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1. IntroductionIn this paper we describe tensor methods for solving the unconstrained optimization problemgiven f : <n ! <; �nd x� 2 <n such that f(x�) � f(x) for all x 2 D; (1:1)where D is some open set containing x�, and f is convex on D. We assume that f is at leasttwice continuously di�erentiable, and n is large.Tensor methods for unconstrained optimization are general-purpose methods primarily in-tended to improve upon the performance of standard methods, especially on problems wherer2f(x�) has a small rank de�ciency. They are also intended to be at least as e�cient as standardmethods on problems where r2f(x�) is nonsingular.Tensor methods for unconstrained optimization base each iteration upon the fourth-ordermodel of the objective function f(x),MT (xc + d) = f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 16Tc � d3 + 124Vc � d4; (1:2)where d 2 <n, xc is the current iterate, rf(xc) and r2f(xc) are the �rst and second analyticderivatives of f at xc, or �nite di�erence approximations to them, and the tensor terms at xc,Tc 2 <n�n�n and Vc 2 <n�n�n�n , are symmetric. (We use the notation rf(xc) �d forrf(xc)Td,and r2f(xc) �d2 for dTr2f(xc)d to be consistent with the tensor notation Tc �d3 and Vc �d4. Also,for simplicity, we abbreviate terms of the form dd; ddd, and dddd by d2; d3, and d4, respectively.)Before proceeding, we de�ne the tensor notation used above.De�nition 1.1. Let T 2 <n�n�n . Then for u; v; w 2 <n; T � uvw 2 <; T � vw 2 <n, withT � uvw = nXi=1 nXj=1 nXk=1T (i; j; k)u(i)v(j)w(k);(T � vw)(i) = nXj=1 nXk=1T (i; j; k)v(j)w(k); i = 1; :::; n:De�nition 1.2. Let V 2 <n�n�n�n . Then for r; u; v; w 2 <n; V � ruvw 2 <; V � uvw 2 <n withV � ruvw = nXi=1 nXj=1 nXk=1 nXl=1 V (i; j; k; l)r(i)u(j)v(k)w(l);(V � uvw)(i) = nXj=1 nXk=1 nXl=1 V (i; j; k; l)u(j)v(k)w(l); i = 1; :::; n:The tensor terms are selected so that the model interpolates a small number of function andgradient values from previous iterations. This results in Tc and Vc being low-rank tensors, whichis crucial for the e�ciency of the tensor method. The tensor method requires no more functionor derivative evaluations per iteration and hardly more storage or arithmetic operations thandoes a standard method based on Newton's method.Standard methods for solving unconstrained optimization problems are widely described inthe literature; general references on this topic include Dennis and Schnabel [9], Fletcher [12],2



and Gill, Murray, and Wright [14]. In this paper, we propose extensions to standard methodsthat use analytic or �nite-di�erence gradients and Hessians.The standard method for unconstrained optimization, Newton's method, bases each iterationupon the quadratic model of f(x),MN (xc + d) = f(xc) + rf(xc) � d+ 12r2f(xc) � d2: (1:3)This method is de�ned when r2f(xc) is nonsingular and consists of setting the next iterate x+to the minimizer of (1.3), namely,x+ = xc �r2f(xc)�1rf(xc): (1:4)A distinguishing feature of Newton's method is that if r2f(xc) is nonsingular at a localminimizer x�, then the sequence of iterates produced by (1.4) converges locally quadratically tox�. However, Newton's method is generally linearly convergent at best if r2f(x�) is singular[15].Methods based on (1.2) have been shown to be more reliable and more e�cient than standardmethods on small to moderate-size problems [19]. In the test results obtained for both nonsin-gular and singular problems, the improvement by the tensor method over Newton's method issubstantial, ranging from 30% to 50% in iterations and in function and derivative evaluations.Furthermore, the tensor method solves several problems that Newton's method fails to solve.The tensor algorithms described in [19] are QR-based algorithms involving orthogonal trans-formations of the variable space. These algorithms are very e�ective for minimizing the tensormodel when the Hessian is dense because they are very stable numerically, especially when theHessian is singular. They are not e�cient for sparse problems, however, because they destroy thesparsity of the Hessian due to the orthogonal transformation of the variable space. To preservethe sparsity of the Hessian, we have developed an entirely new way of solving the tensor modelthat employs a sparse variant of the Cholesky decomposition. This makes our new algorithmsvery well suited for sparse problems.The remainder of this paper is organized as follows. In x2 we briey review the techniquesintroduced by Schnabel and Chow [19] to form the tensor model. In x3 we describe e�cientalgorithms for minimizing the tensor model when the Hessian is sparse. In xx4 and 5 we dis-cuss the globally convergent modi�cations for tensor methods for large, sparse unconstrainedoptimization. These consist of line search backtracking and model trust region techniques. Ahigh-level implementation of the tensor method is given in x6. In x7 we describe comparativetesting for an implementation based on the tensor method versus an implementation based onNewton's method, and we present summary statistics of the test results. Finally, in x8, we givea summary of our work and a discussion of future research.2. Forming the Tensor ModelIn this section, we briey review the techniques that were introduced in [19] for forming thetensor model for unconstrained optimization.As was stated in the preceding section, the tensor method for unconstrained optimizationbases each iteration upon the fourth-order model of the nonlinear function f(x) given by (1.2).3



The choices of Tc and Vc in (1.2) cause the third-order term Tc � d3 and the fourth-orderterm Vc � d4 to have simple and useful forms. These tensor terms are selected so that the tensormodel interpolates function and gradient information at a set of p not necessarily consecutivepast iterates x�1; :::; x�p.In the remainder of this paper, we restrict our attention to p = 1. The reasons for thischoice are that the performance of the tensor version that allows p � 1 is similar overall to thatconstraining p to be 1, and that the method is simpler and less expensive to implement in thiscase. (The derivation of the third- and fourth-order tensor terms for p � 1 is explained in detailin [19].)The interpolation conditions at the past point x�1 are given byf(x�1) = f(xc) + rf(xc) � s + 12r2f(xc) � s2 + 16Tc � s3 + 124Vc � s4 (2:1)and rf(x�1) = rf(xc) + r2f(xc) � s + 12Tc � s2 + 16Vc � s3; (2:2)where s = x�1 � xc:Schnabel and Chow [19] choose Tc and Vc to satisfy (2.1) and (2.2). They �rst show thatthe interpolation conditions (2.1) and (2.2) uniquely determine Tc � s3 and Vc � s4. Multiplying(2.2) by s yieldsrf(x�1) � s = rf(xc) � s + r2f(xc) � s2 + 12Tc � s3 + 16Vc � s4: (2:3)Let �, � 2 < be de�ned by � = Tc � s3;� = Vc � s4:Then from (2.1) and (2.3) they obtain the following system of two linear equations in the twounknowns � and �: 12� + 16� = q1; (2:4)16� + 124� = q2; (2:5)where q1, q2 2 < are de�ned byq1 = rf(x�1) � s � rf(xc) � s � r2f(xc) � s2;q2 = f(x�1) � f(xc) � rf(xc) � s � 12r2f(xc) � s2:The system (2.4){(2.5) is nonsingular; therefore the values of � and � are uniquely determined.Hence, the interpolation conditions uniquely determine Tc � s3 and Vc � s4. Since these are theonly interpolation conditions, the choice of Tc and Vc is vastly underdetermined.4



Schnabel and Chow [19] choose Tc and Vc by �rst selecting the smallest symmetric Vc, in theFrobenius norm, for which Vc � s4 = �;where � is determined by (2.4){(2.5). Then they substitute this value of Vc into (2.2), obtainingTc � s2 = a; (2:6)where a = 2(rf(x�1) � rf(xc) � r2f(xc) � s � 16Vc � s3): (2:7)This is a set of n linear equations in n3 unknowns Tc(i; j; k), 1 � i; j; k � n. More precisely,Schnabel and Chow [19] choose the smallest symmetric Tc and Vc, in the Frobenius norm, thatsatisfy the equations (2.6){(2.7). That is,minVc2<n�n�n�n jj Vc jjF (2:8)subject to Vc � s4 = �, and Vc is symmetric,and minTc2<n�n�n jj Tc jjF (2:9)subject to Tc � s2 = a, and Tc is symmetric.The solution to (2.8) is Vc =  (s
 s
 s
 s);  = �(sTs)4 ;where the tensor Vc = s 
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 s 2 <n�n�n�n is called a fourth-order rank-one tensor forwhich Vc(i; j; k; l) = s(i)s(j)s(k)s(l); 1 � i; j; k; l � n. (We use the notation 
 to be consistentwith [19].)The solution to (2.9) is Tc = b
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 b; (2:10)where the notation T = u 
 v 
 w; u; v; w 2 <n, T 2 <n�n�n , is called a third-order rank-onetensor for which T (i; j; k) = u(i)v(j)w(k). Here b 2 <n is the unique vector for which (2.10)satis�es (2.6). It is given by b = 3a(sTs) � 2s(sTa)3(sTs)3 :Tc and Vc determined by the minimum norm problems (2.9) and (2.8) have rank 2 and 1,respectively. This is the key to form, store, and solve the tensor model e�ciently. The wholeprocess of forming the tensor model requires only O(n2) arithmetic operations. The storageneeded for forming and storing the tensor model is only a total of 6n.For further information we refer to [19]. 5



