and negative parts ofthe functions separately and then add the inequalities. If u and v are the newindependent variables, thenZI1 udx = Z u(b)u(a) uu0 du � Z v(d)v(c) vv0 dv = ZI2 v dxZI1 u0 2 dx = Z u(b)u(a) u0 du � Z v(d)v(c) v0 dv = ZI2 v0 2 dx :It follows that Q(u) � Q(v). �By de�nition, functions in Z6 must change sign, and they can do so morethan once. It would be nice if we could limit our search for the best K to thosefunctions that change sign only once. Unfortunately such functions, under theconstraint that they vanish with their �rst derivative at the endpoint 0, do notproduce a quotient close to K. In the next lemma we prove that we can stillrecover K from functions that change sign only once, provided that we weakenthe boundary condition at 0 to allow additional functions. At this point, wecontinue to admit functions (those in Z7 de�ned below) that vanish with their�rst derivative at 0. Eventually, we shall see that these functions too can bethrown away.Lemma 9. LetZ7 = fz 2 Z6 : z changes sign exactly once at � and z0(�) 6= 0g :Furthermore, let Z8 �W ([0; 1]) consist of functions satisfying the conditions:(i) z(0) < 0, z0(�) 6= 0.(ii) z changes sign exactly once at � and z0(�) 6= 0.(iii z(1) > 0, z0(1) > 0.(iv) �z0 2(0)z(0) = z0 2(1)z(1) .(v) jz(0)j < z(1).Then K = K(Z7 [ Z8).Proof. We �rst show that K � K(Z7 [ Z8): (3.6)



11Let z 2 Z6 such that Q(z) � K(Z6)� �. If z changes sign only once, then z 2 Z7and we have K(Z7) � Q(z) � K��, which implies (3.6). Suppose that z changessign more than once. Let � be the last zero of z.Case 1: z0(�) = 0. Then z[�;1] 2 Z7. It is easy to see that Q(z[0;�]) � 1. ByLemma 4, Q([�;1])� Q(z) � K � �, and (3.6) follows.Case 2: z0(�) > 0. Let � be the last zero of z before �. We can dispose of thecase when z0(� ) = 0, as in Case 1 above, to obtain z[�;1] 2 Z7.Case 3: Thus we may assume that z0(� ) < 0. Let � > � be the �rst zero of z0after � . Then z0(x) < 0 in [�; �). Consider the functionr(x) = ����z0 2(x)z(x) ���� ;which satis�es limx!� r(x) = 0 and limx!� r(x) = 1. By the intermediate valuetheorem, there is a 
 2 (�; �) such that r(
) = r(1). (Note that this argumentfails for functions in Cases 1 and 2, since limx!� r(x) may be bounded.) The functionu = z[
;1] thus satis�es conditions (i){(iv) in the de�nition of Z8. We shall seelater that condition (v) is also satis�ed, so we can assume that u 2 Z8. IfQ(u) � K � �, we have K(Z8) � Q(u) � K � � and (3.6) follows. If not, thenby Lemma 4, Q(z[0;� ] � K � �. we can repeat the argument over the remainingoscillations of z in [0; � ]. One of these must yield a section of z with Q � K � �,or else the in�nite version of Lemma 4 will give Q(z) < K � �, a contradiction.Let us show that condition (v) is satis�ed by z. Suppose that jz(0)j = z(1).Then Z 10 z0 2 = Z 10 zz00 =) Q(z) � 1 ;contradicting Q(z) � K � �. We extend z by piecing together to the rightof z its own images scaled by compressing vertically with the ratio jz(0)=z(1)jand vertically with the ratio pjz(0)=z(1)j. This gives a function u of compactsupport and Q(z) = Q(u). The arguments used in Lemma 6, however, prove thatQ(u) � 1.The proof of the lemma will be complete if we can show that K � K(Z7[Z8).If z 2 Z7, then it is also in Z2, and so Q(z) � K(Z2) = K. On the other hand,if z 2 Z8, then we use the extension method given in the previous paragraph topiece together a chain of scaled images of z, but this time to the left, to obtain afunction u of compact support, that is, in Z2. Again Q(z) = Q(u) � K(Z2) = K.� In the following, we use the term local maximum (minimum) in a narrow sense,referring to one in the interior of the interval and not at the end points.



