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1 Introduction

Wavelet theory and discrete wavelet transforms have had great impact on the
field of signal and image processing. For references to the extensive literature
on the subject, we refer to the bibliographies found in [1,2]. In this paper
we propose a new class of discrete transforms. It “includes” the classical
Haar and Daubechies transforms. Our transforms treat the endpoints of a
signal in a different manner from that of conventional techniques. This new
approach allows us efficiently to handle signals of any length; thus, one is not
restricted to work with signal or image sizes that are multiples of a power of
2. A different method for dealing with signals of arbitrary length was given
earlier by Taswell and McGill [4]. Our method does not lengthen the output
signal and does not require an additional bookkeeping vector.

*This is an abridged version of a forthcoming paper. This work was supported by the
Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-
Eng-38.



An exciting result is the uncovering of a new and simple transform (pre-
sented in Section 3) that performs very well for compression purposes. It
has compact support of length 4, and so is its inverse. The coefficients are
symmetrical, and the associated scaling function is fairly smooth (it is the
quadratic B-spline). The associated dual wavelet has vanishing moments up
to order 2. Numerical results comparing the performance of our transform
with that of the Daubechies Dy transform are given in Section 4. The mul-
tiresolution decomposition, however, is not orthogonal. We will see why this
apparent defect is not a real problem in practice. Furthermore, we will give
in Section 5 a method to compute an orthogonal compensation that gives us
the best approximation possible with the given scaling space.

Our transform can be described completely within the context of matrix
theory and linear algebra. Thus, even without prior knowledge of wavelet
theory, one can easily grasp the concrete algorithm and apply it to specific
problems within a very short time, without having to master complex func-
tional analysis. At the end of the paper, we shall make the connection to
wavelet theory.

The experiments mentioned in this article were carried out in Matlab;
most of the formulas, especially those involving matrix inverses, were derived
by using Maple. We acknowledge the usefulness of these excellent packages.
A description of our Matlab implementation can be found in [5]. The paper
and the Matlab toolbox can be obtained through ftp at info.mcs.anl.gov
under the directory /pub/W-transform.

2 Motivation — the Haar and Daubechies D,
Transforms

Our goal is signal compression, and we look at two well-known wavelet trans-
forms in the light of this objective. We permit lossy compression. The con-
ventional strategy is to discard data that are small, because their contribution
to the perception of the signal is not sufficiently significant, and to filter out
high-frequency components of the signal, because the human ear and eye are
not very sensitive to highly oscillatory signals.

In the method of transform coding, an invertible transform is first applied



to the signal to produce an alternative but equivalent representation, before
discarding small data and/or data that correspond to high-frequency com-
ponents. A transform is well suited for compressing a given class of signals
if it produces considerable near-zero data for most signals in the class in the
equivalent representation.

2.1 The Haar Transform

We are given a finite discrete signal x of length 2n. More precisely, x =
[€1, X2, -+, @2p) 18 @ column vector (" denotes matrix transpose). We divide
the vector into n ordered pairs of numbers, (1, x2), (23, 24), -, (T2n-1, T2n).
For each pair, we generate a new pair consisting of their sum and difference,
for example, (y1,y2) = (21 + @2, 21 — x3). This is the 2 x 2 Haar transform.

By keeping the new numbers y; instead of z;, no information is lost, since
each pair of x; can be recovered from the corresponding pair of y; by taking
their sum and difference and then dividing by 2. Suppose that the original
signal is slowly varying, with an occasional jump here and there. Then a
majority of the y;, for ¢ even, will be small. The new representation y is thus
more apt for our compression goal.

Since the odd and even components of y are computed in different ways,
it makes sense to rearrange them into two smaller vectors y; = [odd ;] and
y, = [even y;]". The components of y, are, one hopes, mostly small; so after
discarding those below some threshold value, only a small portion remains.
There is no need to further compress the survivors.

The components of y,, on the other hand, are not necessarily small. In
fact, it is a low-pass-filtered output that retains the general shape of the
original signal. This output carries the correlation between points that are
twice as far apart in the original signal (two adjacent values in y; represents
four components in x). It is natural to iterate the Haar transform on y, to
gain further compression, ad infinitum. The algorithm, consisting of a chain
of transforms applied to the progressively shorter low-pass-filtered signals,
was formerly called a pyramidal scheme and recently was recast into the con-
cept of the renowned multiresolution analysis. One of the attractive features
of multiresolution analysis is the self-similarity of the iterates. Exactly the
same procedure is used to transform the principal component signal at each



level, albeit the signal vector becomes shorter every time.