3. Solving the Tensor Model When the Hessian Is SparseIn this section we give algorithms for �nding a minimizer of the tensor model (1.2) e�ciently,when the Hessian is sparse.The substitution of the values of Tc and Vc into (1.2) results in the tensor modelMT (xc + d) = f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 12(bTd)(sTd)2 + 24(sTd)4: (3:1)As we stated in x2, we only consider the case p = 1 where the tensor model interpolatesf(x) and rf(x) at the previous iterate. The generalization for p � 1 is fairly straightforward.This constraint is mainly motivated by our computational results. When we allow p � 1, ourtest results showed almost no improvement over the case where p = 1. The tensor method istherefore considerably simpler, as well as cheaper in terms of storage and cost per iteration.3.1. Case 1: The Hessian Is NonsingularWe show that the minimization of (3.1) can be reduced to the solution of a third-order polynomialin one unknown, plus the solution of three systems of linear equations that all involve the samecoe�cient matrix r2f(xc). For conciseness, we use the notation g = rf(xc) and H = r2f(xc).A necessary condition for d to be a local minimizer of (3.1) is that the derivative of thetensor model with respect to d must be zero. That is,rMT (xc + d) = g + Hd + (bTd)(sTd)s + 12(sTd)2b + 6(sTd)3s = 0;which yields d = �H�1(g + (bTd)(sTd)s + 12(sTd)2b + 6(sTd)3s): (3:2)If we �rst premultiply the equation (3.2) by sT on both sides, we obtain a cubic equation (in �)in the unknowns � = sTd and � = bTd,sTH�1g + � + sTH�1s�� + 12sTH�1b�2 + 6sTH�1s�3 = 0: (3:3)If we then premultiply the equation (3.2) by bT on both sides, we obtain another cubic equation(in �) in the unknowns � and �,bTH�1g + � + bTH�1s�� + 12bTH�1b�2 + 6bTH�1s�3 = 0: (3:4)Thus, we obtain a system of two cubic equations in the two unknowns � and � which can besolved analytically.We now show how to compute the solutions of this system of two cubic equations in twounknowns by computing the solutions of a single cubic equation in the unknown �. Let u =sTH�1g, v = sTH�1b, w = sTH�1s, y = bTH�1g, and z = bTH�1b. We �rst calculate thevalue of � as a function of � using the equation (3.3):� = �(u+ � + 12v�2 + 6w�3)w� : (3:5)6



Note that the denominator of (3.5) is equal to zero if either � = 0 or w = 0. We assume that� 6= 0; otherwise the tensor model would be reduced to the Newton model. Now, if w = 0, then(3.3) would be quadratic in �. Therefore� = �1 � p1� 2uv2 :Thus, real-valued minimizers of the tensor model (3.1) may exist only if 1� 2uv � 0: It is easyto check that in order for � to have a de�ned value, 1 + v� cannot be zero.If � 6= 0 and w 6= 0, we substitute the expression for � into (3.4) and obtain� u+ (yw� uv � 1)� � 32v�2 + (12wz � 6w � 12v2)�3 = 0; (3:6)which is a third-order polynomial in the one unknown �. The roots of (3.6) are computedanalytically. We substitute the values of � into (3.5) to calculate the values of �. Then wesimply substitute the values of � and � into (3.2) to obtain the values of d. The major cost inthis whole process is the calculation of H�1g, H�1b, and H�1s.After we compute the values of d, we determine which of them are potential minimizers.Our criterion is to select those values of d that guarantee that there is a descent path from xcto xc + d for the model MT (xc + d). Then among the selected steps, we choose the one thatis closest to the current iterate xc in the Euclidean norm sense. If the tensor model has nominimizer, we use the standard Newton step as the step direction for the current iteration.3.2. Case 2: The Hessian Is Rank De�cientIf the Hessian matrix is rank de�cient, we transform the tensor model given in (3.1) by thefollowing procedure. Let d = d̂+ � for a �xed d̂, where � is the new unknown. Substituting thisexpression for d into (3.1) yields the following tensor model, which is a function of �:MT (xc + d) = f(xc) + rf(xc) � d̂ + 12r2f(xc) � d̂2 + 12(bT d̂)(sT d̂)2+ 24(sT d̂)4 + (rf(xc) + r2f(xc)d̂ + (bT d̂)(sT d̂)s+ 12(sT d̂)2b + 24(sT d̂)3s) � � + 12(r2f(xc)+ (bT d̂ + 2ssT ) � �2 + (sT d̂)(bT �)(sT�) + 12(bT �)(sT �)2+ 6(sT d̂)(sT �)3 + 24(sT�)4: (3:7)If we let �̂ = sT d̂, �̂ = bT d̂, ĝ = rf(xc) +r2f(xc)d̂ + �̂�̂s + 12 �̂2b + 6 �̂3s, c = bT d̂ + 2 , andĤ = r2f(xc) + cssT , then we obtain the modi�ed tensor modelMT (xc + d) = MT (xc + d̂) + ĝ � � + 12Ĥ � �2 + �̂(bT �)(sT �)+ 12(bT �)(sT�)2 + 6 �̂(sT �)3 + 24(sT �)4: (3:8)7



The advantage of this transformation is that the matrix Ĥ is likely to be nonsingular if the rankof r2f(xc) is at least n � 1. A necessary and su�cient condition for Ĥ to be nonsingular isgiven in the following lemma. Let g and H denote rf(xc) and r2f(xc), respectively.Lemma 3.1. Let H 2 <n�n , s 2 <n.H + cssT is nonsingular if and only if M = 2666664 H cscsT �cI 3777775 is nonsingular:(Note that the h sT �I i submatrix was premultiplied by the constant c to symmetrize theaugmented matrix M .)Proof. We prove that there exists v 2 <n; v 6= 0, for which (H + cssT )v = 0, if and only if thereexist �v 2 <n; w 2 <, for which2666664 H cscsT �cI 37777752666664 �vw 3777775 = 2666664 00 3777775 ; 2666664 �vw 3777775 6= 2666664 00 3777775 : (3:9)Suppose �rst that (H + cssT )v = 0; v 6= 0. Then for �v = v; w = sT v, (�v; w) satis�es (3.9).Conversely, if there exists (�v; w) satisfying (3.9), then sT �v = w, so (H + cssT )�v = 0, and �v 6= 0;otherwise, w = 0, which contradicts (3.9). Thus (H + cssT ) is singular if and only if M issingular.Corollary 3.2. Let H 2 <n�n, s 2 <n.If H + cssT is nonsingular; then h H cs i has full row rank:Proof. Follows from Lemma 3.1.Lemma 3.3. Let H 2 <n�n , rank(H) = n� 1, s 2 <n.H + cssT is nonsingular if and only if h H cs i has full row rank:Proof. The only if part follows from Corollary 3.2. Now assume h H cs i has full row rank.Since H has rank n � 1, H = H1HT2 , where H1; H2 2 <n�(n�1) have full column rank. Sinceh H cs i has full row rank,(vTH = 0 and vT s = 0) ) v = 0: (3:10)From H = H1H2T and the fact that H2 has full column rank, (3.10) is equivalent to(vTH1 = 0 and vT s = 0) ) v = 0:8



Thus the n � n matrix h H1 cs i is nonsingular. Analogously, the n � n matrix h H2 s i isnonsingular. Thereforeh H1 cs i " HT2sT # = H1H2T + cssT = H + cssTis nonsingular. 2For � to be a local minimizer of (3.8) the derivative of the tensor model (3.8) with respectto � must be zero. That is,rMT (xc + �) = ĝ + Ĥ� + �̂(sT�)b + �̂(bT �)s + (sT �)(bT �)s+ (12b + 2 �̂s)(sT �)2 + 6(sT �)3s = 0; (3:11)which yields � = �Ĥ�1(ĝ + �̂(sT �)b + �̂(bT �)s + (sT �)(bT�)s+ (12b + 2 �̂s)(sT �)2 + 6(sT �)3s): (3:12)Premultiplying (3.12) by sT on both sides results in a cubic equation (in �) in the two unknowns� = sT � and � = bT �:sT Ĥ�1ĝ + (1 + �̂sT Ĥ�1b)� + �̂sT Ĥ�1s� + sT Ĥ�1s��+ (12sT Ĥ�1b + 2 �̂sT Ĥ�1s)�2 + 6sT Ĥ�1s�3 = 0: (3:13)The premultiplication of (3.12) by bT on both sides yields another cubic equation (in �) in thetwo unknowns � and �:bT Ĥ�1ĝ + (1 + �̂bT Ĥ�1s)� + �̂bT Ĥ�1b� + bT Ĥ�1s��+ (12bT Ĥ�1b + 2 �̂bT Ĥ�1s)�2 + 6bT Ĥ�1s�3 = 0: (3:14)Therefore, we obtain a system of two cubic equations in the two unknowns � and �, which wecan solve analytically.Since (3.13) is linear in �, we can compute � as a function of � and then substitute itsexpression into (3.14) to obtain an equation in the one unknown �. Let u = sT Ĥ�1ĝ, v =sT Ĥ�1b, w = sT Ĥ�1s, y = bT Ĥ�1ĝ, and z = bT Ĥ�1b. Equation (3.13) yields
9



