
STENMIN: A Software Package for Large, SparseUnconstrained Optimization Using Tensor Methods�Ali BouarichayArgonne National LaboratoryWe describe a new package for minimizing an unconstrained nonlinear function where theHessian is large and sparse. The software allows the user to select between a tensor method anda standard method based upon a quadratic model. The tensor method models the objectivefunction by a fourth{order model, where the third{ and fourth{order terms are chosen such thatthe extra cost of forming and solving the model is small. The new contribution of this packageconsists of the incorporation of an entirely new way of minimizing the tensor model that makesit suitable for solving large, sparse optimization problems e�ciently. The test results indicatethat, in general, the tensor method is often more e�cient and more reliable than the standardNewton method for solving large, sparse unconstrained optimization problems.Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra{sparse and very large systems; G.1.6 [Numerical Analysis]: Optimization{unconstrained op-timization; G.4 [Mathematics of Computing]: Mathematical SoftwareGeneral Terms: AlgorithmsAdditional Key Words and Phrases: tensor methods, sparse problems, large-scale optimization,rank-de�cient matrices
�Part of this work was performed while the author was research associate at CERFACS (Centre Europ�een deRecherche et de Formation Avanc�ee en Calcul Scienti�que, Toulouse, France).yAuthor's address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,Illinois, 60439. bouarich@@mcs.anl.gov. This work was supported in part by the O�ce of Scienti�c Computing,U.S. Department of Energy, under Contract W-31-109-Eng-38.1

1. IntroductionThis paper describes a software package for solving the unconstrained optimization problemgiven f : <n ! <; �nd x� 2 <n such that f(x�) � f(x) for all x 2 D; (1:1)using tensor methods, where D is some open set containing x�. We assume that f is at leasttwice continuously di�erentiable and r2f(xc) is large and sparse.Tensor methods for unconstrained optimization are general{purpose methods primarily in-tended to improve upon the performance of standard methods especially on problems wherer2f(x�) has a small rank de�ciency, and to be at least as e�cient as standard methods onproblems where r2f(x�) is nonsingular. Tensor methods for unconstrained optimization baseeach iteration upon the fourth{order model of the objective function f(x)MT (xc + d) = f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 16Tc � d3 + 124Vc � d4; (1:2)where d 2 <n, xc is the current iterate, rf(xc) and r2f(xc) are the �rst and second analyticderivatives of f at xc, or �nite di�erence approximations to them, and the tensor terms at xc,Tc 2 <n�n�n and Vc 2 <n�n�n�n , are symmetric. (We use the notation rf(xc) �d forrf(xc)Td,and r2f(xc) � d2 for dTr2f(xc)d to be consistent with the tensor notation Tc � d3 and Vc � d4.We abbreviate terms of the form dd; ddd, and dddd by d2; d3, and d4, respectively.)Schnabel and Chow [16] select Tc and Vc such that the model interpolates function andgradient values from p past iterates, where p is a small number. This strategy results in Tcand Vc being low-rank tensors, which is crucial for the e�ciency of the tensor method. Here,we consider only the case where the tensor model interpolates f(x) and rf(x) at the previousiterate (i.e., p = 1). The reasons for this choice are that the performance of the tensor versionthat allows p � 1 is similar overall to that constraining p to be 1, and that the method is simplerand less expensive to implement in this case.The above choice of Tc and Vc yields the tensor modelMT (xc + d) = f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 12(bTd)(sTd)2 +
24(sTd)4; (1:3)where s 2 <n is the step from xc to the previous iterate x�1 (i.e., s = x�1 � xc) and b 2 <nand
 2 < are uniquely determined by the requirements MT (x�1) = f(x�1) and rMT (x�1) =rf(x�1). The whole process of forming the tensor model requires only O(n2) arithmetic oper-ations. The storage needed for forming and storing the tensor model is only a total of 6n.The tensor algorithms described in [16] are QR-based algorithms involving orthogonal trans-formations of the variable space. These algorithms are e�ective for minimizing the tensor modelwhen the Hessian is dense because they are stable numerically, especially when the Hessian issingular. They are not e�cient for sparse problems, however, because they destroy the sparsityof the Hessian due to the orthogonal transformation of the variable space. To preserve thesparsity of the Hessian, we developed in [4] an entirely new way of minimizing the tensor modelthat employs a sparse variant of the Cholesky decomposition. This makes the new algorithmswell suited for sparse problems. In this new approach, we show that the minimization of (1.3)can be reduced to the solution of a third{order polynomial in one unknown, plus the solution2

of three systems of linear equations that all involve the same coe�cient matrix r2f(xc). TheSTENMIN package is essentially based on this new approach.The remainder of this paper is organized as follows. In x2 an iteration of tensor methodsfor large, sparse unconstrained optimization is outlined. In x3 we give an overview of the input,output, and important options provided by the software package. We describe the user interfaceto the package in x4, which includes both a simpli�ed (default) and a longer calling sequence. Inx5 we describe the meaning of the input, input-output, and output parameters for the package.In x6 we present the default values provided by the package. A few implementation details aredescribed in x7. In x8 we give an example of the use of the package. Finally, in x9 we describecomparative testing for an implementation based on the tensor method versus an implementationbased on the Newton's method, and we present summary statistics of the test results.2. An Iteration of Tensor MethodsIn this section, we present the overall algorithm for tensor methods for large, sparse uncon-strained optimization. Algorithm 2.1 is a slightly modi�ed version of the algorithm described in[4] in the way the tensor step is selected when the � equation (see algorithm below) has morethan one root. In general, this new way of computing the tensor step appears to perform betterthan the strategy described in [4], in both function evaluations and execution times. A summaryof the experimental results for this implementation is presented in x9.Algorithm 2.1. An Iteration of Tensor Methods for Large, Sparse Unconstrained OptimizationLet xc be the current iterate, x+ the next iterate, dt the tensor step, and dn the Newton step.1. Calculate rf(xc), and decide whether to stop. If not:2. Calculate r2f(xc)3. Calculate b and
 in the tensor model (1.3), so that the tensor model interpolates f(x)and rf(x) at x�14. Find a potential minimizer dt of the tensor modelFactorize r2f(xc) using the MA27 package [13]if r2f(xc) has full rank then4.1. Form the � equation (� 2 <): �u+ (yw� uv � 1)� � 32v�2 + (12wz �
6w � 12v2)�3;where u = sTr2f(xc)�1rf(xc), v = sTr2f(xc)�1b, w = sTr2f(xc)�1s,y = bTr2f(xc)�1rf(xc), and z = bTr2f(xc)�1b4.2. Calculate the tensor step:dt = �r2f(xc)�1(rf(xc) + ����s + 12�2�b+
6�3�s);where �� = min(j�ij) with �i being the roots of the � equation, and�� = �(u+ �� + 12v�2� +
6w�3�)w��elseif r2f(xc) is singular with rank(r2f(xc)) = n� 1 then4.3. Form the � equation (� 2 <): u+ (1 + �̂v)� + (12v +
2w�̂)�2 +
6w�3,where u = sT r̂2f(xc)�1r̂f(xc), r̂2f(xc) = r2f(xc) + ssT ,r̂f(xc) = rf(xc) +r2f(xc)d̂+ �̂�̂s+ 12 �̂2b+
6 �̂3s, �̂ = sT d̂, �̂ = bT d̂,3

