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An exciting result is the uncovering of a new and simple transform (pre-sented in Section 3) that performs very well for compression purposes. Ithas compact support of length 4, and so is its inverse. The coe�cients aresymmetrical, and the associated scaling function is fairly smooth (it is thequadratic B-spline). The associated dual wavelet has vanishing moments upto order 2. Numerical results comparing the performance of our transformwith that of the Daubechies D4 transform are given in Section 4. The mul-tiresolution decomposition, however, is not orthogonal. We will see why thisapparent defect is not a real problem in practice. Furthermore, we will givein Section 5 a method to compute an orthogonal compensation that gives usthe best approximation possible with the given scaling space.Our transform can be described completely within the context of matrixtheory and linear algebra. Thus, even without prior knowledge of wavelettheory, one can easily grasp the concrete algorithm and apply it to speci�cproblems within a very short time, without having to master complex func-tional analysis. At the end of the paper, we shall make the connection towavelet theory.The experiments mentioned in this article were carried out in Matlab;most of the formulas, especially those involving matrix inverses, were derivedby using Maple. We acknowledge the usefulness of these excellent packages.A description of our Matlab implementation can be found in [5]. The paperand the Matlab toolbox can be obtained through ftp at info.mcs.anl.govunder the directory /pub/W-transform.2 Motivation { the Haar and Daubechies D4TransformsOur goal is signal compression, and we look at two well-known wavelet trans-forms in the light of this objective. We permit lossy compression. The con-ventional strategy is to discard data that are small, because their contributionto the perception of the signal is not su�ciently signi�cant, and to �lter outhigh-frequency components of the signal, because the human ear and eye arenot very sensitive to highly oscillatory signals.In the method of transform coding, an invertible transform is �rst applied2



to the signal to produce an alternative but equivalent representation, beforediscarding small data and/or data that correspond to high-frequency com-ponents. A transform is well suited for compressing a given class of signalsif it produces considerable near-zero data for most signals in the class in theequivalent representation.2.1 The Haar TransformWe are given a �nite discrete signal x of length 2n. More precisely, x =[x1; x2; � � � ; x2n]0 is a column vector (0 denotes matrix transpose). We dividethe vector into n ordered pairs of numbers, (x1; x2), (x3; x4); � � � ; (x2n�1; x2n).For each pair, we generate a new pair consisting of their sum and di�erence,for example, (y1; y2) = (x1 + x2; x1 � x2). This is the 2� 2 Haar transform.By keeping the new numbers yi instead of xi, no information is lost, sinceeach pair of xi can be recovered from the corresponding pair of yi by takingtheir sum and di�erence and then dividing by 2. Suppose that the originalsignal is slowly varying, with an occasional jump here and there. Then amajority of the yi, for i even, will be small. The new representation y is thusmore apt for our compression goal.Since the odd and even components of y are computed in di�erent ways,it makes sense to rearrange them into two smaller vectors y1 = [odd yi]0 andy2 = [even yi]0. The components of y2 are, one hopes, mostly small; so afterdiscarding those below some threshold value, only a small portion remains.There is no need to further compress the survivors.The components of y1, on the other hand, are not necessarily small. Infact, it is a low-pass-�ltered output that retains the general shape of theoriginal signal. This output carries the correlation between points that aretwice as far apart in the original signal (two adjacent values in y1 representsfour components in x). It is natural to iterate the Haar transform on y1 togain further compression, ad in�nitum. The algorithm, consisting of a chainof transforms applied to the progressively shorter low-pass-�ltered signals,was formerly called a pyramidal scheme and recently was recast into the con-cept of the renowned multiresolution analysis. One of the attractive featuresof multiresolution analysis is the self-similarity of the iterates. Exactly thesame procedure is used to transform the principal component signal at each3