� = 1w(�̂ + �)(yw�̂ � u � uv�̂ + (yw + zw�̂2 � 2v�̂ � v2�̂2 � uv � 1)�(3:15)+ (32zw�̂ � 2w�̂ � 32v � 32v2�̂) + (12zw � 6w � v22 )�3):The denominator of (3.15) is equal to zero if either �̂ + � = 0 or w = 0. If w = 0,then (3.13) would be quadratic in �. Therefore� = �(1 + �̂v) � q(1 + �̂v)2 � 2uvv :Hence, real-valued minimizers of the tensor model (3.8) may exist only if (1 + �̂v)2 � 2uv andv 6= 0. It is straightforward to verify from (3.14) that for � to be de�ned (�̂ + �)v cannot equal-1. Now, if �̂ + � = 0, then (3.13) reduces to the following cubic equation in �:u + (1 + �̂v)� + (12v + 2w�̂)�2 + 6w�3 = 0: (3:16)Once we calculated the expressions for � from (3.16), we substitute them into the followingequation for � obtained from (3.14):� = �y � z�̂� � (12z + 2v�̂)�2 � 6v�3:If neither �̂ + � = 0 nor w = 0, we substitute the expression (3.15) into (3.14) and obtain�(u + 2�̂v + �̂uv + �̂2v2 + 1) + (yw + �̂2zw � �̂v � v � uv)�+ (�̂2zw + 12 �̂zw � 12v � 2 �̂w � 12 �̂v2)�2 + (12zw � 6w � 12v2)�3 = 0; (3:17)which is a third-order polynomial in the one unknown �. The roots of (3.17) are then computedanalytically. After we determine the values of �, we substitute them into (3.15) to calculatethe corresponding values of �. Then, we simply substitute the values of � and � into (3.12) toobtain the values of �. The dominant cost in this whole process is the computation of Ĥ�1ĝ,Ĥ�1b, and Ĥ�1s.Similar to the nonsingular case, a minimizer � is selected such that there exists a descentpath from the current point xc to xc+�, and that � is closest to xc in the Euclidean norm sense.To obtain the tensor step d, we set d to d̂ + �. An appropriate choice of d̂ is the step usedin the previous iteration simply because it has the right scale.The above procedure is tailored to handle only the case where the Hessian matrix has rankn � 1. It has been shown in practice that when r2f(x�) has rank n � 1 the convergence rateof the tensor method is better than the linear convergence of the standard Newton method[19] (also see x7 for the ratios of the errors of successive iterates on the BRYBND problemwith rank(r2f(x�)) = n � 1. Tensor methods for nonlinear equations problems have beenshown to have 3-step Q-order 1.5 convergence on problems where the Jacobian has rank n � 110



at the solution [11], whereas Newton's method is linearly convergent with constant 1/2 onsuch problems. However, no attempt has been made yet to prove the convergence rate oftensor methods for unconstrained optimization problems where the Hessian at the solutionhas rank n � 1. On problems where rank(r2f(x�)) < n � 2, tensor methods do not haveenough information to prove faster-than-linear convergence rate, since it usually uses p = 1.Consequently, when rank(r2f(x�)) < n� 2 we simply use the modi�ed Newton step (see x6) asthe step direction for the current iteration.4. Line Search Backtracking TechniquesThe line search global strategy we use in conjunction with our tensor method for large, sparseunconstrained optimization is similar to the one used for nonlinear equations [4, 6]. This strat-egy has shown to be very successful for large, sparse systems of nonlinear equations. We alsofound that it is superior to the approach used by Schnabel and Chow [19]. The main di�erencebetween the two approaches is that ours always tries the full tensor step �rst. If this providesenough decrease in the objective function, then we terminate; otherwise we �nd acceptable nextiterates in both the Newton and tensor directions and select the one with the lower functionvalue as the next iterate. Schnabel and Chow, on the other hand, always �nd acceptable nextiterates in both the Newton and tensor directions and choose the one with the lower functionvalue as the next iterate. In practice, our approach almost always requires fewer function eval-uations while retaining the same e�ciency in iteration numbers. The global framework for linesearch methods for unconstrained minimization is given in Algorithm 4.1.Algorithm 4.1. Global Framework for Line Search Methods for Unconstrained MinimizationLet xc be the current iterate,dt the tensor step,dn is the Newton step,g = rf(xc),fc = f(xc),slope = gTdt,and � = 10�4.xt+ = xc + dtfp = f(xt+)if (minimizer of the tensor model was found) thenif fp < fc + � � slope thenx+ = xt+elseFind an acceptable xn+ in the Newton direction dnusing the line search given by Algorithm A6.3.1 [9, p.325]Find an acceptable xt+ in the tensor direction dtusing the line search given by Algorithm A6.3.1 [9, p.325]if f(xn+) < f(xt+) thenx+ = xn+ 11



elsex+ = xt+endifendifelseFind an acceptable xn+ in the Newton direction dnusing the line search given by Algorithm A6.3.1 [9, p.325]x+ = xn+endif5. Model Trust Region TechniquesThe two computational methods|the locally constrained optimal (or \hook") step and thedogleg step|are generally used for approximately solving the trust region problem based on thestandard model, minimize f(xc) + rf(xc) � d + 12r2f(xc) � d2 (5:18)subject to jj d jj2 � �c;where �c is the current trust region radius. When �c is shorter than the Newton step, thelocally constrained optimal step [17] �nds a �c such that jj d(�c) jj2 � �c, where d(�c) =�(r2f(xc) + �I)�1rf(xc). Then it takes x+ = xc + d(�c). The dogleg step is a modi�cationof the trust region algorithm introduced by Powell [18]. However, rather than �nding a pointx+ = xc + d(�c) on the curve d(�c) such that jj x+ � xc jj � �c, it approximates this curve by apiecewise linear function in the subspace spanned by the Newton step and the steepest descentdirection �rf(xc), and takes x+ as the point on this approximation for which jj x+�xc jj = �c.(See, e.g., [9] for more details.)Unfortunately these two methods are hard to extend to the tensor model, which is a fourth-order model. Trust region algorithms based on (5.18) are well de�ned because it is alwayspossible to �nd a unique point x+ on the curve such that jj x+ � xc jj = �c. Additionally, thevalue of f(xc)+rf(xc) �d+ 12r2f(xc) �d2 along the curve d(�c) is monotonically decreasing fromxc to xn+, where xn+ = xc + dn, which makes the process reasonable. These properties do notextend to the tensor model, which is a fourth-order model that may not be convex. Furthermore,the analogous curve to d(�c) is more expensive to compute. For these reasons, we consider adi�erent trust region approach for our tensor methods.The trust region approach that is discussed in this section is a two-dimensional trust regionstep over the subspace spanned by the steepest descent direction and the tensor (or standard)step. The main reasons that lead us to adopt this approach are that it is easy to construct, closelyrelated to dogleg type algorithms over the same subspace. This step may be close to optimaltrust region step algorithms in practice. Byrd, Schnabel, and Shultz [7] have shown that forunconstrained optimization using a standard quadratic model, the analogous two-dimensionalminimization approach produces nearly as much decrease in the quadratic model as the optimaltrust region step in almost all cases. 12



The two-dimensional trust region approach for the tensor model computes an approximatesolution tominimize f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 12(bTd)(sTd)2 + 24(sTd)4subject to jj d jj2 � �c;by performing a two-dimensional minimization,minimize f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 12(bTd)(sTd)2 + 24(sTd)4 (5:19)subject to jj d jj2 � �c; d 2 [dt; gs];where dt and gs are the tensor step and the steepest descent direction, respectively, and �c is thetrust region radius. This approach will always produce a step that reduces the quadratic modelby at least as much as a dogleg-type algorithm, which reduces d to a piecewise linear curve inthe same subspace. At each iteration of the tensor algorithm, the trust region method eithersolves (5.19) or minimizes the standard linear model over the two-dimensional subspace spannedby the standard Newton step and the steepest descent direction. The decision of whether to usethe tensor or standard model is made using the following criterion:if (no minimizer of the tensor model was found) or (rf(xc)Tdt > �10�4jj rf(xc) jj2jj dt jj2)thenx+ = xc + �dn � �gs; �, � selected by trust region algorithmelsex+ = xc + �dt � �gs; �, � selected by trust region algorithmendifBefore we de�ne the two-dimensional trust region step for tensor methods, we show how toconvert the problemminimize f(xc) + rf(xc) � d + 12r2f(xc) � d2 + 12(bTd)(sTd)2 + 24(sTd)4 (5:20)subject to jj d jj2 = �c; d 2 [ dt; gs ];to an unconstrained minimization problem.First, we make gs orthogonal to dt by performing the Householder transformation:ĝs = gs � dtgTs dtdTt dt ; (5:21)then, we normalize both ĝs and dt to obtain~dt = dtjj dt jj2 ; (5:22)~gs = ĝsjj ĝs jj2 : (5:23)13



