Tensor Methods for Large, Sparse Unconstrained Optimization *

Ali Bouaricha!

Abstract. Tensor methods for unconstrained optimization were first introduced by Schn-
abel and Chow [STAM J. Optimization, 1 (1991), pp. 293-315], who describe these methods
for small to moderate-size problems. The major contribution of this paper is the extension of
these methods to large, sparse unconstrained optimization problems. This extension requires
an entirely new way of solving the tensor model that makes the methods suitable for solving
large, sparse optimization problems efficiently. We present test results for sets of problems where
the Hessian at the minimizer is nonsingular and where it is singular. These results show that
tensor methods are significantly more efficient and more reliable than standard methods based
on Newton’s method.

Key words. tensor methods, unconstrained optimization, sparse problems, large-scale opti-
mization, singular problems

AMS(MOS) subject classification. 65K

*Part of this work was performed while the author was research associate at CERFACS (Centre Européen de
Recherche et de Formation Avancée en Calcul Scientifique).

tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illincis, 60439.
bouarich@@mcs.anl.gov. This work was supported in part by the Office of Scientific Computing, U.S. Department
of Energy, under Contract W-31-109-Eng-38.

1. Introduction

In this paper we describe tensor methods for solving the unconstrained optimization problem
given f : R" — R, find 2. € N such that f(z,) < f(z) forallz € D, (1.1)

where D is some open set containing z,, and f is convex on D. We assume that f is at least
twice continuously differentiable, and n is large.

Tensor methods for unconstrained optimization are general-purpose methods primarily in-
tended to improve upon the performance of standard methods, especially on problems where
V2 f(x.) has a small rank deficiency. They are also intended to be at least as efficient as standard
methods on problems where V2 f(z,) is nonsingular.

Tensor methods for unconstrained optimization base each iteration upon the fourth-order
model of the objective function f(z),

Mr(zotd) = f(a) + Vi(x)-d + %VQf(xc) &+ éTc &P+ %VC Y (12)
where d € R", .. is the current iterate, V f(z.) and V2 f(z.) are the first and second analytic
derivatives of f at z., or finite difference approximations to them, and the tensor terms at z.,
T. € W77 and V. € RAXXX7 are symmetric. (We use the notation V f(x,.)-d for V f(z.)7d
and V2 f(z.)-d? for dT'V? f(z.)d to be consistent with the tensor notation 7,-d® and V.-d*. Also,
for simplicity, we abbreviate terms of the form dd, ddd, and dddd by d?, d>, and d*, respectively.)
Before proceeding, we define the tensor notation used above.

Definition 1.1. Let T € £**"X% Then for v,v,w € ", T -wvw € £, T -vw € ", with

T uwow = ZH:ZR:ZH:T (4,7, k)u(i)v(j)w(k),

=1 j=1k=1
(T - vw) ZZT@], Jw(k), i=1,...,n.
7=1k=1

Definition 1.2. Let V € ®"*"*"X" Then for r,u,v,w € X",V - ruvw € R,V - uvw € R" with

V- ruvw = iiiiv (¢, 7, &, Dr()u(g)o(k)w(l),

15=1k=11=1

n n n
(V- uvw)(i) = Z Z ZV(i,j, E,Du(j)o(k)w(l), t=1,..,n.

§=1 k=1 I=1
The tensor terms are selected so that the model interpolates a small number of function and
gradient values from previous iterations. This results in 7. and V. being low-rank tensors, which
is crucial for the efficiency of the tensor method. The tensor method requires no more function
or derivative evaluations per iteration and hardly more storage or arithmetic operations than

does a standard method based on Newton’s method.

Standard methods for solving unconstrained optimization problems are widely described in
the literature; general references on this topic include Dennis and Schnabel [9], Fletcher [12],

and Gill, Murray, and Wright [14]. In this paper, we propose extensions to standard methods
that use analytic or finite-difference gradients and Hessians.

The standard method for unconstrained optimization, Newton’s method, bases each iteration
upon the quadratic model of f(z),

My(aetd) = flae) + V() d+ 5V o) . (13)

This method is defined when V2 f(z.) is nonsingular and consists of setting the next iterate x4
to the minimizer of (1.3), namely,

a2y = a2, — Vif(2) 'V f(z,). (1.4)

A distinguishing feature of Newton’s method is that if V2f(z.) is nonsingular at a local
minimizer ., then the sequence of iterates produced by (1.4) converges locally quadratically to
z,. However, Newton’s method is generally linearly convergent at best if V2 f(xz,) is singular
[15].

Methods based on (1.2) have been shown to be more reliable and more efficient than standard
methods on small to moderate-size problems [19]. In the test results obtained for both nonsin-
gular and singular problems, the improvement by the tensor method over Newton’s method is
substantial, ranging from 30% to 50% in iterations and in function and derivative evaluations.
Furthermore, the tensor method solves several problems that Newton’s method fails to solve.

The tensor algorithms described in [19] are QR-based algorithms involving orthogonal trans-
formations of the variable space. These algorithms are very effective for minimizing the tensor
model when the Hessian is dense because they are very stable numerically, especially when the
Hessian is singular. They are not efficient for sparse problems, however, because they destroy the
sparsity of the Hessian due to the orthogonal transformation of the variable space. To preserve
the sparsity of the Hessian, we have developed an entirely new way of solving the tensor model
that employs a sparse variant of the Cholesky decomposition. This makes our new algorithms
very well suited for sparse problems.

The remainder of this paper is organized as follows. In §2 we briefly review the techniques
introduced by Schnabel and Chow [19] to form the tensor model. In §3 we describe efficient
algorithms for minimizing the tensor model when the Hessian is sparse. In §§4 and 5 we dis-
cuss the globally convergent modifications for tensor methods for large, sparse unconstrained
optimization. These consist of line search backtracking and model trust region techniques. A
high-level implementation of the tensor method is given in §6. In §7 we describe comparative
testing for an implementation based on the tensor method versus an implementation based on
Newton’s method, and we present summary statistics of the test results. Finally, in §8, we give
a summary of our work and a discussion of future research.

2. Forming the Tensor Model

In this section, we briefly review the techniques that were introduced in [19] for forming the
tensor model for unconstrained optimization.

As was stated in the preceding section, the tensor method for unconstrained optimization
bases each iteration upon the fourth-order model of the nonlinear function f(z) given by (1.2).

The choices of T and V, in (1.2) cause the third-order term T - d® and the fourth-order
term V. -d* to have simple and useful forms. These tensor terms are selected so that the tensor
model interpolates function and gradient information at a set of p not necessarily consecutive
past iterates z_q, ..., 2 _,.

In the remainder of this paper, we restrict our attention to p = 1. The reasons for this
choice are that the performance of the tensor version that allows p > 1 is similar overall to that
constraining p to be 1, and that the method is simpler and less expensive to implement in this
case. (The derivation of the third- and fourth-order tensor terms for p > 1 is explained in detail
in [19].)

The interpolation conditions at the past point z_; are given by

1 1 1
flezy) = flae) + Vf(ze) s + §V2f($c)-82—|-ETC-83+ﬂVC-84 (2.1)
and | |
Vfiz_1) = Vf(z.) + V3f(z.) s + §Tc-52 + EVC-SS, (2.2)
where
5 = x_q — x..

Schnabel and Chow [19] choose T, and V, to satisfy (2.1) and (2.2). They first show that
the interpolation conditions (2.1) and (2.2) uniquely determine 7, - s* and V. - s*. Multiplying
(2.2) by s yields

1 1
Via_1) s = Vf(z)-s + V3f(z.) s> + §Tc s 4 EVC -5t (2.3)
Let a, € R be defined by
a=T,-5°,
s=V.- st

Then from (2.1) and (2.3) they obtain the following system of two linear equations in the two
unknowns a and 3:

ot 6= an (2.4
—a + _ﬁ = {2, (25)

where ¢1, g2 € are defined by
¢ = Vflz_1)-s — Vf(ze)-s — V2f($0)'527

@ = flr_1) — f(z) — Vf(z)-s — %v? Fe) - 52,

The system (2.4)—(2.5) is nonsingular; therefore the values of @ and § are uniquely determined.
Hence, the interpolation conditions uniquely determine 7, - s> and V. - s. Since these are the
only interpolation conditions, the choice of T, and V. is vastly underdetermined.

