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2 J.M. RESTREPO AND G.K. LEAFstudy we compare a wavelet Galerkin procedure with standard numerical methods suchas �nite di�erence and Fourier pseudo-spectral methods. Other studies that compare thewavelet-Galerkin are [2], [3], [4] and, in particular, [5]. In this last paper, Weiss compareswavelet-Galerkin methods with Fourier pseudo-spectral methods and concludes that thewavelet Galerkin method is faster than the de-aliased Fourier pseudo-spectral solution ofa two-dimensional Euler system and is capable of holding onto the exact solution for aconsiderably longer than is the Fourier solution.The speci�c hyperbolic problem to be considered is a variant of the Boussinesq system[6]. This system was chosen because it has many of the ingredients of hyperbolic equationsthat arise in geophysical problems. In scaled variables the Boussinesq system (BQS) is�t = �(hu)x � �(u�)xvt = ��x � �(u22 )x(1) v = u� h2�2uxx;to be solved on the interval x 2 [0; 1] for t > 0 subject to periodic boundary conditions,and initial conditions �(x; t = 0) = E0(x) and u(x; t = 0) = U0(x). In the geophysicalcontext the O(1) variables u(x; t) and z = �(x; t) are thought of as the depth-averaged�rst-order velocity and wave displacement over z = 0, respectively, for weakly nonlinearshallow water dispersive waves traveling over a bottom topography z = �h(x) that isperiodic in x.Equation (1) admits bidirectional, dispersive, weakly nonlinear wave solutions. Thedegree of nonlinearity is controlled by the parameter � � 1 and the dispersiveness byparameter � � 1. By setting both parameters to zero, Equation (1) becomes the linearwave equation (WE). The shallow water wave equation (SWWE) is obtained by letting� = 0 and � 6= 0. The bottom topography h(x) is O(1); but when � 6= 0 and � 6= 0, theadditional restriction on the bottom topography is that its derivatives with respect to xhave size comparable to �. Aside from a dissipative term, the model is seen to cover avariety of geophysically relevant phenomena.To make the discretization comparison as objective as possible, we used employ thesame time discretization technique for all three methods. We have chosen the leap-frogmethod [7], owing to its simplicity; its wide use, such as in applications in climate andweather dynamics [8] [9] [10]; and its nondissipative properties. The �rst time step isaccomplished with a backwards Euler step. Since the above scheme is prone to exhibitgrowth of the so-called leap-frog computational mode [8], two time-consecutive sets ofsolutions are averaged periodically.Application of the leap-frog scheme to Equation (1) yields the semi-discrete system~�n+1 = ~�n�1 � 2�t[(h~u)x + �(~u~�)x]n~vn+1 = ~vn�1 � 2�t[~�x + �( ~u22 )x]n(2) ~un = L�1~vn; withL = (I � h2�2@xx);



WAVELET-GALERKIN DISCRETIZATION 3where t = n�t, �t is taken as �xed during the integration, n = 0; 1; � � � , and the tildevariables ~fn(x) � f(x; n�t).In Section 2 we briey present the full discretization of Equation (2) using �nite di�er-ence (FD) and the Fourier pseudo-spectral (FS) schemes. Section 3 presents the wavelet-Galerkin (WG) method in full detail. Qualitative and quantitative comparisons are pre-sented in Section 4. Section 5 summarizes what we have been able to learn about the meritsand pitfalls of the WG scheme as applied to hyperbolic problems, and sets the stage for afuture paper on the use of the WG scheme to explore orographic e�ects on shallow waterwaves. Additional technical details related to this study appear in the Appendix.2. Finite Difference and Fourier Pseudo-Spectral DiscretizationThe FD spatial discretization of Equation (2) for x 2 [0; 1], subject to periodic boundaryconditions on u and �, will be performed on a uniform spatial grid. Let xj = j�x, where�x = 1=N and j = 0; 1; � � �N �1. De�ning the fully discrete variable, in terms of the tildevariables fnj � ~fn(j�x), the discrete FD system is�n+1j = �n�1j � 2�t�x [hj+12 unj+12 � hj� 12unj� 12 ]� 2��t�x [�nj+12 unj+12 � �nj� 12unj� 12 ]vn+1j = vn�1j � 2�t�x [�nj+ 12 � �nj� 12 ]� ��t�x [unj+12 unj+12 � unj� 12unj� 12 ](3) un = L�1vn whereLvn = unj � h2�2�x2 [unj+1 � 2unj + unj�1];with boundary conditions and initial dataun0 = unN�n0 = �nNh0 = hNu0j = U0j�0j = E0j :The Fourier approximation of Equation (2) will be performed pseudo-spectrally [11].De�ne the discrete Fourier transform pair~̂fn(k) = N�1Xj=0 ~fn(xj ) exp (�ikxj)~fn(xj ) = N=2�1Xk=�N=2 ~̂fn(k)N exp (ikxj );



