ON THE BEST CONSTANT FOR THE INEQUALITY*
/ y'? <K (/ |y|> max [y"|
0 0 (0,00)

R. C. BROWN
Department of Mathematics, University of Alabama
Tuscaloosa, AL 35487-0350, USA

E-mail: dicbrown@ualvm.ua.edu

and

MAN KAM KWONG
Mathematics and Computer Science Division, Argonne National Laboratory
Argonne, IL 60439-4844

E-mail: kwong@mpcs.anl.gov

ABSTRACT

In this paper we determine that the best constant of the inequality

fooo yl2 < K (fooo |y|> (%1723()|y”| is 4v3/3. Our approach consists of re-

ducing the problem to various equivalent inequalities on a finite interval and
determining necessary conditions on the extremals. The best constant is shown
to satisfy an algebraic equation that is solved exactly with the help of MAPLE.

The best constants for several similar inequalities are also determined.
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1. Introduction and Notation

This paper is concerned with the determination of the best constant K for

[T () mas v, (L1)
0 0 (0,00)

where y,y' are locally absolutely continuous (“ACj,.”) real functions such that
the right-hand side of the inequality is finite. Equation (1.1) is a limiting case of

the inequality
0 oo} 1/p oo} , L/p'
[T ([we) T ([Tue) 12
0 0 0

where 1 <p < oo and 1/p+1/p" = 1. Equation (1.2) in turn is a special case of
of a higher-order multiplicative inequality known as Gabushin’s inequality, which
states that
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where y(™=1 € AClpe, 0 <k <m—1,1<¢,p,r < co and

the inequality
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The best constants /), for the family of inequalities (1.2) were first studied by
Everitt and Giertz [5]. Thus far, the value of K, has been discovered in only two
cases: p = 2 is the classic inequality of Hardy and Littlewood [4, Theorem 239]
and Ky = 2; p = oo is a special case of an inequality considered by Arestov—here
K is also 2 (cf. [10]).

For general p and in most cases of Gabushin’s inequality (1.3) the determi-
nation of K, the existence and determination of extremals, or even questions
one might reasonably ask about the behavior of K, as a function of p — Is K,
continuous, differentiable, monotone, etc.? — are difficult and mostly unsolved
problems. The situation does not improve much if one considers the problem of
finding good (i.e., small) upper bounds for K, (a lower bound on K, is plainly
1). Using numerical methods, Everitt and Giertz estimated K, in the range
1.1 < p < 2; examples of the bounds they obtained are K1 ; < 13.53, K 5 < 6.98,
and Ky < 5. More recently in [4], Brown and Hinton found numerical evidence



that I{; < 4.1, that K, is bounded above by a monotonically decreasing function
O(p) such that lim O(p) = 2. Further discussion of some of these examples as
p—00

well as a surveys of known results concerning best constants and extremals of
other instances of (1.3) may be found in [10],[11].

Here, although we leave the general problem of estimating K, or K, p rm,k
unsolved, we obtain exact results for two cases. We prove first the following
theorem.

Theorem 1. K| = 4y/3/3. Moreover a unique extremal exists for inequality
(1.2), which is a certain quadratic polynomial.

In the final section of the paper, we show how the methods of Theorem 1 may be
applied to determine Ky, , o0,2,1. In subsequent work we hope to show that these
methods can be further extended to other cases of (1.2) or (1.3). To establish
some motivation for our efforts, we remark that estimates of the best constant
of this and other types of multiplicative inequalities can be used to establish
nonoscillation criteria as well as spectral lower bounds for differential operators
(ct. [1], [6], [12))

Let I be [0,00) or any finite closed interval [a,b], and denote by W(I) the
space of functions y defined on I such that y' is locally absolutely continuous in
I,and y € LY(I),y' € L*(I), and y" € L°°(I). For a given subfamily of functions
Z C W(I) and a function z € Z, we define

f] ZIZ

"’
fI |2|> mIaX |2"]

Q=) = <

and
K(Z)=supQ(z).
€7

We often abbreviate fI flz)dx by fI f, where the variable = involved is under-
stood.