Schnabel and Chow [19] choose T, and V, by first selecting the smallest symmetric V., in the
Frobenius norm, for which

Ve st o= B,
where 3 is determined by (2.4)—(2.5). Then they substitute this value of V. into (2.2), obtaining
T. 5% =a, (2.6)

where

0 = 2AVf(e1) = Vi) = Vif(e)-s éVc-s?’). (2.7)

This is a set of n linear equations in n® unknowns T.(¢,7,k), 1 < 4,7,k < n. More precisely,
Schnabel and Chow [19] choose the smallest symmetric T. and V., in the Frobenius norm, that
satisfy the equations (2.6)—(2.7). That is,

voepmin Vel (2.8)
subject to V. -s* = 3, and V. is symmetric,
and
min T e (2.9)
subject to T, - s* = a, and T, is symmetric.
The solution to (2.8) is
p

Ve = 7 (s@s@s®s), 7= @7
where the tensor V., = s @ s @ s ® s € R*X"X2X7" ig called a fourth-order rank-one tensor for
which Vi(¢,7,k,1) = s(2)s(7)s(k)s(l), 1 < ¢,7,k,1 < n. (We use the notation @ to be consistent
with [19].)

The solution to (2.9) is

T. = bR0s@0s+sQbRs+sQs®b, (2.10)

where the notation T = v ® v @ w, w,v,w € R*, T € R****" ig called a third-order rank-one
tensor for which T'(7, j, k) = u(¢)v(j)w(k). Here b € R" is the unique vector for which (2.10)
satisfies (2.6). It is given by
3a(sTs) — 2s(sTa)

3(sTs)3

T. and V. determined by the minimum norm problems (2.9) and (2.8) have rank 2 and 1,
respectively. This is the key to form, store, and solve the tensor model efficiently. The whole
process of forming the tensor model requires only O(n?) arithmetic operations. The storage
needed for forming and storing the tensor model is only a total of 6n.

For further information we refer to [19].

b =

3. Solving the Tensor Model When the Hessian Is Sparse

In this section we give algorithms for finding a minimizer of the tensor model (1.2) efficiently,
when the Hessian is sparse.
The substitution of the values of T, and V; into (1.2) results in the tensor model

Mp(ao+d) = fla) + Vi(x)-d + %v?ﬂxc)-d? + %(de)(sTd)Q b LTay ()

As we stated in §2, we only consider the case p = 1 where the tensor model interpolates
f(z) and V f(z) at the previous iterate. The generalization for p > 1 is fairly straightforward.
This constraint is mainly motivated by our computational results. When we allow p > 1, our
test results showed almost no improvement over the case where p = 1. The tensor method is
therefore considerably simpler, as well as cheaper in terms of storage and cost per iteration.

3.1. Case 1: The Hessian Is Nonsingular

We show that the minimization of (3.1) can be reduced to the solution of a third-order polynomial
in one unknown, plus the solution of three systems of linear equations that all involve the same
coefficient matrix V2 f(z.). For conciseness, we use the notation ¢ = Vf(z.) and H = V2 f(z.).

A necessary condition for d to be a local minimizer of (3.1) is that the derivative of the
tensor model with respect to d must be zero. That is,

1
VMr(ec+d) = g + Hd + 0Td)(s"d)s + S(s)% + %(sTd)% =0,

which yields

d = —H g + BTd)(Td)s + %(sTd)% + 1T aps). (3.2)

If we first premultiply the equation (3.2) by s” on both sides, we obtain a cubic equation (in 3)
in the unknowns 3 = s'd and 6 = b7 d,

1
SHg + 5+ SHT8 4+ SsTHTE + %STH_ISﬁB = 0. (3.3)

If we then premultiply the equation (3.2) by b on both sides, we obtain another cubic equation
(in 3) in the unknowns § and 0,

1
VI + 0+ 0T HT0p 4+ B HTS + %bTH_ISﬁS = 0. (3.4)

Thus, we obtain a system of two cubic equations in the two unknowns 4 and # which can be
solved analytically.

We now show how to compute the solutions of this system of two cubic equations in two
unknowns by computing the solutions of a single cubic equation in the unknown f. Let u =
STH g, v =sTH ', w=s"TH s,y =b"H g, and z = b H~'b. We first calculate the
value of § as a function of § using the equation (3.3):

(ut B+ 508+ Twg)

6= (3.5)

Note that the denominator of (3.5) is equal to zero if either 3 = 0 or w = 0. We assume that
B # 0; otherwise the tensor model would be reduced to the Newton model. Now, if w = 0, then
(3.3) would be quadratic in . Therefore

-1 £+ +/1—2uv
5 .

6 =

Thus, real-valued minimizers of the tensor model (3.1) may exist only if 1 —2uv > 0. It is easy
to check that in order for # to have a defined value, 1 4+ v/ cannot be zero.
If 3 # 0and w # 0, we substitute the expression for # into (3.4) and obtain

—u+ (yw—uv—1)5— §vﬁ2 + (lwz ~Lw- l1}2)ﬁ3 =0, (3.6)

2 2 6 2

which is a third-order polynomial in the one unknown . The roots of (3.6) are computed
analytically. We substitute the values of 3 into (3.5) to calculate the values of #. Then we
simply substitute the values of 3 and 6 into (3.2) to obtain the values of d. The major cost in
this whole process is the calculation of H~'g, H~'b, and H 's.

After we compute the values of d, we determine which of them are potential minimizers.
Our criterion is to select those values of d that guarantee that there is a descent path from x.
to x. 4+ d for the model My(z. + d). Then among the selected steps, we choose the one that
is closest to the current iterate z. in the FEuclidean norm sense. If the tensor model has no
minimizer, we use the standard Newton step as the step direction for the current iteration.

3.2. Case 2: The Hessilan Is Rank Deficient

If the Hessian matrix is rank deficient, we transform the tensor model given in (3.1) by the
following procedure. Let d = d + 6 for a fixed d, where § is the new unknown. Substituting this
expression for d into (3.1) yields the following tensor model, which is a function of é:

Mr(so+d) = f(eo) + Vf(e)-d + %v?ﬂxc)-d? + %(de)(sTdf

b T 4 (VS + VA fead + (0T (sTd)s

o Ta & 6T 6 4 (V) (3.7)

+(Td + %SST)-52 4 (sTd)(bT8)(sT8) + =~ (b76)(sT6)?

1

2
YT 5y TeN\3 T\
+ 6(5 d)(s*)" + 24(5 6)°.

Ifwelet § = s7d, § = 8d. § = V[(2.) + V2 [(a)d + 03s + S5 + %ﬁ?’s, c=bTd + % and
H =V?f(z.)+ cssT, then we obtain the modified tensor model

. 1. .
Mr(ze+d) = Mp(z. +d) + §-6 + 51{-52 + B(bT6)(sT6)

(3.8)

S OTOTO? + LATaP + Loy

7

The advantage of this transformation is that the matrix 1 is likely to be nonsingular if the rank
of V2f(z.) is at least m — 1. A necessary and sufficient condition for I to be nonsingular is
given in the following lemma. Let g and H denote V f(z.) and V2 f(z.), respectively.

Lemma 3.1. Let H € "™ s € R".

