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1 IntroductionOrthogonal transformations are a well-known tool in numerical linearalgebra and are used extensively in decompositions such as the QR factor-ization, tridiagonalization, bidiagonalization, Hessenberg reduction, or theeigenvalue or singular value decomposition of a matrix (see, for example, [9,15]).For dense matrices, orthogonal matrices are most commonly composedvia Householder reectors, which are orthogonal matrices of the formH = H(v) = I � �vvT; �vTv� = 2�: (1)The condition on the Householder vector v and the scaling factor � in (1)covers all choices for v and � that result in an orthogonal matrix H. Inparticular, it includes the degenerate case � = 0, where H is the identitymatrix I. Note that the application of H to a vector x amounts to a reectionof x with respect to the hyperplane R(v)?, the orthogonal complement ofthe range of v. Computationally, the application of H (or HT ) to a matrixB involves a matrix-vector product and a rank-one update.On modern machines with memory hierarchies and, in particular, paral-lel machines with distributed memories, matrix-matrix operations, especiallymatrix-matrix multiply [7,8], signi�cantly outperform matrix-vector opera-tions. As a result, there has been considerable interest in so-called blockHouseholder transformations, which express a productQ = H1 � � �Hkof several Householder matrices (acting in Rm, say) in a form that allows forthe use of matrix-matrix kernels in the application of Q. An example is theWY representation [4] Q = I +WY T ; (2)where W and Y are m� k matrices and Y is composed of the Householdervectors of Hi. Mathematically equivalent is the compact WY representa-tion [14] Q = I � Y SY T; (3)where S is a k-by-k triangular matrix. We see that the compact WY rep-resentation requires only O(k2) workspace for the matrix S, compared with2



the WY representation's O(mk) workspace for W . This reduction in mem-ory requirement may be signi�cant, since typicallym� k. Block orthogonaltransformations based on the compact WY form have, for example, beenincorporated into the LAPACK library [1].Such blocking approaches are particular solutions to the orthogonal blockelimination problem:Given a matrix A =  A1A2 !, A 2 Rm�k, A1 2 Rk�k, m > k.Find an orthogonal matrix Q such that QA =  �C0 ! for somematrix C 2 Rk�k . (4)The canonical elimination problem is formulated in terms of �C for nota-tional convenience, as will become evident later on. We call the matrix Cthe image of A under Q. The orthogonality of Q implies that C must satisfywhat Schreiber and Parlett [13] called the isometry property,CTC = ATA: (5)The Cholesky factor of ATA or the square root of ATA, for example, satis�esthis condition. In the former case, C is triangular; in the latter case, it issymmetric.The usual block Householder approach (see, for example, [9, pp. 211{213]), employed, for example, in LAPACK, to solve the block eliminationproblem (4) essentially consists of two parts. First, compute an unblockedQR factorization of A to generate k Householder transformations. Second,accumulate a compact WY representation [9, pp. 211{213] for block updates.This approach results in a triangular image C.Recently, Sun and Bischof [16] showed that, far from being just a conve-nient way of formulating products of Householder matrices, any orthogonalmatrix can be expressed in the form (3), where S need not necessarily betriangular. They called this form the basis-kernel representation of Q, moti-vated by the fact that the basis Y displays the active subspace R(Y ), that is,the subspace where the transformation determined by Q acts in a nontriv-ial fashion, whereas the kernel S determines how the the active subspace istransformed. Among other results, the paper [16] showed the following:3



� Given an arbitrary basis-kernel representation of Q, one can construc-tively derive a regular basis-kernel representation, namely, one in whichboth Y and S have full rank. Under the assumption that Y has fullrank, the dimension of R(Y ) is called the degree of Q.� An orthogonal matrix of degree k is su�cient to solve the eliminationproblem (4).� Given an arbitrary basis-kernel representation of Q, one can construc-tively derive a representation with a triangular kernel. However, evenregular basis-kernel representations with triangular kernels are notunique.� The orthogonality conditionsSY TY ST = S + ST (6)or STY TY S = S + ST (7)are su�cient conditions for the orthogonality of Q(Y; S).� Any orthogonal matrix Q of degree k can be expressed as the productof exactly k nontrivial Householder reectors, and if Q = I � Y SY T ,with triangular S, then Q = H1 � � �Hk, where Hi = I�siiY (:; i)Y (:; i)T .� If Qi = I � YiSiY Ti , thenQ1(Y1; S1)Q2(Y2; S2) = I � (Y1; Y2) S1 �S1(Y T1 Y2)S2S2 ! (Y1; Y2)T:(8)Hence, without loss of generality, we restrict orthogonal matrices to theform Q = Q(Y; S) = I = Y SY Tand require that any Q solving the orthogonal block elimination problem (4)be of degree not more than k. Note that in the particular case k = 1 theorthogonal matrix to be determined is a Householder matrix.In this paper, we investigate the orthogonal block elimination problememploying the framework of the basis-kernel representation in our study. In4