In the special case when I = [0,00) and Z = W(I), K(Z) = K; is the best
constant for the inequality under study; we will often abbreviate it simply by K.

Let y be a function defined on some interval I and J C I be a subinterval. We
use y to denote the restriction of y on J. Finally, we will frequently speak of
functions that have been originally defined on some finite interval I as if they were
defined on a different finite interval I', with the understanding that we actually
refer to these functions after a suitable translation and scaling. For instance, let
Z be a subset of W([0,1]) and y be defined on [2,4]. We will say that y € Z,

where in reality we mean that y( x;Z) € Z.




2. Two Finite-Interval Equivalent Problems

Finite-interval equivalent problems were first used to study Landau inequalities
on (—oo,0) in [8], and the method was later extended to inequalities on [0, o)
in [9]. A comprehensive account of these results can be found in [11]. In this
section we derive two finite-interval equivalent problems for the inequality being
studied. Further reductions will be given in the next section.

Lemma 1. Let I = [0,00) and y € W(I) be such that (Q(y) > K — e. Then
there exists a function z € W(I) of compact support such that

Qz) > Qy) —e > K — 2e. (2.1)

Proof. This lemma can be easily proved by using the classical technique of
approximating the given function by its convolution with an approximate identity.
We give below a more elementary proof.

Let p be a C* function with support in [0,2) such that 0 < p(t) < 1 and
p(t) = 1if t € [0,1]. Set z = p(t/tg)y for some fixed t; > 0 which we will
determine. Tt follows from the definition of z and the fact y € L'(I), that for
any given e; > 0, we can choose o sufficiently large so that ||y — z|[1 [t,,00) < €1

Since
2(t) = p(t/to)y' (1) + p'(t/to)y(t)/to (2.2)

we can also choose ¢y sufficiently large that

1p(t/t0)2"|2,[t,00) < €2,

for any given e;. On the other hand it is possible to prove (cf. [2, Lemma 2.1])
that there is a constant C independent of y and ¢ such that if ¢ € [tg,#o + 6], then

to+6 to+6
() < C) (5—1 / vl + / |y'|) . (2.3)
to to

Hence, for t € [tg, c0),

¥l < G (6—1 Juare (| y'Z)l/z) | (2.4)

Since ¢ is arbitrary, minimization of the right side of this inequality as a function
of 6 gives the multiplicative inequality

ly(t)] < C2 (/I |y|>1/3 (/I y’2>1/3 : (2.5)
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It follows from substituting (2.5) into (2.2) that given e we can choose ty so
large that [|2" — y'[]2 [1,00) < €3. Finally, consider

Z(t) = pltfto)y" +20'(t/to)y' (1) /to + p" (/10 )y(t) /15 . (2)

In the same way as in the derivation of (2.3) and (2.4), one can show first that

W) < Cs (6—2 / iyl + 6||y"||oo,f)

and then that )
1/3
(@) < Cy ( / |y|) 1”112 (2.7)

Substituting the bounds (2.5) and (2.7) into (2.6) and taking #( sufficiently large
yield that |[z"||ec,r < ||y"||ec,r + €3. If y is chosen so that Q(y) > K — ¢, a
straightforward calculation allows us to find €1, €3, €3 so that

fI y'? e
(f[ ly| + 62) (Ny"|| so,1 + €3)

> Qy) —e.

The conclusion (2.1) follows because

fI y/2 _ 6%
Tl +e2) Q"I ingey,r + €3)

Q(z) > <

[ |
Lemma 2. Define
Zy ={z e W([0,1]) : 2(0) > 0, 2(1) = 2'(1) =0}

and

Zy ={2 e W([0,1]): 2(1) >0, 2(0) =2'(0) =0}.
Then K = K(2,) = K(Zs).

Proof. Let y € W([0,00) and z be as asserted in Lemma 1 such that

Qz) > Qy) —e > K — 2e. (2.8)



By replacing z by —z if necessary, we may assume without loss of generality that
z(0) > 0. After scaling we can consider z to be in Z;. Hence

K(Zy) > Q(z) > K — 2e.