H + css’ is nonsingular if and only if M = 18 monsingular.
T
cst —cl

(Note that the [T -7] submatrix was premultiplied by the constant ¢ to symmetrize the

augmented matrix M.)
Proof. We prove that there exists v € R, v # 0, for which (H + css”)v = 0, if and only if there
exist v € R, w € R, for which

H cS v 0
=) + . (3.9)

esT —el w 0

|
o

g
o

Suppose first that (H + css?)v = 0,v # 0. Then for o = v,w = s'v, (v, w) satisfies (3.9).
Conversely, if there exists (v, w) satisfying (3.9), then s7% = w, so (H + css?)v = 0, and v # 0;
otherwise, w = 0, which contradicts (3.9). Thus (H + ess?) is singular if and only if M is
singular.

Corollary 3.2. Let H € %" s ¢ R"™.

If H+ css” is nonsingular, then [H cs] has full row rank.

Proof. Follows from Lemma 3.1.
Lemma 3.3. Let H € R**" rank(HH)=n—1, s € R".

H + cssT is nonsingular if and only if [H cs] has full row rank.

Proof. The only if part follows from Corollary 3.2. Now assume [H cs] has full row rank.

Since H has rank n — 1, H = H{HI, where H|, H, € R7%(=1) have full column rank. Since
[H cs] has full row rank,

(vTH = 0and vTs = 0) = v = 0. (3.10)
From H = HyHs" and the fact that Hy has full column rank, (3.10) is equivalent to

(vTH; = 0and vTs = 0) = v = 0.

Thus the n x n matrix [Hy es] is nonsingular. Analogously, the n X n matrix [Hy s] is
nonsingular. Therefore

T
[Hl cs] [Z%]IH1H2T+CSSTIH+CSST

is nonsingular. O
For 6 to be a local minimizer of (3.8) the derivative of the tensor model (3.8) with respect
to 6 must be zero. That is,

VMr(z.+6) = § + Hs + 3(sT6)b + p(b76)s + (s76)(b78)s
1 Y Aoy T ey2 Y T3 (3.11)
+(5h + 3096 + £(s76)%s =0,
which yields
§ = —HY§ + B(sTo) + pTs)s + (sT6)(b76)s
(3.12)

F(gh 4 LBTER + T(Tops).

Premultiplying (3.12) by s” on both sides results in a cubic equation (in 3) in the two unknowns

B = sT6and § = bLé:

sTH G + (1 + BsTﬁ_lb)ﬁ + B3sTH 150 + sTH 1530
1 g N) (3.13)

+ (§5TH_1b + %ﬁsTH_ls)ﬁz + %STH_lsﬁ?’ = 0.

The premultiplication of (3.12) by &7 on both sides yields another cubic equation (in 3) in the

two unknowns § and 6:

VPH-Yg + (1 + BVTH)0 + bTH b8 + bTH 1530
1 s Yo M (3.14)
+ (§bTH‘1b + §ﬁbTH‘1s)ﬁ2 + ngH_lsﬁ3 = 0.

Therefore, we obtain a system of two cubic equations in the two unknowns 4 and €, which we
can solve analytically.

Since (3.13) is linear in #, we can compute # as a function of 5 and then substitute its
expression into (3.14) to obtain an equation in the one unknown 3. Let u = sTH g, v =
sSTH Y, w=sTH s, y=bTH 1§, and z = bT H~1b. Equation (3.13) yields

6 = m(ywﬁ — u — wvfB + (yw + 2wf? — 208 — 0232 — w — 1)p
1 0 2

+ (%zwﬁ - %wﬁ - %v - %v2ﬁ) + (§zw — Y- %
The denominator of (3.15) is equal to zero if either ﬁ + 38 = 0orw = 0. fw = 0,
then (3.13) would be quadratic in 5. Therefore

(3.15)
)8%).

—(1 + po) £ \/(1 + pfo)? — 2uv‘

v

Hence, real-valued minimizers of the tensor model (3.8) may exist only if (1 + ﬁv)Q > 2uwv and
v # 0. It is straightforward to verify from (3.14) that for § to be defined (5 + 3)v cannot equal
-1. Now, if 54 3 = 0, then (3.13) reduces to the following cubic equation in 3:

u + (1 + po)f + (%v + %wﬁ)ﬁz + %wﬁ?’ = 0. (3.16)

Once we calculated the expressions for § from (3.16), we substitute them into the following
equation for § obtained from (3.14):

. 1 .
0 = —y = 288 — (57 + o) — Lod”
If neither 3+ 3 = 0 nor w = 0, we substitute the expression (3.15) into (3.14) and obtain

—(u + 26v 4+ fuv + B2? + 1) + (yw + B2zw — Bo — v — uv)f

32 L. 1 Y La oy a2 1 v L oovas _
+ (f7zw + §ﬁzw -V - §ﬁw - §ﬁv)ﬁ + (§zw — g% - §v)ﬁ = 0,
which is a third-order polynomial in the one unknown 3. The roots of (3.17) are then computed
analytically. After we determine the values of 3, we substitute them into (3.15) to calculate
the corresponding values of 6. Then, we simply substitute the values of 5 and 6 into (3.12) to
obtain the values of §. The dominant cost in this whole process is the computation of f{—lg,
H=1b, and H's.

Similar to the nonsingular case, a minimizer ¢ is selected such that there exists a descent
path from the current point z. to z.+ ¢, and that é is closest to z. in the Euclidean norm sense.

To obtain the tensor step d, we set d to d+6. An appropriate choice of d is the step used
in the previous iteration simply because it has the right scale.

The above procedure is tailored to handle only the case where the Hessian matrix has rank
n — 1. It has been shown in practice that when V?f(z,) has rank n — 1 the convergence rate
of the tensor method is better than the linear convergence of the standard Newton method
[19] (also see §7 for the ratios of the errors of successive iterates on the BRYBND problem
with rank(V2f(z.)) = n — 1. Tensor methods for nonlinear equations problems have been
shown to have 3-step Q-order 1.5 convergence on problems where the Jacobian has rank n — 1

10

at the solution [11], whereas Newton’s method is linearly convergent with constant 1/2 on
such problems. However, no attempt has been made yet to prove the convergence rate of
tensor methods for unconstrained optimization problems where the Hessian at the solution
has rank n — 1. On problems where rank(V2f(z.)) < n — 2, tensor methods do not have
enough information to prove faster-than-linear convergence rate, since it usually uses p = 1.
Consequently, when rank(VZ2f(z.)) < n — 2 we simply use the modified Newton step (see §6) as
the step direction for the current iteration.

4. Line Search Backtracking Techniques

The line search global strategy we use in conjunction with our tensor method for large, sparse
unconstrained optimization is similar to the one used for nonlinear equations [4, 6]. This strat-
egy has shown to be very successful for large, sparse systems of nonlinear equations. We also
found that it is superior to the approach used by Schnabel and Chow [19]. The main difference
between the two approaches is that ours always tries the full tensor step first. If this provides
enough decrease in the objective function, then we terminate; otherwise we find acceptable next
iterates in both the Newton and tensor directions and select the one with the lower function
value as the next iterate. Schnabel and Chow, on the other hand, always find acceptable next
iterates in both the Newton and tensor directions and choose the one with the lower function
value as the next iterate. In practice, our approach almost always requires fewer function eval-
uations while retaining the same efficiency in iteration numbers. The global framework for line
search methods for unconstrained minimization is given in Algorithm 4.1.