The Haar transform has an obvious matrix formulation. Let H be the
2n x 2n block diagonal matrix

1 1
1 -1
1 1
H = I -1 (2.1)
1 1
1 -1
Then
y = Hx (2.2)
and (for the inverse transform)
x = Hy/2 (2.3)

The Haar matrix H is not orthogonal, but it can be easily converted into
one by dividing by v/2. For computational purposes, the current form of H
is preferable.

The Haar transform is easy to understand, but it lacks sophistication.
Nonconstant signals do not lead to zero y,. The transform also does not have
sufficient smoothness (this can be adequately explained only by referring to
the scaling function associated with the transform; see Section 7).

2.2 The Daubechies D, Transform

Daubechies made a significant contribution when she constructed higher-
order orthogonal wavelets of compact support that led to discrete wavelet
transforms generalizing the classical Haar transform [2]. To fully understand
the beauty of her wavelets and the motivation for imposing certain properties
requires a fair amount of reading. However, her wavelet transforms can
still be appreciated and applied without delving too much into the technical
details of wavelet theory. What follows is our attempt to explain her Dy
discrete transform succinctly.



Daubechies has found two magic sets of four numbers each:

[917 g2, g3, 94]:%[1, V3, 2v3 -3, \/_—2] (2.4)

and

V3 -1
42

These numbers satisty some remarkable yet easily verifiable orthogonal prop-
erties, which can be stated in the following form.

[ by, ha, hs, ha | = (1. V3, —3-2v3, 243 |. (29)

Stack n copies of the sets of numbers to form the 2n x 2n matrix

g1 92 g3 ga
hi he hs hg
91 92 g3 9ga

hi hy hs ha
. (2.6)

g1 92
by hy

In the first two rows, the numbers are flushed to the left. In subsequent pairs

of rows, the numbers are shifted successively by two positions to the right.
Note that the last two rows can hold only the first two numbers of each set.

Then
1

I
—

DD’

which is almost the 2n x 2n identity matrix (if not for the 2 x 2 submatrix
at the lower right-hand corner).



Analogous to the Haar transform (2.2) discussed in Subsection 2.1, the
Daubechies matrix transforms a given signal x into a new signal y:

y = Dx. (2.8)

The original signal (or at least the first 2n — 2 components of) x can be
recovered as

x = D'y, (2.9)
where = indicates that equality holds only for the first 2n — 2 components.

Many techniques have been devised to deal with the problem caused by
the last two components of the signal — by using periodic or even extension,
zero padding, etc. We present a new method in this paper.

Also analogous to the Haar transform, the odd components of y are a
low-pass-filtered output which retains the general shape of x, while the even
components of y are mostly very small. Indeed, Daubechies has, in her search
for the h;, imposed the condition that they will transform any linear function
to zero (in the language of wavelet theory, the wavelet has vanishing moments

of orders 0 and 1).

The multiresolution analysis defined by Dy is the algorithm consisting of
multiplying x by the matrix D, separating out the odd and even components
of the output to form two vectors y,; and y,, and then repeating the process
on yy. Each level of transform can be easily reversed (if one ignores the
problem with the endpoints, for the time being) — merge y; and y, into a
longer vector by interlacing their components and then multiply by D'.

Although both the Haar transform and the Daubechies Dy transform de-
fine invertible multiresolution analysis, the latter is better for at least two
reasons. It produces near-zero y, for more signals, and its scaling function is
continuous. The Daubechies D4 wavelet is still not perfect because it is not
symmetrical, not smooth (the graphs contain an infinite number of sharp
cusps), and not intuitive. Higher-order Daubechies wavelets have progres-
sively better smoothness properties.



3 W-Matrices and Some New Transforms

In the preceding section, we noted that the crucial element in the multires-
olution algorithm is a suitable transform “matrix” such as H or D. This
“matrix” is really a family of matrices of sizes 2n x 2n (for all positive in-
tegers n), all having the same structure. Three properties are essential for
constructing the multiresolution analysis algorithm.