12Lemma 10. LetZ9 = fz 2 Z7 [ Z8 : z has no local maximumg :Then K(Z9) = K.Proof. Case 1: z has a local maximum in (�; 1). In this case, there must alsobe a local minimum in (�; 1). Let � be the last of these. First we extend zto u 2 Z2. Then Q(u) = Q(z). But Q(u[b;�]) � 1 (Case 2 of Lemma 6) andQ(u[�;1]) � K(Z4) = 2. Therefore, by Lemma 4, Q(z) = Q(u) � 2 and z can bethrown away.Case 2: z has a local maximum in (0; �). Let � be a local maximum and � < �be the local minimum just to its left. Note that Q(u[�;�]) � 1. By an argumentsimilar to that used to prove Lemma 4, we see thatR �0 z0 2 + R 1� z0 2�R �0 jzj + R 1� jzj� � Q(z) :Also note that Q(z[0;�]) � 1. Now scale z[0;�] to �t smoothly to the left of z[�;�]to form a new function u 2 Z9. The scaling is a compression since jz(�)j > jz(�)j.Thus Q(u) = � R �0 z0 2 + R 1� z0 2�� R �0 jzj+ R 1� jzj�max jz00jfor some � < 1. It is easy to see that the fraction in this expression is larger thanthat in (2.8). So Q(u) � Q(z). �By the above lemma, Z9 can have only one local minimum, which we denoteby �.Lemma 11. Let Z10 = fz 2 Z9 : z00[�;1] = C = max[0;1] z00g :Then K(Z10) = K.Proof. Let us show that any functions in Z9 n Z10 can be skipped withouta�ecting the best constant. By the de�nition of Z9, z belongs to Z7 or Z8.Case 1: Suppose z 2 Z7. If z 62 Z10, then z00 6= C in [�; 1]. We can replace z[�;1]by a function u such that u00 = C, as in Lemma 8. Note that u will be de�ned ina shorter interval [0; 
] with � < 
 < 1. The inequality Q(u) � Q(z) then followsfrom Lemma 8.



13Case 2: If z 2 Z8, we �rst extend z to the left to a function u 2 Z2 as in the lastpart of the proof of Lemma 8. Suppose that the domain of u is now [�; 1]. ThenQ(u) = Q(z). We may assume without loss of generality that z has been chosenso that Q(z) � Q(u(�;b]) for all b 2 (�; �): (3.7)Otherwise, we can replace z by a better choice constructed as follows. Let b besuch that Q(u(�;b)) = max�bQ(u(�;�b)) > Q(z), and cut out a piece �z = u[c;b] 2 Z8,as in Lemma 9, so that Q(�z) > Q(z).If u00 6= C in [�; 1], we can modify u in that part to form a new function suchthat v00 = C on [�; 
], as in Case 1. Then v = u in (�; �), andQ(v) � Q(u) = Q(z) : (3.8)Now we can cut out a section v[b;
] 2 Z8. Since v(�;b] = u(�;b], by (3.7), (3.8), andLemma 4, we have Q(v[b;
]) > Q(z) :�Lemma 12. LetZ11 = fz 2 Z10 : there exists 
 2 [0; �] such thatz00 = �C in (0; 
) and z00 = C in (
; 1)gand Z12 = �z 2 Z11 : Q(Z[0;�]) < Q(z) for all � 2 (0; 
)	 :Then K = K(Z11) = K(Z12).Proof. Let z be in Z10. We modify z in [0; �] as follows, where � is the localminimum of z. We denote the new function by u. Starting at �, we let thegraph bend upwards towards the left, with u00 = C. At a suitable point 
, to bedetermined below, we let u bend downwards, now with u00 = �C, until u reachesa height equal to z(0), at some point x = �.The condition on choosing 
 is such that u0(�) = z0(0). That 
 exists followsfrom a continuity argument. If we let u change curvature at a point when theheight of u is halfway between z(�) and z(0), then we end up with u0(�) = 0 �z0(0), while if we let u continue to bend upwards without changing its curvature,then u0(�) < z0(0). Therefore, somewhere between these two extreme cases, theremust be a suitable choice of 
.The new function u 2 Z11 and u[�;�] compares favorably with z[0;�] in thesense of Lemma 8; hence Q(u) > Q(z) and K(Z11) = K follows.