Algorithm 4.1. Global Framework for Line Search Methods for Unconstrained Minimization

Let x. be the current iterate,
d; the tensor step,
d, is the Newton step,
g= Vf($c),
fc = f(xc)v
slope = g1 dy,
and a = 1072
acfl_ = x.+ d;
fp = f(xfl—)
if (minimizer of the tensor model was found) then
if f, < fo + a - slope then
Ty = xfl_
else
Find an acceptable 2} in the Newton direction d,
using the line search given by Algorithm A6.3.1 [9, p.325]

Find an acceptable acfl_ in the tensor direction d;
using the line search given by Algorithm A6.3.1 [9, p.325]

if f(2%) < f(2f) then

ry =al

11

else
vy =al

endif

endif
else

Find an acceptable 27 in the Newton direction d,
using the line search given by Algorithm A6.3.1[9, p.325]
ry =l

endif

5. Model Trust Region Techniques

The two computational methods—the locally constrained optimal (or “hook”) step and the
dogleg step—are generally used for approximately solving the trust region problem based on the
standard model,

1
minimize f(z.) + Vf(z.)-d + §V2f(xc)-d2 (5.18)
subject to || d ||2 < 6.,

where 6. is the current trust region radius. When 6. is shorter than the Newton step, the
locally constrained optimal step [17] finds a p. such that || d(p.) ||z = 6., where d(u.) =
—(V2f(x.) + pl)"'V f(z.). Then it takes x4y = @, + d(u.). The dogleg step is a modification
of the trust region algorithm introduced by Powell [18]. However, rather than finding a point
4 = x.+ d(p.) on the curve d(p.) such that || 24 — 2. || = é., it approximates this curve by a
piecewise linear function in the subspace spanned by the Newton step and the steepest descent
direction —V f(z.), and takes z as the point on this approximation for which || 24 —z. || = é..
(See, e.g., [9] for more details.)

Unfortunately these two methods are hard to extend to the tensor model, which is a fourth-
order model. Trust region algorithms based on (5.18) are well defined because it is always
possible to find a unique point 24 on the curve such that || 23 — 2. || = 6.. Additionally, the
value of f(z.)+V f(x.)-d+5V?f(x.)-d?* along the curve d(.) is monotonically decreasing from
z. to a’y, where 2%t = z. + d,,, which makes the process reasonable. These properties do not
extend to the tensor model, which is a fourth-order model that may not be convex. Furthermore,
the analogous curve to d(u.) is more expensive to compute. For these reasons, we consider a
different trust region approach for our tensor methods.

The trust region approach that is discussed in this section is a two-dimensional trust region
step over the subspace spanned by the steepest descent direction and the tensor (or standard)
step. The main reasons that lead us to adopt this approach are that it is easy to construct, closely
related to dogleg type algorithms over the same subspace. This step may be close to optimal
trust region step algorithms in practice. Byrd, Schnabel, and Shultz [7] have shown that for
unconstrained optimization using a standard quadratic model, the analogous two-dimensional
minimization approach produces nearly as much decrease in the quadratic model as the optimal
trust region step in almost all cases.

12

The two-dimensional trust region approach for the tensor model computes an approximate
solution to

minimize f(z.) + Vf(z.)-d + %v? fle) & + %(de)(sTd)Q +(sTay

subject to || d ||2 < 6.,

by performing a two-dimensional minimization,

minimize f(z.) + Vf(z.)-d + %v?ﬂxc)-d? + %(de)(sTd)Z v LTat (5.19)

SubjeCt to || d ||2 < 6c7 d e [dtvgs]v

where d; and g, are the tensor step and the steepest descent direction, respectively, and é. is the
trust region radius. This approach will always produce a step that reduces the quadratic model
by at least as much as a dogleg-type algorithm, which reduces d to a piecewise linear curve in
the same subspace. At each iteration of the tensor algorithm, the trust region method either
solves (5.19) or minimizes the standard linear model over the two-dimensional subspace spanned
by the standard Newton step and the steepest descent direction. The decision of whether to use
the tensor or standard model is made using the following criterion:

if (no minimizer of the tensor model was found) or (Vf(z.) d; > —1074] Vf(2.) |2]] di ||2)
then
T4 = 2, + ad, — Bgs; o, [selected by trust region algorithm
else
T4 = 2. + ady — Bgs; a, 3 selected by trust region algorithm
endif

Before we define the two-dimensional trust region step for tensor methods, we show how to
convert the problem

1 1
minimize f(z.) + Vf(z.)-d + §V2f(xc) d* §(de)(sTd)2 + ;—4(5Td)4 (5.20)
SubjeCt to || d ||2 = 6c7 de [dtvgs]7
to an unconstrained minimization problem.
First, we make g, orthogonal to d; by performing the Householder transformation:

T
~ gs dt
s = s — dy=—; 5.21
g g tdg“dt ()
then, we normalize both ¢, and d; to obtain
~ d;
dy = , (5.22)
[di (2
- gs
gs = = . 5.23
| Js |2 ()

Since d is in the subspace spanned by the tensor step d; and the steepest descent direction §,,
it can be written as

d = ady + Bj,, a,B€R. (5.24)

If we square the /5 norm of this expression for d and set it to 62, we obtain the following equation
for 4 as a function of «

8 = V62 — a2,

Substituting this expression for 4 into (5.24) and then the resulting d into (5.20) yields the global
minimization problem in the one variable «a, given by (5.25) below. Thus, problems (5. 25) and
(5.20) are equivalent. Let gp, = g, THG,, dpg = d Hd,, dpg = d Hg,, by = b1d,, s, = s'd,,
b, = bT'G,, and 54 = sTg,.

minimize f(z.) + 629@ + 2463;1 + (1 + 62bg5§) 62 — a?

+ (dpy + %(ﬁstsg)a\/ég — a? + (bsgs; + bys? + bysys,
— bys2)a?\ /02 — o + (62bgsgst + 62()1553 + 62bys18,)

1 1 L 2, 24Y,,2 (5.25)
Y Y Y
— (bgsgs: + btsg + b stsg)a + (24 st 15353 + ﬂsg)ofl
+ (%sfsg %stsg’)a?’ 62 — a?,

where —6. < a < é..
To transform the problem
1
minimize f(z.) + Vf(z.)-d + §V2f(xc) -d? (5.26)
subject to || d ||z = 6., d€[dy, 9]

to an unconstrained minimization problem, we use the same procedure described above to show
that (5.26) is equivalent to the following global minimization problem in the one variable a:

1
minimize f(z.) + 6Cghg V02 — a? 4 dpgon/6? — a? + dhd — §ghg)a2, (5.27)

where —6. < a < é..
Algorithm 5.1. Two-Dimensional Trust Region for Tensor Methods

Let d; be the tensor step,
d, the standard step,
x. the current iterate,

fc = f(xc)v

x4 the next iterate,

14

f-l- = f($_|_)7

gs = =V f(x.), the steepest descent direction,

Je = Vf(xc)v

H.= v2f($c)7

and 6. the current trust region radius.

dy, §s are given by (5.22) and (5.23), respectively.

d, is obtained in an analogous way to dy; by applying transformations (5.21) and (5.22) to it.

1. if tensor model selected then
Solve problem (5.25) using the procedure described in Algorithm 3.4 [6]
else {standard Newton model selected}
Solve problem (5.27) using the procedure described in Algorithm 3.4 [6]
endif

2. if tensor model selected then
d = a.d; + g, 02 —a?
where a, is the global minimizer of (5.25)
else {standard Newton model selected}
d = audy + §o\/02 — a2

where a, is the global minimizer of (5.27)

endif
3. { Check new iterate and update trust region radius.}
ry=2.+d
if M > 10"* then
pred
the global step d is successful
else
decrease trust region
go to step 1
endif
where

1 1
pred = (fo4 go-d+ =H.-d* + §(de)(sTd)2 + ;—4(5Td)4) — f., if tensor model selected,
pred = (fo+ g.-d+ §HC -d?*) — f., if standard Newton model selected.

The methods used for adjusting the trust radius during and between steps are given in Algorithm
A6.4.5 [9, p.338]. The initial trust radius can be supplied by the user; if not, it is set to the
length of the initial Cauchy step.

6. A High-Level Algorithm for the Tensor Method

In this section, we present the overall algorithm for the tensor method for large, sparse uncon-
strained optimization. Algorithm 6.1 is a high-level description of an iteration of the tensor
method that was described in §§ 3—5. A summary of the test results for this implementation

15

is presented in §7.

Algorithm 6.1. An Iteration of the Tensor Method for Large, Sparse Unconstrained Opti-
mization

Let x. be the current iterate,
d; the tensor step,
and d, the Newton step.

1. Calculate V f(z.) and decide whether to stop. If not:

2. Calculate V2 f(z.).

3. Calculate the terms T, and V. in the tensor model, so that the tensor model interpolates
f(z) and V f(2) at the past point.

