STENMIN: A Software Package for Large, Sparse
Unconstrained Optimization Using Tensor Methods*

Ali Bouarichaf
Argonne National Laboratory

We describe a new package for minimizing an unconstrained nonlinear function where the
Hessian is large and sparse. The software allows the user to select between a tensor method and
a standard method based upon a quadratic model. The tensor method models the objective
function by a fourth—order model, where the third— and fourth—order terms are chosen such that
the extra cost of forming and solving the model is small. The new contribution of this package
consists of the incorporation of an entirely new way of minimizing the tensor model that makes
it suitable for solving large, sparse optimization problems efficiently. The test results indicate
that, in general, the tensor method is often more efficient and more reliable than the standard
Newton method for solving large, sparse unconstrained optimization problems.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
sparse and very large systems; G.1.6 [Numerical Analysis]: Optimization—unconstrained op-
timization; G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: tensor methods, sparse problems, large-scale optimization,
rank-deficient matrices

*Part of this work was performed while the author was research associate at CERFACS (Centre Européen de
Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France).

TAuthor’s address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
Illinois, 60439. bouarich@@mcs.anl.gov. This work was supported in part by the Office of Scientific Computing,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

1. Introduction

This paper describes a software package for solving the unconstrained optimization problem
given f : R" — R, find 2. € N such that f(z,) < f(z) forallz € D, (1.1)

using tensor methods, where D is some open set containing z.. We assume that f is at least
twice continuously differentiable and V?f(z.) is large and sparse.

Tensor methods for unconstrained optimization are general-purpose methods primarily in-
tended to improve upon the performance of standard methods especially on problems where
V2 f(z.) has a small rank deficiency, and to be at least as efficient as standard methods on
problems where V2 f(z,) is nonsingular. Tensor methods for unconstrained optimization base
each iteration upon the fourth-order model of the objective function f(x)

Mr(zotd) = f(a) + Vi(x)-d + %VQf(xc) &+ éTc &P+ %VC Y (12)
where d € R", .. is the current iterate, V f(z.) and V2 f(z.) are the first and second analytic
derivatives of f at z., or finite difference approximations to them, and the tensor terms at z.,
T. € R™7X7 and V, € RW¥WXX7 are symmetric. (We use the notation V f(x.)-d for V f(z.)1d,
and V2f(x.) - d? for d'V?f(z.)d to be consistent with the tensor notation 7. -d* and V. - d*.
We abbreviate terms of the form dd,ddd, and dddd by d?,d>, and d*, respectively.)

Schnabel and Chow [16] select T. and V. such that the model interpolates function and
gradient values from p past iterates, where p is a small number. This strategy results in 7.
and V. being low-rank tensors, which is crucial for the efficiency of the tensor method. Here,
we consider only the case where the tensor model interpolates f(z) and V f(z) at the previous
iterate (i.e., p = 1). The reasons for this choice are that the performance of the tensor version
that allows p > 1 is similar overall to that constraining p to be 1, and that the method is simpler
and less expensive to implement in this case.

The above choice of T, and V. yields the tensor model

Mot d) = flre) + Vi) -d + 5V) @ + 07060 + LTt (13)

where s € R” is the step from z. to the previous iterate z_; (i.e., s = 21 — z.) and b € R”
and v € R are uniquely determined by the requirements Mz(z_1) = f(2_1) and VMp(2_1) =
Vf(x_1). The whole process of forming the tensor model requires only O(n?) arithmetic oper-
ations. The storage needed for forming and storing the tensor model is only a total of 6n.

The tensor algorithms described in [16] are QR-based algorithms involving orthogonal trans-
formations of the variable space. These algorithms are effective for minimizing the tensor model
when the Hessian is dense because they are stable numerically, especially when the Hessian is
singular. They are not efficient for sparse problems, however, because they destroy the sparsity
of the Hessian due to the orthogonal transformation of the variable space. To preserve the
sparsity of the Hessian, we developed in [4] an entirely new way of minimizing the tensor model
that employs a sparse variant of the Cholesky decomposition. This makes the new algorithms
well suited for sparse problems. In this new approach, we show that the minimization of (1.3)
can be reduced to the solution of a third—order polynomial in one unknown, plus the solution

of three systems of linear equations that all involve the same coefficient matrix V2f(z.). The
STENMIN package is essentially based on this new approach.

The remainder of this paper is organized as follows. In §2 an iteration of tensor methods
for large, sparse unconstrained optimization is outlined. In §3 we give an overview of the input,
output, and important options provided by the software package. We describe the user interface
to the package in §4, which includes both a simplified (default) and a longer calling sequence. In
§5 we describe the meaning of the input, input-output, and output parameters for the package.
In §6 we present the default values provided by the package. A few implementation details are
described in §7. In §8 we give an example of the use of the package. Finally, in §9 we describe
comparative testing for an implementation based on the tensor method versus an implementation
based on the Newton’s method, and we present summary statistics of the test results.

2. An Iteration of Tensor Methods

In this section, we present the overall algorithm for tensor methods for large, sparse uncon-
strained optimization. Algorithm 2.1 is a slightly modified version of the algorithm described in
[4] in the way the tensor step is selected when the 5 equation (see algorithm below) has more
than one root. In general, this new way of computing the tensor step appears to perform better
than the strategy described in [4], in both function evaluations and execution times. A summary
of the experimental results for this implementation is presented in §9.

Algorithm 2.1. An Iteration of Tensor Methods for Large, Sparse Unconstrained Optimization

Let 2. be the current iterate, x4 the next iterate, d; the tensor step, and d,, the Newton step.

1. Calculate V f(z.), and decide whether to stop. If not:
2. Calculate V2 f(z.)
3. Calculate b and + in the tensor model (1.3), so that the tensor model interpolates f(z)
and V f(z) at 2_4
4. Find a potential minimizer d; of the tensor model
Factorize V2 f(x.) using the MA27 package [13]
if V2f(z.) has full rank then
4.1. Form the 3 equation (8 € R): —u + (yw — uv — 1)3 — 3067 + (Fw
where u = sTV2f(2.) 7'V f(x.), v = sTV2f(x.) b, w=sTV2f(x
y ="V f(2.) 7'V f(2.), and z = BTV f(a.) 71
4.2. Calculate the tensor step:
do = =V ()™ (V f(22) + s + 107 + 635),
where 8, = min(|3;|) with 3; being the roots of the [equation, and
. - (At B+ B2 4 Fwpl)
w3
elseif V2 f(z.) is singular with rank(V?f(z.)) = n — 1 then
4.3. Form the 3 equation (8 € R): u + (1 + fv)5 + (3v+ wﬁ)ﬁ Twfs,
where u = sTV2f(2) 'V f(xe), V2f(x.) = sz()-I-ss
Vi(ze) = Vf(ae) + VEif(ae)d+ 08s + 552 + 25%, § = sTd, 6 = b7d,

d is the global step computed in the previous iteration, v = 5T¢2f(wc)_1b, and

w=sTV2f(z,) "s.