4 J.M. RESTREPO AND G.K. LEAFwhere xj = 2�j=N , with j = 0; 1; � � � ;N � 1. Projecting Equation (2) into Fourier spaceand exploiting orthogonality, we obtain�̂n+1(k) = �̂n�1(k)� ik2�tdh~un(k)� ik2�t[~�n~un(k)v̂n+1(k) = v̂n�1(k)� ik2�t�̂n(k)� ik�t[~un~un(k)(4) v̂n(k) = ûn(k)� �2\h2~unxx(k);with �N=2 � k < N=2. For a at bottom, the last equation in Equation (4) reduces tov̂n(k) = (1 + �2k2)ûn(k):(5)Hence, in this special case the operator L is easily invertible in the FS approximation. Theinitial data is �̂0(k) = Ê0(k)�̂0(k) = Û0(k):Since the dependent variables are real, the discrete Fourier transforms are performedusing real FFTs. Possible aliasing that may arise from the evaluation of the nonlinearterms was minimized by zero-padding the upper half of the spectrum since the nonlinearterms are quadratic. 3. Wavelet-Galerkin DiscretizationTwo discretization alternatives exist. The system can be treated either as a fullyGalerkin procedure or as a mixed Galerkin collocation problem. The presentation willbe limited to the full Galerkin implementation; however, a few remarks on the mixed pro-cedure are in order. In the mixed method, nonlinear terms as well as linear terms withspatially varying coe�cients, are evaluated by collocation in a manner analogous to FS.Namely, one projects the appropriate variables back to real space, forms the nonlinearterms or the terms involving products of �eld variables and space-dependent coe�cientsand then projects these back to the trial space, thus preparing the system for the nexttime integration. The advantages of this technique are twofold: (a) simplicity of the re-sulting equations, since these invariably involve simpler inner products as compared withthe full Galerkin procedure and (b) the mixed procedure has little or no aliasing problemsas compared to the FS. The main disadvantage of the Galerkin-collocation method is thatthe operation count per time step is signi�cantly higher than its Galerkin counterpart, anespecially troublesome in hyperbolic problems.Our Galerkin procedure uses a class of compactly supported scaling functions introducedby Daubechies [12]. The scaling functions are determined by a genus index DN and a setof scaling parameters fck : 0 � k � DNg that de�ne the generator function �(x) throughthe scaling relation �(x) = DN�1Xk=0 ck�(2x� k):



WAVELET-GALERKIN DISCRETIZATION 5For each 0 � j we set �jk(x) = 2j=2�(2jx� k); for 0 � k < 2j .If one sets V j = spanf�jk : 0 � k < 2jg, in [13] it is shown that f�kg can be periodized andmade to form an orthonormal basis for V j 2 L2[0; 1], with [V j = L2[0; 1] and \V j = 0.Moreover the subspaces V j are nested, so that V j � V j+1. If one lets W j denote theorthogonal complement of V j in V j+1, it is shown in [13] that W j is spanned by anorthonormal set of wavelet functions  jk = 2j=2 (2jx � k), where the generator wavelet (x) is de�ned by  (x) = DN�2Xk=�1 (�1)kck+1�(2x+ k):The base generators �(x) and  (x) have support [0;DN � 1] and every polynomial ofdegree K � DN=2 lies in the space V 0, which is equivalent to  (x) havingDN=2 vanishingmoments. The Daubechies class is distinguished by having this interpolation property andthe smallest possible support. Thus, from the interpolation property, we see that �(x) hasat least DN=2 continuous derivatives. As mentioned in Qian and Weiss [14], �(x) is inthe class C with  at least 0:55DN .Consider a set