level, albeit the signal vector becomes shorter every time.The Haar transform has an obvious matrix formulation. Let H be the2n � 2n block diagonal matrixH = 0BBBBBBBBBBB@ 1 11 �1 1 11 �1 . . . 1 11 �1 1CCCCCCCCCCCA : (2:1)Then y =Hx (2:2)and (for the inverse transform) x = Hy=2 (2:3)The Haar matrix H is not orthogonal, but it can be easily converted intoone by dividing by p2. For computational purposes, the current form of His preferable.The Haar transform is easy to understand, but it lacks sophistication.Nonconstant signals do not lead to zero y2. The transform also does not havesu�cient smoothness (this can be adequately explained only by referring tothe scaling function associated with the transform; see Section 7).2.2 The Daubechies D4 TransformDaubechies made a signi�cant contribution when she constructed higher-order orthogonal wavelets of compact support that led to discrete wavelettransforms generalizing the classical Haar transform [2]. To fully understandthe beauty of her wavelets and the motivation for imposing certain propertiesrequires a fair amount of reading. However, her wavelet transforms canstill be appreciated and applied without delving too much into the technicaldetails of wavelet theory. What follows is our attempt to explain her D4discrete transform succinctly. 4



Daubechies has found two magic sets of four numbers each:h g1; g2; g3; g4 i = p3 + 14p2 h 1; p3; 2p3� 3; p3 � 2 i (2:4)andh h1; h2; h3; h4 i = p3 � 14p2 h 1; p3; �3� 2p3; 2 +p3 i : (2:5)These numbers satisfy some remarkable yet easily veri�able orthogonal prop-erties, which can be stated in the following form.Stack n copies of the sets of numbers to form the 2n � 2n matrixD = 0BBBBBBBBBBBBBBB@ g1 g2 g3 g4h1 h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4. . . . . . g1 g2h1 h2
1CCCCCCCCCCCCCCCA : (2:6)In the �rst two rows, the numbers are ushed to the left. In subsequent pairsof rows, the numbers are shifted successively by two positions to the right.Note that the last two rows can hold only the �rst two numbers of each set.Then DD0 = 0BBBBBBBBBBB@ 1 1 1 1 . . . � �� � 1CCCCCCCCCCCA ; (2:7)which is almost the 2n � 2n identity matrix (if not for the 2 � 2 submatrixat the lower right-hand corner). 5



Analogous to the Haar transform (2.2) discussed in Subsection 2.1, theDaubechies matrix transforms a given signal x into a new signal y:y = Dx: (2:8)The original signal (or at least the �rst 2n � 2 components of) x can berecovered as x := D0y; (2:9)where := indicates that equality holds only for the �rst 2n� 2 components.Many techniques have been devised to deal with the problem caused bythe last two components of the signal | by using periodic or even extension,zero padding, etc. We present a new method in this paper.Also analogous to the Haar transform, the odd components of y are alow-pass-�ltered output which retains the general shape of x, while the evencomponents of y are mostly very small. Indeed, Daubechies has, in her searchfor the hi, imposed the condition that they will transform any linear functionto zero (in the language of wavelet theory, the wavelet has vanishing momentsof orders 0 and 1).The multiresolution analysis de�ned by D4 is the algorithm consisting ofmultiplying x by the matrixD, separating out the odd and even componentsof the output to form two vectors y1 and y2, and then repeating the processon y1. Each level of transform can be easily reversed (if one ignores theproblem with the endpoints, for the time being) | merge y1 and y2 into alonger vector by interlacing their components and then multiply by D0.Although both the Haar transform and the Daubechies D4 transform de-�ne invertible multiresolution analysis, the latter is better for at least tworeasons. It produces near-zero y2 for more signals, and its scaling function iscontinuous. The Daubechies D4 wavelet is still not perfect because it is notsymmetrical, not smooth (the graphs contain an in�nite number of sharpcusps), and not intuitive. Higher-order Daubechies wavelets have progres-sively better smoothness properties. 6



3 W -Matrices and Some New TransformsIn the preceding section, we noted that the crucial element in the multires-olution algorithm is a suitable transform \matrix" such as H or D. This\matrix" is really a family of matrices of sizes 2n � 2n (for all positive in-tegers n), all having the same structure. Three properties are essential forconstructing the multiresolution analysis algorithm.1. With the exception of two rows (more rows may be needed for higherorder transforms) at the top or bottom of the matrix, the other rowscome in pairs (let us call them the g- and h-vectors). Each pair isobtained from the previous pair by a shift of two positions to the right.2. Each row has only a �nite number of nonzero elements.3. Each matrix is near-orthogonal, in the sense that the product of eachmatrix with its transpose is almost identical to the identity matrix.Two additional properties are desirable for compression and other purposes.� The g-vector is associated with a su�ciently smooth scaling function.� The h-vector has vanishing moments up to some high order.How important is the near-orthogonality of the matrix? Our work isbased on a relaxation of this requirement. Orthogonality makes it easy to�nd the inverse of the transform | simply multiply y by the transpose ofthe matrix. We can, however, achieve the same goal by requiring that theinverse of the matrix is easy to �nd and that it has a small number of nonzeroelements (so that the inverse transform can be e�ciently implemented).We de�ne a W -matrix as one for which both it and its inverse satisfyconditions 1 and 2. The �rst question that comes to mind is: Are there anysimple W -matrices besides the orthogonal ones? Examples are given below.A more subtle point concerning orthogonality is the \stability" of the in-verse transform. With nonorthogonal matrices, small data in the transformedoutput may not correspond to small input data if the transform matrix hasa large condition number. The W -matrices of our example do have a reason-able condition number. 7