1. With the exception of two rows (more rows may be needed for higher
order transforms) at the top or bottom of the matrix, the other rows
come in pairs (let us call them the g- and h-vectors). Each pair is
obtained from the previous pair by a shift of two positions to the right.

2. Each row has only a finite number of nonzero elements.

3. Each matrix is near-orthogonal, in the sense that the product of each
matrix with its transpose is almost identical to the identity matrix.

Two additional properties are desirable for compression and other purposes.

o The g-vector is associated with a sufficiently smooth scaling function.

e The h-vector has vanishing moments up to some high order.

How important is the near-orthogonality of the matrix? Our work is
based on a relaxation of this requirement. Orthogonality makes it easy to
find the inverse of the transform — simply multiply y by the transpose of
the matrix. We can, however, achieve the same goal by requiring that the
inverse of the matrix is easy to find and that it has a small number of nonzero
elements (so that the inverse transform can be efficiently implemented).

We define a W-matrix as one for which both it and its inverse satisfy
conditions 1 and 2. The first question that comes to mind is: Are there any
simple W-matrices besides the orthogonal ones? Examples are given below.

A more subtle point concerning orthogonality is the “stability” of the in-
verse transform. With nonorthogonal matrices, small data in the transformed
output may not correspond to small input data if the transform matrix has
a large condition number. The W-matrices of our example do have a reason-
able condition number.



3.1 The Quadratic Spline W-matrices

We call our first example of W-matrix the quadratic spline W-matrix be-
cause, as we will see in Section 7, its associated scaling function is the well-
known quadratic B-spline.

The W-matrices of even order in the family have the form

2 3 —1
2 =3 1
-1 3 3 -1
-1 3 -3 1
K = (3.1)
13 3 -1
13 -3 1
-1 3 2
-1 3 =2

The building blocks are the g- and h-vectors [—1,3,3,—1] and [—1,3,—3,1].

The top two rows and bottom two rows are obtained from the basic
vectors by adding the number(s) that has (have) been cut off to the nearest
neighborhood that is retained. The inverse of K is

4 4
3 -3 1 1
1 -1 3 3
| 3 -3 1 1
K'=— r -1 3 3 . 3.2
T | (3.2)
31 1
1 -1 3
4

Table 1 gives a simple example of a two-level decomposition. The first
column is the input signal. The second and third columns are the first-level
transformed signals using the matrix K in (3.1). The last two columns are
the second-level transformed signals using the odd-sized matrix K given by
(3.4) in the next subsection.



Table 1. Two-level multiresolution analysis of x using the quadratic

spline transform

X y Yi,¥Y2 y Yo Yo

1 -1 -1 -198 -198

8 5 140 194 2893

27 140 616 2893 16755

64 6 1620 523 194

125 616 3675 16755 523
216 6 -1
343 1620 6
512 6 6
729 3675 6
1000 -325 -325

This algorithm is very easy to implement. We will see in the next section
that this example is only a special case of a general class of W-matrices —
given any set of four numbers [hy, ha, ks, hy] with hihy # hohs, one can sup-
plement it with an g-vector to form a W-matriz. Our Matlab implementation
encompasses the general W-matrix transform.

The quadratic spline W-matrix given in this subsection is particularly
good for compression because its h-vector has vanishing moments up to order
two. Furthermore, the exact inverse of K is used in the restoration step;
hence, the endpoints of the signal x will be recovered exactly, without any
need to extend x either periodically or with zero padding. This strategy
avoids the possible introduction of an artificial discontinuity.

Although the inverse matrix K™ has a structure similar to that of K,
it is more appropriate to think of K™' as being built by columns instead of
rows. The building blocks of K™! are thus the g-vector and A-vector

[1,3,3,1] and [1,3,-3,—1]. (3.3)
They are dual to the g- and h-vectors of K, respectively. The columns of

the matrix come in pairs, made up of the transpose of the above two basic
vectors; successive pairs of columns are shifted two positions downwards.