d̂ is the global step computed in the previous iteration, v = sT r̂2f(xc)�1b, andw = sT r̂2f(xc)�1s.4.4. Calculate the tensor step of the transformed tensor model (2.1) below:� = �r̂2f(xc)�1(r̂f(xc) + �̂��b+ �̂��s + ����s+ (12b+
2 �̂s)�2� +
6�3�s)where �� = min(j�ij) with �i being the roots of the � equationand �� = 1w(�̂+��)(yw�̂ � u � uv�̂ + (yw + zw�̂2 � 2v�̂ � v2�̂2 � uv � 1)��+(32zw�̂ �
2w�̂ � 32v � 32v2�̂) + 12zw �
6w � v22)�3�);where y = bT r̂2f(xc)�1r̂f(xc), and z = bT r̂2f(xc)�1b4.5. Calculate the tensor step of the original model (1.3):dt = � + d̂elsefrank(r2f(xc)) < n � 1g4.6. Modify the eigencomponents of r2f(xc)4.7. Perform steps 4.1{4.2endif5. Test whether the tensor step is descent. If it is not compute the Newton stepif rTf(xc)dt > 0 then5.1. Compute the Newton stepif rank(r2f(xc)) < n � 1 thendn = r2mf(xc)�1rf(xc), where r2mf(xc) is r2f(xc) with theeigencomponents modi�ed, (dn is obtained for free)elseModify the eigencomponents of r2f(xc)if all the eigencomponents of r2f(xc) remain unchangedfr2f(xc) is already positive de�niteg thendn = r2f(xc)�1rf(xc), (dn is obtained for free)elsedn = r2mf(xc)�1rf(xc)endifendifendif6. Compute an acceptable next iterate x+ using a line search global strategy7. xc = x+, f(xc) = f(x+), go to step 1Algorithm 2.2. Line Search Strategy for Large, Sparse Unconstrained OptimizationLet xc, dt, and dn be de�ned as is Algorithm 2.1.if dt is descent thenxt+ = xc + dtif f(xt+) < f(xc) + 10�4 � rf(xc)dt thenx+ = xt+elseFind an acceptable xn+ in the Newton direction dnusing the line search given by Algorithm A6.3.1 [9, p.325]4

Find an acceptable xt+ in the tensor direction dtusing the line search given by Algorithm A6.3.1 [9, p.325]if f(xn+) < f(xt+) thenx+ = xn+elsex+ = xt+endifendifelseFind an acceptable xn+ in the Newton direction dnusing the line search given by Algorithm A6.3.1 [9, p.325]x+ = xn+endifIn step 1, the gradient is either computed analytically or approximated by the algorithmA5.6.3 given in Dennis and Schnabel [12]. In step 2, the Hessian matrix is either calculatedanalytically or approximated by a graph coloring algorithm described in [9]. In step 4.3, thematrix r̂2f(xc) is factorized using the augmented system approach described in [4]. In steps 4.4and 4.5, we �rst compute the tensor step � of the transformed model (obtained by substitutingd̂+ � for d in (1.3), where d̂ is the global step computed in the previous iteration)MT (xc + d) = f(xc) + rf(xc) � d̂ + 12r2f(xc) � d̂2 + 12(bT d̂)(sT d̂)2+
24(sT d̂)4 + (rf(xc) + r2f(xc)d̂ + (bT d̂)(sT d̂)s+ 12(sT d̂)2b +
24(sT d̂)3s) � � + 12(r2f(xc)+ (bT d̂ +
2ssT) � �2 + (sT d̂)(bT �)(sT�) + 12(bT �)(sT �)2+
6(sT d̂)(sT �)3 +
24(sT�)4: (2:1)Then we set the tensor step dt of the original tensor model (1.3) to �+ d̂. In step 4.6, we obtaina perturbation � such as r2f(xc) + �I is safely positive de�nite by using the Gill, Murray,Ponceleon, and Saunders method [14]. After we compute the LDLT of the Hessian matrixusing the MA27 package [13], we change the block diagonal matrix D to D + E. The modi�edmatrix is block diagonal positive de�nite. This guarantees that the decomposition L(D + E)LTis su�ciently positive de�nite. Note that the Hessian matrix is not modi�ed if it is alreadypositive de�nite. In step 5, we test whether or not the tensor step is descent. If it is not, then wecompute the Newton step dn as a by{product of the minimization of the tensor model. That is,if rank(r2f(xc)) < n� 1 or all the eigencomponents of D turn out to be positive, i.e., r2f(xc)is positive de�nite, then the Newton step is obtained for free; otherwise we perform anothersolve after we have modi�ed the eigencomponents of D. Thus, dn is the modi�ed Newton step(r2f(xc)+�I)�1rf(xc), where � = 0 if r2f(xc) is safely positive de�nite, and � > 0 otherwise.In step 6, we compute a next iterate x+ by performing the standard backtracking line searchglobal strategy described in Algorithm 2.2. The line search tensor method is much simpler to5

implement and to understand than the two-dimensional trust region tensor method introducedin [4], and is appreciably faster. For these reasons, this software uses a line search method. Theglobal framework for the line search method we used in conjunction with our tensor methodfor large, sparse unconstrained optimization is similar to the one used for systems of nonlinearequations [3, 5]. This strategy has proved successful for large, sparse systems of nonlinearequations. This approach always tries the full tensor step �rst. If this provides enough decreasein the objective function, then we terminate; otherwise we �nd acceptable next iterates in boththe Newton and tensor directions and select the one with the lower function value as the nextiterate. The stopping criteria of Algorithm 2.1 are described by the parameter TERMCD in x5.3. Overview of the Software PackageThe required input to the software is the number of variables N, the function FCN that computesf(x), an initial guess X0, the number of nonzeros NZ stored in the lower or upper triangular partof the Hessian matrix, and the row and column indices IRN and ICN of these nonzeros given inany order.Two methods of calling the package are provided. In the short version, the user suppliesonly the above information, and default values of all other options are used. These include thecalculation of the gradient and Hessian matrix by �nite di�erences, and the use of the tensorrather than the standard Newton method. In the other method for calling the package, the usermay override any default values of the package options.The user has the option to choose between the tensor method and the standard Newtonmethod. If the
ag METHOD is set to 0, the package will use the standard Newton method. Thetensor method is used otherwise.Upon completion, the program returns with an approximation XPLS to the minimizer x�, thevalue of the objective function FPLS at XPLS, the value of the gradient GPLS(XPLS), the HessianHESS(XPLS), and a
ag specifying under which stopping condition the algorithm has terminated.The software package is coded so that if the user inputs the typical magnitude TYPXi of eachcomponent of x, the performance of the package is the equivalent to what would result fromrede�ning the independent variable x withxscaled = 26666666666664 1=TYPX1 : : : 1=TYPXn 37777777777775 � x (3:1)and then running the package without scaling. The default value of each TYPXi is 1. Scaling isoften important to use for problems in which the variable components are widely di�erent inmagnitudes. 6