Since d is in the subspace spanned by the tensor step ~dt and the steepest descent direction ~gs,it can be written as d = � ~dt + �~gs; �; � 2 <: (5:24)If we square the l2 norm of this expression for d and set it to �2, we obtain the following equationfor � as a function of � � = p�2 � �2:Substituting this expression for � into (5.24) and then the resulting d into (5.20) yields the globalminimization problem in the one variable �, given by (5.25) below. Thus, problems (5.25) and(5.20) are equivalent. Let ghg = ~gTs H~gs, dhd = ~dTt H ~dt, dhg = ~dTt H~gs, bt = bT ~dt, st = sT ~dt,bg = bT ~gs, and sg = sT ~gs.minimize f(xc) + 12�2c ghg + 24�4c s4g + (1 + �2c bgs2g)q�2c � �2+ (dhg + 6 �2c sts3g)�q�2c � �2 + (btsgst + bgs2t + btstsg� bgs2g)�2p�2c � �2 + (�2cbgsgst + �2c bts2g + �2c bgstsg)�+ (12dhd � 12ghg + 12bts2t + 4�2c s2t s2g � 12�2cs4g)�2� (bgsgst + bts2g + bgstsg)�3 + ( 24s4t � 4s2t s2g + 24s4g)�4+ (6s3t sg � 6sts3g)�3q�2c � �2; (5:25)where ��c < � < �c.To transform the problemminimize f(xc) + rf(xc) � d + 12r2f(xc) � d2 (5:26)subject to jj d jj2 = �c; d 2 [ dn; g ]to an unconstrained minimization problem, we use the same procedure described above to showthat (5.26) is equivalent to the following global minimization problem in the one variable �:minimize f(xc) + 12�2cghg + q�2c � �2 + dhg�q�2c � �2 + (12dhd � 12ghg)�2; (5:27)where ��c < � < �c.Algorithm 5.1. Two-Dimensional Trust Region for Tensor MethodsLet dt be the tensor step,dn the standard step,xc the current iterate,fc = f(xc),x+ the next iterate, 14



f+ = f(x+),gs = �rf(xc), the steepest descent direction,gc = rf(xc),Hc = r2f(xc),and �c the current trust region radius.~dt; ~gs are given by (5.22) and (5.23), respectively.~dn is obtained in an analogous way to ~dt; by applying transformations (5.21) and (5.22) to it.1. if tensor model selected thenSolve problem (5.25) using the procedure described in Algorithm 3.4 [6]else fstandard Newton model selectedgSolve problem (5.27) using the procedure described in Algorithm 3.4 [6]endif2. if tensor model selected thend = �� ~dt + ~gsp�2c � �2�where �� is the global minimizer of (5.25)else fstandard Newton model selectedgd = �� ~dn + ~gsp�2c � �2�where �� is the global minimizer of (5.27)endif3. f Check new iterate and update trust region radius.gx+ = xc + dif f+ � fcpred � 10�4 thenthe global step d is successfulelsedecrease trust regiongo to step 1endifwherepred = (fc + gc � d+ 12Hc � d2 + 12(bTd)(sTd)2 + 24(sTd)4)� fc, if tensor model selected,pred = (fc + gc � d+ 12Hc � d2)� fc, if standard Newton model selected.The methods used for adjusting the trust radius during and between steps are given in AlgorithmA6.4.5 [9, p.338]. The initial trust radius can be supplied by the user; if not, it is set to thelength of the initial Cauchy step.6. A High-Level Algorithm for the Tensor MethodIn this section, we present the overall algorithm for the tensor method for large, sparse uncon-strained optimization. Algorithm 6.1 is a high-level description of an iteration of the tensormethod that was described in xx 3|5. A summary of the test results for this implementation15



is presented in x7.Algorithm 6.1. An Iteration of the Tensor Method for Large, Sparse Unconstrained Opti-mizationLet xc be the current iterate,dt the tensor step,and dn the Newton step.1. Calculate rf(xc) and decide whether to stop. If not:2. Calculate r2f(xc).3. Calculate the terms Tc and Vc in the tensor model, so that the tensor model interpolatesf(x) and rf(x) at the past point.4. Find a potential minimizer dt of the tensor model (3.1). If dt cannot be found, thencalculate the modi�ed Newton step dn.5. Find an acceptable next iterate x+ using either a line search or a two-dimensional trustregion global strategy.6. xc = x+,f(xc) = f(x+),go to step 1.In step 1, the gradient is either computed analytically or approximated by the algorithmA5.6.3 given in Dennis and Schnabel [9]. In step 2, the Hessian matrix is either calculatedanalytically or approximated by a graph coloring algorithm described in [8]. Note that it iscrucial to supply an analytic gradient if the �nite di�erence Hessian matrix requires manygradient evaluations. Otherwise, the methods described in this paper may not be practical, andinexact type of methods may be preferable. The procedures for calculating Tc and Vc in step3 were discussed in x2. In step 4, the Hessian matrix is factored using MA27 [10], a sparseCholesky decomposition package. If the Hessian matrix is nonsingular, then the tensor step dtis calculated as described in x3.1. Otherwise, if the Hessian matrix is singular with rank n � 1,then dt is computed as outlined in x3.2. (We comment on the implementation issues relatedto this case in the next paragraph.) If the rank of the Hessian matrix is less than n � 1, thenthe Newton step, dn, is computed as a by-product of the minimization of the tensor model, andused as the step direction for the current iteration. This Newton step dn is the modi�ed Newtonstep (r2f(xc) + �I)�1rf(xc), where � = 0 if r2f(xc) is safely positive de�nite, and � > 0otherwise. To obtain the perturbation �, we use a modi�cation of MA27 advocated by Gill,Murray, Ponceleon, and Saunders in [13]. In this method we �rst compute the LDLT of theHessian matrix using the MA27 package, then change the block diagonal matrix D to D + E.The modi�ed matrix is block diagonal positive de�nite. This guarantees that the decompositionL(D + E)LT is positive de�nite as well. Note that the Hessian matrix is not modi�ed if it isalready positive de�nite.Another implementation issue that deserves some attention is how to solve linear systems ofthe form Ĥx = b, where Ĥ = H + cssT , H 2 <n�n is sparse and rank de�cient, and s 2 <n isfull, (see x3.2). Such systems can be e�ciently solved using the augmented matrix de�ned in16



Lemma 3.1. That is, we write (H + cssT )x = b as2666664 H cscsT �cI 37777752666664 xw 3777775 = 2666664 b0 3777775 : (6:1)The (n + 1) � (n + 1) matrix in (6.1) is sparse and can be factored e�ciently as long as thelast row and column are not pivoted until the last few iterations. In fact, we can combine thenonsingular and singular cases by factoring H , but we shift to a factorization of the augmentedmatrix if H is discovered to be singular with rank n� 1. However, we use a Schur complementmethod to obtain the solution of the augmented matrix by updating the solution from the systemHx = b. This choice was motivated by the fact that the Schur complement method is simplerand more convenient to use than the factorization of the augmented matrix in (6.1). Note thatif the Schur complement method shows that the augmented matrix in (6.1) is rank de�cient (acase that is very rare in practice), the modi�ed Newton step described above is used as the stepdirection for the current iteration.The Schur complement method requires that H must have full rank. Thus, some modi�ca-tions are necessary in order for this method to work. We have modi�ed the factorization phaseof MA27 to be able to detect the row and column indices of the �rst pivot whose absolute valueis less or equal than some given tolerance tol. This stability test is clearly not optimal butappears to work in practice. We also modi�ed the solve phase of MA27 such that whenevera pivot fails the stability criterion above, the corresponding solution component is set to zero.This way the solution of Hx = b is the same as the solution of Hey = b (where He is the matrixH minus the row and column at which singularity occurred. Since y has n � 1 components,the remaining one, which is also the component corresponding to the pivot failing the stabilitytest, is set to 0). Afterwards, we obtain the solution of an augmented system using a Schurcomplement method, where the coe�cient matrix is the matrix H augmented by two rows andcolumns; that is, the (n+ 1)-st row and column are the ones at which singularity was detected,and the (n+2)-nd row and column are csT and cs, respectively. The Schur complement methodis implemented by �rst invoking MA39AD [1] to form the Schur complement S = D � CH�1Bof H in the extended matrix, where D is the 2 by 2 lower right submatrix, C is the lower left2 by n submatrix, and B is the upper right n by 2 submatrix, of the augmented matrix. TheSchur complement is then factored into its QR factors. Next, MA39BD [1] solves the extendedsystem (6.1) using the following well-known scheme:1. Solve Hu = b, for u.2. Solve Sy = b� Cu, for y.3. Solve Hv = By, for v.4. x = u� v.The dominant cost of the above process is the Hu = b and Hv = By solves.The tensor and Newton algorithms terminate if jj rf(xc) jj2 � 10�5 or jj d jj2 < 10�9.17



7. Test ResultsWe tested our tensor and Newton algorithms on a variety of nonsingular and singular testproblems. In the following we present and discuss summary statistics of the test results.All our computations were performed on a Sun Sparc 10 Model 40 machine using double-precision arithmetic.First, we tested our program on the set of unconstrained optimization problems from theCUTE [3] and the MINPACK-2 [2] collections. Most of these problems have nonsingular Hessiansat the solution. We also created singular test problems as proposed in [4, 20] by modifying thenonsingular test problems from the CUTE collection as follows. Letf(x) = mXi=1 f2i (x)be the function to minimize, where fi : <n ! < and m is the number of element functions,and FT (x) = (f1(x); :::; fm(x)): (7:1)In many cases, F (x) = 0 at the minimizer x�, and F 0(x�) is nonsingular. Then according to[4, 20], we can create singular systems of nonlinear equations from (7.1) by formingF̂ (x) = F (x) � F 0(x�)A(ATA)�1AT (x � x�); (7:2)where A 2 <n�k has full column rank with 1 � k � n. Hence, F̂ (x�) = 0 and F̂ 0(x�) has rankn� k. For unconstrained optimization, we simply need to de�ne the singular functionf̂(x) = 12 F̂ (x)T F̂ (x): (7:3)From (7.3) and F̂ (x�) = 0, we obtain rf̂(x�) = 0. FromF̂ 0(x�) = F 0(x�)[I � A(ATA)�1AT ]and r2f̂(x�) = F̂ 0(x�)T F̂ 0(x�) + mXi=1 fi(x�)r2fi(x�) = F̂ 0(x�)T F̂ 0(x�);we know that r2f̂(x�) has rank n� k.By using (7.2) and (7.3), we created two sets of singular problems, with r2f̂(x�) having rankn� 1 and n � 2, respectively, by usingA 2 <n�1; AT = (1; 0; :::; 0);and A 2 <n�2; AT = " 1 0 0 0 � � � 00 1 0 0 � � � 0 # ;respectively. The reason for choosing unit vectors as columns for the matrix A is mainly topreserve the sparsity of the Hessian during the transformation (7.2).18