Letting € — 0, we get K(Z;) > K. Conversely, if z € Z;, we extend it to be
zero in [1,00). The extended function, which we call 2, belongs to W ([0, c0)).
Now I > Q(2) = Q(z). Taking the supremum over Z; gives K > K(Z) so that
K =K(Z).

Functions in Z5 are merely reflections of those in Z;, and they have the same
quotient values; hence K(Z2) = K(Z;). W

3. Further Reductions

Our basic strategy in determining K will be to reduce the problem of finding
K(Z3) to a sequence of simpler finite-interval equivalent problems. The reduc-
tions are effected either by throwing away a large subclass of functions in the
previous problem or by finding another family of functions that satisfy more con-
ditions without affecting the value of K. These procedures can be justified by
the obvious facts stated in the following lemma.

Lemma 3. Given Y and Z C W(I), if for every function z € Z we can find a
y € Y such that Q(y) > Q(z), and for every y € Y we can find a z € Z such that

Q(y) < Q(z), then
K(Y)=K(Z).

In particular, given Y C Z, if for every z € Z we can find a y € Y such that
Q(y) > Q(z), then K(Y') = K(Z). Alternatively, if we can show that for every
z€Z\Y,Q(z) < K(Z), then K(Y) = K(Z).

One technique to produce from a given function z another function y with a
greater quotient value is to restrict z to a suitable subinterval, using the next
lemma.

Lemma 4. Let z be a function defined on I which is the sum of two disjoint
subintervals I; and Is, and let zy and zo be the restrictions of z on I, and I,
respectively. Then

Q(z) < max{Q(z1),Q(z2)}.

In general, if I = U;_, I, where I,, are mutually disjoint, and for each restriction
zn of z onto I, Q(zn) < ¢, then Q(z) < q.

Proof. Let
q = maX{Q(Zl)v Q(Zz)}-



Then

[z <a([ )ttt <a ([ Jal)mpelel
Il Il 1 Il
[ <a( [ talymaxteti < ([ fel ) maxlen.
IQ IQ 2 I2

Adding (3.1) and (3.2) gives

[ <o [1el) gl
I I

and

(3.1)

(3.2)

which implies that Q(z) < ¢. A trivial modification of this argument handles the

case I = U2, I,. 1

The next lemma gives a lower bound on K. Any function that gives a quotient
value less than this lower bound can therefore be thrown away, a fact to be used

in our first reduction (Lemma 6).

Lemma 5. K > 2.

Proof. It is easy to see that K > 2 since z = 2% is in Zy and Q(z) = 2. To
get Q(z) > 2, we substitute the more complicated test function (which, after a

horizontal scaling, can be considered to be in Z3)

{—:1;2, in [0, 1]
Tl —42+2, in[l,6].

Direct computation gives

66

Lemma 6. Define
Zs={2€Z2:2(1)>0, 2(1) > 0}.
Then K(Zs) = K.

Proof. Case 1: Suppose z € Z3 and z(1) = 0. Then

1 1 1 1
/ 2% = —/ 22" = / 22" < (/ |Z|> max |2"].
0 0 0 0 [0,1]
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This gives Q(z) < 1. Since I > 2, by the previous lemma, we need not consider
z of this type.
Case 2: Suppose z(1) > 0 but z'(1) < 0. Then

By the definition of Z3, the term z(1)z'(1) <0, so

1 1
—/ zz" = / 224 12(1):'(1)] > 0.
0 0

1 1 1
_/ 22" = / 22" < (/ |Z|> max |z''] .
0 0 0 [0,1]

As in Case 1, this implies that Q(z) < 1, so that we can throw away z with these
boundary conditions also.

In several other occasions in the sequel, we shall employ the same arguments
used above in establishing Case 2.

Lemma 7. Define
Zy={{2€2Z3:2>0}

and

Zs={2€ Zy:2'(x) >0, forall z > 0}.
Then K(Z4) = K(Z5) = 2.