The user may supply analytic routines for the gradient and/or the Hessian. If they are notsupplied the package computes them by �nite di�erences. The parameters GRDFLG and HSNFLGspecify whether analytic gradient and Hessian have been provided, respectively. When theanalytic gradient and/or Hessian are supplied, the user has the option of checking the suppliedanalytic routines against the package's �nite di�erence routines.The standard (default) output from this package consists of printing the input parametersand the �nal results. The printed input parameters are those used by the algorithm and henceinclude any corrections made by the program module OPTCHK, which examines the input spec-i�cations for illegal entries and consistency. The program will provide an error message if itterminates as a result of input errors. The printed results include a message indicating the rea-son for termination, an approximation XPLS to the solution x�, the function value at XPLS, andthe gradient vector GPLS. The package provides an additional means for the control of outputvia the variable MSG described in x5. The standard output is the input state, the �nal results,and the stopping conditions. The user may suppress all output or may print the intermediateiteration results in addition to the standard output.If the user sets the variable INFORM to 1, then the package uses reverse communication toobtain the multiplication of the Hessian matrix at the current iterate by a given vector. IfINFORM is set to 0, then this quantity is computed by the subroutine STHMUV provided by thepackage.4. Interfaces and UsageTwo interfaces have been provided with the package. If the user wishes to use all the defaultsoptions provided by the package, then he (or she) should call STUMSD (STUMSS if single{precisionis used). Only the required input described in x3 needs to be supplied. The other interface,STUMCD (STUMCS if single{precision is used), requires the user to supply all parameters. The usermay specify selected parameters only by �rst invoking the subroutine STDFLT, which sets allparameters to their default values, and then overriding only the desired values. The two callingsequences are as follows:C STUMSD interface: the default options provided by STENMIN are used.CALL STUMSD(N, X0, NZ, IRN, LIRN, ICN, LICN, FCN, TYPX, MSG, XPLS,* FPLS, GPLS, HESS, WRK, LWRK, IWRK, LIWRK, TERMCD)C STUMCD interface: the user �rst invokes the subroutine STDFLT to obtain the defaultC options provided by STENMIN, then overrides the desired values.CALL STDFLT(N, TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX,* IPR, METHOD, GRDFLG, HSNFLG, NDIGIT, INFORM, MSG)C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAMETERS, E.G.GRADTL = 1.0D-6 7

ILIM = 1000GRDFLG = 1HSNFLG = 1CALL STUMCD(N, X0, NZ, IRN, LIRN, ICN, LICN, FCN, UGR, USH,* TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX, IPR,* METHOD, GRDFLG, HSNFLG, NDIGIT, MSG, XPLS, FPLS,* GPLS, HESS, WRK, LWRK, IWRK, LIWRK, TERMCD, HTV,* INFORM)5. Parameters and Default ValuesThe parameters used in the calling sequences of x4 are fully described here. STUMSD uses onlythose parameters that are preceded by an asterisk. When it is noted that module STDFLT returnsa given value, this is the default employed by interface STUMSD. The user may override the defaultvalue by utilizing STUMCD.Following each variable name in the list below appears a one{ or a two{headed arrow symbolof forms !, , and !. These symbols signify that the variable is for input, output, andinput-output, respectively.*N!: A positive integer variable specifying the number of variables in the problem. Restric-tion: N � 1:*X0!: An array of length N that contains an initial estimate of the minimizer x�.*NZ!: An integer variable that must be set by the user to the number of nonzeros storedin the lower or upper triangular part of the Hessian matrix. It is not altered by the program.Restriction: NZ � 1.*IRN!: An integer array of length LIRN. On entry, it must hold the row index of each nonzerostored in the lower or upper triangular part of the Hessian matrix.*LIRN!: An integer variable that must be set by the user to the length of array IRN. LIRNneed not be as large as LICN; normally it need not be very much greater than NZ. It is notaltered by the program. Restriction: LIRN � NZ.*ICN!: An integer array of length LICN. On entry, it must hold the column index of thenonzeros stored in lower or upper triangular part of the Hessian matrix.*LICN!: An integer variable that must be set by the user to the length of the Hessian ar-ray HESS and ICN. LICN should ordinarily be 2 to 4 times as large as NZ. It is not altered by theprogram. Restriction: LICN � NZ.*FCN!: The name of a user supplied subroutine that evaluates the function f at an arbi-8

trary vector x. The subroutine must be declared EXTERNAL in the user's calling program andmust conform to CALL FCN(N, X, F),where X is a vector of length N. The subroutine must not alter the values of X.UGR!: The name of a user supplied subroutine that returns in G, the value of the gradientrf(x) at the current point X. UGR must be declared EXTERNAL in the user's calling program andmust conform to the usage CALL UGR(N, X, G),where N is the dimension of the problem, X is a vector of length N, and G is the gradient at X. UGRmust not alter the values of N and X. When using the interface STUMCD, if no analytic gradientis supplied (GRDFLG = 0), the user must use the dummy name STDUGR.USH!: The name of a user supplied subroutine that returns in HESS, the value of the Hessianr2f(x) at the current point X. USH must be declared EXTERNAL in the user's calling programand must conform to the usageCALL USH(N, X, NZ, LICN, HESS, IRN, ICN)where N is the dimension of the problem, X is a vector of length N, HESS is the Hessian matrix atX, LICN is the length of HESS, NZ is the number of nonzeros in the lower or upper triangular partof HESS, and IRN and ICN are the row and column indices of the nonzeros in HESS. USH must notalter the values of N, X, and LICN. Only the lower or upper triangular part of HESS should begiven. When using the interface STUMCD, if no analytic Hessian is supplied (HSNFLG = 0), theuser must use the dummy name STDUSH.*TYPX!: An array of length N in which the typical size of the components of X are speci-�ed. The typical component sizes should be positive real scalars. If a negative value is speci�ed,its absolute value will be used. When 0.0 is speci�ed, 1.0 will be used. The program will notabort. This vector is used by the the package to determine the scaling matrix Dx. Although thepackage may work reasonably well in a large number of instances without scaling, it may failwhen the components of x� are of radically di�erent magnitude and scaling is not invoked. If thesizes of the parameters are known to di�er by many orders of magnitude, then the scale vectorTYPX should de�nitely be used. Module STDFLT returns TYPX = (1.0,: : :, 1.0). For example, if itis anticipated that the range of values for the iterates xk isx1 2 [�1010 ; 1010]x2 2 [�102 ; 104]x3 2 [�6� 10�6; 9� 10�6]then an appropriate choice will be TYPX = (1.0E+10, 1.0E+3, 7.0E-6).FSCALE!: A positive real number estimating the magnitude of f(x) near the minimizer x�.9