4.4. Calculate the tensor step of the transformed tensor model (2.1) below:
6 = =V2f(z.) " (VF(xe) + BBub + Bes + Bubs + (30 + 135)52 + 132s)
where 8, = min(|3;|) with 3; being the roots of the 5 equation

and 6, = w(ﬁi—ﬁ)(ywﬁ —u—uvf + (yw + 2wf? — 208 — v232 — uv — 1)5.

+H(3zwp — Jwh — Jv— $028) + Lrw — Jw — 53,
where y = bTV2f(2.) 'V f(2.), and z = bTV2f(z.)" "D
4.5. Calculate the tensor step of the original model (1.3):
dy=6+d
else{rank(V*f(z.)) <n—1}
4.6. Modify the eigencomponents of V2 f(z,)
4.7. Perform steps 4.1-4.2
endif
5. Test whether the tensor step is descent. If it is not compute the Newton step
if VI f(2.)d; > 0 then
5.1. Compute the Newton step
if rank(V?f(z.)) < n —1 then
dp = V2, f(x.) 'V f(2.), where V2, f(z.) is V2f(x.) with the

eigencomponents modified, (d,, is obtained for free)

else
Modify the eigencomponents of V2 f(z.)
if all the eigencomponents of V2 f(z.) remain unchanged
{V2f(w.) is already positive definite} then
dy = V2 f(2) 'V f(2.), (d, is obtained for free)
else
dp = V2, f(x)7'V f(ae)
endif
endif
endif

6. Compute an acceptable next iterate x4 using a line search global strategy
7. 2. =aq, f(z.) = f(z4), go to step 1

Algorithm 2.2. Line Search Strategy for Large, Sparse Unconstrained Optimization

Let z., d;, and d,, be defined as is Algorithm 2.1.

if d; is descent then
ah = .+ d;
if f(2!) < f(z:)+ 107 -V f(z.)d; then
Ty o=l
else
Find an acceptable 27 in the Newton direction d,
using the line search given by Algorithm A6.3.1[9, p.325]

Find an acceptable 2% in the tensor direction d;
using the line search given by Algorithm A6.3.1[9, p.325]

if f(27) < f(2%) then

Ty =al
else
Ty =l
endif
endif

else
Find an acceptable z} in the Newton direction d,
using the line search given by Algorithm A6.3.1 [9, p.325]
vy o=al

endif

In step 1, the gradient is either computed analytically or approximated by the algorithm
A5.6.3 given in Dennis and Schnabel [12]. In step 2, the Hessian matrix is either calculated
analytically or approximated by a graph coloring algorithm described in [9]. In step 4.3, the
matrix @zf(xc) is factorized using the augmented system approach described in [4]. In steps 4.4
and 4.5, we first compute the tensor step § of the transformed model (obtained by substituting
d+6for din (1.3), where d is the global step computed in the previous iteration)

Mr(so+d) = f(eo) + Vf(e)-d + %v?ﬂxc)-d? + %(de)(sTdf
+ (T + (Vi) + Vf(aad + (6Td) (T d)s
¥ 5(sTdP 4 L(sTdPs) 6 + (V2 f(r) (2.1)
PO+ D)8 4 (TAET8)TE) + %(bTé)(sTé)Q
+ LT + T

Then we set the tensor step d; of the original tensor model (1.3) to 6 + d. In step 4.6, we obtain
a perturbation p such as V2f(xz.) + pl is safely positive definite by using the Gill, Murray,
Ponceleon, and Saunders method [14]. After we compute the LDL' of the Hessian matrix
using the MA27 package [13], we change the block diagonal matrix D to D 4+ E. The modified
matrix is block diagonal positive definite. This guarantees that the decomposition L(D + E)L*
is sufficiently positive definite. Note that the Hessian matrix is not modified if it is already
positive definite. In step 5, we test whether or not the tensor step is descent. If it is not, then we
compute the Newton step d,, as a by—product of the minimization of the tensor model. That is,
if rank(V?f(z.)) < n—1 or all the eigencomponents of D turn out to be positive, i.e., V*f(x,)
is positive definite, then the Newton step is obtained for free; otherwise we perform another
solve after we have modified the eigencomponents of D. Thus, d,, is the modified Newton step
(Vif(ze)+upl) IV f(x,), where p = 0 if V2 f(z.) is safely positive definite, and p > 0 otherwise.
In step 6, we compute a next iterate x4 by performing the standard backtracking line search
global strategy described in Algorithm 2.2. The line search tensor method is much simpler to

implement and to understand than the two-dimensional trust region tensor method introduced
in [4], and is appreciably faster. For these reasons, this software uses a line search method. The
global framework for the line search method we used in conjunction with our tensor method
for large, sparse unconstrained optimization is similar to the one used for systems of nonlinear
equations [3, 5]. This strategy has proved successful for large, sparse systems of nonlinear
equations. This approach always tries the full tensor step first. If this provides enough decrease
in the objective function, then we terminate; otherwise we find acceptable next iterates in both
the Newton and tensor directions and select the one with the lower function value as the next
iterate. The stopping criteria of Algorithm 2.1 are described by the parameter TERMCD in §5.

3. Overview of the Software Package

The required input to the software is the number of variables N, the function FCN that computes
f(2), an initial guess X0, the number of nonzeros NZ stored in the lower or upper triangular part
of the Hessian matrix, and the row and column indices IRN and ICN of these nonzeros given in
any order.

Two methods of calling the package are provided. In the short version, the user supplies
only the above information, and default values of all other options are used. These include the
calculation of the gradient and Hessian matrix by finite differences, and the use of the tensor
rather than the standard Newton method. In the other method for calling the package, the user
may override any default values of the package options.

The user has the option to choose between the tensor method and the standard Newton
method. If the flag METHOD is set to 0, the package will use the standard Newton method. The
tensor method is used otherwise.

Upon completion, the program returns with an approximation XPLS to the minimizer z,, the
value of the objective function FPLS at XPLS, the value of the gradient GPLS(XPLS), the Hessian
HESS (XPLS), and a flag specifying under which stopping condition the algorithm has terminated.

The software package is coded so that if the user inputs the typical magnitude TYPX; of each
component of z, the performance of the package is the equivalent to what would result from
redefining the independent variable x with

[1/TYPX,

Tscaled = T ‘ (31)

1/TYPX,, |

and then running the package without scaling. The default value of each TYPX; is 1. Scaling is
often important to use for problems in which the variable components are widely different in
magnitudes.

The user may supply analytic routines for the gradient and/or the Hessian. If they are not
supplied the package computes them by finite differences. The parameters GRDFLG and HSNFLG
specify whether analytic gradient and Hessian have been provided, respectively. When the
analytic gradient and/or Hessian are supplied, the user has the option of checking the supplied
analytic routines against the package’s finite difference routines.