For all our test problems we used a standard line search backtracking strategy. All the testproblems with the exception of rank n � 1 and rank n � 2 problems were run with analyticgradients and Hessians provided by the CUTE and MINPACK-2 collections. For rank n� 1 andn � 2 test problems, we have modi�ed the analytic gradients provided by the CUTE collectionto take into account the modi�cation (7.2). On the other hand, we used the graph coloringalgorithm [8] to evaluate the �nite di�erence approximation of the Hessian matrix.A summary for the test problems whose Hessians at the solution have ranks n, n � 1, andn� 2 is presented in Table 1. The descriptions of the test problems and the detailed results aregiven in the Appendix. In Table 1 columns \better" and \worse" represent the number of timesthe tensor method was better and worse, respectively, than Newton's method by more than onegradient evaluation. The \tie" column represents the number of times the tensor and standardmethods required within one gradient evaluation of each other. For each set of problems, wesummarize the comparative costs of the tensor and standard methods using average ratios ofthree measures: gradient evaluations, function evaluations, and execution times. The averagegradient evaluation ratio (geval) is the total number of gradients evaluations required by thetensor method, divided by the total number of gradients evaluations required by the standardmethod on these problems. The same measure is used for the average function evaluation(feval) and execution time (time) ratios. These average ratios include only problems that weresuccessfully solved by both methods. We have excluded all cases where the tensor and standardmethods converged to a di�erent minimizer. However, the statistics for the \better," \worse,"and \tie" columns include the cases where only one of the two methods converges, and excludethe cases where both methods do not converge. We also excluded problems requiring a numberof gradient evaluations less or equal than 3 by both methods. Finally, columns \t/s" and \s/t"show the number of problems solved by the tensor method but not by the standard methodand the number of problems solved by the standard method but not by the tensor method,respectively.The improvement by the tensor method over the standard method on problems with rankn�1 is dramatic, averaging 48% in function evaluations, 52% in gradient evaluations, and 59% inexecution times. This is due in part to the rate of convergence of the tensor method being fasterthan that of Newton's method, which is known to be only linearly convergent with constant23 . On problems with rank n � 2, the improvement by the tensor method over the standardmethod is also substantial, averaging 30% in function evaluations, 37% in gradient evaluations,and 34% in execution times. In the test results obtained for the nonsingular problems, the tensormethod is 9% worse than the standard method in function evaluations, but 31% and 33% betterin gradient evaluations and in execution times, respectively. The main reason for the tensormethod requiring on the average more function evaluations than the standard method is becauseon some problems, the full tensor step does not provide su�cient decrease in the objectivefunction, and therefore the tensor method has to perform a line search in both the Newtonand tensor directions, which causes the number of function evaluations required by the tensormethod to be inated. As a result, we intend to investigate other possible global frameworks forline search methods that could potentially reduce the number of functions evaluations for thetensor method.To obtain an experimental indication of the local convergence behavior of the tensor and19



Table 1: Summary of the CUTE and MINPACK-2 test problems using line searchRank Tensor/Standard Pbs Solved Average Ratio{Tensor/Standardr2f(x�) better tie worse t/s s/t feval geval timen 53 38 5 4 0 1.09 0.69 0.67n� 1 18 2 0 5 0 0.52 0.48 0.41n� 2 18 1 1 7 0 0.70 0.63 0.66Newton methods on problems where rank(r2f(x�)) = n�1, we examined the sequence of ratiosjj xk � x� jjjj xk�1 � x� jj (7:4)produced by the Newton and tensor methods on such problems. These ratios for a typicalproblem are given in Table 2. In almost all cases the standard method exhibits local linearconvergence with constant near 23 , which is consistent with the theoretical analysis. The localconvergence rate of the tensor method is faster, with a typical �nal ratio of around 0.01. Whetherthis is a superlinear convergence remains to be determined. We have done similar experiments forproblems with rank(r2f(x�)) = n� 2, and the tensor method did not show a faster-than-linearconvergence rate, because it did not have enough information since p = 1.The tensor method solved a total of four nonsingular problems, �ve rank n�1 problems, and7 rank n� 2 problems that Newton's method failed to solve. The reverse never occurred. Theseresults clearly indicate that the tensor method is most likely to be more robust than Newton'smethod.The overall results show that having some extra information about the function and gradientin the past step direction is quite useful in achieving the advantages of tensor methods.8. Summary and Future ResearchIn this paper we presented new algorithms for solving large, sparse unconstrained optimizationusing tensor methods. Implementations using these tensor methods have been shown to beconsiderably more e�cient especially on problems where the Hessian matrix has a small rankde�ciency at the solution. Typical gains over standard Newton methods range from 40% to50% in function and gradient evaluations and in computer time. The size and consistency ofthe e�ciency gains indicate that the tensor method may be preferable to Newton's methodfor solving large, sparse unconstrained optimization problems where analytic gradients and/orHessians are available. To �rmly establish such a conclusion, additional testing is required,including test problems of very large size.On sparse problems where the function or the gradient is expensive to evaluate, the �nitedi�erence approximation of the Hessian matrix by the graph coloring algorithm [8] may be verycostly. Hence, quasi-Newton methods may be preferable to use in this case. These methodsinvolve low-rank corrections to a current approximate Hessian matrix. We are currently at-tempting to extend our tensor methods to quasi-Newton methods for large, sparse unconstrainedminimization problems. 20



Table 2: Speed of convergence on the BRYBND problem with rank(r2f(x�)) = n�1, as modi�edby (7.2), n = 5000, started from x0. The ratios in second and third columns are de�ned by(7.4). Iteration (k) Standard Method Tensor Method1 0.659 0.6592 0.655 0.0333 0.650 0.4594 0.641 0.9615 0.629 0.8506 0.612 0.6677 0.590 0.4108 0.571 0.3239 0.600 0.12610 0.760 0.01211 0.94012 0.98813 0.97014 0.96915 0.95616 0.92617 0.89118 0.90919 0.84820 0.92621 0.93922 0.89623 0.83224 0.87125 0.74226 0.66727 0.66728 0.66629 0.66530 0.666
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We also considered solving large, sparse, structured unconstrained optimization problemsusing tensor methods. In this variant, we explored the possibility of using exact third- andfourth-order derivative information. The calculation of these derivatives is simpli�ed using theconcept of partial separability, a structure that has already proven to be useful when buildingquadratic models for large-scale nonlinear problems [16]. The calculation of the minimizer ofthis exact tensor model is more problematic, however, because we need to solve a sparse systemof nonlinear equations. An obvious approach to solve these equations is to use a Newton-likemethod. Such a method is characterized by the approximation of the Jacobian used in theNewton process. A simple idea is to use a �xed Jacobian at each step. This has the advantagethat the Jacobian will have already been obtained in the current tensor iteration. However,potential slow convergence of such a scheme may make the cost of a tensor iteration prohibitive.We are currently investigating other possible approaches, such as a modi�ed Newton's methodin which the approximated Jacobian matrix will incorporate more useful information, or aniterative method such as a nonlinear GMRES. This work, a cooperation with Nick Gould [5],will be reported in the near future.We are almost done with the implementation and testing of the two-dimensional trust regionglobal strategy described in x5. This work will be reported in a forthcoming paper.We are also implementing the algorithms discussed in this paper in a software package. Thispackage uses one past point in the formation of the tensor terms, which makes the additionalcost and storage of the tensor method over the standard method very small. The package willbe available soon.Acknowledgments. We thank Professor Bobby Schnabel for his suggestions on how tominimize the tensor model when the Hessian is rank de�cient, Nick Gould for discussing a num-ber of implementation issues, Ta-Tung Chow for reviewing the �rst draft of the paper, and myCERFACS colleague Jacko Koster for his numerous suggestions. We also thank the referees,and Gail Pieper from the MCS division at Argonne National Laboratory for their suggestionsfor improvement.
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Appendix: Test Problems and Detailed Experimental ResultsThe columns in Tables A-3|A-6 have the following meanings:{ func: name of the problem.{ n: dimension of the problem.{ x0: starting point. 1, 10, 100 stand for x0, 10x0, and 100x0, respectively.{ initf : initial value of the objective function.{ fcn: number of function evaluations.{ grad: number of gradient evaluations.{ time: execution time in seconds.{ finalf : �nal value of the objective function.IL, NC stand for iteration limit exceeded and convergence to a nonminimizer, respectively. Theiteration limit is 300 for the MINPACK-2 collection and 200 for the CUTE collection. All startingpoints were provided by the MINPACK-2 and CUTE collections.Remark: For rank n � 1 and n � 2 problems grad does not include the number of gradientsrequired by Hessian evaluations. On the other hand, fcn does include the functions evaluationsrequired by Hessian evaluations.Table A-1: MINPACK-2 test problemsName DescriptionDEPT Elastic-plastic torsion problemDGL1 Ginzburg-Landau (1-dimensional) superconductivity problemDGL2 Ginzburg-Landau (2-dimensional) superconductivity problemDLJ2 2-dimensional Leonard-Jones clusters (molecular conformation) problemDLJ3 3-dimensional Leonard-Jones clusters (molecular conformation) problemDMSA Minimal surface area problemDODC Optimal design with composite materials problemDPJB Pressure distribution in a journal bearing problemDSSC Steady state combustion problem
25