the next section, we show that, for given C, there is a unique orthogonalmatrix with minimum degree, equal to rank A1 + CA2 !, that solves theblock elimination problem. We then introduce in Section 3 the so-calledcanonical basis Y =  A1 + CA2 ! and the canonical kernel S = (A1+C)yC�Tand show that they provide a representation of the unique minimum-degreeorthogonal transformation that solves the block elimination problem for agiven image of A under Q. In Section 4 we consider a transformed blockelimination problem where A has orthonormal columns and use it to provethat the minimum degree achievable for Q over all choices of C is equal tothe rank of A2. We also relate our framework to Schreiber and Parlett'sblock reectors and the compact WY accumulation procedure. In Section 5we show that the conditioning of the kernel S and the scaling of Y 's columnshas a profound e�ect on the numerical accuracy with which an orthogonalmatrix can be computed. We also show that, using the conventional choicefor the computation of Householder vectors, the compact WY accumulationprocedure results in very well-conditioned kernels. In Section 6 we discussthe computational advantages of the canonical basis and kernel with respectto the preservation of data locality and exploitation of sparsity, and suggestconditioning approaches to ensure that basis and kernel can be computedaccurately. Lastly, we summarize our results.2 Minimum-Degree TransformationsSuppose, for m � k matrices A and B, that Q is an orthogonal matrixsuch that QA = B. Let Q(Y; S) = I � Y SY T be a regular basis-kernelrepresentation of Q. Then A�B = Y SY T , and the basis Y must satisfy theinclusion property A�B � R(Y ): (9)The rank of Y , and hence the degree of Q, can therefore be no less thanrank(A�B). We can in fact prove the following theorem.Theorem 1 Let A and B be m� k such that QA = B for some orthogonalmatrix Q. Let r = rank(A � B). Then there exists a unique orthogonalmatrix Qmin of degree r such that Q = QminQnull and QminA = B.5



Proof. Let Q(Y; S) = I � Y SY T be a regular basis-kernel representation ofQ. Then, A�B = Y SY TA andrank(Y TA) = rank(A�B) =: r:Now consider the case that the degree of Q is greater than r; otherwiseQmin = Q and Qnull = I. Let Y TA = U  M0 ! be a QR-factorizationof Y TA, with M 2 Rr�k. Then Q(Y; S) = Q( �Y ; �S), where �Y = Y U and�S = UTSU . Partitioning �Y = [�Y1; �Y2], where �Y1 is m� r, we have �Y T2 A = 0.The proof of Theorem 5 in [16] showed that there exist a lower triangularmatrix L and an upper triangular matrix R such that �S = LRLT. Thus,Q( �Y ; �S) = Q( ~Y ;R) with ~Y = �Y L. If we partition ~Y = ( ~Y1; ~Y2) in the samefashion as �Y and partition R =  R11 R120 R22 ! conformingly, Equation (8)implies Q = Q( ~Y1; R11)Q( ~Y2; R22)and ~Y2TA = 0. WithQmin = Q( ~Y1; R11); and Qnull = Q( ~Y2; R22);we then have Q = QminQnull and B = QminA ;as claimed.Now assume there are two orthogonal matricesQ1 and Q2 of degree r thatsatisfy QiA = B, and let Qi = I�YiSTi Y Ti be a regular basis-kernel represen-tation with Yi 2 Rm�r, Si 2 Rr�r, and rank(Y ) = rank(S) = r. Let X be ank� r matrix of rank r such that Y T1 AX = Ir�r. Then, Y1S1 = Y2S2(Y T2 AX)and, since S2(Y T2 AX) 2 Rr�r has full rank, Y2 = Y1F for a nonsingularmatrix F . Since Y1 is of full rank, we have S1 = FS2(FTY T1 AX) = BS2BT,which implies Q2 = Q1.From the proof of Theorem 1 and the fact that A and B have symmetricalpositions (QA = B implies QTB = A), we can deduce the following facts.Corollary 2 Let QA = B, where Q = I � Y SY T is a regular basis-kernelrepresentation of Q. 6



1. The following statements are equivalent:� Q(Y; S) is of minimum degree.� R(Y ) = R(A�B).� Y TA is of full rank in rows.� Y TB is of full rank in rows.2. If Q(Y; S) is not of minimum degree, then it can be factored asQ(Y; S) = Q1(Y1; S1)Q2(Y2; S2) ;where R(Y1) = R(A�B); and Q1(Y1; S1)A = Band R(Y2) � R(A)?; or R(Y2) � R(B)?:In our study of the block elimination problem (4), we consider the partic-ular case B =  �C0 !, where C is a k�k matrix that satis�es the isometrycondition (5). Once C is determined, we know that the minimum degreefor a solution to the block elimination problem is the rank of  A1 + CA2 !.Note that the minimum degree discussed in Theorem 1 depends on the cho-sen image C. In particular, if we can choose C such that  A1 + CA2 ! doeshave a rank lower than k, we may be able to arrive at a more economicalrepresentation of Q, in the sense that the computational cost of applying Qin the basis-kernel form is directly proportional to the number of columns ofY .3 The Canonical Basis and KernelLet A =  A1A2 ! be an m � k (m > k) matrix where A1 is k � k, andlet C by a k � k matrix that satis�es the isometry condition with A. ByTheorem 1, there exists an orthogonal matrix Q of degree equal to the rank7