The standard (default) output from this package consists of printing the input parameters
and the final results. The printed input parameters are those used by the algorithm and hence
include any corrections made by the program module OPTCHK, which examines the input spec-
ifications for illegal entries and consistency. The program will provide an error message if it
terminates as a result of input errors. The printed results include a message indicating the rea-
son for termination, an approximation XPLS to the solution x., the function value at XPLS, and
the gradient vector GPLS. The package provides an additional means for the control of output
via the variable MSG described in §5. The standard output is the input state, the final results,
and the stopping conditions. The user may suppress all output or may print the intermediate
iteration results in addition to the standard output.

If the user sets the variable INFORM to 1, then the package uses reverse communication to
obtain the multiplication of the Hessian matrix at the current iterate by a given vector. If
INFORM is set to 0, then this quantity is computed by the subroutine STHMUV provided by the
package.

4. Interfaces and Usage

Two interfaces have been provided with the package. If the user wishes to use all the defaults
options provided by the package, then he (or she) should call STUMSD (STUMSS if single—precision
is used). Only the required input described in §3 needs to be supplied. The other interface,
STUMCD (STUMCS if single-precision is used), requires the user to supply all parameters. The user
may specify selected parameters only by first invoking the subroutine STDFLT, which sets all
parameters to their default values, and then overriding only the desired values. The two calling
sequences are as follows:

C STUMSD interface: the default options provided by STENMIN are used.

CALL STUMSD(N, XO, NZ, IRN, LIRN, ICN, LICN, FCN, TYPX, MSG, XPLS,
* FPLS, GPLS, HESS, WRK, LWRK, IWRK, LIWRK, TERMCD)

C STUMCD interface: the user first invokes the subroutine STDFLT to obtain the default
C options provided by STENMIN, then overrides the desired values.

CALL STDFLT(N, TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX,
* IPR, METHOD, GRDFLG, HSNFLG, NDIGIT, INFORM, MSG)

C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAMETERS, E.G.

GRADTL = 1.0D-6

ILIM = 1000
GRDFLG =1
HSNFLG =1

CALL STUMCD(N, XO, NZ, IRN, LIRN, ICN, LICN, FCN, UGR, USH,
TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX, IPR,
METHOD, GRDFLG, HSNFLG, NDIGIT, MSG, XPLS, FPLS,
GPLS, HESS, WRK, LWRK, IWRK, LIWRK, TERMCD, HTV,
INFORM)

* ¥ ¥ x*

5. Parameters and Default Values

The parameters used in the calling sequences of §4 are fully described here. STUMSD uses only
those parameters that are preceded by an asterisk. When it is noted that module STDFLT returns
a given value, this is the default employed by interface STUMSD. The user may override the default
value by utilizing STUMCD.

Following each variable name in the list below appears a one— or a two—headed arrow symbol
of forms —, «—, and «—. These symbols signify that the variable is for input, output, and
input-output, respectively.

*N—: A positive integer variable specifying the number of variables in the problem. Restric-
tion: N > 1.

*X0—: An array of length N that contains an initial estimate of the minimizer z.,.

*NZ—: An integer variable that must be set by the user to the number of nonzeros stored
in the lower or upper triangular part of the Hessian matrix. It is not altered by the program.
Restriction: NZ > 1.

*IRN—: An integer array of length LIRN. On entry, it must hold the row index of each nonzero
stored in the lower or upper triangular part of the Hessian matrix.

*LIRN—: An integer variable that must be set by the user to the length of array IRN. LIRN
need not be as large as LICN; normally it need not be very much greater than NZ. It is not
altered by the program. Restriction: LIRN > NZ.

*ICN—: An integer array of length LICN. On entry, it must hold the column index of the
nonzeros stored in lower or upper triangular part of the Hessian matrix.

*LICN—: An integer variable that must be set by the user to the length of the Hessian ar-
ray HESS and ICN. LICN should ordinarily be 2 to 4 times as large as NZ. It is not altered by the
program. Restriction: LICN > NZ.

*FCN—: The name of a user supplied subroutine that evaluates the function f at an arbi-

trary vector &. The subroutine must be declared EXTERNAL in the user’s calling program and
must conform to

CALL FCN(N, X, F),

where X is a vector of length N. The subroutine must not alter the values of X.

UGR—: The name of a user supplied subroutine that returns in G, the value of the gradient
V f(x) at the current point X. UGR must be declared EXTERNAL in the user’s calling program and
must conform to the usage

CALL UGR(N, X, G),

where N is the dimension of the problem, X is a vector of length N, and G is the gradient at X. UGR
must not alter the values of N and X. When using the interface STUMCD, if no analytic gradient
is supplied (GRDFLG = 0), the user must use the dummy name STDUGR.

USH—: The name of a user supplied subroutine that returns in HESS, the value of the Hessian
V2 f(z) at the current point X. USH must be declared EXTERNAL in the user’s calling program
and must conform to the usage

CALL USH(N, X, NZ, LICN, HESS, IRN, ICN)

where N is the dimension of the problem, X is a vector of length N, HESS is the Hessian matrix at
X, LICN is the length of HESS, NZ is the number of nonzeros in the lower or upper triangular part
of HESS, and IRN and ICN are the row and column indices of the nonzeros in HESS. USH must not
alter the values of N, X, and LICN. Only the lower or upper triangular part of HESS should be
given. When using the interface STUMCD, if no analytic Hessian is supplied (HSNFLG = 0), the
user must use the dummy name STDUSH.

*TYPX—: An array of length N in which the typical size of the components of X are speci-
fied. The typical component sizes should be positive real scalars. If a negative value is specified,
its absolute value will be used. When 0.0 is specified, 1.0 will be used. The program will not
abort. This vector is used by the the package to determine the scaling matrix D,. Although the
package may work reasonably well in a large number of instances without scaling, it may fail
when the components of z, are of radically different magnitude and scaling is not invoked. If the
sizes of the parameters are known to differ by many orders of magnitude, then the scale vector
TYPX should definitely be used. Module STDFLT returns TYPX = (1.0,..., 1.0). For example, if it
is anticipated that the range of values for the iterates xy is

1 € [-10%° , 10°]
zy € [-10% , 10%]
3 € [-6x107% 9 x 1079

then an appropriate choice will be TYPX = (1.0E+10, 1.0E+3, 7.0E-6).

FSCALE—: A positive real number estimating the magnitude of f(z) near the minimizer z..

It is used in the gradient stopping condition given below. If f(z() is much greater than f(z.),
FSCALE should be approximately f(z.). If a negative value is specified for FSCALE, its absolute
value is used. When 0.0 is specified, 1.0 will be used. The program will not abort.

GRADTL—: Positive scalar giving the tolerance at which the scaled gradient of f(z) is con-
sidered close enough to zero to terminate the algorithm. The scaled gradient is a measure of the
relative change in f in each direction x; divided by the relative change in ;. More precisely,
the test used by the program is

| Vf(z)|; max{|z; |, TYPX;}
{ max{| f |,FSCALE}

max
K3

} < GRADTL.