Table A-2: CUTE test problemsName DescriptionARWHEAD Quartic problem whose Hessian is an arrow-head (downwards)with diagonal central part and border-width 1BDQRTIC Quartic problem whose Hessian is banded with bandwidth 9BRYBND Broyden banded system of nonlinear equations, considered inthe least square senseDIXMAANA Dixon-Maany test problem (version A)DIXMAANB Dixon-Maany test problem (version B)DIXMAANC Dixon-Maany test problem (version C)DIXMAANI Dixon-Maany test problem (version I)DIXON3DQ Dixon's tridiagonal quadraticEDENSCH Extended Dennis and Schnabel problem, as de�ned by LiENGVAL1 A sum of 2n� 2 groups, n� 1 of which contain 2 nonlinear elementsFLETCBV2 Boundary Value problemFREUROTH Freudenstein and Roth test problemLIARWHD A simpli�ed version of the NONDIA problemMOREBV Boundary Value problem. This is the nonlinear least-squaresversion without �xed variablesNONDIA Shanno's nondiagonal extension of Rosenbrock functionNONDQUAR A nondiagonal quartic test problem with anarrow-head type Hessian having a tridiagonal central part anda border-width 1. The Hessian is singular at the solutionPENALTY1 A sum of n+ 1 least-squares groups, the �rst nwhich have only one linear elementPENALTY2 A nonlinear least-squares problem with m = 2n groups,group 1 is linear, groups 2 to n use 2 nonlinear elements,groups n+ 1 to m� 1 use 1 nonlinear element, and group muses n nonlinear elementsPOWELLSG Extended Powell singular problemQUARTC A simple quartic functionSINQUAD A function with nontrivial groups and repetitious elementsSROSENBR Separable extension of Rosenbrock's functionTQUARTIC A quartic function with nontrivial groups and repetitious elementsTRIDIA Shanno's TRIDIA quadratic tridiagonal problemWOODS Extended Woods problemWOODS1 Scaled extended Woods problem26



Table A-3: Results of the MINPACK-2 test problemsStandard Tensorfunc n x0 initf fcn grad finalf time fcn grad finalf timeDEPT 100 1 -0.36364D+01 2 2 -0.10694D+02 0.410D-01 2 2 -0.10694D+02 0.391D-01DEPT 400 1 -0.36584D+01 2 2 -0.10902D+02 0.180D+00 2 2 -0.10902D+02 0.182D+00DEPT 900 1 -0.36629D+01 2 2 -0.10946D+02 0.449D+00 2 2 -0.10946D+02 0.471D+00DEPT 1600 1 -0.36645D+01 2 2 -0.10961D+02 0.900D+00 2 2 -0.10961D+02 0.900D+00DEPT 2500 1 -0.36653D+01 2 2 -0.10969D+02 0.153D+01 2 2 -0.10969D+02 0.151D+01DEPT 3600 1 -0.36657D+01 2 2 -0.10973D+02 0.239D+01 2 2 -0.10973D+02 0.236D+01DEPT 4900 1 -0.36659D+01 2 2 -0.10976D+02 0.348D+01 2 2 -0.10976D+02 0.349D+01DEPT 6400 1 -0.36661D+01 2 2 -0.10977D+02 0.478D+01 2 2 -0.10977D+02 0.483D+01DEPT 8100 1 -0.36662D+01 2 2 -0.10978D+02 0.746D+01 2 2 -0.10978D+02 0.713D+01DEPT 10000 1 -0.36663D+01 2 2 -0.10979D+02 0.833D+01 2 2 -0.10979D+02 0.831D+01DGL1 100 1 -0.16619D-03 18 18 -0.84562D+04 0.410D+00 5 5 -0.84562D+04 0.110D+00DGL1 400 1 -0.16619D-03 18 18 -0.84562D+04 0.173D+01 9 6 -0.84562D+04 0.620D+00DGL1 900 1 -0.16619D-03 18 18 -0.84562D+04 0.397D+01 6 6 -0.84562D+04 0.129D+01DGL1 1600 1 -0.16619D-03 18 18 -0.84562D+04 0.706D+01 7 7 -0.84562D+04 0.282D+01DGL1 2500 1 -0.16619D-03 18 18 -0.84562D+04 0.110D+02 8 8 -0.84562D+04 0.512D+01DGL1 3600 1 -0.16619D-03 19 19 -0.84562D+04 0.169D+02 9 9 -0.84562D+04 0.847D+01DGL1 4900 1 -0.16619D-03 19 19 -0.84562D+04 0.230D+02 7 7 -0.84562D+04 0.860D+01DGL1 6400 1 -0.16619D-03 17 17 -0.84413D+04 0.270D+02 7 7 -0.84562D+04 0.115D+02DGL1 8100 1 -0.16619D-03 { NC { { 7 7 -0.84562D+04 0.149D+02DGL1 10000 1 -0.16619D-03 { NC { { 9 9 -0.84562D+04 0.236D+02DGL2 100 1 0.18190D+02 231 84 0.16228D+02 0.113D+02 150 38 0.16228D+02 0.531D+01DGL2 400 1 0.20131D+02 159 67 0.16231D+02 0.450D+02 210 43 0.16231D+02 0.307D+02DGL2 900 1 0.22015D+02 265 96 0.16232D+02 0.202D+03 418 76 0.16232D+02 0.169D+03DGL2 1600 1 0.23884D+02 306 111 0.16232D+02 0.584D+03 455 81 0.16232D+02 0.444D+03DGL2 2500 1 0.25748D+02 354 122 0.16232D+02 0.133D+04 607 102 0.16232D+02 0.117D+04DGL2 3600 1 0.27609D+02 503 165 0.16232D+02 0.314D+04 751 137 0.16232D+02 0.219D+04DGL2 4900 1 0.29469D+02 686 223 0.16232D+02 0.128D+05 849 144 0.16232D+02 0.644D+04DLJ2 100 1 -0.10698D+03 252 107 -0.13375D+03 0.113D+03 176 51 -0.13396D+03 0.544D+02DLJ2 200 1 -0.22945D+03 405 132 -0.28056D+03 0.103D+04 475 89 -0.28140D+03 0.698D+03DLJ2 300 1 -0.35261D+03 544 145 -0.44216D+03 0.372D+04 631 118 -0.44025D+03 0.305D+04DLJ3 120 1 -0.11782D+03 375 112 -0.17954D+03 0.137D+03 348 65 -0.17073D+03 0.805D+02DLJ3 210 1 -0.23253D+03 485 139 -0.34073D+03 0.838D+03 608 113 -0.34522D+03 0.687D+03DLJ3 360 1 -0.42908D+03 1031 281 -0.63744D+03 0.826D+04 963 173 -0.63311D+03 0.466D+04DMSA 100 1 0.14608D+01 4 4 0.14185D+01 0.150D+00 4 4 0.14185D+01 0.160D+00DMSA 400 1 0.14891D+01 4 4 0.14206D+01 0.640D+00 10 4 0.14206D+01 0.710D+00DMSA 900 1 0.15035D+01 5 5 0.14210D+01 0.212D+01 4 4 0.14210D+01 0.172D+01DMSA 1600 1 0.15123D+01 5 5 0.14212D+01 0.396D+01 10 5 0.14212D+01 0.446D+01DMSA 2500 1 0.15183D+01 6 6 0.14212D+01 0.833D+01 14 5 0.14212D+01 0.761D+01DMSA 3600 1 0.15227D+01 6 6 0.14213D+01 0.130D+02 10 6 0.14213D+01 0.146D+02DMSA 4900 1 0.15260D+01 6 6 0.14213D+01 0.190D+02 11 6 0.14213D+01 0.210D+02DMSA 6400 1 0.15286D+01 7 7 0.14213D+01 0.308D+02 9 7 0.14213D+01 0.342D+02DMSA 8100 1 0.15307D+01 17 12 0.14213D+01 0.846D+02 16 8 0.14213D+01 0.595D+02DMSA 10000 1 0.15324D+01 21 14 0.14213D+01 0.117D+03 17 7 0.14213D+01 0.601D+02DODC 100 1 0.44626D-01 14 8 -0.10980D-01 0.420D+00 16 8 -0.10980D-01 0.487D+00DODC 400 1 0.47194D-01 13 10 -0.11248D-01 0.234D+01 19 10 -0.11248D-01 0.272D+01DODC 900 1 0.47771D-01 23 13 -0.11329D-01 0.744D+01 41 14 -0.11329D-01 0.943D+01DODC 1600 1 0.47974D-01 55 23 -0.11351D-01 0.256D+02 56 21 -0.11351D-01 0.267D+02DODC 2500 1 0.48082D-01 70 33 -0.11359D-01 0.617D+02 117 28 -0.11359D-01 0.623D+02DODC 3600 1 0.48139D-01 129 49 -0.11368D-01 0.148D+03 194 42 -0.11368D-01 0.144D+03DODC 4900 1 0.48178D-01 565 163 -0.11372D-01 0.713D+03 406 76 -0.11372D-01 0.380D+03DODC 6400 1 0.48202D-01 597 168 -0.11374D-01 0.999D+03 526 94 -0.11374D-01 0.640D+03DODC 8100 1 0.48221D-01 { IL { { { IL { {DODC 10000 1 0.48234D-01 { IL { { { IL { {DPJB 100 1 0.11274D+02 2 2 -0.27881D+00 0.488D-01 2 2 -0.27881D+00 0.508D-01DPJB 400 1 0.13331D+02 2 2 -0.28144D+00 0.209D+00 2 2 -0.28144D+00 0.201D+00DPJB 900 1 0.14544D+02 2 2 -0.28219D+00 0.500D+00 2 2 -0.28219D+00 0.490D+00DPJB 1600 1 0.15545D+02 2 2 -0.28249D+00 0.939D+00 2 2 -0.28249D+00 0.959D+00DPJB 2500 1 0.16462D+02 2 2 -0.28264D+00 0.150D+01 2 2 -0.28264D+00 0.160D+01DPJB 3600 1 0.17336D+02 2 2 -0.28272D+00 0.243D+01 2 2 -0.28272D+00 0.256D+01DPJB 4900 1 0.18186D+02 2 2 -0.28277D+00 0.374D+01 2 2 -0.28277D+00 0.362D+01DPJB 6400 1 0.19022D+02 2 2 -0.28280D+00 0.496D+01 2 2 -0.28280D+00 0.489D+01DPJB 8100 1 0.19848D+02 2 2 -0.28282D+00 0.733D+01 2 2 -0.28282D+00 0.741D+01DPJB 10000 1 0.20666D+02 2 2 -0.28284D+00 0.878D+01 2 2 -0.28284D+00 0.862D+01DSSC 100 1 -0.52548D+01 3 3 -0.55979D+01 0.110D+00 3 3 -0.55979D+01 0.120D+00DSSC 400 1 -0.50507D+01 3 3 -0.56077D+01 0.510D+00 3 3 -0.56077D+01 0.540D+00DSSC 900 1 -0.49189D+01 3 3 -0.56098D+01 0.120D+01 3 3 -0.56098D+01 0.131D+01DSSC 1600 1 -0.48224D+01 3 3 -0.56105D+01 0.229D+01 3 3 -0.56105D+01 0.246D+01DSSC 2500 1 -0.47466D+01 3 3 -0.56108D+01 0.382D+01 3 3 -0.56108D+01 0.413D+01DSSC 3600 1 -0.46842D+01 3 3 -0.56110D+01 0.595D+01 3 3 -0.56110D+01 0.624D+01DSSC 4900 1 -0.46312D+01 3 3 -0.56112D+01 0.880D+01 3 3 -0.56112D+01 0.913D+01DSSC 6400 1 -0.45852D+01 3 3 -0.56112D+01 0.115D+02 3 3 -0.56112D+01 0.122D+02DSSC 8100 1 -0.45445D+01 3 3 -0.56113D+01 0.173D+02 3 3 -0.56113D+01 0.179D+02DSSC 10000 1 -0.45080D+01 2 2 -0.56113D+01 0.102D+02 2 2 -0.56113D+01 0.102D+0227