3.2 0Odd-sized W-Matrices

Classical discrete wavelet transforms require the length of the input signal
to be an even number. As a consequence, the length of signals that can have
J levels of multiresolution analysis must have a factor of 27. Our approach
to treat signals of odd length is to transform them with a W-matrix of odd
size. For the family of quadratic spline W-matrices, we let (there is more
than one possible choice) the odd-sized matrices be

2 3 -1
2 =3 1
1 3 3 -1
-1 3 -3 1
K = (3.4)
13 3 -1
13 -3 1
-1 5

[ts inverse can be obtained from (3.2) by first deleting the last row and last
column and then replacing the lower right 2 x 3 submatrix by

o 53

The transformed signal y = Kx has the same length as x. After sepa-
rating the odd and even components, the vector y, has one component more
than the vector y,. Since the total number of components of the output sig-
nal is always the same as the length of x, the latter can be restored without
additional information (other than the number of multiresolution analysis
levels applied).

See Taswell [4] for a different technique in dealing with signals of odd
length. Our method is more efficient because the transformed signal does
not increase in length and there is no need to use an additional bookkeeping
vector.
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3.3 Other Examples of W-Matrices

Note that each row of K has at most four nonzero elements. We say that
K is of order 4. The Daubechies and Haar transforms have order 4 and 2,
respectively. W-matrices of a higher order lead to computationally more
extensive multiresolution analyses. One can obtain smoother transforms,
however, using suitable choices of g- and h-vectors.

The order 6 generalization of the quadratic spline W-matrix is built from
the vectors

(1 -5, 22 5 1], (3.6)
and
[ -1, 5, —10, 10, =5, 1], (3.7)

For even-sized matrices, the first and last two rows of the matrix have only
four nonzero elements. For odd-sized matrices, the last three rows have to
be modified. For each of these rows, the numbers that are cut off are added
to the next surviving number.

The inverse matrix is built (by columns) by using the dual vectors
3 3

1, 5, 10, 10, 5, 1] and [1, =5, 2 -2 5 —1]. (38

The exact form of K™' can be found by using either Matlab or Maple.

W-matrices of odd orders also exist. For example, the analogous spline
matrix of order 3 is generated by the basic vectors

[ -1, 2, 1] and [ -1, 2, 1] (3.9)

(note that one of them is not symmetric) and the inverse by the dual vectors
(1.2, 1] and [ -1, -2, —1]. (3.10)

Generalized W-matrices can be easily constructed with a set of more than

two basic vectors, or with more than one set of basic vectors. Examples are
given in the full paper.
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4 Numerical Results

We have carried out experiments with W-matrix transforms, in particular,
comparing the quadratic spline (QS) and Dy transforms in compressing var-
ious types of signals. Our conclusion is that for reasonably smooth signals,
with occasional jumps, QS outperforms Dy4. The situation is reversed for sig-
nals having high levels of high-frequency components or random noise. This
fact does not indicate weakness of the QS transform, however. It means only
that the transform tends to filter out high-frequency components and noise,
to which most human eyes and ears are insensitive. More experiments are
needed to test the physiological aspects on observers.

4.1 One-dimensional Signals

In the experiments reported below, an input signal x is decomposed into
y; and y, using, in turn, the QS and D, transforms. A certain number
N of the largest (in absolute value) components of y, are retained, and
an approximation to the original signal is obtained by using y, and the
compressed y,. The relative errors between the original and the restored
approximation, measured using the Euclidean [? norm, are given.

Our first example uses the signal x = sin((1:100)/10)+0.2sin((1:100)/2),
where 1:100 denotes the vector [1,2,3,---,100]. In Table 2, the first column
gives the number of components in y, that are retained. The third and fourth
columns give the relative [? error of the restored signal, for the QS and D,
transforms, respectively. The second column gives the error of the restored
signal using the QS transform with orthogonal compensation, an additional
step (explained in Section 5) that can be applied to reduce the error.

The original signal is plotted in Figure 1 alongside the two approximate
signals, restored by using the largest three components of y,. To display the
graphs better, we displaced the restored signals by £0.2, respectively — the
middle graph is the original signal, the upper graph is from the QS transform,
and the lower graph is from the Dy transform. The figure clearly shows that
the Dy restored signal has some sharp corners, due to the non-smoothness of
the Dy scaling function. The sharp corners are even more pronounced when
the multiresolution analysis is continued to higher levels.

12



Table 2. Errors in the restored signal from the QS and D, transforms

QSOC

QS

Dy

N

QSOC

Q.S.