As a consequence, upon defining
Z6 — Z3 \ Z4 )

we have

K = K(Zs). (3.3)

Proof. The function z = 2 belongs to Zs. Hence K(Z5) > Q(z) = 2. That
K(Zs) < K(Z4) follows from the fact that Zs C Zy. Let z € Z, \ Zs. Then
Z'(¢) = 0 for some ¢ > 0. Since 2'(1) > 0 (definition of Z3), z is increasing near
x = 1. Let 7 be the last critical point of z, i.e.. z'(7) =0, but z/ > 0in (7,1).
By Lemma 6, Case 2, Q(z[0,-) < 1. If Q(2) <2, we can throw it away. Suppose
Q(z) > 2. Set u = 2-1). By Lemma 4,

2 < Q(z) < max {Q(zp0,1)). Q(u)} -



Since we have just shown that Q(z[ ) <1

Y

Qu) 2 Q(2).

If we translate the graph of u, namely, setting v(z) = u(x)—u(7), we obtain that
v € Zs. Furthermore, since ||v|[y (1) < [|ull1 717,

Qv) > Qu) > Q(z).

Consequently, K(Z5) = K(Z,). It remains to show that Q(z) < 2 for all z € Zs.
Without loss of generality, we take max |z"| = 1. By choosing z as the indepen-
dent variable and noting that functions in Z5 are monotonically increasing, and
z'' =0 at z = 0, we obtain

z 12 z z
(2')? = / M dz = / 2" dz < / 2dz =2z2.
0 dz 0 0

2 <2z and 32 f
z! 2

1 z(0) z(0)
/ 22 dr = / 2 dz < V2zdz (3.4)
0 0 0

/ E Idw—/Z(O) ,_/Z(O)fdz (3.5)

That Q(z) < 2 follows if we divide (3.4) by (3.5).

Therefore

It follows that

and

To recapitulate, identity (3.3) means that we need only consider functions z
such that z(0) = 2(0), (1) > 0, z'(1) > 0, and z changes sign.

The change of variable argument used in the last part of the above proof can
be modified to give a comparison result that we shall need in Lemma 11 below.

Lemma 8. Suppose we start out with a function u, defined on I, that is mono-
tone on a subinterval Iy = [a,b] and we modify u to obtain a new function v,
by changing only the portion of uw on Iy to another function. The replacement
function will span a shorter subinterval I, = [a,c] (¢ < b), and so we translate
the portion of u to the right of [a,b] to close up the gap. We require that the
new function v remain twice differentiable and that max |u"| = max |v"|. Then
if for all « € [a,b] and t € [a,¢] such that u(x) = v(t), we have

u'(z) <v'(t),
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it follows that
Qu) < Qv).

Proof. We need only establish this for the case that u,v > 0 in I} and I5. In
the general case, we can apply the result to the positive and negative parts of
the functions separately and then add the inequalities. If v and v are the new
independent variables, then

u(®) o, v(d)
/ud:z;:/ —/duZ/ —,dv:/vd:p
I u(a) u v(c) v I
u(b) v(d)
/u'zd:p:/ u'dug/ v'dv:/v'zd:p.
I u(a) v(c) I

It follows that Q(u) < Q(v). W

By definition, functions in Zg must change sign, and they can do so more
than once. It would be nice if we could limit our search for the best K to those
functions that change sign only once. Unfortunately such functions, under the
constraint that they vanish with their first derivative at the endpoint 0, do not
produce a quotient close to . In the next lemma we prove that we can still
recover K from functions that change sign only once, provided that we weaken
the boundary condition at 0 to allow additional functions. At this point, we
continue to admit functions (those in Z; defined below) that vanish with their
first derivative at 0. Eventually, we shall see that these functions too can be
thrown away.

Lemma 9. Let
Z7 = {2z € Zg : z changes sign exactly once at o and z'(a) # 0} .