of  A1 + CA2 ! that solves the block elimination problem (4). We now showthat a particular basis Y and kernel S representing Q (i.e., Q = Q(Y; S))can be derived directly from A and C, without any need for a column-by-column approach as is, for example, employed in the WY approaches. In thissection, we assume that A is of full rank. The rank-de�cient case is addressedin Section 6.We have already established that Y must satisfy the inclusion property (9)R(" A1 + CA2 #) � R(Y ):Also note that A = Q(Y; S)T  �C0 ! implies that Y should satisfy theelimination condition Y = Y ST(A1 + C)TC; (10)which suggests (and if Y is of full rank, actually implies)ST(A1 + C)TC = I :In fact, we can prove the following theorem.Theorem 3 Let A 2 Rm�k, m > k, be of full rank, and let C 2 Rk�k satisfythe isometry condition with A. Then Q(Y; S), de�ned byY = A+  C0 ! =  A1 + CA2 ! (11)and S = (A1 + C)yC�T ; (12)solves the block elimination problem Q(Y; S)A =  �C0 !. Furthermore, Yand S provide a basis-kernel representation for the unique orthogonal matrixof minimum degree that solves the block elimination problem.Proof. It can be veri�ed directly that Y and S as de�ned above satisfy theorthogonality condition (6), and therefore Q(Y; S) = I�Y SY T is orthogonal.8



If (A1+C) is nonsingular, it is easy to check that Y and S solve the blockelimination problem.Now consider the case where A1 + C has rank r < k. From the �rst krows of the elimination condition (10), we haveCT(A1 + C) = CT(A1 + C)ST(A1 + C)TC:Using a singular value decomposition, we have C�1(A1+ C) = VL�V TR for anonsingular matrix � 2 Rr�r and orthonormal matrices VL and VR. Thus,VL�V TR = VL�V TR STVR�V TL :We therefore know that there exists a nonsingular r � r matrix B such thatCT(A1+C) = VLBV TL . Since (A1+C)yC�T = VLB�1V TL , it is easy to checkthat Y as in (11) and S as in (12) together satisfy the elimination condition(10).Independent of the regularity of A1 + C, we have by constructionR(Y ) = R A+  C0 !! ;and so, according to Corollary 2, Q(Y; S) has minimum degree.We call (11) and (12) the \canonical base" and the \canonical kernel",respectively. Note that, for k = 1, these formulae are exactly those de�ningfor a Householder transformation. It is also worth pointing out that, for agiven C, Y and S need not be of full rank, even though Q(Y; S) employingthe canonical base and kernel is the unique orthogonal transformation ofminimum degree solving the block elimination problem.Corollary 4 Let Y and S be de�ned as in Theorem 3. Then, Y and S areof full rank if and only if (A1 + C) is nonsingular.Proof. The elimination condition (10) implies that if Y is of full rank,then the matrix product ST(A1+C)TC must be nonsingular. This, in turn,implies the nonsingularity of A1+C and S. On the other hand, since A1+Cis the �rst k-by-k submatrix of Y , the nonsingularity of A1 + C implies theindependence of Y 's columns.Note that, for a particular chosen image C, A2 plays no role in determin-ing the minimum degree required to solve the block elimination problem.9



4 Orthogonal Factors of ImagesIn the preceding sections we assumed that the image C of A under Q hadbeen �xed a priori, and we showed how one could easily derive the canonicalbasis and kernel that solved the block elimination problem for that particularchoice of C. In this section, we consider the impact of the choice of C.Assume again that A is of full rank. Let Q and Q be two orthogonaltransformations that both eliminate A2, namely,QA =  �C0 ! ; and QA =  �C0 ! : (13)Since both C and C satisfy the isometry condition with A, we have CTC =CTC and hence C = UC for some k � k orthogonal matrix U .Let G =  G1G2 ! be the �rst k columns of QT. Then A = �GC andR(G) = R(A). Equation (13) impliesQA =  �C0 ! ; QG =  �I0 ! ; (14)and QA =  �UC0 ! ; QG =  �U0 ! : (15)That is, if we �x an orthonormal basis G of R(A) and hence the repre-sentation of A, namely �C, with respect to the basis, the block eliminationproblem (4) is mathematically equivalent to the following problem, which wecall the transformed block elimination problem:Given a matrix G =  G1G2 ! 2 Rm�k, G1 2 Rk�k, GT1G1 +GT2G2 = I, and an orthogonal matrix U , �nd an orthogonalmatrix Q = I � Y SY T of degree no more than k such thatQ G1G2 ! =  �U0 !. (16)For a solution Q(Y; S) of this transformed problem, we haveQ(Y; S)A = Q A1A2 ! =  �UC0 ! : (17)10