It is used in the gradient stopping condition given below. If f(x0) is much greater than f(x�),FSCALE should be approximately f(x�). If a negative value is speci�ed for FSCALE, its absolutevalue is used. When 0.0 is speci�ed, 1.0 will be used. The program will not abort.GRADTL!: Positive scalar giving the tolerance at which the scaled gradient of f(x) is con-sidered close enough to zero to terminate the algorithm. The scaled gradient is a measure of therelative change in f in each direction xi divided by the relative change in xi. More precisely,the test used by the program ismaxi � j rf(x) ji maxfj xi j; TYPXigmaxfj f j; FSCALEg � � GRADTL:The module STDFLT returns the value �1=3. If the user speci�es a negative value, the defaultvalue is used instead.STEPTL!: A positive scalar providing the minimum allowable relative step length. STEPTLshould be at least as small as 10�d, where d is the number of accurate digits the user desires inthe solution x�. The actual test used ismaxi (jxik � xik�1jmaxfjxik; TYPXijg) � STEPTL;where xk and xk�1 are the new and old iterates, respectively. The program may terminateprematurely if STEPTL is too large. Module STDFLT returns the value �2=3. If the user speci�esa negative value, then the default value is used instead.ILIM!: Positive integer specifying the maximum iterations to be performed before the pro-gram is terminated. Module STDFLT returns ILIM = 500. If the user speci�es ILIM � 0, thedefault value is used instead.STEPMX!: A positive scalar providing the maximum allowable scaled step length jjDx(x+�xc)jj2,where Dx = diag(1/TYPX1,: : :, 1/TYPXn). STEPMX is used to prevent steps that would causethe optimization problem to over
ow, to prevent the algorithm from leaving the area of interestin parameter space, or to detect divergence in the algorithm. STEPMX should be chosen smallenough to prevent these occurrences but should be larger than any anticipated \reasonable"step. The algorithm will halt and provide a diagnostic if it attempts to exceed STEPMX on �vesuccessive iterations. If a nonpositive value is speci�ed for STEPMX, the default is used. ModuleSTDFLT returns the value STEPMX = maxfjjx0jj2 � 103; 103g, where x0 is the initial approximationprovided by the user.IPR!: The unit on which the routine outputs information. STDFLT returns the value 6, whichis the standard FORTRAN unit for the printer.METHOD!: An integer
ag designating which method to use.� METHOD = 0 : Use Newton's method.� METHOD = 1 : Use the tensor method. 10

Module STDFLT returns value 1. If the user speci�es an illegal value, module OPTCHK will setMETHOD to 1; the program will not abort.GRDFLG!: Integer
ag designating whether or not analytic Hessian has been supplied by the user.� GRDFLG = 0 : No analytic gradient supplied.� GRDFLG= 1 : Analytic gradient supplied (will be checked against �nite di�erence gradient.)� GRDFLG = 2 : Analytic gradient supplied (will not be checked against �nite di�erencegradient.)When GRDFLG = 0, the gradient is obtained by forward �nite di�erences. When GRDFLG = 1 or2, the name of the user supplied routine that evaluates rf(x) must be supplied in UGR. WhenGRDFLG = 1, the program compares the value of the user's analytic gradient routine at x0 witha �nite di�erence estimate and aborts if the relative di�erence between any two components isgreater than 0.01. The module STDFLT returns GRDFLG = 0. If the user speci�es an illegal value,the module OPTCHK supplies the value 0.HSNFLG!: Integer
ag designating whether or not analytic Hessian has been supplied by the user.� HSNFLG = 0 : No analytic Hessian supplied.� HSNFLG = 1 : Analytic Hessian supplied (will be checked against �nite di�erence Hessian.)� HSNFLG = 2 : Analytic Hessian supplied (will not be checked against �nite di�erenceHessian.)When HSNFLG = 0, the Hessian values are computed by forward �nite di�erences based on gradi-ent values. When HSNFLG = 1 or 2, the name of the user{supplied routine that evaluates r2f(x)must be supplied in USH. When HSNFLG = 1, the program compares the value of the user's ana-lytic Hessian routine at x0 with a �nite di�erence estimate and aborts if the relative di�erencebetween any two components is greater than 0.01. The module STDFLT returns HSNFLG = 0. Ifthe user speci�es an illegal value, the module OPTCHK supplies the value 0.NDIGIT!: Integer estimating the number of accurate digits on the objective function f(x).STDFLT returns the value -LOG10(�), where � is machine precision. If NDIGIT � 0 then the defaultvalue is used instead.*MSG !: An integer variable that the user may set on input to inhibit certain automaticchecks or override certain default characteristics of the package. Currently, three \message"features can be used individually or in combination.� MSG = 0 : No output will be produced.� MSG = 1 : Print the input state, the �nal results, and the stopping conditions.� MSG = 2 : Print the intermediate results, that is, the input state, the values of the objectivefunction and the scaled gradient at each iteration, and the �nal results including thestopping conditions and the number of function, gradient, and Hessian evaluations.The module STDFLT returns a value of 1. On output, if the program has terminated because oferroneous input, MSG contains an error code indicating the reason:� MSG = -1 : Illegal dimension N; N � 0. The program aborts.� MSG = -2 : Illegal length of LIRN or LICN; LIRN � 0 or LICN � 0. The program aborts.11

� MSG = -3 : Illegal length of LIWRK or LWRK; LIWRK < 2*LIRN+12*N+2 or LWRK < 7*N. Theprogram aborts.� MSG = -4 : Illegal number of nonzeros NZ; NZ � 0. The program aborts.� MSG = -5 : The K-th element of IRN or the K-th element of ICN is not an integer between1 and N; (IRN(K) < 1 or IRN(K) > N) or (ICN(K) < 1 or ICN(K) > N). The programaborts.� MSG = -6 : The K-th diagonal element is not in the sparsity pattern. This is checked onlyif HSNFLG = 0 because the �nite di�erence Hessian approximation require that diagonalelements be in the sparsity pattern. The program aborts.� MSG = -7 : Redundant entries in sparsity pattern was encountered. When HSNFLG =1 or HSNFLG = 2, the program aborts. When HSNFLG = 0, the program eliminates theredundant entries and continue the execution (no error message is reported in this case).� MSG = -8 : Probable coding error in the user's analytic gradient routine . Analytic and�nite di�erence gradient do not agree within a tolerance of 0.01. The program aborts.(This check can be overridden by setting GRDFLG = 2.)� MSG = -9 : Probable coding error in the user's analytic Hessian routine USH. Analytic and�nite di�erence Hessian do not agree within a tolerance of 0.01. The program aborts.(This check can be overridden by setting HSNFLG = 2.)*XPLS : An array of length N containing the best approximation to the minimizer x� uponreturn. (If the algorithm has not converged, the last iterate is returned.)*FPLS : A scalar variable that contains the function value at the �nal iterate XPLS.*GPLS : An array of length N containing the gradient value at XPLS.HESS !: An array that is used to store the Hessian matrix at each iteration. It needs tobe at least of dimension LICN. Only the nonzeros in the lower or upper triangular part of theHessian matrix is stored in HESS. On entry, these nonzeros may be given in any order. On exit,HESS contains the Hessian matrix at the minimizer x� with the nonzeros sorted by columns ifHSNFLG was set to 0.*WRK!: An array of length LWRK. This is used as workspace by the package. Its length must beat least 8*N if the STUMSD interface is used and at least 7*N if the STUMCD interface is used.*LWRK!: An integer variable. It must be set by the user to the length of array WRK and isnot altered by the package.*IWRK!: An integer array of length LIWRK. This is used as workspace by the package. Itslength must be at least 2*LIRN+12*N+2.*LIWRK!: An integer variable. It must be set by the user to the length of array IWRK andis not altered by the package. 12