3.1 The Quadratic Spline W -matricesWe call our �rst example of W -matrix the quadratic spline W -matrix be-cause, as we will see in Section 7, its associated scaling function is the well-known quadratic B-spline.The W -matrices of even order in the family have the formK = 0BBBBBBBBBBBBBBBB@ 2 3 �12 �3 1�1 3 3 �1�1 3 �3 1. . . �1 3 3 �1�1 3 �3 1�1 3 2�1 3 �2
1CCCCCCCCCCCCCCCCA : (3:1)The building blocks are the g- and h-vectors [�1; 3; 3;�1] and [�1; 3;�3; 1].The top two rows and bottom two rows are obtained from the basicvectors by adding the number(s) that has (have) been cut o� to the nearestneighborhood that is retained. The inverse of K isK�1 = 116 0BBBBBBBBBBBBBBBB@ 4 43 �3 1 11 �1 3 33 �3 1 11 �1 3 3. . .3 �3 1 11 �1 3 34 �4

1CCCCCCCCCCCCCCCCA : (3:2)Table 1 gives a simple example of a two-level decomposition. The �rstcolumn is the input signal. The second and third columns are the �rst-leveltransformed signals using the matrix K in (3.1). The last two columns arethe second-level transformed signals using the odd-sized matrix K given by(3.4) in the next subsection. 8



Table 1. Two-level multiresolution analysis of x using the quadraticspline transformx y y1;y2 y y1;y21 -1 -1 -198 -1988 5 140 194 289327 140 616 2893 1675564 6 1620 523 194125 616 3675 16755 523216 6 -1343 1620 6512 6 6729 3675 61000 -325 -325This algorithm is very easy to implement. We will see in the next sectionthat this example is only a special case of a general class of W -matrices |given any set of four numbers [h1; h2; h3; h4] with h1h4 6= h2h3, one can sup-plement it with an g-vector to form aW -matrix. Our Matlab implementationencompasses the general W -matrix transform.The quadratic spline W -matrix given in this subsection is particularlygood for compression because its h-vector has vanishing moments up to ordertwo. Furthermore, the exact inverse of K is used in the restoration step;hence, the endpoints of the signal x will be recovered exactly, without anyneed to extend x either periodically or with zero padding. This strategyavoids the possible introduction of an arti�cial discontinuity.Although the inverse matrix K�1 has a structure similar to that of K,it is more appropriate to think of K�1 as being built by columns instead ofrows. The building blocks of K�1 are thus the g-vector and h-vector[1; 3; 3; 1] and [1; 3;�3;�1]: (3:3)They are dual to the g- and h-vectors of K, respectively. The columns ofthe matrix come in pairs, made up of the transpose of the above two basicvectors; successive pairs of columns are shifted two positions downwards.9



3.2 Odd-sized W -MatricesClassical discrete wavelet transforms require the length of the input signalto be an even number. As a consequence, the length of signals that can haveJ levels of multiresolution analysis must have a factor of 2J . Our approachto treat signals of odd length is to transform them with a W -matrix of oddsize. For the family of quadratic spline W -matrices, we let (there is morethan one possible choice) the odd-sized matrices beK = 0BBBBBBBBBBBBBB@ 2 3 �12 �3 1�1 3 3 �1�1 3 �3 1. . . �1 3 3 �1�1 3 �3 1�1 5 1CCCCCCCCCCCCCCA : (3:4)Its inverse can be obtained from (3.2) by �rst deleting the last row and lastcolumn and then replacing the lower right 2 � 3 submatrix by128 " 5 �5 21 �1 6 # (3:5)The transformed signal y = Kx has the same length as x. After sepa-rating the odd and even components, the vector y1 has one component morethan the vector y2. Since the total number of components of the output sig-nal is always the same as the length of x, the latter can be restored withoutadditional information (other than the number of multiresolution analysislevels applied).See Taswell [4] for a di�erent technique in dealing with signals of oddlength. Our method is more e�cient because the transformed signal doesnot increase in length and there is no need to use an additional bookkeepingvector. 10