Note the strong resemblance to the Householder point elimination problem,H(v; � )a =  �kak20 ! ;where  = �1. Partitoning a =  �a2 !, � 2 R, we choose  in LAPACK as = ( sgn(�1); if a2 6= 0;�sgn(�1); otherwise: (18)4.1 Degree ChoicesApplying the results in Section 3, we know that, given U ,Y =  G1 + UG2 ! ; S = (G1 + U)yUprovide a representation Q(Y; S) for the unique orthogonal matrix Q of min-imum degree that solves the problem (16) for that particular choice of U .We also know from Corollary 2 that r := rank(Y TG) = rank(GT1 U + I) isthe degree of Q, with the inclusion property (9) implying r � k.The following lemma shows that there is always a k�k matrix U such thatG1 + U is nonsingular. That is, for this particular choice of U the minimumdegree for the related elimination problem is k.Lemma 5 Let G1 = UR1 be a QR decomposition of G1 scaled such that R1has nonnegative diagonal elements. Then the matrix G1 + U is nonsingular,and the canonical kernel S = (UTG1 + I)�1 is upper triangular.Proof: Since R has nonnegative diagonal elements, G1 + U = U(R+ I)C isnonsingular. The triangularity of S follows easily from the choice of U .This fact was intuitively expected, as the triangularization of a matrixwith k columns usually requires k Householder transformations. We nowshow how the rank of G2 relates to the lowest degree we can achieve throughproper choice of U . 11



Lemma 6 For any orthogonal factor U ,rank(G1 + U) = rank( G1 + UG2 !):Proof. The claim holds if G1 + U is nonsingular. We consider the case thatG1 + U is singular. From the proof of Lemma 2 in [16], we haveUT(G1 + U) = Vs  S 0 !V Tsfor some orthogonal matrix Vs and a nonsingular matrix S of order, say, r.Thus, G1Vs = UVs  S � I �I ! :The CS decomposition of G (see, for example, [9]) then implies that the lastk � r columns of G2Vs are zeros exactly when the last k � r columns of(G1 + U)Vs are zero and its �rst r columns are of full rank. That is,rank( G1 + UG2 !Vs) = rank((G1 + U)Vs):Theorem 7 There exists an orthogonal matrix U such that G1+U is singularif and only if G2 is rank de�cient. Moreover,rank(G2) = minfrank(G1 + U) jU is orthogonalg:Proof. Suppose G1+U is singular for some orthogonal matrix U . The proofof Lemma 6 shows that G2 is rank de�cient. Now assume r = rank(G2) < k.We have from Lemma 6 that for any orthogonal factor U ,rank(G1 + U) = rank( G1 + UG2 !) � rank(G2):By the CS decomposition theory, there are three orthogonal matrices V1, V2,and Vr such thatG1 = V1  I �1 !V Tr ; and G2 = V2  0 �2 !V Tr ;12



where �i are nonsingular diagonal matrices and �21+�22 = I. Let U = �V1Vr.Then G1 + U is singular andrank(G1 + U) = rank((GT1 + UT; GT2 )) = rank(G2):Theorem 7 reveals that the minimum degree for orthogonal transforma-tions that solve the block elimination problem depends on the rank of G2,or A2, the block to eliminate. Note the di�erence between the lowest degreeof orthogonal transformations with a given image U (Theorem 1) and theminimum degree of orthogonal transformations for eliminating G2 among allpossible choices in U (Theorem 7). That is, depending on the choice of theimage of A, the degree of the orthogonal matrix for the block eliminationproblem for a full rank matrix A with k columns may be anywhere betweenrank(A2) and k.4.2 Block ReectorsSchreiber and Parlett [13] developed a theory on block reectors, whichare symmetric orthogonal matricesQ = I � Y TY T; QTQ = I; T = TT; Y 2 Rm�k: (19)A particular example is the situation where Y has orthonormal columns andT = 2I. From the discussion in preceding sections, we know that all blockorthogonal transformations | hence, in particular, symmetric ones | solvingthe block elimination problem (17) can be characterized as special choices ofthe orthogonal factor U .Example 8 (Block Reectors). Suppose G1 = Vl�V Tr is a SVD of G1.Let U = VlDV Tr for some (real) diagonal matrix D such that jDj = I. Then1. G1 = UM is a polar decomposition of G1 [9, p. 148], whereM = Vr�DV Tris symmetric.2. S = (G1 + U)yU = (I +M)yV = Vr(I + �D)V Tr is symmetric.3. If, in addition, D is chosen such that I + �D is positive de�nite (whichis always possible), then S is positive de�nite, and Q = Q(Y; S) can berepresented in the special form ofQ = I � ~Y ~Y T; with ~Y = Y S1=2:13