The module STDFLT returns the value ¢'/3. If the user specifies a negative value, the default
value is used instead.

STEPTL—: A positive scalar providing the minimum allowable relative step length. STEPTL
should be at least as small as 10~%, where d is the number of accurate digits the user desires in
the solution z.. The actual test used is

ko k-1
max joi” = 2" < STEPTL,
i max{|z;*, TYPX;|}

where 2% and z+-1

are the new and old iterates, respectively. The program may terminate
prematurely if STEPTL is too large. Module STDFLT returns the value €2/3. 1If the user specifies

a negative value, then the default value is used instead.

ILIM—: Positive integer specifying the maximum iterations to be performed before the pro-
gram is terminated. Module STDFLT returns ILIM = 500. If the user specifies ILIM < 0, the
default value is used instead.

STEPMX—: A positive scalar providing the maximum allowable scaled step length || Dy(2z4—2.)||2,
where D, = diag(1/TYPXy,..., 1/TYPX,). STEPMX is used to prevent steps that would cause
the optimization problem to overflow, to prevent the algorithm from leaving the area of interest
in parameter space, or to detect divergence in the algorithm. STEPMX should be chosen small
enough to prevent these occurrences but should be larger than any anticipated “reasonable”
step. The algorithm will halt and provide a diagnostic if it attempts to exceed STEPMX on five
successive iterations. If a nonpositive value is specified for STEPMX, the default is used. Module
STDFLT returns the value STEPMX = max{||zo||2- 10,10}, where z¢ is the initial approximation
provided by the user.

IPR—: The unit on which the routine outputs information. STDFLT returns the value 6, which
is the standard FORTRAN unit for the printer.

METHOD—: An integer flag designating which method to use.
e METHOD = 0 : Use Newton’s method.
e METHOD = 1 : Use the tensor method.

10

Module STDFLT returns value 1. If the user specifies an illegal value, module OPTCHK will set
METHOD to 1; the program will not abort.

GRDFLG—: Integer flag designating whether or not analytic Hessian has been supplied by the user.
e GRDFLG = 0 : No analytic gradient supplied.
e GRDFLG = 1 : Analytic gradient supplied (will be checked against finite difference gradient.)
e GRDFLG = 2 : Analytic gradient supplied (will not be checked against finite difference
gradient.)
When GRDFLG = 0, the gradient is obtained by forward finite differences. When GRDFLG = 1 or
2, the name of the user supplied routine that evaluates V f(z) must be supplied in UGR. When
GRDFLG = 1, the program compares the value of the user’s analytic gradient routine at zg with
a finite difference estimate and aborts if the relative difference between any two components is
greater than 0.01. The module STDFLT returns GRDFLG = 0. If the user specifies an illegal value,
the module OPTCHK supplies the value 0.

HSNFLG—: Integer flag designating whether or not analytic Hessian has been supplied by the user.
e HSNFLG = 0 : No analytic Hessian supplied.
e HSNFLG = 1 : Analytic Hessian supplied (will be checked against finite difference Hessian.)
e HSNFLG = 2 : Analytic Hessian supplied (will not be checked against finite difference
Hessian.)
When HSNFLG = 0, the Hessian values are computed by forward finite differences based on gradi-
ent values. When HSNFLG = 1 or 2, the name of the user-supplied routine that evaluates V2 f(z)
must be supplied in USH. When HSNFLG = 1, the program compares the value of the user’s ana-
lytic Hessian routine at zg with a finite difference estimate and aborts if the relative difference
between any two components is greater than 0.01. The module STDFLT returns HSNFLG = 0. If
the user specifies an illegal value, the module OPTCHK supplies the value 0.

NDIGIT—: Integer estimating the number of accurate digits on the objective function f(z).
STDFLT returns the value -L0Gyo(¢€), where € is machine precision. If NDIGIT < 0 then the default
value is used instead.

*MSG+——: An integer variable that the user may set on input to inhibit certain automatic
checks or override certain default characteristics of the package. Currently, three “message”
features can be used individually or in combination.

e MSG = 0 : No output will be produced.

e MSG = 1 : Print the input state, the final results, and the stopping conditions.

e MSG = 2 : Print the intermediate results, that is, the input state, the values of the objective
function and the scaled gradient at each iteration, and the final results including the
stopping conditions and the number of function, gradient, and Hessian evaluations.

The module STDFLT returns a value of 1. On output, if the program has terminated because of
erroneous input, MSG contains an error code indicating the reason:

e MSG = -1 : Illegal dimension N; N < 0. The program aborts.

o MSG = -2 : lllegal length of LIRN or LICN; LIRN < 0 or LICN < 0. The program aborts.

11

o MSG = -3 : Illegal length of LIWRK or LWRK; LIWRK < 2+LIRN+12%N+2 or LWRK < 7*N. The
program aborts.

e MSG = -4 : Illegal number of nonzeros NZ; NZ < 0. The program aborts.

e MSG = -5 : The K-th element of IRN or the K-th element of ICN is not an integer between
1 and N; (IRN(K) < 1 or IRN(K) > N) or (ICN(K) < 1 or ICN(K) > N). The program
aborts.

e MSG = -6 : The K-th diagonal element is not in the sparsity pattern. This is checked only
if HSNFLG = O because the finite difference Hessian approximation require that diagonal
elements be in the sparsity pattern. The program aborts.

e MSG = -7 : Redundant entries in sparsity pattern was encountered. When HSNFLG =
1 or HSNFLG = 2, the program aborts. When HSNFLG = 0, the program eliminates the
redundant entries and continue the execution (no error message is reported in this case).

e MSG = -8 : Probable coding error in the user’s analytic gradient routine . Analytic and
finite difference gradient do not agree within a tolerance of 0.01. The program aborts.
(This check can be overridden by setting GRDFLG = 2.)

e MSG = -9 : Probable coding error in the user’s analytic Hessian routine USH. Analytic and
finite difference Hessian do not agree within a tolerance of 0.01. The program aborts.
(This check can be overridden by setting HSNFLG = 2.)

*XPLS«—: An array of length N containing the best approximation to the minimizer z, upon
return. (If the algorithm has not converged, the last iterate is returned.)

*FPLS«: A scalar variable that contains the function value at the final iterate XPLS.

*GPLS«—: An array of length N containing the gradient value at XPLS.

HESS+—: An array that is used to store the Hessian matrix at each iteration. It needs to
be at least of dimension LICN. Only the nonzeros in the lower or upper triangular part of the
Hessian matrix is stored in HESS. On entry, these nonzeros may be given in any order. On exit,
HESS contains the Hessian matrix at the minimizer z, with the nonzeros sorted by columns if

HSNFLG was set to 0.

*WRK—: An array of length LWRK. This is used as workspace by the package. Its length must be
at least 8*N if the STUMSD interface is used and at least 7#N if the STUMCD interface is used.