f�pkg that spans the space V p[0; 1] � L2[0; 1]. A multiresolution is e�ectedby noting that the space V p � V p�1 � � � � V 1 � V 0. For the Galerkin approximation ofthe hyperbolic problem, the �eld variables are projected into the space of trial functionsbelonging to V p. When we use test functions from the same space, a system of di�erentialequations in time for the coe�cients of the �eld variable results when the inner products< �; � > are evaluated and orthogonality among the elements of V p is used. In this studythe evolution equations are solved at scale p determined by the resolution of the space V p.If, at any time, a multiresolution is desired, this can be performed as a postprocessing stepor as an adjunct calculation.In what follows, we project the semi-discrete real variable to V p so that~fn(xj ) = N�1Xl=0 fnl �l(xj );(6)where it will be assumed in the remainder of this study that the �l's are of resolutionN � 2p and genus DN .The weak formulation of the semi-discrete system is obtained by substituting Equation(6) into Equation (2), multiplying by a test function �k 2 V p, and integrating:< ~�n+1; �k > =< ~�n�1; �k > �2�t < (h~un)x; �k > �2�t� < (~un~�n)x; �k >< ~vn+1; �k > =< ~vn�1; �k > �2�t < ~�nx ; �k > ��t� < (~un~un)x; �k >(7) < ~vn; �k > =< ~un; �k > ��2 < h2~unxx; �k > :



6 J.M. RESTREPO AND G.K. LEAFFollowing the convention in [1], we refer to the inner products as connection coe�cients:
0;1k;l = < �k; �0l >
1;1k;l = < �0k; �0l >
0;1;1k;j;l = < �k; �0j�0l >
1;0;0k;j;l = < �0k; �j�l >
1;0;1k;j;l = < �0k; �j�0l > :The most expedient strategy available for the evaluation of these connection coe�cients isgiven in [1]. The connection coe�cients should be precomputed. The resulting tables arethen read in the time marching procedure.After integrating by parts and exploiting periodicity, the full Galerkin implementationis bn+1k = bn�1k + 2�tN�1Xl=0 anl N�1Xj=0 hj
1;0;0j�k;l�k + 2��tN�1Xl=0 anl N�1Xj=0 bnj 
1;0;0j�k;l�kcn+1k = cn�1k + 2�tN�1Xl=0 bnl 
1;0l�k + 2��tN�1Xl=0 anl N�1Xj=0 anj 
1;0;0j�k;l�k(8) cnk = ank + �2 N�1Xl=0 anl N�1Xj=0 hj [
1;0;1j�k;l�k +
0;1;1j�k;l�k];with 0 � k � N � 1. The initial data for the wavelet-Galerkin scheme isb0k = Pp(E0(x))a0k = Pp(U0(x))where Pp is the orthogonal projection operator to the space V p.By a change of variables the last two connection coe�cients in Equation (8) can beexpressed in terms of elements of the same connection coe�cient array [13], so that thelast expression in Equation (8) is transformed intocnk = ank + �2 N�1Xl=0 anl N�1Xj=0 hj[
0;1;1k�j;l�j +
0;1;1j�k;l�k]:When h(x) = 1, the above equation can be further simpli�ed tocnk = ank + �2 N�1Xl=0 anl 
1;1l�k:(9)



WAVELET-GALERKIN DISCRETIZATION 74. Comparison StudyWe compare the methods on three types of hyperbolic equations: the wave equation(WE), the shallow water wave equation (SWWE), and the Boussinesq system (BQS). Toe�ect a comparison, we de�ne a merit value based on two factors: the memory resourcesM and the wall-clock time T . In making a comparison we �rst establish a desired level ofaccuracy as follows: for a given N and �t we monitor three norms of the solution at sometime tf , the �nal integration time. Our criterion for accuracy is established by demandingthat each of the three norms l1, l2, and l1 of the solution agree, to 3 decimal places forthe WE, and to 4 decimal places for the BQS. For each method, T is the time required toobtain a solution to this level of accuracy and will require storage M . Thus, we de�ne thecomputational e�ciency merit value Ceff � 1T �M :Our determination of an acceptable solution was based on searching among the parametervalues �t = 0:001=2r and N = 1=2q. We report the largest �t and the smallest Nencountered in meeting the accuracy criteria. This determines T and the correspondingM .The storage requirementsM depends on N . For the three methods as a function of thetype of problem, the relation between M and N is