Table A-4: Results of the CUTE test problemsStandard Tensorfunc n x0 initf fcn grad finalf time fcn grad finalf timeARWHEAD 5000 1 0.14997D+05 7 7 0.00000D+00 0.496D+02 3 3 0.00000D+00 0.168D+0210 0.19978D+09 12 12 0.00000D+00 0.909D+02 18 14 0.00000D+00 0.110D+03100 0.19996D+13 18 18 0.00000D+00 0.140D+03 33 20 0.00000D+00 0.160D+03BDQRTIC 1000 1 0.22510D+06 10 10 0.39838D+04 0.992D+01 24 12 0.39838D+04 0.127D+0210 0.22424D+10 16 16 0.39838D+04 0.165D+02 38 17 0.39838D+04 0.185D+02100 0.22410D+14 22 22 0.39838D+04 0.231D+02 51 23 0.39838D+04 0.254D+02BRYBND 5000 1 0.12490D+06 24 17 0.13587D-19 0.327D+02 49 16 0.12928D-16 0.381D+0210 0.10765D+12 37 26 0.14231D-19 0.510D+02 50 24 0.98532D-17 0.551D+02100 0.12303D+18 { IL { { 810 189 0.35466D-16 0.473D+03DIXON3DQ 5000 1 0.80000D+01 2 2 0.11414D-24 0.600D+00 2 2 0.11414D-24 0.560D+0010 0.24200D+03 2 2 0.34514D-23 0.570D+00 2 2 0.34514D-23 0.570D+00100 0.20402D+05 2 2 0.29050D-21 0.560D+00 2 2 0.29050D-21 0.560D+00DIXMAANA 3000 1 0.20501D+05 6 6 0.10000D+01 0.165D+01 8 6 0.10000D+01 0.205D+0110 0.80013D+10 18 12 0.10000D+01 0.366D+01 19 12 0.10000D+01 0.455D+01100 0.80000D+16 29 21 0.10000D+01 0.654D+01 19 19 0.10000D+01 0.724D+01DIXMAANB 3000 1 0.43242D+05 6 6 0.10000D+01 0.162D+01 15 6 0.10000D+01 0.218D+0110 0.17227D+11 { IL { { { IL { {100 0.16116D+17 { IL { { { IL { {DIXMAANC 3000 1 0.74483D+05 15 15 0.10000D+01 0.450D+01 15 13 0.10000D+01 0.506D+0110 0.34452D+11 { IL { { { IL { {100 0.32233D+17 { IL { { { IL { {DIXMAANI 3000 1 0.12022D+05 100 33 0.10000D+01 0.119D+02 108 18 0.10000D+01 0.907D+0110 0.80004D+10 184 58 0.10000D+01 0.217D+02 152 32 0.10000D+01 0.157D+02100 0.80000D+16 263 77 0.10000D+01 0.287D+02 247 41 0.10000D+01 0.209D+02EDENSCH 2000 1 0.73583D+07 13 13 0.12003D+05 0.442D+01 31 16 0.12003D+05 0.666D+0110 0.15184D+12 19 19 0.12003D+05 0.666D+01 53 20 0.12003D+05 0.877D+01100 0.16253D+16 24 24 0.12003D+05 0.848D+01 48 25 0.12003D+05 0.106D+02ENGVAL1 5000 1 0.29494D+06 8 8 0.55487D+04 0.536D+01 7 7 0.55487D+04 0.548D+0110 0.31990D+10 14 14 0.55487D+04 0.983D+01 27 14 0.55487D+04 0.124D+02100 0.31994D+14 20 20 0.55487D+04 0.143D+02 49 20 0.55487D+04 0.186D+02FLETCBV2 10000 1 -0.50013D+00 1 1 0.00000D+00 0.460D+00 1 1 0.00000D+00 0.380D+0010 0.39995D+02 2 2 -0.50013D+00 0.207D+01 2 2 -0.50013D+00 0.215D+01100 0.48995D+04 2 2 -0.50013D+00 0.212D+01 2 2 -0.50013D+00 0.212D+01FREUROTH 5000 1 0.50486D+07 461 83 0.60793D+06 0.956D+02 424 53 0.60821D+06 0.785D+0210 0.15963D+09 444 77 0.60726D+06 0.894D+02 200 30 0.35200D+07 0.414D+02100 0.13056D+15 92 45 0.42206D+06 0.426D+02 155 51 0.53488D+06 0.605D+02LIARWHD 10000 1 0.58500D+07 13 13 0.81983D-21 0.217D+03 13 9 0.49397D-27 0.148D+0310 0.97359D+11 22 21 0.63218D-17 0.363D+03 24 12 0.11125D-16 0.205D+03100 0.10189D+16 26 26 0.16259D-16 0.463D+03 48 18 0.31712D-21 0.319D+03MOREBV 5000 1 0.15969D-06 2 2 0.58271D-14 0.100D+01 2 2 0.58271D-14 0.940D+0010 0.15983D-04 2 2 0.22833D-09 0.950D+00 2 2 0.22833D-09 0.960D+00100 0.17190D-02 2 2 0.32151D-04 0.910D+00 2 2 0.32151D-04 0.910D+00NONDIA 10000 1 0.39996D+07 6 6 0.47632D-24 0.909D+02 10 5 0.11200D-20 0.737D+0210 0.12099D+11 34 34 0.53482D-25 0.595D+03 20 16 0.19919D-28 0.274D+03100 0.10200D+15 39 39 0.22382D-20 0.681D+03 52 21 0.65733D-17 0.367D+03NONDQUAR 10000 1 0.10006D+05 20 20 0.41398D-09 0.965D+03 20 20 0.41413D-09 0.970D+0310 0.99981D+08 25 25 0.12450D-08 0.122D+04 25 25 0.12538D-08 0.123D+04100 0.99980D+12 31 31 0.73954D-09 0.152D+04 31 31 0.87210D-09 0.153D+04PENALTY1 100 1 0.11448D+12 47 38 0.90255D-03 0.493D+01 10 7 0.90249D-03 0.780D+0010 0.11448D+16 51 43 0.90255D-03 0.557D+01 7 7 0.90249D-03 0.850D+00100 0.11448D+20 55 48 0.90257D-03 0.625D+01 30 16 0.90252D-03 0.213D+01PENALTY2 100 1 0.16885D+07 24 21 0.97096D+05 0.296D+01 26 20 0.97096D+05 0.300D+0110 0.15939D+11 27 26 0.97096D+05 0.369D+01 47 27 0.97096D+05 0.411D+01100 0.15939D+15 31 31 0.97096D+05 0.444D+01 70 31 0.97096D+05 0.481D+01POWELLSG 10000 1 0.53750D+06 16 16 0.10947D-04 0.143D+02 33 15 0.83906D-05 0.179D+0210 0.40385D+10 21 21 0.32920D-04 0.190D+02 28 22 0.11695D-04 0.257D+02100 0.40251D+14 27 27 0.19556D-04 0.247D+02 31 27 0.54051D-05 0.316D+02QUARTC 1000 1 0.19850D+15 35 35 0.22354D-09 0.231D+01 35 35 0.22354D-09 0.287D+0110 0.18125D+15 35 35 0.20411D-09 0.229D+01 35 35 0.20411D-09 0.285D+01100 0.65804D+14 34 34 0.37515D-09 0.223D+01 35 34 0.37515D-09 0.278D+0128