*LWRK—: An integer variable. It must be set by the user to the length of array WRK and is
not altered by the package.

*IWRK—: An integer array of length LIWRK. This is used as workspace by the package. Its
length must be at least 2*LIRN+12*N+2.

*LIWRK—: An integer variable. It must be set by the user to the length of array IWRK and
is not altered by the package.

12

*TERMCD«—: An integer that specifies the reason why the algorithm has terminated.
e TERMCD = 1 : The scaled gradient at the final iterate was less than GRADTL.
e TERMCD = 2 : The length of the last step was less than STEPTL.
e TERMCD = 3 : Last global step failed to locate a point lower than XPLS. It is likely that
either XPLS is an approximate solution of the function or STEPTL is too large.
e TERMCD = 4 : The iteration limit has been exceeded.
e TERMCD = 5 : Five consecutive steps of length STEPMX have been taken.

HTV<: An array of length N. It need not be set by the user on entry. If INFORM is set to 1, a
re-entry must be made with HTV set to HESS times HTV (see INFORM.)

INFORM«—: An integer variable. If it is set to 1, the user must obtain HESS times HTV and
re-enter STUMCD (STUMCS if single—precision is used) with INFORM unchanged. The result of HESS
times HTV must be stored in HTV. The default value of INFORM is 0, meaning that HESS times HTV
is computed by the package.

6. Summary of Default Values

The following parameters are returned by the module STDFLT:

ILIM = 500
GRDFLG = O
HSNFLG = O
IPR = 6

GRADTL = ¢!/3 (¢ is machine precision)
STEPTL = ¢2/3

METHOD = 1
NDIGIT = -LOGyo(€)
STEPMX = 0.0

TYPX = (1.0,...,1.0)
FSCALE = 1.0

MSG = 1

INFORM = O

7. Implementation Details

This software package has been coded in Fortran 77. The user has the choice between single—
and double—precision versions. The user must then preprocess the package at compile time using
either the tosngl or todble tools from CUTE [2], for the single— and double—precision versions,
respectively. The tosngl program picks up the appropriate version by selecting any statement
that begins with CS in the first column, where the S character means that this is a single—
precision version. On the other hand, the todble program picks up the appropriate version by
selecting any statement that begins with CD in the first column, with D meaning that this is a

13

double—precision version. Note that a statement that begins by neither CS nor CD will be picked
by both tools.
The following software are included in the package:

1. Harwell code MA27 [13], which is used for computing the LT DL factorization of the sparse
Hessian matrix.

2. The Coleman and Moré graph coloring software [9, 8, 7], which is used for estimating a
finite-difference approximation of a sparse Hessian matrix.

3. The subroutine DSYPRC [10, 11], which is used for modifying the negative eigencomponents
obtained when factorizing an indefinite Hessian matrix using the Harwell code MA27.

4. The function DPMEPS [6], which is used for dynamically determining the machine precision.

The program was developed and tested on a Sun SPARC 10 Model 40 computer.

The machine precision is calculated by the package and used in several places including
finite differences stepsizes and stopping criteria. On some computers, the returned value may
be incorrect because of compiler optimizations. The user may wish to check the computer value
of the machine epsilon and, if it is incorrect, replace the code in the function DPMEPS with the
following statement

DPMEPS = correct value of machine epsilon

8. Example of Use

In the example code shown in Figure 8.1, we first call the routine STDFLT, which returns the
default values. We then override the values of GRADTL, GRDFLG and HSNFLG. Next we call either
the interface STUMSD or STUMCD for the single— and double—precision version, respectively, to solve
the sparse unconstrained optimization problem coded in FCN and whose gradient and Hessian
are given by UGRAD and UHESS, respectively.

STENMIN MINIMIZES AN UNCONSTRAINED NONLINEAR FUNCTION IN N
UNKNOWNS WHERE THE HESSTAN IS LARGE AND SPARSE, USING TENSOR
METHODS.

EXAMPLE OF USE FOR STENMIN. THE TEST PROBLEM IS THE
THE BROYDEN TRIDIAGONAL [15].

ALT BOUARICHA, OCTOBER 1994.
MCS DIVISION, ARGONNE NATIONAL LAB.

QOO OO0 00

INTEGER NMAX, N, NZ, LIRN, LICN, ILIM, IPR, METHOD
INTEGER GRDFLG, HSNFLG, NDIGIT, MSG, LWRK, LIWRK
INTEGER TERMCD, INFORM, I

CD DOUBLE PRECISION FSCALE, GRADTL, STEPTL, FPLS, STEPMX, ONE

14

CS REAL FSCALE, GRADTL, STEPTL, FPLS, STEPMX, ONE

PARAMETER (NMAX = 10000, LIRN = 50000, LICN = 500000)
PARAMETER (LIWRK = 2 * LIRN + 12 * NMAX + 2)
PARAMETER (LWRK = 7 * NMAX)

INTEGER IRN (LIRN), ICN (LICN)

INTEGER IWRK(LIWRK)

CD DOUBLE PRECISION X (NMAX), TYPX(NMAX), XPLS(NMAX)
CD DOUBLE PRECISION GPLS(NMAX), HESS(LICN), WRK (LWRK)
CD DOUBLE PRECISION HTV (NMAX)

cs REAL X (NMAX), TYPX(NMAX), XPLS(NMAX)
cs REAL GPLS(NMAX), HESS(LICN), WRK (LWRK)
Cs REAL HTV (NMAX)

EXTERNAL FCN, UGRAD, UHESS

CD DATA ONE / 1.0DO /
cs DATA ONE / 1.0E0 /

C READ DATA
READ(5,*) N

C COMPUTE THE STANDARD STARTING POINT.
DO 10 I

X(I)
10 CONTINUE

1, N
-0NE

CALL STDFLT(N,TYPX,FSCALE,GRADTL,STEPTL,ILIM,STEPMX,

* IPR,METHOD,GRDFLG,HSNFLG,NDIGIT,INFORM,MSG)
CD GRADTL = 1.0D-5
CS GRADTL = 1.0E-3

GRDFLG = 2

HSNFLG = 2

C CALL THE SPARSE OPTIMIZER

CD CALL STUMCD(N,X,NZ,IRN,LIRN,ICN,LICN,FCN,UGRAD,

CS CALL STUMCS(N,X,NZ,IRN,LIRN,ICN,LICN,FCN,UGRAD,UHESS,TYPX,
FSCALE,GRADTL,STEPTL,ILIM,STEPMX,IPR,METHOD,
GRDFLG,HSNFLG,NDIGIT,6MSG,XPLS,FPLS,GPLS,HESS,
WRK,LWRK, IWRK,LIWRK ,TERMCD ,HTV, INFORM)

STOP
END

15

C THE FOLLOWING IS A SUBROUTINE FOR THE BROYDEN TRIDIAGONAL
C PROBLEM

SUBROUTINE FCN(N, X, F)