14 In view of Lemma 7, functions in Z11 \ Z7 can either be thrown away or arealready in Z12. So now suppose that z 2 Z11 \ Z8 n Z12. Then there exists an� 2 (0; 
) such that Q(z[0;�]) � Q(z). Let � be the maximum of all such �. It canhappen that � = 
. In the contrary case, we observe that for every � 2 (�; 
),Q(z[�;�]) < Q(z): (3.9)Otherwise, if (3.9) is not true, then by Lemma 4,Q(z[0;�]) � min�Q(z[0;�]); Q(z[�;�])	 � Q(z) ;contradicting the de�nition of �.Our next construction is to cut the part z[0;�] out from z, translate it to theright of z, stretch it appropriately, and then reattach it to z smoothly. It is easyto see now that the new function u will satisfy u00 = C to the right of � andthat u 2 Z12. The inequality Q(u) � Q(z) follows from the facts that the partz[0;�] carries a larger (or same) quotient than the rest of z and that the weightcarried by this quotient is magni�ed when z[0;�] has to be stretched before beingreattached to the right hand side of z. �Lemma 13. Let Z13 = fz 2 Z12 : 
 = 0g ;which consists of exactly the quadratic polynomials in Z10 such that z00 = C on[0; 1]. Then K(Z13) = K:Proof. Let z 2 Z12. If 
 6= 0, we modify z to the left of 
 to a new function u bybending the graph upward with u00 = C, until it reaches a point x = � at whichju0 2(�)=u(�)j = r(1) = jz0 2(1)=z(1)j. It is easy to see that this happens with� 2 (0; 
) and that u(�) < z(0). Let � 2 (0; �) be the point at which z(�) = u(�).By the de�nition of Z12, Q(z[0;�]) < Q(z), so that Q(z[�;1]) > Q(z). Lemma 8can now be invoked to show that Q(u) > Q(z[�;1]), and the lemma is proved. �Lemma 14. An extremal exists in Z13 and is unique (modulo a constant mul-tiple).Proof. Existence follows from the fact that the maximization problem is nowreduced to one on a class of functions that depends only on one parameter,namely, r(0) (and not on C = max jz00j). We now show that if w is an extremal,then �w0 2(0)w(0)C = w0 2(1)w(1)C = Q(w) :



15To this end, we choose a particular quadratic function y = x2 � x. It is easy tosee that the extremal for K, after scaling and translation, must be of the formyI , in other words, y restricted to some suitable interval I = [a; b], such thatr(a) = r(b). Next extend y[a;b] to its left to a function u in Z2. If we consider uas a function of its endpoint b, we see that when b gives the extremal, dQ=db = 0.But dQdb = u(b)C R b�1 juj(r(b) � CQ(b)) :Hence, r(b) = CQ(b). This argument also implies the uniqueness of the extremal.The parameter r(b) is a monotonically decreasing function of b so there can onlybe one choice of b that makes r(b) = CK. �Proof of Theorem 1. We apply a method suggested by Lemma 14 to computeK. Let y = x2 � x as in the proof of Lemma 14. We use r � 2 as our parameterand determine a and b so that r(a) = r(b) = r. The computations shown belowwere done using the symbolic manipulation software MAPLE V. The programwill be given in the Appendix. We geta = 1�q1� 2r+22 (3.9)and b = 1 +q1 + 2r�22 : (3.10)Straightforward computation givesq(r) = Q(yI = [4b3 � 6b2 + 3b]� [4a3 � 2a2 + a]2 + 2a3 � 3a2 + 2b3 � 3b2 :After substituting the expressions for a and b above and simplifying, we obtainq(r) = r3=2 �pr � 2r � 2pr � 2 + 2p2 + r +p2 + rr�D (3.11)where the denominator D is given byD = p2 + rpr � 2 + 2p2 + rpr � 2r2 � 6pr � 2pr +pr � 2r5=2+ r3=2pr � 2 + 6p2 + rpr �p2 + rr5=2 + r3=2p2 + r: (3.12)
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Figure 1. Plot generated with MATLABA plot of q versus r (constructed using MATLAB) is shown in Fig. 1. ByLemma 14 the maximum of the curve is also the intersection of the curve withthe line q = r. The numerical solution of this equation is not di�cult. Theexact algebraic solution of the equation, however, seemed at �rst sight out ofreach because of the formidable-looking expressions (3.11) and (3.12). Thanksto MAPLE, the simple command \solve(r=q,r)" gave us the answer as givenby this lemma.Once we know the answer, it is possible to work backwards to �gure out howone could have obtained it by pen and paper. Denote by N the numerator ofq(r) in (3.11). Then the equation q = r, which is to be solved, is equivalent toD �N=r = 0, which can be factored as(r + 2)(r � 2)�pr(r � 2)�pr(r + 2) + 2p(r + 2)(r � 2)� = 0 :Solving the equation obtained by the third factor is then straightforward. �4. Further InequalitiesA more general inequality than that given in the title of the paper isZ 10 jy0j2p � K(p)�Z 10 jyjp� max(0;1) jy00jp : (4.1)Notice that (4.1) is equivalent to Gabushin's inequality, with q = 2p, r = 1,m = 2, and k = 1, and that K(p) = Kp2p;p;1;2;1. This inequality can be studied