Example 8 shows that many symmetric orthogonal transformations solvethe block elimination problem. They result in di�erent images of A, and thecondition of their kernels di�ers. The diagonal matrix D in Example 8 canbe chosen to minimize, say, the two-norm condition number of S, as�2(S) = max( j�i + dijj�j + djj such that �j + dj 6= 0; 1 � i � k; 1 � j � k) :For the case k = 1, U = d = �1 and S = (1 � g1d)�1. The LAPACKselection d = sign(g1) (see (18)) for a nontrivial Householder matrix resultsin the smaller scaling factor S among the two choices. Parlett [12] showed,however, that the alternate can be computed in an equally stable fashion.In their computational procedures for block reectors, Schreiber and Par-lett [13] use Higham's algorithm [10] to compute the polar decomposition ofG1, and hence implicitly chose D = I. In this case, S = Vr(I + �)�1V Tr ispositive de�nite, and S is always extremely wellconditioned, as �2(S) � 2.The case that the actual block size could be smaller than the number ofcolumns of A was �rst mentioned in [13], although the link to the rank of A2(or G2) was not recognized.4.3 The Compact WY RepresentationTheWY approach for generating orthogonal transformations for the blockelimination problem does not require an orthonormal basis of R(A) or ofR(Y ). Denote by WY(y1; � � � ; yk) = I � Y SY T the compact WY represen-tation for the product of Householder transformations as derived from theconventional QR factorization, where Y = (y1; � � � ; yk) is composed of theHouseholder vectors yi, and a null vector denotes a degenerate Householdermatrix (i.e., the identity) resulting from a \skipped" orthogonal transforma-tion.Applying the conventional WY approach to the transformed block elim-ination problem (16), we get a diagonal image U as a result of the orthogo-nality among G's columns. The diagonal elements of U are determined oneby one by the rule (18). On the other hand, Corollary 6 in [16] showed that,given an arbitrary k � k diagonal matrix D, jDj = I, one can determinea sequence of Householder matrices with corresponding Householder vectors14



y1; � � � ; yk so that WY(y1; � � � ; yk)G =  �D0 ! : (20)As it turns out, orthogonal transformations for the block elimination problemgenerated with the WY approach have minimum degree.Theorem 9 Suppose WY(y1; � � � ; yk)G =  �D0 ! for a real diagonal ma-trix D, jDj = I. Then WY(y1; � � � ; yk) is the minimum-degree transformationthat solves the transformed block elimination problem (16) with U = D.Proof. If the Householder matrices determiningWY(y1; � � � ; yk) are all equalto the identity, thenWY (y1; � � � ; yk) = I is already of the lowest degree. Oth-erwise, it was shown in [16] thatWY (y1; � � � ; yk) = Q(Ŷ ; Ŝ) for a regular basisŶ and a nonsingular kernel Ŝ, where Ŷ consists of the nonzero Householdervectors. Since the �rst nonzero elements of these Householder vectors occurin di�erent rows, (D; 0)Ŷ is of full column rank. The claim in the theoremthen follows from Corollary 2.Assume we have �xed the factor C in A's image to be upper triangular.By the uniqueness of minimum degree transformations, we can then deducethe following fact.Corollary 10 The class of orthogonal matrices determined by the WY ap-proach for the block elimination problem (4) with triangular images C isthe same class of minimum-degree orthogonal matrices that solves the trans-formed block elimination problem (16) with diagonal images U .Recall that, given a particular C, the canonical basis and kernel alsoprovide the minimum degree orthogonal transformation for the problem (4).The WY approach is another way to compute such a block transformation,choosing Y column by column.Again, we point out that the minimum-degree orthogonal transformationassociated with a particular image is not necessarily the minimum-degreetransformation possible overall. As an example, consider the matrixA = 0B@ �11 �12�21 �22� � 1CA 2 R3�2;15