INTEGER N
CD DOUBLE PRECISION X(N), F
CS REAL X(N), F

C LOCAL VARIABLES

INTEGER I
CD DOUBLE PRECISION ONE, TWO, THREE
CS REAL ONE, TWO, THREE
CD DATA ONE, TWO, THREE / 1.0DO, 2.0DO, 3.0D0O /
CS DATA ONE, TWO, THREE / 1.0EO, 2.0EO, 3.0E0 /

F = ((THREE - TWO * X(1)) * X{(1) - TWO * X(2) + ONE) *x 2
DO 10 I = 2, N-1
F=F + ((THREE - TWO * X(I)) * X(I) - X(I-1) -

* TWO * X(I+1) + ONE) *x*x 2
10 CONTINUE
F =F + ((THREE - TWO * X(N)) * X(N) - X(N-1) + ONE) *x* 2
RETURN
END

C THE FOLLOWING IS A SUBROUTINE FOR THE GRADIENT OF THE BROYDEN
C TRIDIAGONAL PROBLEM

SUBROUTINE UGRAD(N, X, G)

INTEGER N
CD DOUBLE PRECISION X(N), G(N)
cs REAL X)), G

C LOCAL VARIABLES

INTEGER I

CD DOUBLE PRECISION RL, RM, RR, ONE, TWO, THREE, FOUR

cs REAL RL, RM, RR, ONE, TWO, THREE, FOUR

CD DATA ONE, TWO, THREE, FOUR/1.0DO, 2.0DO, 3.0DO, 4.0D0/

cs DATA ONE, TWO, THREE, FOUR/ 1.0EO, 2.0E0, 3.0EO, 4.0E0/
RL = (THREE - TWO * X(1)) * X(1) - TWO * X(2) + ONE

RR

(THREE - TWO * X(2)) * X(2) - X(1) - TWO * X(3) + ONE

16

10

G(1) = TWO * (RL * (THREE - FOUR * X(1)) - RR)
DO 10 I = 2, N-1
IF(I .NE. 2) THEN
RL = (THREE - TWO * X(I-1)) * X(I-1) - X(I-2) -
TWO * X(I) + ONE
ENDIF
RM = (THREE - TWO * X(I)) #* X(I) - X(I-1) -
TWO * X(I+1) + ONE
IF(I .EQ. N-1) THEN
RR = (THREE - TWO * X(N)) * X(N) - X(N-1) + ONE
ELSE
RR

(THREE - TWO * X(I+1)) * X(I+1) - X(I) -
TWO * X(I+2) + ONE
ENDIF
G(I) = -TWO * (TWO * RL - RM * (THREE - FOUR * X(I)) + RR)
CONTINUE
G(N) = -TWO * (TWO * RM - RR * (THREE - FOUR * X(N)))
RETURN
END

C THE FOLLOWING IS A SUBROUTINE FOR THE HESSIAN OF THE BROYDEN
C TRIDIAGONAL PROBLEM

CD
CS

C LOCAL

CD
CD
CS
CS
CD
CS

SUBROUTINE UHESS(N,X,NZ,LICN,HESS,IRN,ICN)
INTEGER N, NZ, LICN

INTEGER IRN(NZ), ICN(LICN)

DOUBLE PRECISION X(N), HESS(LICN)

REAL X(N), HESS(LICN)

VARIABLES

INTEGER I

DOUBLE PRECISION RL,RM,RR,DRLIM1,DRMI

DOUBLE PRECISION ONE,TWO,THREE,FOUR

REAL RL,RM,RR,DRLIM1,DRMI

REAL ONE,TWO,THREE,FOUR

DATA ONE, TWO, THREE, FOUR/1.0DO, 2.0DO, 3.0DO, 4.0D0/
DATA ONE, TWO, THREE, FOUR/1.0EO, 2.0EO, 3.0E0, 4.0E0/

NZ =1
RL = (THREE - TWO * X(1)) * X(1) - TWO * X(2) + ONE
HESS(NZ) = TWO * ((THREE - FOUR * X(1))#**2 -
FOUR * RL + ONE)
IRN(NZ) = 1

17

ICN(NZ) = 1
DO 10 I = 2, N-1
DRLIM1 = THREE - FOUR * X(I-1)
DRMI = THREE - FOUR * X(I)
IF(I .NE. 2) THEN
NZ = NZ + 1
HESS(NZ) = FOUR
IRN(NZ) = I
ICN(NZ) = I-2
ENDIF
NZ = NZ + 1
HESS(NZ) = -TWO * (TWO * (THREE - FOUR * X(I-1)) +
* ONE * (THREE - FOUR * X(I)))
IRN(NZ) = I
ICN(NZ) = I-1
RM = (THREE - TWO * X(I)) #* X(I) - X(I-1) -
* TWO * X(I+1) + ONE
NZ = NZ + 1
HESS(NZ) = -TWO * (-FOUR - (THREE - FOUR * X(I))*x2 +
* FOUR * RM - ONE)
IRN(NZ) = I
ICN(NZ) = I
10 CONTINUE
RR = (THREE - TWO * X(N)) * X(N) - X(N-1) + ONE
NZ = NZ + 1
HESS(NZ) = FOUR
IRN(NZ) = N
ICN(NZ) = N-2
NZ = NZ + 1
HESS(NZ) = -TWO * (TWO * (THREE - FOUR * X(N-1)) +
* THREE - FOUR * X(N))
IRN(NZ)
ICN(NZ)
NZ = NZ
HESS(NZ) = TWO * (FOUR + (THREE - FOUR * X(N))**2 - FOUR * RR)
IRN(NZ) = N
ICN(NZ) = N
RETURN
END

+

-1

+ |
_, ==

Figure 8.1: Code to solve the Broyden tridiagonal problem

If we use the double—precision version of the package to solve the Broyden tridiagonal problem
given by FCN, for N = 10000, we obtain the following output:

18

STDRUO GRADIENT FLAG =2

STDRUO HESSTAN FLAG =2

STDRUO METHOD =1

STDRUO ITERATION LIMIT = 500

STDRUO MACHINE EPSILON = 0.2220446049250E-15
STDRUO STEP TOLERANCE = 0.3666852862501E-10
STDRUO GRADIENT TOLERANCE = 0.1000000000000E-04
STDRUO MAXIMUM STEP SIZE = 0.1000000000000E+06
STRSLT ITERATION K = 0

STRSLT FUNCTION AT X(K)

STRSLT 0.1001100000000E+05

STRSLT SCALED GRADIENT AT X(K)

STRSLT 0.3800000000000E+02

STCHKS RELATIVE GRADIENT CLOSE TO ZERO
STCHKS CURRENT ITERATE IS PROBABLY SOLUTION

STRSLT ITERATION K = 4
STRSLT FUNCTION AT X(K)

STRSLT 0.1884575867777E-13
STRSLT SCALED GRADIENT AT X(K)
STRSLT 0.1113397081739E-05

STRSLT NUMBER OF FUNCTION EVALUATIONS 5
STRSLT NUMBER OF GRADIENT EVALUATIONS 5
STRSLT NUMBER OF HESSTAN EVALUATIONS 4

In the Appendix, we give another example of use—the optimal design with composite materials
problem—from the MINPACK-2 collection [1].