4. Find a potential minimizer d; of the tensor model (3.1). If d; cannot be found, then
calculate the modified Newton step d,,.

5. Find an acceptable next iterate z; using either a line search or a two-dimensional trust
region global strategy.

6. v. =14,
Fwe) = fos),
go to step 1.

In step 1, the gradient is either computed analytically or approximated by the algorithm
A5.6.3 given in Dennis and Schnabel [9]. In step 2, the Hessian matrix is either calculated
analytically or approximated by a graph coloring algorithm described in [8]. Note that it is
crucial to supply an analytic gradient if the finite difference Hessian matrix requires many
gradient evaluations. Otherwise, the methods described in this paper may not be practical, and
inexact type of methods may be preferable. The procedures for calculating T, and V. in step
3 were discussed in §2. In step 4, the Hessian matrix is factored using MA27 [10], a sparse
Cholesky decomposition package. If the Hessian matrix is nonsingular, then the tensor step d;
is calculated as described in §3.1. Otherwise, if the Hessian matrix is singular with rank n — 1,
then d; is computed as outlined in §3.2. (We comment on the implementation issues related
to this case in the next paragraph.) If the rank of the Hessian matrix is less than n — 1, then
the Newton step, d,,, is computed as a by-product of the minimization of the tensor model, and
used as the step direction for the current iteration. This Newton step d,, is the modified Newton
step (V2f(xe) + pl)" 'V f(z.), where p = 0 if V2 f(z.) is safely positive definite, and p > 0
otherwise. To obtain the perturbation p, we use a modification of MA27 advocated by Gill,
Murray, Ponceleon, and Saunders in [13]. In this method we first compute the LDLT of the
Hessian matrix using the MA27 package, then change the block diagonal matrix D to D + F.
The modified matrix is block diagonal positive definite. This guarantees that the decomposition
L(D + E)LT is positive definite as well. Note that the Hessian matrix is not modified if it is
already positive definite.

Another implementation issue that deserves some attention is how to solve linear systems of
the form Ha = b, where H = H + essT, H € R is sparse and rank deficient, and s € R is
full, (see §3.2). Such systems can be efficiently solved using the augmented matrix defined in

16

Lemma 3.1. That is, we write (H + css”)z = b as

H cs x b

= . (6.1)
est —ecl w 0

The (n 4 1) X (n 4+ 1) matrix in (6.1) is sparse and can be factored efficiently as long as the
last row and column are not pivoted until the last few iterations. In fact, we can combine the
nonsingular and singular cases by factoring H, but we shift to a factorization of the augmented
matrix if H is discovered to be singular with rank n — 1. However, we use a Schur complement
method to obtain the solution of the augmented matrix by updating the solution from the system
Hax = b. This choice was motivated by the fact that the Schur complement method is simpler
and more convenient to use than the factorization of the augmented matrix in (6.1). Note that
if the Schur complement method shows that the augmented matrix in (6.1) is rank deficient (a
case that is very rare in practice), the modified Newton step described above is used as the step
direction for the current iteration.

The Schur complement method requires that H must have full rank. Thus, some modifica-
tions are necessary in order for this method to work. We have modified the factorization phase
of MA27 to be able to detect the row and column indices of the first pivot whose absolute value
is less or equal than some given tolerance tol. This stability test is clearly not optimal but
appears to work in practice. We also modified the solve phase of MA27 such that whenever
a pivot fails the stability criterion above, the corresponding solution component is set to zero.
This way the solution of Hz = b is the same as the solution of H.y = b (where H. is the matrix
H minus the row and column at which singularity occurred. Since y has n — 1 components,
the remaining one, which is also the component corresponding to the pivot failing the stability
test, is set to 0). Afterwards, we obtain the solution of an augmented system using a Schur
complement method, where the coefficient matrix is the matrix H augmented by two rows and
columns; that is, the (n + 1)-st row and column are the ones at which singularity was detected,
and the (n+2)-nd row and column are s’ and s, respectively. The Schur complement method
is implemented by first invoking MA39AD [1] to form the Schur complement S = D — CH™ 1B
of H in the extended matrix, where D is the 2 by 2 lower right submatrix, C' is the lower left
2 by n submatrix, and B is the upper right » by 2 submatrix, of the augmented matrix. The
Schur complement is then factored into its QR factors. Next, MA39BD [1] solves the extended
system (6.1) using the following well-known scheme:

1. Solve Hu = b, for u.

2. Solve Sy = b — Cu, for y.
3. Solve Hv = By, for v.

4. z=u—w.

The dominant cost of the above process is the Hu = b and Hv = By solves.
The tensor and Newton algorithms terminate if || Vf(z.) ||z < 107% or || d ||z < 1072,

17

7. Test Results

We tested our tensor and Newton algorithms on a variety of nonsingular and singular test
problems. In the following we present and discuss summary statistics of the test results.

All our computations were performed on a Sun Sparc 10 Model 40 machine using double-
precision arithmetic.

First, we tested our program on the set of unconstrained optimization problems from the
CUTE [3] and the MINPACK-2 [2] collections. Most of these problems have nonsingular Hessians
at the solution. We also created singular test problems as proposed in [4, 20] by modifying the
nonsingular test problems from the CUTE collection as follows. Let

be the function to minimize, where f; : " — R and m is the number of element functions,
and

FT(2) = (fu(@), ooes funl2)). (7.1)
In many cases, F'(z) = 0 at the minimizer z,, and F'(z.) is nonsingular. Then according to
[4, 20], we can create singular systems of nonlinear equations from (7.1) by forming

F(z) = F(z) — Flz.)AAT A AT (2 - 2,), (7.2)

where A € ®** has full column rank with 1 < k < n. Hence, F(2.) = 0 and F’(z.) has rank
n — k. For unconstrained optimization, we simply need to define the singular function

fla) = SF@)TF(2). (7.3)

From (7.3) and F(z,) = 0, we obtain V f(z,) = 0. From

N | —

Fl(z,) = F'(z)[I — AATA)71AT]

and
m

Vif(as) = Fla)tFe) + D filte)Vifiles) = Fla)TF(2.),
=1
we know that V2 f(z.) has rank n — k.)
By using (7.2) and (7.3), we created two sets of singular problems, with V2 f(z.) having rank
n — 1 and n — 2, respectively, by using

Aewt, AT =(1,0,...,0),

and
0O - - - 0

1 0
nx2 T _
Ae RV At = 1 0o . .. 0 ,

0
0 0
respectively. The reason for choosing unit vectors as columns for the matrix A is mainly to
preserve the sparsity of the Hessian during the transformation (7.2).

18

For all our test problems we used a standard line search backtracking strategy. All the test
problems with the exception of rank n — 1 and rank » — 2 problems were run with analytic
gradients and Hessians provided by the CUTE and MINPACK-2 collections. For rank n — 1 and
n — 2 test problems, we have modified the analytic gradients provided by the CUTE collection
to take into account the modification (7.2). On the other hand, we used the graph coloring
algorithm [8] to evaluate the finite difference approximation of the Hessian matrix.

A summary for the test problems whose Hessians at the solution have ranks n, n — 1, and
n — 2 is presented in Table 1. The descriptions of the test problems and the detailed results are
given in the Appendix. In Table 1 columns “better” and “worse” represent the number of times
the tensor method was better and worse, respectively, than Newton’s method by more than one
gradient evaluation. The “tie” column represents the number of times the tensor and standard
methods required within one gradient evaluation of each other. For each set of problems, we
summarize the comparative costs of the tensor and standard methods using average ratios of
three measures: gradient evaluations, function evaluations, and execution times. The average
gradient evaluation ratio (geval) is the total number of gradients evaluations required by the
tensor method, divided by the total number of gradients evaluations required by the standard
method on these problems. The same measure is used for the average function evaluation
(feval) and execution time (time) ratios. These average ratios include only problems that were
successfully solved by both methods. We have excluded all cases where the tensor and standard
methods converged to a different minimizer. However, the statistics for the “better,” “worse,”
and “tie” columns include the cases where only one of the two methods converges, and exclude
the cases where both methods do not converge. We also excluded problems requiring a number
of gradient evaluations less or equal than 3 by both methods. Finally, columns “t/s” and “s/t”
show the number of problems solved by the tensor method but not by the standard method
and the number of problems solved by the standard method but not by the tensor method,
respectively.