Furthermore, let Zgs C W ([0, 1]) consist of functions satisfying the conditions:

(1) 2(0) <0, 2'(a) # 0.
(ii) z changes sign exactly once at o and z'(«) # 0.
(iii 2(1) >0, 2'(1) > 0.
i) _212(0) _ 2'2(1)
z(0) z(1)
(v) [2(0)] < =(1).
Then K = K(Z+ U Zs).

Proof. We first show that

K < K(Z: U Zs). (3.6)
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Let z € Zg such that Q(z) > K(Zs) —e. If z changes sign only once, then z € Z7
and we have K(Z7) > Q(z) > K —e¢, which implies (3.6). Suppose that z changes
sign more than once. Let « be the last zero of z.

Case 1: z'(a) = 0. Then 2[4 1) € Z7. It is easy to see that Q(20,a]) < 1. By
Lemma 4, Q([a1])> Q(2) > K — ¢, and (3.6) follows.

Case 2: z'(a) > 0. Let 7 be the last zero of z before o. We can dispose of the
case when z'(7) = 0, as in Case 1 above, to obtain 2. ) € Z7.

Case 3: Thus we may assume that z'(7) < 0. Let 0 > 7 be the first zero of 2’
after 7. Then 2'(z) < 0 in [r,0). Consider the function

which satisfies lim r(2#) = 0 and lim r(z) = oo. By the intermediate value

theorem, there is a v € (7,0) such that r(y) = r(1). (Note that this argument

fails for functions in Cases 1 and 2, since lim r(2) may be bounded.) The function

u = z[,1] thus satisfies conditions (i)~(iv) in the definition of Zg. We shall see
later that condition (v) is also satisfied, so we can assume that v € Zg. If
Q(u) > K — €, we have K(Zg) > Q(u) > K — € and (3.6) follows. If not, then
by Lemma 4, Q( Z[0,7] = I — €. we can repeat the argument over the remaining
oscillations of Z in [0 7]. One of these must yield a section of z with Q > K — ¢,
or else the infinite version of Lemma 4 will give Q(z) < I — ¢, a contradiction.
Let us show that condition (v) is satisfied by z. Suppose that |z(0)] = z(1).

Then
1 1
/ P :/ 22" — Q(z) <1
0 0

contradicting Q(z) > K —e. We extend z by piecing together to the right
of z its own images scaled by compressing vertically with the ratio |z(0)/z(1)]
and vertically with the ratio 1/|z(0)/z(1)]. This gives a function u of compact
support and Q(z) = Q(u). The arguments used in Lemma 6, however, prove that
Qu) < 1.

The proof of the lemma will be complete if we can show that I > K(Z; U Zsg).
If z € Z7, then it is also in Z,, and so Q(z) < K(Z3) = K. On the other hand,
if z € Zg, then we use the extension method given in the previous paragraph to
piece together a chain of scaled images of z, but this time to the left, to obtain a
function u of compact support, that is, in Z;. Again Q(z) = Q(u) < K(Z2) = K.
|

In the following, we use the term local maximum (minimum)in a narrow sense,
referring to one in the interior of the interval and not at the end points.
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Lemma 10. Let

Zg ={z € Z7 U Zg : z has no local maximum} .
Then K(Zy) = K.

Proof. Case 1I: z has a local maximum in («, 1). In this case, there must also
be a local minimum in («,1). Let p be the last of these. First we extend z
to u € Zy. Then Q(u) = Q(z). But Qup,,)) < 1 (Case 2 of Lemma 6) and
Q(upu1y) < K(Zy) = 2. Therefore, by Lemma 4, Q(2) = Q(u) <2 and z can be

thrown away.

Case 2: z has a local maximum in (0, «). Let o be a local maximum and ¢ < o
be the local minimum just to its left. Note that Q(uf, +) < 1. By an argument
similar to that used to prove Lemma 4, we see that

B2 1 49
OZ —I_fo'z

(SEETHE)

Also note that Q(z[,,)) < 1. Now scale 2y , to fit smoothly to the left of z[, 4
to form a new function u € Zy. The scaling is a compression since |z(p)| > |z(o)].