9. Test Results

We tested our tensor and Newton methods on the set of unconstrained optimization problems
from the CUTE [2] and the MINPACK-2 [1] collections. Most of these problems have nonsingular
Hessians at the solution. We also created singular test problems as proposed in [3, 17] by
modifying the nonsingular test problems from the CUTE collection. The dimensions of these
problems range from 100 to 10000. All our computations were performed on a Sun SPARC 10
Model 40 machine using double—precision arithmetic.

A summary for the test problems whose Hessians at the solution have ranks n, n — 1, and

19

n — 2 is presented in Table 9.1. The descriptions of the test problems and the detailed results
are given in [4]. In Table 9.1 the columns “better” and “worse” represent the number of times
the tensor method was better and worse, respectively, than Newton’s method by more than one
gradient evaluation. The “tie” column represents the number of times the tensor and Newton
methods required within one gradient evaluation of each other. For each set of problems, we
summarize the comparative costs of the tensor and Newton methods using average ratios of
three measures: gradient evaluations, function evaluations, and execution times. The average
gradient evaluation ratio (geval) is the total number of gradient evaluations required by all the
tensor runs, divided by the total number of gradient evaluations required by all the Newton runs
on these problems. The same measure is used for the average function evaluation (feval) and
execution time (time) ratios. These average ratios include only problems where both methods
converge to the same minimizer. On the other hand, the statistics for the “better,” “worse,” and
“tie” columns also include the cases where only one of the two methods converges. Moreover,
we excluded from all statistics problems requiring a number of gradient evaluations less or equal
than three by both methods. Finally, columns “t/s” and “s/t” show the number of problems
solved by the tensor method but not by the Newton method and the number of problems solved
by the Newton method but not by the tensor method, respectively.

The improvement by the tensor method over the Newton method on problems with rank
n—1is dramatic, averaging 49% in function evaluations, 52% in gradient evaluations, and 60% in
execution times. This is due in part to the rate of convergence of the tensor method being faster
than that of Newton’s method, which is known to be only linearly convergent with constant
%. A typical convergence rate of the tensor method on rank n — 1 problems is around 0.01.
Whether this is a superlinear convergence remains to be proved. On problems with rank n — 2,
the improvement by the tensor method over the Newton method is also substantial, averaging
34% in function evaluations, 37% in gradient evaluations, and 38% in execution times. In the
test results obtained for the nonsingular problems, the tensor method is only 2% better than the
Newton method in function evaluations, but 32% and 37% better in gradient evaluations and
in execution times, respectively. The tensor method requires more function evaluations than
the Newton method on some nonsingular problems. This is because the full tensor step does
not provide sufficient decrease in the objective function, and therefore the tensor method has
to perform a line search method in both the Newton and tensor directions, which causes the
number of function evaluations required by the tensor method to be inflated.

The tensor method solved a total of four nonsingular problems, five rank n — 1 problems, and
seven rank n — 2 problems, that Newton’s method failed to solve. The reverse never occurred.
This clearly indicates that the tensor method is most likely to be more robust than Newton’s
method.

The overall results presented in this paper show that the tensor method is often more efficient
and more reliable than the standard Newton method in solving large, sparse unconstrained
optimization problems. Furthermore, the tensor method is likely to solve a wider range of
problems. In order to firmly establish the conclusion above, additional testing is required.

20

Table 9.1: Summary of the CUTE and MINPACK-2 test problems using line search

Rank Tensor/Standard | Pbs Solved | Average Ratio—Tensor/Standard
V?f(x.) | better | tie | worse | t/s | s/t | feval | geval time
n 54 38 4 4 0 0.98 | 0.68 0.63
n—1 18 2 0 5 0 0.51 | 0.48 0.40
n—2 18 1 1 7 0 0.66 | 0.63 0.62

Acknowledgments. [am grateful to Nick Gould for his assistance and encouragements. I
also thank my CERFACS colleague Jacko Koster for reviewing this paper and Gail Pieper from
the MCS division at Argonne National Laboratory for her suggestions for improvement.

21

References

[1] B. M. Averick, R. G. Carter, J. J. Moré, and G. L. Xue. The MINPACK-2 test problem
collection. Technical Report ANL/MCS-P153-0692, Argonne National Laboratory, 1992.

[2] 1. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Trans. Math. Software, 21(1):123-160, 1995.

[3] A. Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear least
squares problems using tensor methods on sequential and parallel computers. Ph.D. the-
sis, Computer Science Department, University of Colorado at Boulder, 1992.

4] A. Bouaricha. Tensor methods for large, sparse unconstrained optimization. Technical re-
g
port, Mathematics and Computer Science Division, Argonne National Laboratory, preprint
MCS-P452-0794, 1994.

[5] A. Bouaricha and R. B. Schnabel. TENSOLVE: A software package for solving systems of
nonlinear equations and nonlinear least squares problems using tensor methods. Preprint
MCS-P463-0894, Mathematics and Computer Science Division, Argonne National Labora-
tory, 1994.

[6] W.J. Cody. MACHAR: A subroutine to dynamically determine machine parameters. ACM
Trans. Math. Softw., 14:303-311, 1988.

[7] T. F. Coleman, B. S. Garbow, and J. J. Moré. Fortran subroutines for estimating sparse
Hessian matrices. ACM Trans. Math. Software, 11:378, 1985.

[8] T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse Hessian
matrices. ACM Trans. Math. Software, 11:363-377, 1985.

[9] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices and graph coloring
problems. Math. Programming, 28:243-270, 1984.

[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large
scale nonlinear optimization problems and the LANCELOT project. Report 89-19, Namur
University, Namur, Belgium, 1989.

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT. Springer Series in Computa-
tional Mathematics. Springer-Verlag, 1992.

[12] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

[13] I. S. Duff and J. K. Reid. MA27: A set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Technical Report R-10533, AERE Harwell Laboratory, Harwell,
UK, 1983.

[14] P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. Preconditioners for indefinite
systems arising in optimization and nonlinear least squares problems. Technical Report
SOL 90-8, Department of Operations Research, Stanford University, California, 1990.

22

[15] J.J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.
ACM Trans. Math. Software, 7(1):17-41, 1981.

[16] R. B. Schnabel and T. Chow. Tensor methods for unconstrained optimization using second
derivatives. STAM J. Optimization, 1:293-315, 1991.

[17] R. B. Schnabel and P. D. Frank. Tensor methods for nonlinear equations. STAM J. Numer.
Anal., 21:815-843, 1984.