given in Table 1.Table 1. Storage RequirementsProblem FD FS WGWE 5N 5N 5NSWWE 5N 9N 7NBQS 5N + 3N 9N + 0:75N2 7N + 2N [DN � 1]The numbers reect \common" storage requirements as opposed to optimal require-ments. The second number in the BQS row represents the memory requirements for thethe operator L for each method.In order to simplify the comparison, the bottom topography will be set, for the remainderof this study, to h(x) = 1. However, although the inversion of L when h = 1 is trivial andexact in the FS case as shown in Equation (5), and simpler for the WG using Equation (9),neither of these advantages will be invoked in the comparison of the three implementations.4.1 The Wave Equation.Table 2 shows a comparison of the computational e�ciency and the energy E of thethree methods on the WE problem. The last four entries correspond to the WG of genusDN . The initial data for this experiment was the cubic pulseE0 = 8<:A(1 � 3jx� 0:5� j2 + 2jx� 0:5� j3) for jx � 0:5j > �0 otherwiseU0 = E02(10)



8 J.M. RESTREPO AND G.K. LEAFwith A = 0:7 and � = 0:1. The integration is carried out to tf = 2, at which time thesolution should be an exact replica of the initial conditions.For this particular initial data we found that the three methods were most successful inreaching �rst the l2 norm, second the sup norm, and last in reaching the l1.Table 2. Computational E�ciencyfor the Solution of the Wave EquationMethod N �t T Ceff EFD 512 1.0(-3) 41.40 9.4354(-6) 1.000178FS 32 1.0(-3) 7.28 8.5852(-4) 0.999972DN4 128 1.0(-3) 54.67 2.8581(-5) 1.000388DN6 128 1.0(-3) 88.24 1.7707(-5) 1.000470DN8 128 1.0(-3) 115.32 1.3549(-5) 1.000478DN16 64 2.0(-3) 90.59 3.4496(-5) 1.000472DN20 64 1.0(-3) 272.05 1.1487(-5) 1.000478To within the discretization size, all methods were capable of predicting correctly thelocation at which the sup norm is expected to be. It is also noted that conservation ofthe total energy is easily achieved even when the computed solution looks unacceptable,namely when the solution has been underdiscretized. The most salient feature of an un-derdiscretized solution is the appearance of dispersive e�ects. Figure 1 illustrates the WGDN6 solution at t = 2 in the underdiscretized case: �t = 0:001, N = 32. Superimposedon the underdiscretized solution in Figure 1 is the converged solution reported in Table 2.Figure 2 shows the time evolution of the bidirectional linear wave with a numericallyinduced dispersive tail resulting from underdiscretization. In this �gure tf = 2:2, �t =0:001, N = 32, and DN6. The FD, as is well known, will exhibit a very similar behaviorwhen underdiscretized. The cost comparison, which is 1=Ceff , of the three methods forthe WE problem is shown in Figure 3, as a function of N . In this cost comparison we donot consider the accuracy of the solution.4.2 The Shallow Water Wave Equation.For the shallow water wave equation with � = 0:1, the initial data is given by Equation(10), with A = 1:0 and � = 0:1. The integration time was tf = 0:64, which was su�cientto make the nonlinear e�ects very obvious in the solution. The solution is a bidirectionalsteepening wave. Table 3 displays the results of the timing experiment. The last twocolumns show the location xsup, to within 1=N , of the sup norm and the value of thenorm. For the SWWE we did not attempt to achieve similar norms in all methods, butrather monitored the quality of the shape of the solution and the size of the l2 error.Figure 4 shows the qualitative di�erences between the three methods in the calculationof the shocks at t = 0:64, after a three-point averaging �lter was applied to all solutions.The parameters for each of these curves appears in Table 3. As expected, we found thatthe smaller wave (not shown) is very well captured by all three methods, but they handled
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Figure 1. WG DN6 solution of the wave equation at tf = 2. N = 32(solid) and N = 128 (dashed).