Thus
/\fuzlz ‘|’f1 o2
(w) = o =L
</\ fou || + fa |Z|> max |z"|

for some A < 1. It is easy to see that the fraction in this expression is larger than

that in (2.8). So Q(u) > Q(z). W

> Q(z).

By the above lemma, Zg can have only one local minimum, which we denote
by 3.
Lemma 11. Let

Ziw=1{z€2y: Z[”ﬁ’l] =(C= r[rolzﬁcz”}.

Then K(Zy) = K.

Proof. Let us show that any functions in Zg \ Zy¢ can be skipped without
affecting the best constant. By the definition of Zy, 2 belongs to Z7 or Zs.

Case 1: Suppose z € Z7. If 2 € Zyo, then 2" # C in [3,1]. We can replace 23 1
by a function u such that u" = C, as in Lemma 8. Note that u will be defined in
a shorter interval [0,+] with 5 <+ < 1. The inequality Q(u) > Q(z) then follows
from Lemma 8.
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Case 2: If z € Zg, we first extend z to the left to a function v € Z, as in the last
part of the proof of Lemma 8. Suppose that the domain of u is now [é, 1]. Then
Q(u) = Q(z). We may assume without loss of generality that z has been chosen
so that

Q(z) > Qu(sp) forall be(o,3). (3.7)

Otherwise, we can replace z by a better choice constructed as follows. Let b be
such that Q(u(sp)) = maxy Q(us5 ) > Q(2), and cut out a piece z = up. y € Zs,
as in Lemma 9, so that Q(2) > Q(z2).

If ' # C in [, 1], we can modify v in that part to form a new function such

that v" = C on [#,7], as in Case 1. Then v = u in (4, ), and

Qv) 2 Qu) = Q(z) (3.8)

Now we can cut out a section vy, ,) € Zg. Since v(s ) = u(sp), by (3.7), (3.8), and
Lemma 4, we have

Qo) > Q).
m

Lemma 12. Let

Z11 = {z € Zyq : there exists v € [0, 3] such that
ZM=—-C in (0,v) and 2" = C in (v,1)}

and

Ziz ={2 € Zu: Q(Zp,q) < Q() for all e € (0,7)} -
Then K = I((le) = I((le).

Proof. Let z be in Z1y. We modify z in [0, 5] as follows, where /3 is the local
minimum of z. We denote the new function by w. Starting at 3, we let the
graph bend upwards towards the left, with «" = C. At a suitable point 7, to be
determined below, we let u bend downwards, now with v"” = —C, until u reaches
a height equal to z(0), at some point « = (.

The condition on choosing v is such that u'({) = 2'(0). That v exists follows
from a continuity argument. If we let v change curvature at a point when the
height of u is halfway between z(/) and z(0), then we end up with u'(¢) =0 >
2'(0), while if we let u continue to bend upwards without changing its curvature,
then u'(¢) < z'(0). Therefore, somewhere between these two extreme cases, there
must be a suitable choice of ~.

The new function u € Z11 and wup¢ g compares favorably with z[y 5 in the

sense of Lemma 8; hence Q(u) > Q(z) and K(Z;1) = K follows.
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In view of Lemma 7, functions in Z;; N Z7 can either be thrown away or are
already in Zy5. So now suppose that z € Zy; N Zg \ Z12. Then there exists an
e € (0,7) such that Q(z[9,q) > Q(z2). Let n be the maximum of all such e. It can
happen that n = 4. In the contrary case, we observe that for every e € (n,7),

Q(2[,q) < Q(2). (3.9)

Otherwise, if (3.9) is not true, then by Lemma 4,

Q(Z[O,E]) > min {Q(Z[O,n])v Q(Z[n,E])} > Q(Z),

contradicting the definition of 7.