The improvement by the tensor method over the standard method on problems with rank
n—1is dramatic, averaging 48% in function evaluations, 52% in gradient evaluations, and 59% in
execution times. This is due in part to the rate of convergence of the tensor method being faster
than that of Newton’s method, which is known to be only linearly convergent with constant
%. On problems with rank n — 2, the improvement by the tensor method over the standard
method is also substantial, averaging 30% in function evaluations, 37% in gradient evaluations,
and 34% in execution times. In the test results obtained for the nonsingular problems, the tensor
method is 9% worse than the standard method in function evaluations, but 31% and 33% better
in gradient evaluations and in execution times, respectively. The main reason for the tensor
method requiring on the average more function evaluations than the standard method is because
on some problems, the full tensor step does not provide sufficient decrease in the objective
function, and therefore the tensor method has to perform a line search in both the Newton
and tensor directions, which causes the number of function evaluations required by the tensor
method to be inflated. As a result, we intend to investigate other possible global frameworks for
line search methods that could potentially reduce the number of functions evaluations for the
tensor method.

To obtain an experimental indication of the local convergence behavior of the tensor and

19

Table 1: Summary of the CUTE and MINPACK-2 test problems using line search

Rank Tensor/Standard | Pbs Solved | Average Ratio—Tensor/Standard
V?f(x.) | better | tie | worse | t/s | s/t | feval | geval time
n 53 38 5 4 0 1.09 | 0.69 0.67
n—1 18 2 0 5 0 0.52 | 0.48 0.41
n—2 18 1 1 7 0 0.70 | 0.63 0.66

Newton methods on problems where rank(V?f(z.)) = n— 1, we examined the sequence of ratios

| 2p — 2 ||

|2k — 2. ||

(7.4)

produced by the Newton and tensor methods on such problems. These ratios for a typical
problem are given in Table 2. In almost all cases the standard method exhibits local linear
convergence with constant near %, which is consistent with the theoretical analysis. The local
convergence rate of the tensor method is faster, with a typical final ratio of around 0.01. Whether
this is a superlinear convergence remains to be determined. We have done similar experiments for
problems with rank(V?f(z.)) = n — 2, and the tensor method did not show a faster-than-linear
convergence rate, because it did not have enough information since p = 1.

The tensor method solved a total of four nonsingular problems, five rank n — 1 problems, and
7 rank n — 2 problems that Newton’s method failed to solve. The reverse never occurred. These
results clearly indicate that the tensor method is most likely to be more robust than Newton’s
method.

The overall results show that having some extra information about the function and gradient
in the past step direction is quite useful in achieving the advantages of tensor methods.

8. Summary and Future Research

In this paper we presented new algorithms for solving large, sparse unconstrained optimization
using tensor methods. Implementations using these tensor methods have been shown to be
considerably more efficient especially on problems where the Hessian matrix has a small rank
deficiency at the solution. Typical gains over standard Newton methods range from 40% to
50% in function and gradient evaluations and in computer time. The size and consistency of
the efficiency gains indicate that the tensor method may be preferable to Newton’s method
for solving large, sparse unconstrained optimization problems where analytic gradients and/or
Hessians are available. To firmly establish such a conclusion, additional testing is required,
including test problems of very large size.

On sparse problems where the function or the gradient is expensive to evaluate, the finite
difference approximation of the Hessian matrix by the graph coloring algorithm [8] may be very
costly. Hence, quasi-Newton methods may be preferable to use in this case. These methods
involve low-rank corrections to a current approximate Hessian matrix. We are currently at-
tempting to extend our tensor methods to quasi-Newton methods for large, sparse unconstrained
minimization problems.

20

Table 2: Speed of convergence on the BRYBND problem with rank(V? f(z.)) = n—1, as modified
by (7.2), n = 5000, started from zg. The ratios in second and third columns are defined by
(7.4).

Tteration (k) | Standard Method | Tensor Method
1 0.659 0.659
2 0.655 0.033
3 0.650 0.459
4 0.641 0.961
5 0.629 0.850
6 0.612 0.667
7 0.590 0.410
8 0.571 0.323
9 0.600 0.126
10 0.760 0.012
11 0.940
12 0.988
13 0.970
14 0.969
15 0.956
16 0.926
17 0.891
18 0.909
19 0.848
20 0.926
21 0.939
22 0.896
23 0.832
24 0.871
25 0.742
26 0.667
27 0.667
28 0.666
29 0.665
30 0.666

21

We also considered solving large, sparse, structured unconstrained optimization problems
using tensor methods. In this variant, we explored the possibility of using exact third- and
fourth-order derivative information. The calculation of these derivatives is simplified using the
concept of partial separability, a structure that has already proven to be useful when building
quadratic models for large-scale nonlinear problems [16]. The calculation of the minimizer of
this exact tensor model is more problematic, however, because we need to solve a sparse system
of nonlinear equations. An obvious approach to solve these equations is to use a Newton-like
method. Such a method is characterized by the approximation of the Jacobian used in the
Newton process. A simple idea is to use a fixed Jacobian at each step. This has the advantage
that the Jacobian will have already been obtained in the current tensor iteration. However,
potential slow convergence of such a scheme may make the cost of a tensor iteration prohibitive.
We are currently investigating other possible approaches, such as a modified Newton’s method
in which the approximated Jacobian matrix will incorporate more useful information, or an
iterative method such as a nonlinear GMRES. This work, a cooperation with Nick Gould [5],
will be reported in the near future.

We are almost done with the implementation and testing of the two-dimensional trust region
global strategy described in §5. This work will be reported in a forthcoming paper.

We are also implementing the algorithms discussed in this paper in a software package. This
package uses one past point in the formation of the tensor terms, which makes the additional
cost and storage of the tensor method over the standard method very small. The package will
be available soon.

Acknowledgments. We thank Professor Bobby Schnabel for his suggestions on how to
minimize the tensor model when the Hessian is rank deficient, Nick Gould for discussing a num-
ber of implementation issues, Ta-Tung Chow for reviewing the first draft of the paper, and my
CERFACS colleague Jacko Koster for his numerous suggestions. We also thank the referees,
and Gail Pieper from the MCS division at Argonne National Laboratory for their suggestions
for improvement.

22

References

[1] Anon. Harwell subroutine library (Release 11). Theoretical Studies Department, AEA
Industrial Technology, 1993.

[2] B. M. Averick, R. G. Carter, J. J. Moré, and G. L. Xue. The MINPACK-2 test problem
collection. Technical Report ANL/MCS-P153-0692, Argonne National Laboratory, 1992.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Trans. Math. Software, 21(1):123-160, 1995.

[4] A. Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear least
squares problems using tensor methods on sequential and parallel computers. Ph.D. the-
sis, Computer Science Department, University of Colorado at Boulder, 1992.

[5] A. Bouaricha and N. I. M. Gould. Personal communication. Centre Européen de Recherche
et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France, 1994.

[6] A. Bouaricha and R. B. Schnabel. TENSOLVE: A software package for solving systems of
nonlinear equations and nonlinear least squares problems using tensor methods. Preprint
MCS-P463-0894, Mathematics and Computer Science Division, Argonne National Labora-
tory, 1994.

[7] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. Approximation solution of the trust region
problem by minimization over two-dimensional subspaces. Math. Programming, 40:247-263,
1988.

[8] T. F. Coleman, B. S. Garbow, and J. J. Moré. Estimating sparse Hessian matrices. ACM
Trans. Math. Software, 11:363-377, 1985.