3.3 Other Examples of W -MatricesNote that each row of K has at most four nonzero elements. We say thatK is of order 4. The Daubechies and Haar transforms have order 4 and 2,respectively. W -matrices of a higher order lead to computationally moreextensive multiresolution analyses. One can obtain smoother transforms,however, using suitable choices of g- and h-vectors.The order 6 generalization of the quadratic spline W -matrix is built fromthe vectors h 1; �5; 203 ; 203 ; �5; 1 i ; (3:6)and h �1; 5; �10; 10; �5; 1 i : (3:7)For even-sized matrices, the �rst and last two rows of the matrix have onlyfour nonzero elements. For odd-sized matrices, the last three rows have tobe modi�ed. For each of these rows, the numbers that are cut o� are addedto the next surviving number.The inverse matrix is built (by columns) by using the dual vectorsh 1; 5; 10; 10; 5; 1 i and h 1; �5; 203 ; �203 ; 5; �1 i : (3:8)The exact form of K�1 can be found by using either Matlab or Maple.W -matrices of odd orders also exist. For example, the analogous splinematrix of order 3 is generated by the basic vectorsh �1; 2; 1 i and h �1; 2; �1 i (3:9)(note that one of them is not symmetric) and the inverse by the dual vectorsh 1; 2; 1 i and h �1; �2; �1 i : (3:10)GeneralizedW -matrices can be easily constructed with a set of more thantwo basic vectors, or with more than one set of basic vectors. Examples aregiven in the full paper. 11



4 Numerical ResultsWe have carried out experiments with W -matrix transforms, in particular,comparing the quadratic spline (QS) and D4 transforms in compressing var-ious types of signals. Our conclusion is that for reasonably smooth signals,with occasional jumps, QS outperforms D4. The situation is reversed for sig-nals having high levels of high-frequency components or random noise. Thisfact does not indicate weakness of the QS transform, however. It means onlythat the transform tends to �lter out high-frequency components and noise,to which most human eyes and ears are insensitive. More experiments areneeded to test the physiological aspects on observers.4.1 One-dimensional SignalsIn the experiments reported below, an input signal x is decomposed intoy1 and y2 using, in turn, the QS and D4 transforms. A certain numberN of the largest (in absolute value) components of y2 are retained, andan approximation to the original signal is obtained by using y1 and thecompressed y2. The relative errors between the original and the restoredapproximation, measured using the Euclidean l2 norm, are given.Our �rst example uses the signal x = sin((1:100)=10)+0:2 sin((1:100)=2),where 1:100 denotes the vector [1; 2; 3; � � � ; 100]. In Table 2, the �rst columngives the number of components in y2 that are retained. The third and fourthcolumns give the relative l2 error of the restored signal, for the QS and D4transforms, respectively. The second column gives the error of the restoredsignal using the QS transform with orthogonal compensation, an additionalstep (explained in Section 5) that can be applied to reduce the error.The original signal is plotted in Figure 1 alongside the two approximatesignals, restored by using the largest three components of y2. To display thegraphs better, we displaced the restored signals by �0:2, respectively | themiddle graph is the original signal, the upper graph is from the QS transform,and the lower graph is from the D4 transform. The �gure clearly shows thatthe D4 restored signal has some sharp corners, due to the non-smoothness ofthe D4 scaling function. The sharp corners are even more pronounced whenthe multiresolution analysis is continued to higher levels.12