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Figure 3. Cost comparison of the three methods for the WE. FD(circles), FS (stars), DN6 (squares), DN8 (crosses), DN16 (triangles).N = 32; 64; 128; 256.Table 3. Computational E�ciency for thesolution of the shallow water wave equationMethod N �t T Ceff E xsup l1FD 2048 1.0(-4) 8360.2 1.1681(-8) 0.98840670 0.2217 0.887690FS 1024 1.0(-4) 846.68 1.2826(-7) 0.98967046 0.2090 0.731428DN6 2048 5.0(-5) 57521.2 1.2127(-9) 0.974146 0.2094 0.745228DN16 2048 1.0(-4) 42324.4 1.6481(-9) 0.990746 0.2183 0.774571poorly the high amplitude portion of the solution which is featured in Figure 4. The phasesof the FD and the FS are the same, whereas the phase of the WG solution is ahead ofthe aforementioned solutions. The shape of the un�ltered solutions is quite di�erent: highfrequency oscillations are signi�cant in the WG case but limited to the neighborhood ofthe shock front, and are smaller in magnitude in the FS solution but present throughoutthe domain. The second-order FD solution, on the other hand, shows large oscillationsbut these are only present in the immediate vicinity of the shock front. As shown inFigure 4, the �lter has virtually eliminated the high frequency oscillations of the FS, andsigni�cantly improved the situation for the WG solution. We found that the oscillationsin the WG solutions could be eliminated to the same degree as the FS solution shown inthe �gure if the data is �ltered once more. The FS method is clearly most e�cient and



WAVELET-GALERKIN DISCRETIZATION 11the FD best able to capture the shape of the solution.For the same problem Figure 5 illustrates the di�erences between the methods whenthe same values of N and �t are used in all three methods. The plot was obtained using�t = 10�4, with N = 1024. The WG solutions do not have the oscillations present in theFS; however, the shock is not as steep. The steepness in the WG solution was less severein the case DN = 16. The milder steepness of the WG method means that the locationof the xsupp is very poorly predicted. The FD is next in getting this location; however,it su�ers from poor shape capturing characteristics. The FS is best, overall; however,the solution has a great deal of high frequency oscillations which propagate away fromthe shock and are present throughout the whole solution. Since the energy was slightlysmaller in magnitude in the WG case than in the other methods, it may indicate that thedissipation was signi�cant enough to a�ect the amplitude of the solution and thereby thevelocity of the solution. This could account for the signi�cant phase error.
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Figure 5. Comparison of the three methods in the solution of theshallow water wave equation. Portion of the pro�le at t = 0:64. FS(solid, small oscillations), FD (solid, large oscillations), DN6 (dash),DN16 (dash-dot). N = 1048, �t = 10�4.4.3 The Boussinesq System.For the computation of the Boussinesq system solution, with � = 0:1, and �2 = 0:03333,we compared the solutions of the three methods at tf = 0:5 for initial dataU0 =0:1 sin(4�x)E0 =0:5U0:(11)The solution, up to tf = 2:2, is shown in Figure 6 for the WG method with DN = 6,�t = 0:002 and N = 128.The computational e�ciency for the Boussinesq system is shown in Table 4. In thiscase T reects the fact that the operator L needs to be inverted at each time step to�nd u from v. We observe in this case that the WG DN6 is not only computationallymore e�cient but also has the least wall-clock time. For partial di�erential equations thatgenerate systems of the form A(t; y)dydt = f(t; y)the WG approach appears viable. In particular, equations such as the Boussinesq system,the Benjamin Bona Mahony equation, the regularized Benjamin Ono equation, and theregularized Korteweg de Vries-Burger equation provide examples of such systems.