Our next construction is to cut the part zp ,
right of z, stretch it appropriately, and then reattach it to z smoothly. It is easy
to see now that the new function u will satisfy v’ = C to the right of § and
that w € Z12. The inequality Q(u) > Q(z) follows from the facts that the part
2o,y carries a larger (or same) quotient than the rest of » and that the weight

] out from z, translate it to the

carried by this quotient is magnified when z[ ,; has to be stretched before being
reattached to the right hand side of z. W

Lemma 13. Let
Zizs={z2 € Z15:7=0},

which consists of exactly the quadratic polynomials in Zyy such that 2" = C on
[0,1]. Then
IX’(Z13) = K.

Proof. Let z € Zy5. If v # 0, we modify z to the left of ¥ to a new function u by
bending the graph upward with u' = C, until it reaches a point + = ( at which
|u'2(¢)/u(C)| = r(1) = |2'%(1)/2(1)]. Tt is easy to see that this happens with
¢ € (0,7) and that u(¢) < z(0). Let € € (0,() be the point at which z(e) = u(().
By the definition of Zi2, Q(210,q) < Q(2), so that Q(z. 1)) > Q(2). Lemma 8
can now be invoked to show that Q(u) > Q(z[.1]), and the lemma is proved. W

Lemma 14. An extremal exists in Zy5 and is unique (modulo a constant mul-
tiple).

Proof. Existence follows from the fact that the maximization problem is now
reduced to one on a class of functions that depends only on one parameter,
namely, 7(0) (and not on C' = max|z"|). We now show that if w is an extremal,

then
12(1) _
(1H)C

w
w

Q(w).
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To this end, we choose a particular quadratic function y = 2> — z. It is easy to
see that the extremal for K, after scaling and translation, must be of the form
yr, in other words, y restricted to some suitable interval I = [a,b], such that
r(a) = r(b). Next extend y, s to its left to a function u in Z,. If we consider u
as a function of its endpoint b, we see that when b gives the extremal, dQ)/db = 0.

But
dQ — u(b)

— = —————(r(b) = CQ()).
bl
Hence, r(b) = CQ(b). This argument also implies the uniqueness of the extremal.

The parameter r(b) is a monotonically decreasing function of b so there can only
be one choice of b that makes r(b) = CK. W

Proof of Theorem 1. We apply a method suggested by Lemma 14 to compute
K. Let y = 2% — 2 as in the proof of Lemma 14. We use r > 2 as our parameter
and determine a and b so that r(a) = r(b) = r. The computations shown below
were done using the symbolic manipulation software MAPLE V. The program
will be given in the Appendix. We get

1—,/1— -2
a= 5 i (3.9)
and
14 4,/1+ 25
b= 5 . (3.10)

Straightforward computation gives

[46% — 6b* + 3b] — [4a® — 2a* + q]
24+ 2a3 — 3a2 + 203 — 302

q(r) = Qyr =

After substituting the expressions for a and b above and simplifying, we obtain

q(r):r3/2<mr—2\/7—|—2\/2—|—r—|—\/2—|—rr> (3‘11)

where the denominator D is given by

D=2+ 1rVr—=242V2+r/r =27 —6/r —2/r + /1 — 2r°/?
F A S 2 6V2 e = V2 A (3.12)
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Plot of q(r) vs. r
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2 21 2.2 2.3 24 25 2.6

Figure 1. Plot generated with MATLAB

A plot of ¢ versus r (constructed using MATLAB) is shown in Fig. 1. By
Lemma 14 the maximum of the curve is also the intersection of the curve with
the line ¢ = r. The numerical solution of this equation is not difficult. The
exact algebraic solution of the equation, however, seemed at first sight out of
reach because of the formidable-looking expressions (3.11) and (3.12). Thanks
to MAPLE, the simple command “solve(r=q,r)” gave us the answer as given
by this lemma.

Once we know the answer, it is possible to work backwards to figure out how
one could have obtained it by pen and paper. Denote by N the numerator of
g(r) in (3.11). Then the equation ¢ = r, which is to be solved, is equivalent to
D — N/r =0, which can be factored as

(r+2)(r =2) (Vi =2) = Vi +2) + 2/ +2)(r - 2)) =0,

Solving the equation obtained by the third factor is then straightforward. W

4. Further Inequalities
A more general inequality than that given in the title of the paper is

[ W < w) ( / |y|P) - (4.1)
0 0 (0,00)

Notice that (4.1) is equivalent to Gabushin’s inequality, with ¢ = 2p, r = oo,
m = 2, and k = 1, and that K(p) = Kgp,p,oo,z,l- This inequality can be studied
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by exactly the same method described in the early part of this paper. We merely
state the final result.