Table 2. Errors in the restored signal from the QS and D4 transformsN QSOC QS D4 N QSOC Q.S. D43 0.003203 0.003762 0.019268 15 0.003030 0.003255 0.0130615 0.003163 0.003676 0.018245 18 0.002901 0.003067 0.0116908 0.003102 0.003554 0.016651 20 0.002717 0.002848 0.01078810 0.003073 0.003469 0.015579 23 0.002394 0.002496 0.00945813 0.003055 0.003336 0.013983 25 0.002157 0.002248 0.008495
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Figure 1. Example 1, N = 3, middle curve { original signalThe second example uses x = sin((1:100)=10)+0:2 sin((1:100)); see Table3. Experiments with signals having occasional jumps produce similar results;see Figure 2.Table 3. Errors in the restored signal from the QS and D4 transformsN QSOC QS D4 N QSOC Q.S. D43 0.031252 0.037637 0.067649 15 0.021298 0.024515 0.0482485 0.029834 0.035672 0.064475 18 0.018048 0.020580 0.0431038 0.027535 0.032539 0.059749 20 0.015440 0.017590 0.03969710 0.025854 0.030324 0.056537 23 0.013596 0.015300 0.03492513 0.023110 0.026946 0.051601 25 0.012358 0.013816 0.03194713
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Figure 2. Example 2, N = 3, middle curve { original signalFigures 3 shows the results of a three-level compression of the signal inthe �rst example.
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Figure 3. Example 5, three-level compression, fraction of y2 retained at thethree levels are 0:05; 0:2; 0:4, respectively, middle curve { original signal4.2 Image CompressionThe following �gures show how our transform performs in compressing theubiquitous Lena image, using a three-level analysis constructed from the 2Dversion of the QS transform. 14



Figure 4. Original Lena imageAt each level, four half-sized matrices are produced. The �rst carries thegeneral shape of the original picture, while the others contain the details.Compression is achieved by quantization. In the particular experiment givenhere, each of the �rst three submatrices at each level is quantized with thesame quantization level (which is 800, 5000, and 20000 for the three levels,respectively) and the fourth is quantized at 4 times of that level. The numberof nonzero wavelet coe�cients retained at the three levels are 624, 8138, and8331, respectively. Taking into consideration the number of bits needed to15



store each number, we estimate that the compression ratio is about 13.5times. Entropy coding may be applied to raised the ratio slightly.

Figure 5. Lena image restored from data compressed 13.5 times5 Orthogonal CompensationThe QS transform can be summarized in the equationsy =Kx; x = K�1y: (5:1)16



The odd and even components of y form the pair of vectorsy1 = [y11; y12; � � �]0; y2 = [y21; y22; � � �]0: (5:2)Let us denote the columns of the matrix K�1 ash g1 h1 g2 h2 � � � i : (5:3)Then the second equation in (5.1) has the equivalent formx = (y11g1 + y12g2 + � � �) + (y21h1 + y22h2 + � � �): (5:4)This equation suggests that the QS transform can be interpreted as thedecomposition of x along the subspaces, G and H, spanned by translatesof the dual basic g- and h-vectors (with appropriate modi�cations at theboundary), respectively.In the analogous interpretation of the Haar and D4 transforms, the linearsubspaces G and H are orthogonal to each other. In addition, the one-dimensional subspaces generated by all the gi and hi are mutually orthogonal.When some of the components in y2 are discarded, the compressed vector isthen the unique signal, in the space spanned by the remaining base vectors,that best approximates the original signal.For the QS transform, G and H are not orthogonal. Neither are the one-dimensional subspaces generated by gi and hi. Hence, the compression stepwill not give the optimal approximate signal, representable by the remainingbase vectors. This fact seems to argue against the use of the QS transform.In practice, a reasonable signal (one that is not wildly oscillating or badly de-graded by noise) has such small coe�cients in the H subspace decompositionthat even if we do not take additional steps to optimize the approximation,the error incurred in simply discarding them is still smaller than that in-curred when using the D4 transform. In other words, a reasonable signal isvery likely to be closer to the G subspace associated with the QS than tothe G subspace associated with the D4 transform. This is supported by thenumerical evidence given in the last section.We give below the method of orthogonal compensation to enhance theapproximation when discarding some of the components of y2. Let d be thevector to be discarded. It is likely to be a partial sum of the expression17