Dy

oS 0 ovwl| =

0.003203
0.003163
0.003102
0.003073
0.003055

0.003762
0.003676
0.003554
0.003469
0.003336

0.019268
0.018245
0.016651
0.015579
0.013983

15
18
20
23
25

0.003030
0.002901
0.002717
0.002394
0.002157

0.003255
0.003067
0.002848
0.002496
0.002248

0.013061
0.011690
0.010788
0.009458
0.008495

Figure 1. Example 1, N = 3, middle curve — original signal

The second example uses x = sin((1:100)/10)+0.2sin((1:100)); see Table
3. Experiments with signals having occasional jumps produce similar results;
see Figure 2.

Table 3. Errors in the restored signal from the QS and D, transforms

QSOC

QS

Dy

N

QSOC

Q.S.

Dy

= 0 ot wl| =

0.031252
0.029334
0.027535
0.025854
0.023110

0.037637
0.035672
0.032539
0.030324
0.026946

0.067649
0.064475
0.059749
0.056537
0.051601

15
18
20
23
25

0.021298
0.018048
0.015440
0.013596
0.012358

0.024515
0.020580
0.017590
0.015300
0.013816

0.048248
0.043103
0.039697
0.034925
0.031947




Figure 2. Example 2, N = 3, middle curve — original signal

Figures 3 shows the results of a three-level compression of the signal in

the first example.

Figure 3. Example 5, three-level compression, fraction of y, retained at the
three levels are 0.05,0.2,0.4, respectively, middle curve — original signal
4.2 Image Compression

The following figures show how our transform performs in compressing the
ubiquitous Lena image, using a three-level analysis constructed from the 2D
version of the QS transform.

14



Figure 4. Original Lena image

At each level, four half-sized matrices are produced. The first carries the
general shape of the original picture, while the others contain the details.
Compression is achieved by quantization. In the particular experiment given
here, each of the first three submatrices at each level is quantized with the
same quantization level (which is 800, 5000, and 20000 for the three levels,
respectively) and the fourth is quantized at 4 times of that level. The number
of nonzero wavelet coefficients retained at the three levels are 624, 8138, and
8331, respectively. Taking into consideration the number of bits needed to

15



store each number, we estimate that the compression ratio is about 13.5
times. Entropy coding may be applied to raised the ratio slightly.

Figure 5. Lena image restored from data compressed 13.5 times

5 Orthogonal Compensation

The QS transform can be summarized in the equations

y=Kx, x=Kly. (5.1)

16



The odd and even components of y form the pair of vectors

Y= [yllv Y12, - ']/7 Yo = [y217 Ya2, « - ']/‘ (52)

Let us denote the columns of the matrix K™! as
(g hog b ] (5.3)
Then the second equation in (5.1) has the equivalent form

X = (yug; + Y128, + - --) + (y2rha + ya2ho 4 - -). (5.4)

This equation suggests that the QS transform can be interpreted as the
decomposition of x along the subspaces, G and H, spanned by translates
of the dual basic g- and h-vectors (with appropriate modifications at the
boundary), respectively.

In the analogous interpretation of the Haar and D, transforms, the linear
subspaces G and H are orthogonal to each other. In addition, the one-
dimensional subspaces generated by all the g; and h; are mutually orthogonal.
When some of the components in y, are discarded, the compressed vector is
then the unique signal, in the space spanned by the remaining base vectors,
that best approximates the original signal.

For the QS transform, G and H are not orthogonal. Neither are the one-
dimensional subspaces generated by g; and h;. Hence, the compression step
will not give the optimal approximate signal, representable by the remaining
base vectors. This fact seems to argue against the use of the QS transform.
In practice, a reasonable signal (one that is not wildly oscillating or badly de-
graded by noise) has such small coefficients in the H subspace decomposition
that even if we do not take additional steps to optimize the approximation,
the error incurred in simply discarding them is still smaller than that in-
curred when using the D, transform. In other words, a reasonable signal is
very likely to be closer to the G subspace associated with the QS than to
the G subspace associated with the Dy transform. This is supported by the
numerical evidence given in the last section.