Theorem 2. The best constant K(p) in inequality (4.1) is the maximum of the

quotient
b 2
Jo Y17

r)=—4%——
b b
2 (7 1yl?)
where y = 2% — 2, r > 2, and a and b are given by (3.9) and (3.10).
Alternatively, K(p) is the unique positive solution of the equation

r? = g(r), r> 2. (4.2)

The constant IK(2) = 36/5 was determined exactly by using MAPLE, but
the next one, I{(3), is the solution of an eighth-degree polynomial and is not a
rational number. One can easily find the approximate values of K(p) using an
iterative fixed-point scheme based on (4.2). We summarize our results below.
The numerical values were computed using the arbitrary-precision arithmetic
in MAPLE to 50 significant places and then rounded off to 30 places after the
decimal point.

Theorem 3.

A~ 25.01845 17898 28377 11460 58592 89421
~ 91.05280 88548 54808 83114 72060 68652
~ 339.42928 70993 18821 45933 06691 47941 .

The algebraic equation obtained by MAPLE for K(3) is
K(3)=r?,
where r satisfies

Vr(2r2 107 4+ 15)(r — 2)%/2 £ 4 (r — 2)°/2(2 4 1)?/?
— /(27 =107 +15)(2 4+ r)*/2 =0,
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Appendix. The MAPLE Program
The following is the MAPLE program we used to set up the various variables.

if not assigned (p) then p:=1; fi:
q:= 2% p;
a = (1-(1-2/(2+1))~(1/2))/2:
b= (1+(1+2/(xr-2))"(1/2))/2:
al := 1:
a2 := p:
Y := int( (1-2%x)"q, x=a..1/2)+int( (2*x-1)"q, x=1/2..b):
Yp := int( (x-x"2)7p,x=a..1 ) + int((x"2-x) p,x=1..b ):
q := ndifferential”al/27a2:
q := simplify(q):
eq := denom(q)-numer(q)result p:
nq := proc(R) local RR:
RR := convert(R,rational,exact);
:= evalf(subs(r=RR,Q),50);

end:

The first line sets up a default choice, namely 1, for p. In the second line, ¢ is the
exponent for y' in the inequality (4.1). The values a and b are then computed
using (3.9) and (3.10). The program was originally written for an inequality
even more general than (4.1), in which the exponent for z' is any given ¢ not
necessarily, 2p. In such a case, the integrals on the righthand side of (4.1) will
have to be raised to some suitable powers al and a2, respectively. The integrals
Y and Yp of ¢ are then computed and appropriate powers of them are used to
give ¢. The next command calls a utility “simplify” in MAPLE to simplify the
expression obtained for ¢ and then store the result back to the variable ¢. This
step helps to make it easier for MAPLE to try to solve the equation later. The
equation “eq” obtained in the next line is equivalent to the equation r? = ¢(r).
The last four lines defines a procedure (a function subroutine) “nq” to give the
numerical value of ¢(r) up to 50 significant decimal places, when r is given a
numerical value RR.

Within a MAPLE session, one invoke the above program by issuing the com-
mands

read FILE;
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where FILE is the name of the file that contains the program. Depending on
whether p has been previously assigned a value or not, the ensuing computing
will be pertinent to K, or the default K. To ask MAPLE to solve the equation
r? = ¢(r) exactly, one issues the command

solve(eq);
and if MAPLE is able to find the solutions, they will be displayed. For larger
values of p, MAPLE is not able to solve the equation exactly (in a reasonable
time). Instead, one can use the iterative scheme

K := INITIAL GUESS for n from 1 to 50 do K := nq(K); od
to obtain K as a fixed point.
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