23

A. Appendix: Another Example of Use: The Optimal Design Problem

In

the example given in Figure A.1, we first call the routine STDFLT, which returns the default

values. We then override the value of GRADTL and GRDFLG. Next we call either the interface

ST
de
MI

UMCS or STUMCD for the single— and double—precision version, respectively, to solve the optimal
sign with composite materials problem (0DC) from the MINPACK-2 collection [1]. Since in the
NPACK-2 collection both the function and the gradient of the 0DC problem are coded in the

same subroutine DODCFG, we split DODCFG in two subroutines: DODCF and DODCG for the function

an

QOO OO0 a0

CD
CD
CS
CS

CD
CD
CD
CS
CS
CS

CD

d gradient evaluations, respectively.

STENMIN MINIMIZES AN UNCONSTRAINED NONLINEAR FUNCTION IN N
UNKNOWNS WHERE THE HESSTAN IS LARGE AND SPARSE, USING TENSOR
METHODS.

EXAMPLE OF USE FOR STENMIN. THE TEST PROBLEM IS THE
OPTIMAL DESIGN WITH COMPOSITE MATERIALS PROBLEM FROM
THE MINPACK-2 TEST PROBLEM COLLECTION.

ALT BOUARICHA, OCTOBER 1994.
MCS DIVISION, ARGONNE NATIONAL LAB.

INTEGER NMAX, N, NZ, LIRN, LICN, ILIM, IPR, METHOD
INTEGER GRDFLG, HSNFLG, NDIGIT, MSG, LWRK, LIWRK
INTEGER TERMCD, INFORM, I, J, K, NX, NY

DOUBLE PRECISION FSCALE, GRADTL, STEPTL, FPLS, STEPMX
DOUBLE PRECISION LAMBDA, HX, HY, TEMP, ONE

REAL FSCALE, GRADTL, STEPTL, FPLS, STEPMX

REAL LAMBDA, HX, HY, TEMP, ONE

PARAMETER (NMAX = 10000, LIRN = 50000, LICN = 500000)
PARAMETER (LIWRK = 2 * LIRN + 12 * NMAX + 2)
PARAMETER (LWRK = 7 * NMAX)

INTEGER IRN (LIRN), ICN (LICN)

INTEGER IWRK(LIWRK)

DOUBLE PRECISION X (NMAX), TYPX(NMAX), XPLS(NMAX)
DOUBLE PRECISION GPLS(NMAX), HESS(LICN), WRK (LWRK)
DOUBLE PRECISION HTV (NMAX)

REAL X (NMAX), TYPX(NMAX), XPLS(NMAX)
REAL GPLS(NMAX), HESS(LICN), WRK (LWRK)
REAL HTV (NMAX)

COMMON / PARAM / NX, NY

COMMON / OTHER / LAMBDA

EXTERNAL DODCF, DODCG, STDUSH
INTRINSIC DBLE, MIN

24

cs INTRINSIC FLOAT, MIN
CD DATA ONE / 1.0DO /

cs DATA ONE / 1.0E0 /

C READ DATA

READ(5,*) NX, NY, LAMBDA
N = NX * NY

C COMPUTE THE STANDARD STARTING POINT.

CD HX = ONE/DBLE(NX+1)
CD HY = ONE/DBLE(NY+1)
Cs HX = ONE/FLOAT(NX+1)
Cs HY = ONE/FLOAT(NY+1)
DO 20 J = 1, NY
CD TEMP = DBLE(MIN(J,NY-J+1))*HY
Cs TEMP = FLOAT(MIN(J,NY-J+1))*HY

DO 10 I = 1, NX
K = NXx(J-1) + I
CD X(K) = -(MIN(DBLE(MIN(I,NX-I+1))*HX,TEMP))**2
Cs X(K) = -(MINCFLOAT(MIN(I,NX-I+1))*HX,TEMP))**2
10 CONTINUE
20 CONTINUE

C DEFINE THE SPARSITY STRUCTURE OF THE HESSIAN.
CALL DODCSP(NX,NY,NZ,IRN,ICN)
C SET THE DEFAULT VALUES OF THE PACKAGE.

CALL STDFLT(N,TYPX,FSCALE,GRADTL,STEPTL,ILIM,STEPMX,

* IPR,METHOD,GRDFLG,HSNFLG,NDIGIT,INFORM,MSG)
CD GRADTL = 1.0D-5
CS GRADTL = 1.0E-3

GRDFLG = 2

C CALL THE SPARSE OPTIMIZER.

CD CALL STUMCD(N,X,NZ,IRN,LIRN,ICN,LICN,DODCF,DODCG,

CS CALL STUMCS(N,X,NZ,IRN,LIRN,ICN,LICN,DODCF,DODCG,STDUSH,
TYPX,FSCALE,GRADTL ,STEPTL,ILIM,STEPMX,IPR,
METHOD,GRDFLG,HSNFLG,NDIGIT,MSG,XPLS,FPLS,GPLS,

25

* HESS,WRK,LWRK, IWRK,LIWRK, TERMCD ,HTV, INFORM)

STOP
END

Figure A.1: Code to solve the optimal design with composite materials problem

If we use the double—precision version of the package to solve the 0DC problem for the following
input:

NX, NY, LAMBDA : 100 100 0.008,

we obtain the following output:

STDRUO GRADIENT FLAG =2

STDRUO HESSTAN FLAG =0

STDRUO METHOD =1

STDRUO ITERATION LIMIT = 500

STDRUO MACHINE EPSILON = 0.2220446049250E-15
STDRUO STEP TOLERANCE = 0.3666852862501E-10
STDRUO GRADIENT TOLERANCE = 0.1000000000000E-04
STDRUO MAXIMUM STEP SIZE = 0.6521118878154E+04
STRSLT ITERATION K = 0

STRSLT FUNCTION AT X(K)

STRSLT 0.4823420295546E-01

STRSLT SCALED GRADIENT AT X(K)

STRSLT 0.1931183217332E-01

STCHKS RELATIVE GRADIENT CLOSE TO ZERO
STCHKS CURRENT ITERATE IS PROBABLY SOLUTION

STRSLT ITERATION K = 20
STRSLT FUNCTION AT X(K)

STRSLT -0.1137724408643E-01
STRSLT SCALED GRADIENT AT X(K)
STRSLT 0.3938142592477E-05

STRSLT NUMBER OF FUNCTION EVALUATIONS 67
STRSLT NUMBER OF GRADIENT EVALUATIONS 21
STRSLT NUMBER OF HESSTAN EVALUATIONS 20

26

il

Figure A.2: Norm of ||Vv]|| for the stress field v in a design with composite materials

A plot of the norm ||Vwv|| of the gradient of the stress field v in the bounded domain D =
(0,1) x (0,1) where LAMBDA = 0.008 is given in Figure A.2. Figure A.3 shows the contour plot
for this surface.

27

90*

@

10* *

ﬁ‘ | ‘ ‘ . F

10 20 30 40 50 60 70 80 90 100

Figure A.3: Contours of ||Vuv|| for the stress field v in a design with composite materials

28