where �ij 2 R and � 6= 0. Two nontrivial Householder matrices, and hencean orthogonal transformation of degree 2, will be required unless (�11 �kAe1k2)(�12 � �11) = �21(�21 � �22). By Theorem 7, on the other hand,the lowest degree for the block elimination problem is 1, the rank of A'ssubmatrix (�; �).5 The Condition of the KernelIn the preceding two sections, we have introduced the canonical basisand kernel for a representation of minimum-degree orthogonal transforma-tions to the block elimination problem. We have also shown the relation ofthe compact WY accumulation procedure with diagonal images. However,mathematically equivalent representations may have quite di�erent numeri-cal properties, and we now discuss to what extent the kernel inuences thenumerical properties of particular representations of orthogonal matrices.Theorem 11 Let Y be an orthogonal basis of full rank and S be its associatedkernel. Suppose ~S = S + �S is a kernel computed from Y . Let ~Q = I �Y ~SY T. Thenk ~QT ~Q� IkF � 4kS�1kFk�SkF + 4(kS�1kFk�SkF )2: (21)Proof. Since Y is of full rank, S is nonsingular. Thus, the orthogonalityconditions can be expressed asY TY = S�1 + S�T (22)and hence kY TY k � 2kS�1k;where the norm is either the Frobenius norm or the 2-norm. Let �Q =~Q�Q = Y�SY T. Thenk ~QT ~Q� IkF = kQT�Q+ (�Q)TQ+ (�Q)T(�Q)kF� 2kY k22k�SkF ++kY (�S)TY TY (�S)Y TkF� 2kY TY kFk�SkF + kY TY kFkY TY k2k�Sk2F� 4kS�1kFk�SkF + 4(kS�1kFk�SkF )2:16



Hence, the \orthogonal" matrix ~Q represented by Y and ~S may in factbe far from being orthogonal if S is illconditioned, unless �S is su�cientlysmall. However, we are likely to incur a sizable �S when S is illconditioned,since the equation (22) says that, in essence, S�1 is computed from Y , andhence an inversion of S�1 has to be performed somewhere along the way toobtain S. If S is illconditioned with respect to inversion, then �S could bequite big [15].The simplest and best-conditioned kernel is a multiple of the identitymatrix. We know from the orthogonality condition (22) that a nonsingularsymmetric kernel S is 2I if and only if the associated Householder basis Y isorthonormal. The transformation is then a block reector with normalizedbasis and kernel. Note that even for the orthogonal elimination problem,where G is assumed to be orthonormal, we still need to do extra work andmake Y orthonormal again to obtain S = 2I. Therefore, achieving a kernelwith unity condition number is computationally too expensive under normalcircumstances. We also note that Example 8 shows that there exist represen-tations for symmetric orthogonal matrices (or equivalently, block reectors),with ill-conditioned kernels.Theorem 5 in [16] showed that any orthogonal matrix can be representedwith a triangular kernel. As it turns out, the condition of a triangular kernelis greatly inuenced by the scaling of its corresponding basis.Theorem 12 Let Q = I �Y SY T be a regular basis-kernel representation ofthe orthogonal matrix Q, where S is lower triangular. Then,sii = 2=kyik22;and, for i > j, j(S�1)ijj < kyik2kyjk2; and jsijj < 4kyik2kyjk2 : (23)Proof. By the orthogonality condition (22), sii = 2=kyik22. The bounds onthe elements of S�1 then follow from the triangularity of S and the Cauchy-Schwartz inequality. The strict inequality is due to the independence of Y 'scolumns. Similarly, from the formulation (7) we have kY Sejk2 = q2Sjj =2=kyjk2 and jsijj = j(Y Sei)T(Y Sj)j < kY Seik2kkY Sejk2. The strict inequal-ity is due to the fact that Y S is of full rank.17



Similar results to Theorem 13 hold for lower triangular kernels.The compact WY approach for the QR factorization gives a representa-tion with triangular kernel and a lower triangular basis. If we adopt the con-ventional selection rule (18) for Householder vectors, the elementwise boundson the kernel and its inverse can be tightened considerably.Theorem 13 Let WY (y1; � � � ; yk) = I � Y SY T be the WY representationof orthogonal transformations for the QR factorization, determined by theselection rule of (18) and the scaling conventionyj(j) = 1 if yj 6= 0: (24)Then, 1 � sii � 2;and, for i > j, j(S�1)ij j � p2; and jsijj � 2 : (25)Furthermore, kS�1kF � k; and kSkF < k + 1: (26)Proof. We assume w.l.o.g. that Y has no zero columns and that S is lowertriangular. The selection rule (18) makes the �rst nonzero element of eachY 's column the \dominant" element and the scaling convention (24) makes itequal to 1. Keeping in mind that Y 's elements in the strict upper triangularpart are zero, we have for each yj, 1 � j � k,eTi yj = 0; i < j; eTj yj = 1; and 1 < kyjk2 � p2:Thus, the 2-norm of yj with the dominant element removed is no greaterthan 1, and for i > j, j(S�1)ij j = jyTi yjj � p2. The bound on kS�1kF thenfollows. Similarly, the elements of Y S in the strict upper triangular are zeroand we have k(Y Sej)k2 = q2sjj and eTj Y Sej = sjj:It can then be proved easily that the 2-norm of the vector obtained from(Y Sej) by zeroing the dominant element eTj Y Sej is unity. Therefore, fori > j, jsijj = j(Y Sei)T(Y Sej)j � q2Sii � 2:18