Table A-4: Results of the CUTE test problems (continued)Standard Tensorfunc n x0 initf fcn grad finalf time fcn grad finalf timeSINQUAD 10000 1 0.65610D+00 25 20 0.39609D-10 0.975D+03 66 21 0.35876D-15 0.103D+0410 0.00000D+00 1 1 0.35876D-15 0.290D+00 1 1 0.35876D-15 0.300D+00100 0.65610D+04 18 18 0.69625D-08 0.881D+03 47 19 0.42524D-15 0.966D+03SROSENBR 5000 1 0.48500D+05 9 8 0.93253D-11 0.297D+01 16 7 0.10927D-17 0.332D+0110 0.44893D+10 97 66 0.38588D-18 0.279D+02 65 33 0.22535D-15 0.179D+02100 0.51123D+14 { IL { { 204 97 0.26051D-08 0.547D+02TQUARTIC 1000 1 0.81000D+00 2 2 0.39936D-27 0.270D+00 2 2 0.39936D-27 0.260D+0010 0.00000D+00 1 1 0.39936D-27 0.200D-01 1 1 0.39936D-27 0.200D-01100 0.81000D+02 2 2 0.12622D-24 0.260D+00 2 2 0.12622D-24 0.260D+00TRIDIA 10000 1 0.50005D+08 2 2 0.41242D-24 0.119D+01 2 2 0.41242D-24 0.117D+0110 0.50005D+10 2 2 0.13131D-22 0.117D+01 2 2 0.13131D-22 0.117D+01100 0.50005D+12 2 2 0.33835D-20 0.117D+01 2 2 0.33835D-20 0.117D+01WOODS 10000 1 0.27296D+08 28 23 0.31973D-14 0.259D+02 49 21 0.33996D-17 0.305D+0210 0.22566D+12 51 42 0.42521D-12 0.484D+02 72 34 0.42039D-09 0.503D+02100 0.22122D+16 73 60 0.27578D-10 0.698D+02 100 49 0.16526D-16 0.730D+02WOODS1 10000 1 0.55500D+06 9 9 0.17486D-11 0.949D+01 12 8 0.25903D-20 0.103D+0210 0.41460D+10 15 15 0.38193D-13 0.165D+02 22 14 0.26198D-19 0.196D+02100 0.40591D+14 21 21 0.61171D-14 0.236D+02 33 20 0.17403D-17 0.285D+02
Table A-5: Results of the rank n � 1 test problems from the CUTE collectionStandard Tensorfunc n x0 initf fcn grad finalf time fcn grad finalf timeBRYBND 5000 1 0.12488D+06 488 30 0.17586D-10 0.376D+03 176 10 0.13179D-10 0.130D+0310 0.10765D+12 { IL { { 1088 60 0.85644D-10 0.785D+03100 0.12303D+18 3396 201 0.97750D-21 0.263D+04 1560 84 0.16631D-11 0.111D+04DIXON3DQ 5000 1 0.40000D+01 6 2 0.62536D-17 0.712D+01 6 2 0.62536D-17 0.718D+0110 0.12100D+03 6 2 0.18917D-15 0.713D+01 6 2 0.18917D-15 0.713D+01100 0.10201D+05 6 2 0.15948D-13 0.713D+01 6 2 0.15948D-13 0.713D+01NONDQUAR 10000 1 0.10003D+05 { IL { { 182 24 0.57721D-07 0.635D+0310 0.99981D+08 { IL { { 4414 187 0.17004D-07 0.608D+04100 0.99980D+12 { IL { { 3820 194 0.62846D-07 0.560D+04QUARTC 1000 1 0.45000D+05 57 15 0.61708D-05 0.631D+01 13 4 0.24654D-07 0.144D+0110 0.45000D+09 81 21 0.36635D-05 0.905D+01 29 5 0.53107D-07 0.240D+01100 0.45000D+13 101 26 0.11038D-04 0.113D+02 130 22 0.50906D-06 0.107D+02SROSENBR 5000 1 0.48481D+05 30 8 0.11403D-09 0.477D+02 44 7 0.45822D-12 0.422D+0210 0.44888D+10 286 65 0.23622D-12 0.440D+03 121 21 0.16587D-10 0.146D+03100 0.51122D+14 { IL { { 242 49 0.35217D-11 0.344D+03TQUARTIC 1000 1 0.32368D+04 38 12 0.38436D-15 0.433D+01 17 4 0.98215D-17 0.155D+0110 0.15962D-23 1 1 0.98215D-17 0.200D-01 1 1 0.98215D-17 0.200D-01100 0.32368D+06 23 8 0.20695D-15 0.275D+01 28 9 0.14036D-15 0.335D+01TRIDIA 10000 1 0.50005D+08 6 2 0.41155D-14 0.267D+02 6 2 0.41155D-14 0.266D+0210 0.50005D+10 6 2 0.44999D-12 0.266D+02 6 2 0.44999D-12 0.266D+02100 0.50005D+12 11 3 0.14577D-13 0.531D+02 11 3 0.14914D-13 0.535D+02WOODS 1000 1 0.27296D+07 248 49 0.52712D-11 0.236D+02 224 32 0.41898D-10 0.168D+0210 0.22566D+11 342 67 0.63594D-11 0.324D+02 245 38 0.20790D-11 0.199D+02100 0.22122D+15 446 87 0.44137D-11 0.423D+02 308 47 0.22064D-10 0.247D+02WOODS1 1000 1 0.55491D+05 86 18 0.25201D-09 0.816D+01 50 10 0.21981D-08 0.463D+0110 0.41460D+09 116 24 0.21634D-09 0.111D+02 84 16 0.40452D-08 0.765D+01100 0.40591D+13 146 30 0.19591D-09 0.139D+02 125 22 0.50008D-08 0.108D+0229



Table A-6: Results of the rank n � 2 test problems from the CUTE collectionStandard Tensorfunc n x0 initf fcn grad finalf time fcn grad finalf timeBRYBND 5000 1 0.12487D+06 527 29 0.42357D-09 0.454D+03 268 14 0.30203D-08 0.219D+0310 0.10765D+12 824 46 0.16732D-15 0.724D+03 670 32 0.34308D-10 0.519D+03100 0.12303D+18 { IL { { 1401 68 0.26897D-12 0.110D+04DIXON3DQ 5000 1 0.80000D+01 7 2 0.62564D-17 0.938D+01 7 2 0.62564D-17 0.938D+0110 0.24200D+03 7 2 0.18928D-15 0.934D+01 7 2 0.18928D-15 0.934D+01100 0.20402D+05 7 2 0.15948D-13 0.933D+01 7 2 0.15948D-13 0.936D+01NONDQUAR 10000 1 0.10002D+05 { IL { { 1109 70 0.14468D-06 0.271D+0410 0.99980D+08 { IL { { 1674 86 0.96220D-07 0.332D+04100 0.99980D+12 { IL { { 1923 101 0.40263D-07 0.382D+04QUARTC 1000 1 0.45000D+05 57 15 0.61708D-05 0.646D+01 13 4 0.24654D-07 0.145D+0110 0.45000D+09 81 21 0.36635D-05 0.921D+01 101 17 0.53107D-07 0.819D+01100 0.45000D+13 101 26 0.11038D-04 0.115D+02 130 22 0.50906D-06 0.107D+02SROSENBR 5000 1 0.48481D+05 72 13 0.82242D-14 0.108D+03 91 15 0.23908D-16 0.128D+0310 0.44890D+10 429 77 0.69440D-04 0.683D+03 465 68 0.14337D-16 0.615D+03100 0.51122D+14 { IL { { 1294 201 0.80433D+06 0.183D+04TQUARTIC 1000 1 0.32335D+04 48 12 0.94635D-16 0.565D+01 30 6 0.65443D-18 0.305D+0110 0.15946D-23 1 1 0.15946D-23 0.200D-01 1 1 0.15946D-23 0.200D-01100 0.32335D+06 49 12 0.18893D-15 0.564D+01 54 12 0.56162D-18 0.636D+01TRIDIA 10000 1 0.50005D+08 8 2 0.41344D-14 0.349D+02 8 2 0.41344D-14 0.349D+0210 0.50005D+10 8 2 0.45002D-12 0.350D+02 8 2 0.45002D-12 0.349D+02100 0.50005D+12 15 3 0.25973D-12 0.703D+02 15 3 0.25973D-12 0.709D+02WOODS 1000 1 0.27277D+07 196 31 0.77284D-13 0.189D+02 168 26 0.18453D-12 0.165D+0210 0.22564D+11 325 51 0.68702D-06 0.316D+02 289 41 0.10869D-12 0.268D+02100 0.22121D+15 434 68 0.56038D-05 0.423D+02 89 11 0.11251D-08 0.684D+01WOODS1 1000 1 0.55470D+05 118 18 0.18927D-09 0.107D+02 91 16 0.10966D-07 0.975D+0110 0.41458D+09 { NC { { 127 22 0.30436D-08 0.136D+02100 0.40590D+13 { NC { { 31 6 0.19654D-08 0.324D+01
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