[9] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

[10] I. S. Duff and J. K. Reid. MA27: A set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Technical Report R-10533, AERE Harwell Laboratory, Harwell,
UK, 1983.

[11] D. Feng, P. Frank, and R. B. Schnabel. Local convergence analysis of tensor methods for
nonlinear equations. Math. Prog., 62:427-459, 1993.

[12] R. Fletcher. Practical method of optimization, volume 1, Unconstrained Optimization. John
Wiley and Sons, New York, 1980.

[13] P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. Preconditioners for indefinite
systems arising in optimization and nonlinear least squares problems. Technical Report
SOL 90-8, Department of Operations Research, Stanford University, California, 1990.

[14] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London,
1981.

23

[15]

[16]

[19]

[20]

A. Griewank and M. R. Osborne. Analysis of Newton’s method at irregular singularities.
SIAM J. Numer. Anal., 18:145-150, 1981.

A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separa-
ble functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages 301-312.
Academic Press, New York, 1982.

J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In G. A.
Watson, editor, Proceedings Dundee 1977, Lecture Notes in Mathematics 630, pages 105—
116. Springer Verlag, Berlin, 1978.

M. J. D. Powell. A new algorithm for unconstrained optimization. In J. B. Rosen, O. L.
Mangasarian, and K. Ritter, editors, Nonlinear Programming, pages 33—65. Academic Press,
New York, 1970.

R. B. Schnabel and T. Chow. Tensor methods for unconstrained optimization using second
derivatives. STAM J. Optimization, 1:293-315, 1991.

R. B. Schnabel and P. D. Frank. Tensor methods for nonlinear equations. STAM J. Numer.
Anal., 21:815-843, 1984.

24

Appendix: Test Problems and Detailed Experimental Results
The columns in Tables A-3—A-6 have the following meanings:

— func: name of the problem.

— n: dimension of the problem.

— zg: starting point. 1, 10, 100 stand for xg, 10z, and 100z, respectively.

tnet f: initial value of the objective function.
— fen: number of function evaluations.

— grad: number of gradient evaluations.

— time: execution time in seconds.

— finalf: final value of the objective function.

1L, NC stand for iteration limit exceeded and convergence to a nonminimizer, respectively. The
iteration limit is 300 for the MINPACK-2 collection and 200 for the CUTE collection. All starting
points were provided by the MINPACK-2 and CUTE collections.

Remark: For rank n — 1 and n — 2 problems grad does not include the number of gradients
required by Hessian evaluations. On the other hand, fen does include the functions evaluations
required by Hessian evaluations.

Table A-1: MINPACK-2 test problems

Name | Description

DEPT | Elastic-plastic torsion problem

DGL1 | Ginzburg-Landau (1-dimensional) superconductivity problem

DGL2 | Ginzburg-Landau (2-dimensional) superconductivity problem

DLJ2 | 2-dimensional Leonard-Jones clusters (molecular conformation) problem
DLJ3 | 3-dimensional Leonard-Jones clusters (molecular conformation) problem
DMSA | Minimal surface area problem

DODC | Optimal design with composite materials problem

DPJB | Pressure distribution in a journal bearing problem

DSSC | Steady state combustion problem

25

Table A-2: CUTE test problems

Name Description

ARWHEAD Quartic problem whose Hessian is an arrow-head (downwards)
with diagonal central part and border-width 1

BDQRTIC Quartic problem whose Hessian is banded with bandwidth 9

BRYBND Broyden banded system of nonlinear equations, considered in
the least square sense

DIXMAANA | Dixon-Maany test problem (version A)

DIXMAANB | Dixon-Maany test problem (version B)

DIXMAANC | Dixon-Maany test problem (version C)

DIXMAANI | Dixon-Maany test problem (version I)

DIXON3DQ Dixon’s tridiagonal quadratic

EDENSCH Extended Dennis and Schnabel problem, as defined by Li

ENGVAL1L A sum of 2n — 2 groups, n — 1 of which contain 2 nonlinear elements

FLETCBV?2 Boundary Value problem

FREUROTH | Freudenstein and Roth test problem

LTARWHD A simplified version of the NONDIA problem

MOREBV Boundary Value problem. This is the nonlinear least-squares
version without fixed variables

NONDIA Shanno’s nondiagonal extension of Rosenbrock function

NONDQUAR | A nondiagonal quartic test problem with an
arrow-head type Hessian having a tridiagonal central part and
a border-width 1. The Hessian is singular at the solution

PENALTY1 A sum of n 4+ 1 least-squares groups, the first n
which have only one linear element

PENALTY?2 A nonlinear least-squares problem with m = 2n groups,
group 1 is linear, groups 2 to n use 2 nonlinear elements,
groups n + 1 to m — 1 use 1 nonlinear element, and group m
uses n nonlinear elements