Furthermore, we havekSk2F � kXi=1 isii = kXi=1 2iyTi yi � k(k + 1):Theorem 13 points out that orthogonal matrices computed by the WYapproach are numerically benign if their degree is not unreasonably high.This is the case in practice, with k typically ranging from 8 to 64.6 Preconditioning and PostconditioningThe preceding section showed the importance of the condition of thekernel for the numerical reliability of a block orthogonal transformation. Wealso showed that the compact WY accumulation procedure is very reliable.This reliability comes at a price, however, as one has to process A column bycolumn, with the jth column of A being touched 2j+2 times in Householderupdates, norm computation, and scaling. We also note that the computationof the WY representation for k Householder vectors of lengthm takes 2k2(m�k=3) ops for the WY basis and mk(k + 1) for the WY kernel [9, p. 212].In this section we discuss other, more block-oriented, ways of achievingreasonably conditioned basis-kernel representations, and also consider theissue of sparsity. For now, assume that A is an m� k, m > k, matrix of fullrank, and C is the Cholesky factor of ATA.6.1 The Canonical ApproachOnce we have computed the Cholesky factor C, the canonical basisY =  A1 + CA2 !is readily available, and the computation of the kernelS = (A1 + C)yC�Tinvolves only computations on k� k matrices, which is very little work com-pared with the usual Householder QR factorization algorithm, since typicallyk � m. 19



The canonical basis can also be much sparser than the block represen-tation generated by the compact WY procedure, as is shown in Figure 1,which shows A, the basis Ywy computed by the compact WY procedure,and the canonical basis Ycanonical. Fill-in elements are denoted with an \F".A has 24 nonzeros and Ywy has 55 nonzeros while Ycanonical only has 29nonzeros (i.e., only 5 �ll elements). When a matrix Q = I � Y SY T isapplied to a m � n matrix B, n � k, the computation of Y TB is a majorpart of the computational expense of forming B � Y S(Y TB) and requiresnonz(Y ) � n � k � m � n ops, where nonz(Y ) is the number of nonzero ele-ments in Y . Since Q = I � YcanonicalScanonicalY Tcanonical = I � YwySwyY Twy, thecomputation of Y TwyB is not only more expensive than that of Y TcanonicalB, butmay also result in more �ll-ins when B is sparse, further increasing the costof the update.Particular cases of the canonical basis and kernel occurred in previousworks on the subject of block orthogonal factorizations. Using our frame-work, they can all be related to particular choices of the image U in thetransformed problem (16).For example, we proved in Lemma 5 that there is always a factor Usuch that the canonical kernel S is nonsingular, and hence Y is of full rank.Dietrich [6] used such a choice in his work to avoid the case of a rank-de�cientkernel.Kaufman [11] used essentially diagonal orthogonal factors. Her algorithmassumed that A1, the top k�k submatrix of A, is upper triangular, or appliedan initial QR factorization to A1 �rst. Kaufman was also the �rst one toimplicitly exploit the the sparsity of A preserved in the canonical basis andto observe the stability problems arising from ill-conditioned kernels.Except for Schreiber and Parlett [13], all previous approaches tried toavoid producing a singular kernel. Our theory shows that, instead of beinga problem, the singularity of a kernel can be taken advantage of, as it allowsthe generation of an orthogonal transformation of lower degree. We alsoshowed constructively under what conditions such a kernel existed.In this section we now present some ideas on how to cheaply solve theblock elimination problem (4) while ensuring numerical reliability.20
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6.2 PreconditioningThe canonical basis requires an admissible image of A, that is, one thatsatis�es the isometry condition (5). The Cholesky factor ofATA is an obviouschoice. If A has orthonormal columns, the Cholesky factor is I, the identity.Therefore, the �rst step of the algorithms in [13] is to orthonormalize A'scolumns, for example, with the conventional Householder QR factorization.The conventional Householder QR procedure is also considered a reliableprocedure to compute Cholesky factors. However, in either case we are es-sentially already solving the block elimination problem, so orthonormalizingA's columns in general is too expensive.Computing the Cholesky ATA = CTC of ATA takes mk(k + 1) ops forone triangular half of the matrix-matrix product ATA and k3=3 ops for theCholesky factorization. Note that this is nearly half the e�ort required forthe WY accumulation (most of the work is in a matrix-matrixmultiplication)and that the computational cost for a sparse A could even be less. We nowdiscuss what we call \preconditioning," that is, strategies for transformingthe problem so we can safely compute the Cholesky factor.Problems in computing the Cholesky factorization arise when some of A'scolumns are only weakly independent of the others. This case can be dealtwith through a rank-revealing Cholesky factorization. As with rank-revealingQR factorizations [5,2,3], there is a permutation matrix P such thatP T (ATA)P = CTC; C =  C11 C12C22 ! ; (27)where C11 2 Rr�r is wellconditioned, r is the numerical rank of A, and kC22k2is \small."If C22 is numerically negligible, then the last k � r columns of AP canbe considered linearly dependent on the �rst r ones, and we need only todetermine an orthogonal matrix to solve the block elimination problem forthe �rst r columns of AP . If R22 is not numerically negligible, let R̂ be amatrix such that CR̂ is wellconditioned, for example,R̂ =  I Ry22 ! :22