*TERMCD : An integer that speci�es the reason why the algorithm has terminated.� TERMCD = 1 : The scaled gradient at the �nal iterate was less than GRADTL.� TERMCD = 2 : The length of the last step was less than STEPTL.� TERMCD = 3 : Last global step failed to locate a point lower than XPLS. It is likely thateither XPLS is an approximate solution of the function or STEPTL is too large.� TERMCD = 4 : The iteration limit has been exceeded.� TERMCD = 5 : Five consecutive steps of length STEPMX have been taken.HTV$: An array of length N. It need not be set by the user on entry. If INFORM is set to 1, are-entry must be made with HTV set to HESS times HTV (see INFORM.)INFORM !: An integer variable. If it is set to 1, the user must obtain HESS times HTV andre-enter STUMCD (STUMCS if single{precision is used) with INFORM unchanged. The result of HESStimes HTV must be stored in HTV. The default value of INFORM is 0, meaning that HESS times HTVis computed by the package.6. Summary of Default ValuesThe following parameters are returned by the module STDFLT:ILIM = 500GRDFLG = 0HSNFLG = 0IPR = 6GRADTL = �1=3 (� is machine precision)STEPTL = �2=3METHOD = 1NDIGIT = -LOG10(�)STEPMX = 0.0TYPX = (1.0,: : :,1.0)FSCALE = 1.0MSG = 1INFORM = 07. Implementation DetailsThis software package has been coded in Fortran 77. The user has the choice between single{and double{precision versions. The user must then preprocess the package at compile time usingeither the tosngl or todble tools from CUTE [2], for the single{ and double{precision versions,respectively. The tosngl program picks up the appropriate version by selecting any statementthat begins with CS in the �rst column, where the S character means that this is a single{precision version. On the other hand, the todble program picks up the appropriate version byselecting any statement that begins with CD in the �rst column, with D meaning that this is a13

double{precision version. Note that a statement that begins by neither CS nor CD will be pickedby both tools.The following software are included in the package:1. Harwell code MA27 [13], which is used for computing the LTDL factorization of the sparseHessian matrix.2. The Coleman and Mor�e graph coloring software [9, 8, 7], which is used for estimating a�nite-di�erence approximation of a sparse Hessian matrix.3. The subroutine DSYPRC [10, 11], which is used for modifying the negative eigencomponentsobtained when factorizing an inde�nite Hessian matrix using the Harwell code MA27.4. The function DPMEPS [6], which is used for dynamically determining the machine precision.The program was developed and tested on a Sun SPARC 10 Model 40 computer.The machine precision is calculated by the package and used in several places including�nite di�erences stepsizes and stopping criteria. On some computers, the returned value maybe incorrect because of compiler optimizations. The user may wish to check the computer valueof the machine epsilon and, if it is incorrect, replace the code in the function DPMEPS with thefollowing statement DPMEPS = correct value of machine epsilon8. Example of UseIn the example code shown in Figure 8.1, we �rst call the routine STDFLT, which returns thedefault values. We then override the values of GRADTL, GRDFLG and HSNFLG. Next we call eitherthe interface STUMSD or STUMCD for the single{ and double{precision version, respectively, to solvethe sparse unconstrained optimization problem coded in FCN and whose gradient and Hessianare given by UGRAD and UHESS, respectively.CC STENMIN MINIMIZES AN UNCONSTRAINED NONLINEAR FUNCTION IN NC UNKNOWNS WHERE THE HESSIAN IS LARGE AND SPARSE, USING TENSORC METHODS.CC EXAMPLE OF USE FOR STENMIN. THE TEST PROBLEM IS THEC THE BROYDEN TRIDIAGONAL [15].CC ALI BOUARICHA, OCTOBER 1994.C MCS DIVISION, ARGONNE NATIONAL LAB.C INTEGER NMAX, N, NZ, LIRN, LICN, ILIM, IPR, METHODINTEGER GRDFLG, HSNFLG, NDIGIT, MSG, LWRK, LIWRKINTEGER TERMCD, INFORM, ICD DOUBLE PRECISION FSCALE, GRADTL, STEPTL, FPLS, STEPMX, ONE14

CS REAL FSCALE, GRADTL, STEPTL, FPLS, STEPMX, ONEPARAMETER (NMAX = 10000, LIRN = 50000, LICN = 500000)PARAMETER (LIWRK = 2 * LIRN + 12 * NMAX + 2)PARAMETER (LWRK = 7 * NMAX)INTEGER IRN (LIRN), ICN (LICN)INTEGER IWRK(LIWRK)CD DOUBLE PRECISION X (NMAX), TYPX(NMAX), XPLS(NMAX)CD DOUBLE PRECISION GPLS(NMAX), HESS(LICN), WRK (LWRK)CD DOUBLE PRECISION HTV (NMAX)CS REAL X (NMAX), TYPX(NMAX), XPLS(NMAX)CS REAL GPLS(NMAX), HESS(LICN), WRK (LWRK)CS REAL HTV (NMAX)EXTERNAL FCN, UGRAD, UHESSCD DATA ONE / 1.0D0 /CS DATA ONE / 1.0E0 /C READ DATAREAD(5,*) NC COMPUTE THE STANDARD STARTING POINT.DO 10 I = 1, NX(I) = -ONE10 CONTINUECALL STDFLT(N,TYPX,FSCALE,GRADTL,STEPTL,ILIM,STEPMX,* IPR,METHOD,GRDFLG,HSNFLG,NDIGIT,INFORM,MSG)CD GRADTL = 1.0D-5CS GRADTL = 1.0E-3GRDFLG = 2HSNFLG = 2C CALL THE SPARSE OPTIMIZERCD CALL STUMCD(N,X,NZ,IRN,LIRN,ICN,LICN,FCN,UGRAD,CS CALL STUMCS(N,X,NZ,IRN,LIRN,ICN,LICN,FCN,UGRAD,UHESS,TYPX,* FSCALE,GRADTL,STEPTL,ILIM,STEPMX,IPR,METHOD,* GRDFLG,HSNFLG,NDIGIT,MSG,XPLS,FPLS,GPLS,HESS,* WRK,LWRK,IWRK,LIWRK,TERMCD,HTV,INFORM)STOPEND 15