17by exactly the same method described in the early part of this paper. We merelystate the �nal result.Theorem 2. The best constant K(p) in inequality (4.1) is the maximum of thequotient q(r) = R ba jy0j 2p2p �R ba jyjp� ;where y = x2 � x, r > 2, and a and b are given by (3.9) and (3.10).Alternatively, K(p) is the unique positive solution of the equationrp = q(r); r > 2: (4.2)The constant K(2) = 36=5 was determined exactly by using MAPLE, butthe next one, K(3), is the solution of an eighth-degree polynomial and is not arational number. One can easily �nd the approximate values of K(p) using aniterative �xed-point scheme based on (4.2). We summarize our results below.The numerical values were computed using the arbitrary-precision arithmeticin MAPLE to 50 signi�cant places and then rounded o� to 30 places after thedecimal point.Theorem 3. K(2) = 365K(3) � 25:01845 17898 28377 11460 58592 89421K(4) � 91:05280 88548 54808 83114 72060 68652K(5) � 339:42928 70993 18821 45933 06691 47941 :The algebraic equation obtained by MAPLE for K(3) isK(3) = r3;where r satis�espr(2 r2 + 10 r + 15)(r � 2)5=2 + 4 (r � 2)5=2(2 + r)5=2�pr(2 r2 � 10 r + 15)(2 + r)5=2 = 0 :



18 Appendix. The MAPLE ProgramThe following is the MAPLE program we used to set up the various variables.if not assigned (p) then p := 1; fi:q := 2* p;a := (1-(1-2/(2+r))^(1/2))/2:b := (1+(1+2/(r-2))^(1/2))/2:a1 := 1:a2 := p:Y := int( (1-2*x)^q, x=a..1/2)+int( (2*x-1)^q, x=1/2..b):Yp := int( (x-x^2)^p,x=a..1 ) + int((x^2-x)^p,x=1..b ):q := ndifferential^a1/2^a2:q := simplify(q):eq := denom(q)-numer(q)result^p:nq := proc(R) local RR:RR := convert(R,rational,exact);:= evalf(subs(r=RR,Q),50);end:The �rst line sets up a default choice, namely 1, for p. In the second line, q is theexponent for y0 in the inequality (4.1). The values a and b are then computedusing (3.9) and (3.10). The program was originally written for an inequalityeven more general than (4.1), in which the exponent for z0 is any given q notnecessarily, 2p. In such a case, the integrals on the righthand side of (4.1) willhave to be raised to some suitable powers a1 and a2, respectively. The integralsY and Y p of q are then computed and appropriate powers of them are used togive q. The next command calls a utility \simplify" in MAPLE to simplify theexpression obtained for q and then store the result back to the variable q. Thisstep helps to make it easier for MAPLE to try to solve the equation later. Theequation \eq" obtained in the next line is equivalent to the equation rp = q(r).The last four lines de�nes a procedure (a function subroutine) \nq" to give thenumerical value of q(r) up to 50 signi�cant decimal places, when r is given anumerical value RR.Within a MAPLE session, one invoke the above program by issuing the com-mandsread FILE;
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