We give below the method of orthogonal compensation to enhance the
approximation when discarding some of the components of y,. Let d be the
vector to be discarded. It is likely to be a partial sum of the expression

17



in the second pair of parentheses in (5.4). We decompose d into a linear
combination of the vectors g, and an error vector that is orthogonal to G.

d = (a18, + a:8, +---) t+ €. (5.5)

After determining a;, they are added to the corresponding yy;, so that the
actual part that is discarded is e, which is orthogonal to . To this end, we
take inner products of d with each of g,. One can easily verify that a; is the
solution to the tridiagonal system of linear equations

2 6 ay <d,g, >
6 20 6 ay <d,g, >
6 20 6 as | = [ <d,g > (5.6)
6 26

for signals of even length. For signals of odd length, the corresponding tridi-
agonal matrix is just a bit more complicated — the last two rows are now
1 l 294 906 256 ]

49 256 640 (5.7)

Tridiagonal systems can be solved by standard numerical linear algebra
method with no more than O(n) computational complexity.

6 General W-Matrices

In this section we give some properties of general W-matrices. Detailed
proofs are omitted. As mentioned in the preceding section, there is more
than one way of constructing the beginning and trailing rows of a W-matrix
and all valid construction gives rise to multiresolution analysis with discrep-
ancies that affect only a few boundary values. We therefore consider two
W-matrices equivalent if they differ only in some boundary rows, in other
words, if they are generated by the same ¢g- and h-vectors.

Theorem 1 [f Wy and Wy are W-matrices of equal size, then their product
WiWs, s again a W-matriz.

18



One can use this theorem to generate new W-matrices from known ones,
especially ones of higher order from those of lower order.

Theorem 2 Let W be generated by a pair of vectors (g,h), and let a,b
be two nonzero real numbers. Then the W-matriz generated by (ag,bh) is
functionally the same as W in the sense that they correspond to the same
multiresolution analysis. In a similar vein, the W-matriz generated by (h, g)
differs from the first one only by a permutation, and we can regard them as
being functionally equivalent.

W-matrices of order 4 can be completely characterized by the following
theorem. The inverse of the general W-matrix of order 4 have been computed
explicitly with the help of Maple. We omit the formula.

Theorem 3 Let A, B,C, D,a, and b be any siz given real numbers such that

AD —BC #0 and a#b. (6.8)
Then the vectors
[ aA, aB, bC, bD | (6.9)
and
A, B, C, D] (6.10)
generate a W-matriz. Conversely, any W-matrixz of order 4 can be generated
this way.
Theorem 4 [In general, given any vector h = [hq, ha, -, ha,| of even length,
one can supplement it with a vector g to form a W-matriz if the (2n—1) x 2n
matric
hy —hy
hy —hs hy —h
A=t (6.11)

_h2n—1 h?n

has full rank. More precisely, let B be the matrix obtained from A by deleting
the middle row of A. The solution space of the matrixz equation

B[Zl,ZQ,"',Zgn]/: 0 (612)

19



is a two-dimensional linear space that contains h. Any nonzero vector in the
solution space other than a multiple of h can be used as g.

If the vector h is of odd length, it can be considered to be a vector of even
length with the last component being zero, and the above result can be applied.

A simple corollary of Theorem 4 is the existence of W-matrices generated
by symmetric basic vectors.

Theorem 5 For any given n numbers hy, hy,---, hy,, one forms the vector
h =[hy, by, hyy—hy, -, —he,—hq]. If h satisfies the conditions in The-
orem 4, then there exists a symmetric g such that (h,g) and g generates a
W-matrix.

Theorem 6 All orthogonal W-matrices of order } are generated by the pair
of basic vectors (after being normalized to be of unit length)

g = [170570567_6] (613)

h=[l,a,—a/3,1/8] (6.14)

for arbitrary real numbers o and 3. If, in addition, we require that h has
vanishing zero-th moment, then

a—1

a+1

B = (6.15)

The particular choice of & = /3 leads to the Dy matriz.

7 Connection to Wavelet Theory

In this section we discuss how the well-known concepts in wavelet theory are
related to our W-matrix transforms. Suppose that J levels of multiresolution
analysis have been applied to a signal x of sufficiently long length N. For
compression purposes, the ideal situation is such that we can throw away
most of the components of each y, at each level. The compressed data of
the signal thus consists mainly of the last-level y,, supplemented by a few
components from the y, of earlier levels. The approximate signal restored
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from the compressed data is then the J times inverse transform of the last-
level y,, plus some detail adjustments using the additional y, data.