in the second pair of parentheses in (5.4). We decompose d into a linearcombination of the vectors gi and an error vector that is orthogonal to G.d = (a1g1 + a2g2 + � � �) + e: (5:5)After determining ai, they are added to the corresponding y1i, so that theactual part that is discarded is e, which is orthogonal to G. To this end, wetake inner products of d with each of gi. One can easily verify that ai is thesolution to the tridiagonal system of linear equations0BBBBBBB@ 26 66 20 66 20 6. . . 6 26 1CCCCCCCA0BBBBBBB@ a1a2a3...... 1CCCCCCCA = 0BBBBBBB@ < d;g1 >< d;g2 >< d;g3 >...... 1CCCCCCCA (5:6)for signals of even length. For signals of odd length, the corresponding tridi-agonal matrix is just a bit more complicated | the last two rows are now149 " 294 906 256256 640 # : (5:7)Tridiagonal systems can be solved by standard numerical linear algebramethod with no more than O(n) computational complexity.6 General W -MatricesIn this section we give some properties of general W -matrices. Detailedproofs are omitted. As mentioned in the preceding section, there is morethan one way of constructing the beginning and trailing rows of a W -matrixand all valid construction gives rise to multiresolution analysis with discrep-ancies that a�ect only a few boundary values. We therefore consider twoW -matrices equivalent if they di�er only in some boundary rows, in otherwords, if they are generated by the same g- and h-vectors.Theorem 1 If W1 and W2 are W -matrices of equal size, then their productW1W2 is again a W -matrix. 18



One can use this theorem to generate new W -matrices from known ones,especially ones of higher order from those of lower order.Theorem 2 Let W be generated by a pair of vectors (g;h), and let a; bbe two nonzero real numbers. Then the W -matrix generated by (ag; bh) isfunctionally the same as W in the sense that they correspond to the samemultiresolution analysis. In a similar vein, the W -matrix generated by (h;g)di�ers from the �rst one only by a permutation, and we can regard them asbeing functionally equivalent.W -matrices of order 4 can be completely characterized by the followingtheorem. The inverse of the generalW -matrix of order 4 have been computedexplicitly with the help of Maple. We omit the formula.Theorem 3 Let A;B;C;D; a, and b be any six given real numbers such thatAD �BC 6= 0 and a 6= b: (6:8)Then the vectors h aA; aB; bC; bD i (6:9)and h A; B; C; D i (6:10)generate a W -matrix. Conversely, any W -matrix of order 4 can be generatedthis way.Theorem 4 In general, given any vector h = [h1; h2; � � � ; h2n] of even length,one can supplement it with a vector g to form a W -matrix if the (2n�1)�2nmatrix A = 0BBBB@ h2 �h1h4 �h3 h2 �h1 . . . �h2n�1 h2n 1CCCCA (6:11)has full rank. More precisely, let B be the matrix obtained from A by deletingthe middle row of A. The solution space of the matrix equationB [z1; z2; � � � ; z2n]0 = 0 (6:12)19



is a two-dimensional linear space that contains h. Any nonzero vector in thesolution space other than a multiple of h can be used as g.If the vector h is of odd length, it can be considered to be a vector of evenlength with the last component being zero, and the above result can be applied.A simple corollary of Theorem 4 is the existence of W -matrices generatedby symmetric basic vectors.Theorem 5 For any given n numbers h1; h2; � � � ; hn, one forms the vectorh = [h1; h2; � � � ; hn;�hn; � � � ;�h2;�h1]. If h satis�es the conditions in The-orem 4, then there exists a symmetric g such that (h;g) and g generates aW -matrix.Theorem 6 All orthogonal W -matrices of order 4 are generated by the pairof basic vectors (after being normalized to be of unit length)g = [1; �; ��;��] (6:13)h = [1; �;��=�; 1=�] (6:14)for arbitrary real numbers � and �. If, in addition, we require that h hasvanishing zero-th moment, then � = � � 1� + 1 : (6:15)The particular choice of � = p3 leads to the D4 matrix.7 Connection to Wavelet TheoryIn this section we discuss how the well-known concepts in wavelet theory arerelated to our W -matrix transforms. Suppose that J levels of multiresolutionanalysis have been applied to a signal x of su�ciently long length N . Forcompression purposes, the ideal situation is such that we can throw awaymost of the components of each y2 at each level. The compressed data ofthe signal thus consists mainly of the last-level y1, supplemented by a fewcomponents from the y2 of earlier levels. The approximate signal restored20