C THE FOLLOWING IS A SUBROUTINE FOR THE BROYDEN TRIDIAGONALC PROBLEMSUBROUTINE FCN(N, X, F)INTEGER NCD DOUBLE PRECISION X(N), FCS REAL X(N), FC LOCAL VARIABLESINTEGER ICD DOUBLE PRECISION ONE, TWO, THREECS REAL ONE, TWO, THREECD DATA ONE, TWO, THREE / 1.0D0, 2.0D0, 3.0D0 /CS DATA ONE, TWO, THREE / 1.0E0, 2.0E0, 3.0E0 /F = ((THREE - TWO * X(1)) * X(1) - TWO * X(2) + ONE) ** 2DO 10 I = 2, N-1F = F + ((THREE - TWO * X(I)) * X(I) - X(I-1) -* TWO * X(I+1) + ONE) ** 210 CONTINUEF = F + ((THREE - TWO * X(N)) * X(N) - X(N-1) + ONE) ** 2RETURNENDC THE FOLLOWING IS A SUBROUTINE FOR THE GRADIENT OF THE BROYDENC TRIDIAGONAL PROBLEMSUBROUTINE UGRAD(N, X, G)INTEGER NCD DOUBLE PRECISION X(N), G(N)CS REAL X(N), G(N)C LOCAL VARIABLESINTEGER ICD DOUBLE PRECISION RL, RM, RR, ONE, TWO, THREE, FOURCS REAL RL, RM, RR, ONE, TWO, THREE, FOURCD DATA ONE, TWO, THREE, FOUR/1.0D0, 2.0D0, 3.0D0, 4.0D0/CS DATA ONE, TWO, THREE, FOUR/ 1.0E0, 2.0E0, 3.0E0, 4.0E0/RL = (THREE - TWO * X(1)) * X(1) - TWO * X(2) + ONERR = (THREE - TWO * X(2)) * X(2) - X(1) - TWO * X(3) + ONE16

G(1) = TWO * (RL * (THREE - FOUR * X(1)) - RR)DO 10 I = 2, N-1IF(I .NE. 2) THENRL = (THREE - TWO * X(I-1)) * X(I-1) - X(I-2) -* TWO * X(I) + ONEENDIFRM = (THREE - TWO * X(I)) * X(I) - X(I-1) -* TWO * X(I+1) + ONEIF(I .EQ. N-1) THENRR = (THREE - TWO * X(N)) * X(N) - X(N-1) + ONEELSERR = (THREE - TWO * X(I+1)) * X(I+1) - X(I) -* TWO * X(I+2) + ONEENDIFG(I) = -TWO * (TWO * RL - RM * (THREE - FOUR * X(I)) + RR)10 CONTINUEG(N) = -TWO * (TWO * RM - RR * (THREE - FOUR * X(N)))RETURNENDC THE FOLLOWING IS A SUBROUTINE FOR THE HESSIAN OF THE BROYDENC TRIDIAGONAL PROBLEMSUBROUTINE UHESS(N,X,NZ,LICN,HESS,IRN,ICN)INTEGER N, NZ, LICNINTEGER IRN(NZ), ICN(LICN)CD DOUBLE PRECISION X(N), HESS(LICN)CS REAL X(N), HESS(LICN)C LOCAL VARIABLESINTEGER ICD DOUBLE PRECISION RL,RM,RR,DRLIM1,DRMICD DOUBLE PRECISION ONE,TWO,THREE,FOURCS REAL RL,RM,RR,DRLIM1,DRMICS REAL ONE,TWO,THREE,FOURCD DATA ONE, TWO, THREE, FOUR/1.0D0, 2.0D0, 3.0D0, 4.0D0/CS DATA ONE, TWO, THREE, FOUR/1.0E0, 2.0E0, 3.0E0, 4.0E0/NZ = 1RL = (THREE - TWO * X(1)) * X(1) - TWO * X(2) + ONEHESS(NZ) = TWO * ((THREE - FOUR * X(1))**2 -* FOUR * RL + ONE)IRN(NZ) = 1 17

ICN(NZ) = 1DO 10 I = 2, N-1DRLIM1 = THREE - FOUR * X(I-1)DRMI = THREE - FOUR * X(I)IF(I .NE. 2) THENNZ = NZ + 1HESS(NZ) = FOURIRN(NZ) = IICN(NZ) = I-2ENDIFNZ = NZ + 1HESS(NZ) = -TWO * (TWO * (THREE - FOUR * X(I-1)) +* ONE * (THREE - FOUR * X(I)))IRN(NZ) = IICN(NZ) = I-1RM = (THREE - TWO * X(I)) * X(I) - X(I-1) -* TWO * X(I+1) + ONENZ = NZ + 1HESS(NZ) = -TWO * (-FOUR - (THREE - FOUR * X(I))**2 +* FOUR * RM - ONE)IRN(NZ) = IICN(NZ) = I10 CONTINUERR = (THREE - TWO * X(N)) * X(N) - X(N-1) + ONENZ = NZ + 1HESS(NZ) = FOURIRN(NZ) = NICN(NZ) = N-2NZ = NZ + 1HESS(NZ) = -TWO * (TWO * (THREE - FOUR * X(N-1)) +* THREE - FOUR * X(N))IRN(NZ) = NICN(NZ) = N-1NZ = NZ + 1HESS(NZ) = TWO * (FOUR + (THREE - FOUR * X(N))**2 - FOUR * RR)IRN(NZ) = NICN(NZ) = NRETURNEND Figure 8.1: Code to solve the Broyden tridiagonal problemIf we use the double{precision version of the package to solve the Broyden tridiagonal problemgiven by FCN, for N = 10000, we obtain the following output:18