By linearity, the J-times-inverse transform of y, is the sum of the J times
inverse transform of each of the components of y;. By the shift invariance
character of the W-matrix transform, the inverse transform of each com-
ponent is simply a multiple of the translated inverse transform of another
component (except for the boundary components). The signal restored from
y; is thus a linear combination of translates of some basic signal, which is
the J times inverse transform of the (y;) vector [0, 1,0]'— by this, we mean
that we take the J-th level y; vector to be [0,1,0]’, and y, at all levels to be
zero, and we compute the original signal that gives this decomposition. We
normalize this signal by multiplying it with a constant so that the maximum
of the signal is 1. This basic signal is called the .J-th scaling signal.

What happens when we let J — oo? The length of the scaling signal
increases as J increases, but we can consider it as the sampling of a continuous
signal defined on a fixed interval, say [0,a]. If there exists a continuous
signal on [0, ] such that the J-th scaling signals converge to as J — oo, this
continuous signal is defined to be the scaling function of the multiresolution
analysis.

In a similar way, the J-times-inverse transform of the (y,) vector [0, 1, 0],
after normalizing to have maximum 1, is the J-th wavelet signal. As J — oo,
the J-th wavelet signal may converge to a continuous wavelet.

A signal restored from a J-level multiresolution analysis is then a linear
combination of translates of the J-th scaling signal and translates of wavelet
signals of various levels (lower than or equal to .J). In practice, the continuous
scaling function and continuous wavelet will never be used, but the discrete
scaling signals and wavelet signals, for J large, closely approximate their
continuous relatives. For instance, the Dy scaling functions and wavelets are
not smooth. Therefore, the high-level D4 scaling and wavelet signals are also
not smooth. This phenomenon explains why, when a signal is compressed
using several levels of the Dy transform and a majority of the y, components
are discarded, the restored signal has numerous sharp cusps. On the other
hand, the scaling function of the QS transform is C! smooth, so that the
corresponding discrete scaling signals are smooth and the restored signal will
look smooth (except where adjustments are made with the y, components
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retained in the compressed data).
We can see that the scaling function we define here coincides with the

classical scaling function defined as in [3] by the following theorem.

Theorem 7 Let ¢ be the scaling function, if it exists, corresponding to a
W-matriz. Then ¢ satisfies the dilation equation

2
(1) = 5= Y giol2e —i+1) (1.
where § =[Gy, +,7,] is the first basic vector of the inverse W-matriz.

In particular, the QS scaling function satisfies

1
o(x) = 1(0(20) +36(20 — 1) +36(2¢ —2) + ¢(2¢ = 3)).  (7.2)
It is well known (see, for example, [1]) that ¢ is the classical quadratic spline.

The wavelet defined here coincides with the classical wavelet in the case
where the multiresolution analysis is orthogonal. In the contrary case, we
can consider our wavelet as a generalization of the classical wavelet. Our
wavelet has the following property:

Theorem 8 B
v(a) = O S To(2e — i +1), (73)
where h = [hy,- -+, h,] is the second basic vector of of the inverse W-matriz
and C' is some scaling constant.
Figures 6 and 7 show the QS scaling function and wavelet, respectively.
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Figure 6. The QS scaling function
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Figure 7. The QS wavelet

& Conclusion

We have introduced the W-matrices, shown how they are constructed, and
discussed how each W-matrix leads to a transform and a multiresolution
analysis for signals of arbitrary length. We have demonstrated that the
new QS (quadratic spline) transform is suitable for compression purposes
and that, for reasonable signals and images, it performs better than the Dy
transform.

The generality of our W-matrices opens up some possibilities that are
worth further investigation. By varying the parameters (the - and g-vectors
that define the W-matrix), one can choose an optimal transform according to
the input signal. Using generalized W-matrices (that are generated by more
than one set of basic vectors), one can transform different parts of the signal
differently to enhance the compression performance. The optimal W-matrix
for a subregion of an image may also be used to characterize the texture. One
can also employ different transforms at different levels of the multiresolution
analysis.

That the QS transform does not work as well as the Dy transform in com-
pressing signals that are wildly oscillating or that are degraded by noise re-
ally means that the QS transform does not retain much of the high-frequency
part of the signal in the y,; vector. This fact can be turned into an advantage
for the QS transform if it is used for denoising purposes. Further study is
planned for this topic.
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