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Figure 7. BQS cost comparison of the three methods. FD (circles),FS (stars), DN6 (squares), DN8 (crosses), DN16 (triangles). N =32; 64; 128; 256.problem. We computed the solution of the BQS using FS with N = 512 and �t = 10�4for the test problem, Equation (11). We took the norms for this solution as a benchmark.We chose as a measure of the error of a particular solution the absolute di�erence in thel1 norm between the solution and the benchmark. The quality of a solution is taken asbeing reected by an inversely proportional relation to the size of the error.Figure 9 clearly shows that the viability of a particular method depends on the size oferror. For large error values, the FD method is most cost e�ective. For a decrease of anorder of magnitude in the error, the FD cost doubles. Additionally, the graph suggests thatfor high accuracy the FD and FS are comparable in cost. For small errors, irrespective ofthe method the curves will have a very large slope. The high-cost region to the left of thehighly sloped portion of the curve is the saturation region. This saturation region beginsat low error values for large DN and for larger error values for smaller DN . This behaviormust be taken advantage of: choosing the right type of DN will enable a large decrease inthe error for very little relative cost, provided the saturation region is avoided.5. Concluding DiscussionThe wavelet-Galerkin solution was qualitatively compared with the solution of �nitedi�erence and Fourier pseudo-spectral implementations of the wave equation, the shallowwater wave equation, and the Boussinesq system. Time-stability was assured for all threeproblems and all three methods by repeated selection of a variety of time steps. In thisselection process we were guided by the results in [15] and [12], for the WG case, in [11] for
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Figure 8. BQS time comparison of the three methods. FD (circles),FS (stars), DN6 (squares), DN8 (crosses), DN16 (triangles). N =32; 64; 128; 256.the Fourier case. Our comparisons were based on the use of the computational e�ciencyCeff as the merit criterion, which is the reciprocal product of the wall-clock time and thestorage requirement.For the wave equation, based on this criterion, it was found that the FS was the moste�cient. The WG was found to be comparable in e�ciency to the FD method, requiringless storage but more time than the FD.Unlike the wave equation problem, in the shallow water wave equation the nature ofthe solutions may di�er considerably from that of the initial conditions. Phase and shapepreservation are important issues, and much work has been done on creating FD and FSimplementations that perform far better in these respects than the particular implementa-tions presented in this study. Nevertheless, these particular implementations are adequateto compare the three methods. Since our merit value Ceff does not take into accountthe regularity of the initial data, our results regarding the computational e�ciency cannotbe taken to represent the general case. With regards to the qualitative characteristics ofthe solution for the three methods, we found that for small initial data all methods per-form very similarly. However, for large amplitude solutions, particularly when shock-likesolutions are involved, the FS develops ever-increasing small-scale oscillations which willeventually spread to the whole domain, but holds reasonably well to the large-scale fea-tures of the solution. The second-order FD solution has the same phase as the FS and verysimilar large-scale features. At the shock front the FD solution over-shoots but the oscil-lation is con�ned to the neighborhood of the shock. The WG solution leads in phase, and
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Figure 9. BQS cost comparison of the three methods as a functionof the quality of the solution. FD (circles), FS (stars), DN6 (squares),DN8 (crosses), DN16 (triangles).its shape is similar to its FD counterpart, but the overshoot is spread further away fromthe shock. Three-point averaging of the solution is found to be e�ective in improving theshape of the FS and the WG outcomes. For high Ceff the WG solution, averaged twice,was best in phase and shape accuracy, while for modest values of Ceff the FS solution isbest in shape and phase accuracy.In the BQS problem the challenges are conveying properly the e�ect of the regularizingoperator L, and e�ciently e�ecting its inversion. Based on our merit criteria the WGmethod has a distinct advantage over the other two methods. The FS was the leaste�cient owing to the fact that the inversion of L is an O(N2) operation as compared toO(N) for the FD and WG implementations. The overall shape quality of FS solutions wasmarginally better than the WG and was worst for the second order FD solutions.Thus, we have shown that the WG method may be a viable alternative to more tra-ditional counterparts for problems exempli�ed by the BQS problem. We note that theone-dimensional problem and the two-dimensional problem may not scale in Ceff .AppendixThe codes were executed on a Sparc 10/51 running SunOS 4.1.3U1. The Fortran Suncompiler used was Fortran Version 1.4 with optimization ags turned o�. All runs wereperformed in double-precision arithmetic. Wall-clock times reported apply only to thetime integration. Times should be interpreted comparatively, since the code contains



WAVELET-GALERKIN DISCRETIZATION 17many diagnostic operations. All linear algebra operations were performed with generalsolvers from LAPACK and the FFTs were performed with Paul Swarztrauber's FFTPACK,version 1989.
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