from the compressed data is then the J times inverse transform of the last-level y1, plus some detail adjustments using the additional y2 data.By linearity, the J -times-inverse transform of y1 is the sum of the J timesinverse transform of each of the components of y1. By the shift invariancecharacter of the W -matrix transform, the inverse transform of each com-ponent is simply a multiple of the translated inverse transform of anothercomponent (except for the boundary components). The signal restored fromy1 is thus a linear combination of translates of some basic signal, which isthe J times inverse transform of the (y1) vector [0; 1; 0]0| by this, we meanthat we take the J -th level y1 vector to be [0; 1; 0]0, and y2 at all levels to bezero, and we compute the original signal that gives this decomposition. Wenormalize this signal by multiplying it with a constant so that the maximumof the signal is 1. This basic signal is called the J -th scaling signal.What happens when we let J ! 1? The length of the scaling signalincreases as J increases, but we can consider it as the sampling of a continuoussignal de�ned on a �xed interval, say [0; a]. If there exists a continuoussignal on [0; a] such that the J -th scaling signals converge to as J !1, thiscontinuous signal is de�ned to be the scaling function of the multiresolutionanalysis.In a similar way, the J -times-inverse transform of the (y2) vector [0; 1; 0]0,after normalizing to have maximum 1, is the J -th wavelet signal. As J !1,the J -th wavelet signal may converge to a continuous wavelet.A signal restored from a J -level multiresolution analysis is then a linearcombination of translates of the J -th scaling signal and translates of waveletsignals of various levels (lower than or equal to J). In practice, the continuousscaling function and continuous wavelet will never be used, but the discretescaling signals and wavelet signals, for J large, closely approximate theircontinuous relatives. For instance, the D4 scaling functions and wavelets arenot smooth. Therefore, the high-level D4 scaling and wavelet signals are alsonot smooth. This phenomenon explains why, when a signal is compressedusing several levels of the D4 transform and a majority of the y2 componentsare discarded, the restored signal has numerous sharp cusps. On the otherhand, the scaling function of the QS transform is C1 smooth, so that thecorresponding discrete scaling signals are smooth and the restored signal willlook smooth (except where adjustments are made with the y2 components21



retained in the compressed data).We can see that the scaling function we de�ne here coincides with theclassical scaling function de�ned as in [3] by the following theorem.Theorem 7 Let � be the scaling function, if it exists, corresponding to aW -matrix. Then � satis�es the dilation equation�(x) = 2P gi X gi�(2x� i+ 1); (7:1)where g = [g1; � � � ; gn] is the �rst basic vector of the inverse W -matrix.In particular, the QS scaling function satis�es�(x) = 14(�(2x) + 3�(2x� 1) + 3�(2x � 2) + �(2x� 3)): (7:2)It is well known (see, for example, [1]) that � is the classical quadratic spline.The wavelet de�ned here coincides with the classical wavelet in the casewhere the multiresolution analysis is orthogonal. In the contrary case, wecan consider our wavelet as a generalization of the classical wavelet. Ourwavelet has the following property:Theorem 8  (x) = CXhi�(2x� i+ 1); (7:3)where h = [h1; � � � ; hn] is the second basic vector of of the inverse W -matrixand C is some scaling constant.Figures 6 and 7 show the QS scaling function and wavelet, respectively.
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Figure 6. The QS scaling function22
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Figure 7. The QS wavelet8 ConclusionWe have introduced the W -matrices, shown how they are constructed, anddiscussed how each W -matrix leads to a transform and a multiresolutionanalysis for signals of arbitrary length. We have demonstrated that thenew QS (quadratic spline) transform is suitable for compression purposesand that, for reasonable signals and images, it performs better than the D4transform.The generality of our W -matrices opens up some possibilities that areworth further investigation. By varying the parameters (the h- and g-vectorsthat de�ne theW -matrix), one can choose an optimal transform according tothe input signal. Using generalized W -matrices (that are generated by morethan one set of basic vectors), one can transform di�erent parts of the signaldi�erently to enhance the compression performance. The optimal W -matrixfor a subregion of an image may also be used to characterize the texture. Onecan also employ di�erent transforms at di�erent levels of the multiresolutionanalysis.That the QS transform does not work as well as the D4 transform in com-pressing signals that are wildly oscillating or that are degraded by noise re-ally means that the QS transform does not retain much of the high-frequencypart of the signal in the y1 vector. This fact can be turned into an advantagefor the QS transform if it is used for denoising purposes. Further study isplanned for this topic. 23
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