STDRUO GRADIENT FLAG = 2STDRUO HESSIAN FLAG = 2STDRUO METHOD = 1STDRUO ITERATION LIMIT = 500STDRUO MACHINE EPSILON = 0.2220446049250E-15STDRUO STEP TOLERANCE = 0.3666852862501E-10STDRUO GRADIENT TOLERANCE = 0.1000000000000E-04STDRUO MAXIMUM STEP SIZE = 0.1000000000000E+06---STRSLT ITERATION K = 0STRSLT FUNCTION AT X(K)STRSLT 0.1001100000000E+05STRSLT SCALED GRADIENT AT X(K)STRSLT 0.3800000000000E+02---STCHKS RELATIVE GRADIENT CLOSE TO ZEROSTCHKS CURRENT ITERATE IS PROBABLY SOLUTION---STRSLT ITERATION K = 4STRSLT FUNCTION AT X(K)STRSLT 0.1884575867777E-13STRSLT SCALED GRADIENT AT X(K)STRSLT 0.1113397081739E-05---STRSLT NUMBER OF FUNCTION EVALUATIONS 5STRSLT NUMBER OF GRADIENT EVALUATIONS 5STRSLT NUMBER OF HESSIAN EVALUATIONS 4In the Appendix, we give another example of use{the optimal design with composite materialsproblem{from the MINPACK-2 collection [1].9. Test ResultsWe tested our tensor and Newton methods on the set of unconstrained optimization problemsfrom the CUTE [2] and the MINPACK-2 [1] collections. Most of these problems have nonsingularHessians at the solution. We also created singular test problems as proposed in [3, 17] bymodifying the nonsingular test problems from the CUTE collection. The dimensions of theseproblems range from 100 to 10000. All our computations were performed on a Sun SPARC 10Model 40 machine using double{precision arithmetic.A summary for the test problems whose Hessians at the solution have ranks n, n � 1, and19

n � 2 is presented in Table 9.1. The descriptions of the test problems and the detailed resultsare given in [4]. In Table 9.1 the columns \better" and \worse" represent the number of timesthe tensor method was better and worse, respectively, than Newton's method by more than onegradient evaluation. The \tie" column represents the number of times the tensor and Newtonmethods required within one gradient evaluation of each other. For each set of problems, wesummarize the comparative costs of the tensor and Newton methods using average ratios ofthree measures: gradient evaluations, function evaluations, and execution times. The averagegradient evaluation ratio (geval) is the total number of gradient evaluations required by all thetensor runs, divided by the total number of gradient evaluations required by all the Newton runson these problems. The same measure is used for the average function evaluation (feval) andexecution time (time) ratios. These average ratios include only problems where both methodsconverge to the same minimizer. On the other hand, the statistics for the \better," \worse," and\tie" columns also include the cases where only one of the two methods converges. Moreover,we excluded from all statistics problems requiring a number of gradient evaluations less or equalthan three by both methods. Finally, columns \t/s" and \s/t" show the number of problemssolved by the tensor method but not by the Newton method and the number of problems solvedby the Newton method but not by the tensor method, respectively.The improvement by the tensor method over the Newton method on problems with rankn�1 is dramatic, averaging 49% in function evaluations, 52% in gradient evaluations, and 60% inexecution times. This is due in part to the rate of convergence of the tensor method being fasterthan that of Newton's method, which is known to be only linearly convergent with constant23 . A typical convergence rate of the tensor method on rank n � 1 problems is around 0.01.Whether this is a superlinear convergence remains to be proved. On problems with rank n� 2,the improvement by the tensor method over the Newton method is also substantial, averaging34% in function evaluations, 37% in gradient evaluations, and 38% in execution times. In thetest results obtained for the nonsingular problems, the tensor method is only 2% better than theNewton method in function evaluations, but 32% and 37% better in gradient evaluations andin execution times, respectively. The tensor method requires more function evaluations thanthe Newton method on some nonsingular problems. This is because the full tensor step doesnot provide su�cient decrease in the objective function, and therefore the tensor method hasto perform a line search method in both the Newton and tensor directions, which causes thenumber of function evaluations required by the tensor method to be in
ated.The tensor method solved a total of four nonsingular problems, �ve rank n�1 problems, andseven rank n � 2 problems, that Newton's method failed to solve. The reverse never occurred.This clearly indicates that the tensor method is most likely to be more robust than Newton'smethod.The overall results presented in this paper show that the tensor method is often more e�cientand more reliable than the standard Newton method in solving large, sparse unconstrainedoptimization problems. Furthermore, the tensor method is likely to solve a wider range ofproblems. In order to �rmly establish the conclusion above, additional testing is required.20

Table 9.1: Summary of the CUTE and MINPACK-2 test problems using line searchRank Tensor/Standard Pbs Solved Average Ratio{Tensor/Standardr2f(x�) better tie worse t/s s/t feval geval timen 54 38 4 4 0 0.98 0.68 0.63n� 1 18 2 0 5 0 0.51 0.48 0.40n� 2 18 1 1 7 0 0.66 0.63 0.62Acknowledgments. I am grateful to Nick Gould for his assistance and encouragements. Ialso thank my CERFACS colleague Jacko Koster for reviewing this paper and Gail Pieper fromthe MCS division at Argonne National Laboratory for her suggestions for improvement.

21

References[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G. L. Xue. The MINPACK-2 test problemcollection. Technical Report ANL/MCS-P153-0692, Argonne National Laboratory, 1992.[2] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained andUnconstrained Testing Environment. ACM Trans. Math. Software, 21(1):123{160, 1995.[3] A. Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear leastsquares problems using tensor methods on sequential and parallel computers. Ph.D. the-sis, Computer Science Department, University of Colorado at Boulder, 1992.[4] A. Bouaricha. Tensor methods for large, sparse unconstrained optimization. Technical re-port, Mathematics and Computer Science Division, Argonne National Laboratory, preprintMCS-P452-0794, 1994.[5] A. Bouaricha and R. B. Schnabel. TENSOLVE: A software package for solving systems ofnonlinear equations and nonlinear least squares problems using tensor methods. PreprintMCS-P463-0894, Mathematics and Computer Science Division, Argonne National Labora-tory, 1994.[6] W. J. Cody. MACHAR: A subroutine to dynamically determine machine parameters. ACMTrans. Math. Softw., 14:303{311, 1988.[7] T. F. Coleman, B. S. Garbow, and J. J. Mor�e. Fortran subroutines for estimating sparseHessian matrices. ACM Trans. Math. Software, 11:378, 1985.[8] T. F. Coleman, B. S. Garbow, and J. J. Mor�e. Software for estimating sparse Hessianmatrices. ACM Trans. Math. Software, 11:363{377, 1985.[9] T. F. Coleman and J. J. Mor�e. Estimation of sparse Hessian matrices and graph coloringproblems. Math. Programming, 28:243{270, 1984.[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of largescale nonlinear optimization problems and the LANCELOT project. Report 89-19, NamurUniversity, Namur, Belgium, 1989.[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT. Springer Series in Computa-tional Mathematics. Springer-Verlag, 1992.[12] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization andnonlinear equations. Prentice-Hall, Englewood Cli�s, N.J., 1983.[13] I. S. Du� and J. K. Reid. MA27: A set of Fortran subroutines for solving sparse symmetricsets of linear equations. Technical Report R-10533, AERE Harwell Laboratory, Harwell,UK, 1983.[14] P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. Preconditioners for inde�nitesystems arising in optimization and nonlinear least squares problems. Technical ReportSOL 90-8, Department of Operations Research, Stanford University, California, 1990.22

[15] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.ACM Trans. Math. Software, 7(1):17{41, 1981.[16] R. B. Schnabel and T. Chow. Tensor methods for unconstrained optimization using secondderivatives. SIAM J. Optimization, 1:293{315, 1991.[17] R. B. Schnabel and P. D. Frank. Tensor methods for nonlinear equations. SIAM J. Numer.Anal., 21:815{843, 1984.