Now, working on the matrix APR̂ instead of A, we obtainQ(Y; S)APR̂ =  �UĈ0 !for some orthogonal matrix U , and soQ(Y; S)AP =  �UĈR̂�10 ! :Note that the Cholesky factor Ĉ of APR̂,Ĉ =  C11 C12Ry22I ! ;is wellconditioned for the canonical basis of APR̂, which di�ers from A inonly k � r columns.Note that a poor scaling in A's columns can easily result in a large con-dition number for ATA. In this case, the condition of A can easily beimproved by scaling A's columns; that is, we choose R̂ to be diagonal. Thisis probably su�cient in most cases, and certainly preferable in the sparsesetting. Also note that, from the preconditioning point of view, computingan orthonormal basis of A can be considered the ultimate preconditioningstep, as it results in Ĉ = I.6.3 PostconditioningAs we already noted in the context of block reectors, a well-conditionedA does not necessarily result in a well-conditioned kernel, which is neededfor numerical stability.So now assume that we have determined a picture C of A that results inan ill-conditioned kernel, and hence an numerically rank-de�cient basis. Aswas shown in the proof of Lemma 2 in [16], we can derive a factorization S =FŜF T of S so that Ŝ is wellconditioned, and then use the conditioned basis-kernel representation Q(Y; S) = Q(Y F; Ŝ). In fact, F can be composed of apermutation matrix and a triangular matrix similar to the preconditioningmatrix R̂. In general, we expect such a postconditioning matrix to dropand/or change only a small number of Y 's columns. Again, the extremecase of postconditioning is the orthonormalization of Y .23



Finally, note that both pre- and postconditioning involve only k � k ma-trices. In typical applications of block orthogonal transformations, k rangesfrom 4 to 32. Thus the matrices involved in conditioning are small. We havealso seen from the example in Figure 1 that the canonical basis is promisingfor sparse orthogonal factorizations. With proper conditioning techniques,one should be able to preserve most of this desirable structure except in rarecircumstances.7 ConclusionsIn this paper, we investigated the block elimination problemQA =  �C0 ! ;employing the basis-kernel representationQ = Q(Y; S) = I � Y SY Tas our main tool.We showed that, given a particular �xed picture C, there is a uniqueorthogonal transformation of minimum degree, equal to rank( A1 + CA2 !)that solves the block elimination problem. We introduced the canonical basisand kernel Y =  A1 + CA2 ! and S = (A1 + C)yC�Tas a particularly convenient way for computing this transformation.Considering a transformed problem where A has orthogonal columns, wethen proved that, for all admissible choices of C, the minimum degree thatis possible is rank(A2). We showed that symmetric orthogonal matrices (i.e.,block reectors) and the compact WY representation can be considered asspecial cases in our general framework.We also illustrated that the condition of the kernel S plays an impor-tant role for the numerical reliability with which Q(Y; S) can be applied.We showed that an ill-scaled basis almost certainly results in a badly con-ditioned kernel and that the kernel computed by the compact WY accumu-lation procedure with the usual sign choice for Householder vectors is verywellconditioned. 24



Once the Cholesky factor of ATA is known, the canonical basis and kernelare much easier to compute than the compact WY accumulation strategy inthe usual case where k � m. We also gave an example showing that thecanonical basis and kernel hold great promise for sparse computations, sincethe sparsity structure of A2 is preserved in the canonical basis. We thensuggested preconditioning strategies to make sure that the Cholesky factorof ATA can be computed reliably, and postconditioning strategies to makesure that the resulting kernel is wellconditioned.In particular for sparse problems, the canonical basis and kernel hold greatpromise for more e�cient approaches to compute sparse orthogonal factor-izations. We believe that simple column scaling strategies are su�cient aspre- and postconditioning strategies in most cases and that the investigationof pre- and postconditioning strategies for sparse matrices is a very promis-ing avenue to pursue. Even for dense problems, we believe this approachto be worth pursuing, as the canonical basis and kernel can be computedfaster than the compact WY accumulation procedure, and in a much moreblock-oriented fashion, which should be advantageous in cache-based sys-tems or parallel processors. Lastly, we point out that there seems signi�cantpotential in studying how other choices for the image of A under Q can re-sult in lower-rank and hence computationally more advantageous orthogonaltransformations.AcknowledgmentWe thank Beresford Parlett for some stimulating discussions.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz,A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, andD. Sorensen. LAPACK User's Guide. SIAM, Philadelphia, 1992.[2] Christian H. Bischof and Per Christian Hansen. Structure-preservingand rank-revealing QR factorizations. SIAM Journal on Scienti�c andStatistical Computing, 12(6):1332{1350, November 1991.25
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