23

A. Appendix: Another Example of Use: The Optimal Design ProblemIn the example given in Figure A.1, we �rst call the routine STDFLT, which returns the defaultvalues. We then override the value of GRADTL and GRDFLG. Next we call either the interfaceSTUMCS or STUMCD for the single{ and double{precision version, respectively, to solve the optimaldesign with composite materials problem (ODC) from the MINPACK-2 collection [1]. Since in theMINPACK-2 collection both the function and the gradient of the ODC problem are coded in thesame subroutine DODCFG, we split DODCFG in two subroutines: DODCF and DODCG for the functionand gradient evaluations, respectively.CC STENMIN MINIMIZES AN UNCONSTRAINED NONLINEAR FUNCTION IN NC UNKNOWNS WHERE THE HESSIAN IS LARGE AND SPARSE, USING TENSORC METHODS.CC EXAMPLE OF USE FOR STENMIN. THE TEST PROBLEM IS THEC OPTIMAL DESIGN WITH COMPOSITE MATERIALS PROBLEM FROMC THE MINPACK-2 TEST PROBLEM COLLECTION.CC ALI BOUARICHA, OCTOBER 1994.C MCS DIVISION, ARGONNE NATIONAL LAB.C INTEGER NMAX, N, NZ, LIRN, LICN, ILIM, IPR, METHODINTEGER GRDFLG, HSNFLG, NDIGIT, MSG, LWRK, LIWRKINTEGER TERMCD, INFORM, I, J, K, NX, NYCD DOUBLE PRECISION FSCALE, GRADTL, STEPTL, FPLS, STEPMXCD DOUBLE PRECISION LAMBDA, HX, HY, TEMP, ONECS REAL FSCALE, GRADTL, STEPTL, FPLS, STEPMXCS REAL LAMBDA, HX, HY, TEMP, ONEPARAMETER (NMAX = 10000, LIRN = 50000, LICN = 500000)PARAMETER (LIWRK = 2 * LIRN + 12 * NMAX + 2)PARAMETER (LWRK = 7 * NMAX)INTEGER IRN (LIRN), ICN (LICN)INTEGER IWRK(LIWRK)CD DOUBLE PRECISION X (NMAX), TYPX(NMAX), XPLS(NMAX)CD DOUBLE PRECISION GPLS(NMAX), HESS(LICN), WRK (LWRK)CD DOUBLE PRECISION HTV (NMAX)CS REAL X (NMAX), TYPX(NMAX), XPLS(NMAX)CS REAL GPLS(NMAX), HESS(LICN), WRK (LWRK)CS REAL HTV (NMAX)COMMON / PARAM / NX, NYCOMMON / OTHER / LAMBDAEXTERNAL DODCF, DODCG, STDUSHCD INTRINSIC DBLE, MIN 24

CS INTRINSIC FLOAT, MINCD DATA ONE / 1.0D0 /CS DATA ONE / 1.0E0 /C READ DATAREAD(5,*) NX, NY, LAMBDAN = NX * NYC COMPUTE THE STANDARD STARTING POINT.CD HX = ONE/DBLE(NX+1)CD HY = ONE/DBLE(NY+1)CS HX = ONE/FLOAT(NX+1)CS HY = ONE/FLOAT(NY+1)DO 20 J = 1, NYCD TEMP = DBLE(MIN(J,NY-J+1))*HYCS TEMP = FLOAT(MIN(J,NY-J+1))*HYDO 10 I = 1, NXK = NX*(J-1) + ICD X(K) = -(MIN(DBLE(MIN(I,NX-I+1))*HX,TEMP))**2CS X(K) = -(MIN(FLOAT(MIN(I,NX-I+1))*HX,TEMP))**210 CONTINUE20 CONTINUEC DEFINE THE SPARSITY STRUCTURE OF THE HESSIAN.CALL DODCSP(NX,NY,NZ,IRN,ICN)C SET THE DEFAULT VALUES OF THE PACKAGE.CALL STDFLT(N,TYPX,FSCALE,GRADTL,STEPTL,ILIM,STEPMX,* IPR,METHOD,GRDFLG,HSNFLG,NDIGIT,INFORM,MSG)CD GRADTL = 1.0D-5CS GRADTL = 1.0E-3GRDFLG = 2C CALL THE SPARSE OPTIMIZER.CD CALL STUMCD(N,X,NZ,IRN,LIRN,ICN,LICN,DODCF,DODCG,CS CALL STUMCS(N,X,NZ,IRN,LIRN,ICN,LICN,DODCF,DODCG,STDUSH,* TYPX,FSCALE,GRADTL,STEPTL,ILIM,STEPMX,IPR,* METHOD,GRDFLG,HSNFLG,NDIGIT,MSG,XPLS,FPLS,GPLS,25

* HESS,WRK,LWRK,IWRK,LIWRK,TERMCD,HTV,INFORM)STOPENDFigure A.1: Code to solve the optimal design with composite materials problemIf we use the double{precision version of the package to solve the ODC problem for the followinginput:NX, NY, LAMBDA : 100 100 0.008,we obtain the following output:STDRUO GRADIENT FLAG = 2STDRUO HESSIAN FLAG = 0STDRUO METHOD = 1STDRUO ITERATION LIMIT = 500STDRUO MACHINE EPSILON = 0.2220446049250E-15STDRUO STEP TOLERANCE = 0.3666852862501E-10STDRUO GRADIENT TOLERANCE = 0.1000000000000E-04STDRUO MAXIMUM STEP SIZE = 0.6521118878154E+04---STRSLT ITERATION K = 0STRSLT FUNCTION AT X(K)STRSLT 0.4823420295546E-01STRSLT SCALED GRADIENT AT X(K)STRSLT 0.1931183217332E-01---STCHKS RELATIVE GRADIENT CLOSE TO ZEROSTCHKS CURRENT ITERATE IS PROBABLY SOLUTION---STRSLT ITERATION K = 20STRSLT FUNCTION AT X(K)STRSLT -0.1137724408643E-01STRSLT SCALED GRADIENT AT X(K)STRSLT 0.3938142592477E-05---STRSLT NUMBER OF FUNCTION EVALUATIONS 67STRSLT NUMBER OF GRADIENT EVALUATIONS 21STRSLT NUMBER OF HESSIAN EVALUATIONS 2026

0
20

40
60

80
100

120

0

50

100

150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure A.2: Norm of jjrvjj for the stress �eld v in a design with composite materialsA plot of the norm jjrvjj of the gradient of the stress �eld v in the bounded domain D =(0; 1)� (0; 1) where LAMBDA = 0.008 is given in Figure A.2. Figure A.3 shows the contour plotfor this surface.
27

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure A.3: Contours of jjrvjj for the stress �eld v in a design with composite materials
28