POWELLSG | Extended Powell singular problem

QUARTC A simple quartic function

SINQUAD A function with nontrivial groups and repetitious elements

SROSENBR | Separable extension of Rosenbrock’s function

TQUARTIC A quartic function with nontrivial groups and repetitious elements

TRIDIA Shanno’s TRIDIA quadratic tridiagonal problem

WOODS Extended Woods problem

WOODS1 Scaled extended Woods problem

26

Table A-3: Results of the MINPACK-2 test problems

Standard Tensor

func n 0 inutf fecn grad finalf time fecn grad finalf time
DEPT 100 1 -0.36364D 401 2 2 -0.10694D 402 0.410D-01 2 2 -0.10694D 402 0.391D-01
DEPT 400 1 -0.36584D 401 2 2 -0.10902D 402 0.180D+00 2 2 -0.10902D 402 0.182D+00
DEPT 900 1 -0.36629D401 2 2 -0.10946D 402 0.449D+400 2 2 -0.10946D 402 0.471D+400
DEPT 1600 1 -0.36645D401 2 2 -0.10961D 402 0.900D+00 2 2 -0.10961D 402 0.900D+00
DEPT 2500 1 -0.36653D401 2 2 -0.10969D 402 0.153D+01 2 2 -0.10969D 402 0.151D+401
DEPT 3600 1 -0.36657D401 2 2 -0.10973D 402 0.239D+01 2 2 -0.10973D 402 0.236D+401
DEPT 4900 1 -0.36659D401 2 2 -0.10976D 402 0.348D+401 2 2 -0.10976D 402 0.349D+01
DEPT 6400 1 -0.36661D401 2 2 -0.10977D402 0.478D+401 2 2 -0.10977D402 0.483D+01
DEPT 8100 1 -0.36662D401 2 2 -0.10978D 402 0.746D+01 2 2 -0.10978D 402 0.713D+401
DEPT 10000 1 -0.36663D401 2 2 -0.10979D 402 0.833D+01 2 2 -0.10979D 402 0.831D+401
DGL1 100 1 -0.16619D-03 18 18 -0.84562D 404 0.410D+00 5 5 -0.84562D 404 0.110D+00
DGL1 400 1 -0.16619D-03 18 18 -0.84562D 404 0.173D+401 9 6 -0.84562D 404 0.620D+00
DGL1 900 1 -0.16619D-03 18 18 -0.84562D 404 0.397D+401 6 6 -0.84562D 404 0.129D+401
DGL1 1600 1 -0.16619D-03 18 18 -0.84562D 404 0.706D+401 7 7 -0.84562D 404 0.282D+01
DGL1 2500 1 -0.16619D-03 18 18 -0.84562D 404 0.110D+02 8 8 -0.84562D 404 0.512D 401
DGL1 3600 1 -0.16619D-03 19 19 -0.84562D 404 0.169D+02 9 9 -0.84562D 404 0.847D+401
DGL1 4900 1 -0.16619D-03 19 19 -0.84562D 404 0.230D+02 7 7 -0.84562D 404 0.860D+01
DGL1 6400 1 -0.16619D-03 17 17 -0.84413D 404 0.270D+02 7 7 -0.84562D 404 0.115D+02
DGL1 8100 1 -0.16619D-03 - NC - - 7 7 -0.84562D 404 0.149D+02
DGL1 10000 1 -0.16619D-03 - NC - - 9 9 -0.84562D 404 0.236D+02
DGL2 100 1 0.18190D+02 231 84 0.16228D+02 0.113D+02 150 38 0.16228D+02 0.531D+401
DGL2 400 1 0.20131D+02 159 67 0.16231D+02 0.450D+02 210 43 0.16231D+02 0.307D+02
DGL2 900 1 0.22015D+02 265 96 0.16232D+02 0.202D+03 418 76 0.16232D+02 0.169D+03
DGL2 1600 1 0.23884D+02 306 111 0.16232D+02 0.584D+03 455 81 0.16232D+02 0.444D+403
DGL2 2500 1 0.25748D+02 354 122 0.16232D+02 0.133D+04 607 102 0.16232D+02 0.117D+04
DGL2 3600 1 0.27609D+02 503 165 0.16232D+02 0.314D+04 751 137 0.16232D+02 0.219D+04
DGL2 4900 1 0.29469D+02 686 223 0.16232D+02 0.128D+405 849 144 0.16232D+02 0.644D+404
DLJ2 100 1 -0.10698D 403 252 107 -0.13375D403 0.113D+403 176 51 -0.13396D 403 0.544D+02
DLJ2 200 1 -0.22945D403 405 132 -0.28056D 403 0.103D+04 475 89 -0.28140D 403 0.698D+03
DLJ2 300 1 -0.35261D403 544 145 -0.44216D 403 0.372D+04 631 118 -0.44025D403 0.305D+04
DLJ3 120 1 -0.11782D 403 375 112 -0.17954D 403 0.137D+403 348 65 -0.17073D403 0.805D+02
DLJ3 210 1 -0.23253D403 485 139 -0.34073D403 0.838D+03 608 113 -0.34522D 403 0.687D+03
DLJ3 360 1 -0.42908D 403 1031 281 -0.63744D403 0.826D+04 963 173 -0.63311D403 0.466D+04
DMSA 100 1 0.14608D+01 4 4 0.14185D+401 0.150D+00 4 4 0.14185D+401 0.160D+00
DMSA 400 1 0.14891D+01 4 4 0.14206D+01 0.640D+00 10 4 0.14206D+01 0.710D+00
DMSA 900 1 0.15035D+401 5 5 0.14210D+01 0.212D+401 4 4 0.14210D+01 0.172D+401
DMSA 1600 1 0.15123D+401 5 5 0.14212D+401 0.396D+01 10 5 0.14212D+401 0.446D+401
DMSA 2500 1 0.15183D+01 6 6 0.14212D+401 0.833D+01 14 5 0.14212D+401 0.761D+401
DMSA 3600 1 0.15227D+401 6 6 0.14213D+401 0.130D+02 10 6 0.14213D+401 0.146D+02
DMSA 4900 1 0.15260D+01 6 6 0.14213D+401 0.190D+02 11 6 0.14213D+401 0.210D+02
DMSA 6400 1 0.15286D 401 7 7 0.14213D+401 0.308D+02 9 7 0.14213D+401 0.342D+02
DMSA 8100 1 0.15307D+01 17 12 0.14213D+401 0.846D+02 16 8 0.14213D+401 0.595D+402
DMSA 10000 1 0.15324D+401 21 14 0.14213D+401 0.117D+403 17 7 0.14213D+401 0.601D+02
DODC 100 1 0.44626D-01 14 8 -0.10980D-01 0.420D+00 16 8 -0.10980D-01 0.487D+00
DODC 400 1 0.47194D-01 13 10 -0.11248D-01 0.234D+401 19 10 -0.11248D-01 0.272D+401
DODC 900 1 0.47771D-01 23 13 -0.11329D-01 0.744D+401 41 14 -0.11329D-01 0.943D+01
DODC 1600 1 0.47974D-01 55 23 -0.11351D-01 0.256D+402 56 21 -0.11351D-01 0.267D+02
DODC 2500 1 0.48082D-01 70 33 -0.11359D-01 0.617D+02 117 28 -0.11359D-01 0.623D+02
DODC 3600 1 0.48139D-01 129 49 -0.11368D-01 0.148D+03 194 42 -0.11368D-01 0.144D+03
DODC 4900 1 0.48178D-01 565 163 -0.11372D-01 0.713D+403 406 76 -0.11372D-01 0.380D+03
DODC 6400 1 0.48202D-01 597 168 -0.11374D-01 0.999D+03 526 94 -0.11374D-01 0.640D+03
DODC 8100 1 0.48221D-01 - IL - - - IL - -
DODC 10000 1 0.48234D-01 - IL - - - IL - -
DPJB 100 1 0.11274D+02 2 2 -0.27881D 400 0.488D-01 2 2 -0.27881D 400 0.508D-01
DPJB 400 1 0.13331D+02 2 2 -0.28144D 400 0.209D+00 2 2 -0.28144D 400 0.201D+00
DPJB 900 1 0.14544D+02 2 2 -0.28219D 400 0.500D+00 2 2 -0.28219D 400 0.490D+00
DPJB 1600 1 0.15545D 402 2 2 -0.28249D 400 0.939D+00 2 2 -0.28249D 400 0.959D+00
DPJB 2500 1 0.16462D+02 2 2 -0.28264D 400 0.150D+01 2 2 -0.28264D 400 0.160D+01
DPJB 3600 1 0.17336D+02 2 2 -0.28272D 400 0.243D+401 2 2 -0.28272D 400 0.256D 401
DPJB 4900 1 0.18186D+02 2 2 -0.28277D400 0.374D+401 2 2 -0.28277D400 0.362D 401
DPJB 6400 1 0.19022D+02 2 2 -0.28280D 400 0.496D+401 2 2 -0.28280D 400 0.489D+01
DPJB 8100 1 0.19848D+02 2 2 -0.28282D 400 0.733D+401 2 2 -0.28282D 400 0.741D+401
DPJB 10000 1 0.20666D+02 2 2 -0.28284D 400 0.878D+01 2 2 -0.28284D 400 0.862D+01
D3sC 100 1 -0.52548D+401 3 3 -0.55979D 401 0.110D+00 3 3 -0.55979D 401 0.120D+00
D3sC 400 1 -0.50507D401 3 3 -0.56077D401 0.510D+00 3 3 -0.56077D401 0.540D+00
D3sC 900 1 -0.49189D 401 3 3 -0.56098D 401 0.120D+01 3 3 -0.56098D 401 0.131D+401
D3sC 1600 1 -0.48224D 401 3 3 -0.56105D401 0.229D+401 3 3 -0.56105D401 0.246D 401
D3sC 2500 1 -0.47466D 401 3 3 -0.56108D401 0.382D+01 3 3 -0.56108D401 0.413D+401
D3sC 3600 1 -0.46842D 401 3 3 -0.56110D 401 0.595D 401 3 3 -0.56110D 401 0.624D+401
D3sC 4900 1 -0.46312D 401 3 3 -0.56112D 401 0.880D+01 3 3 -0.56112D 401 0.913D+01
D3sC 6400 1 -0.45852D 401 3 3 -0.56112D 401 0.115D+02 3 3 -0.56112D 401 0.122D+402
D3sC 8100 1 -0.45445D401 3 3 -0.56113D401 0.173D+402 3 3 -0.56113D401 0.179D+02
D3sC 10000 1 -0.45080D 401 2 2 -0.56113D401 0.102D+02 2 2 -0.56113D401 0.102D+02

27

Table A-4: Results of the CUTE test problems

Standard Tensor
func n 0 inutf fecn grad finalf time fecn grad finalf time

ARWHEAD 5000 1 0.14997D+05 7 7 0.00000D+00 0.496D+402 3 3 0.00000D+00 0.168D+02
10 0.19978D+09 12 12 0.00000D+00 0.909D+02 18 14 0.00000D+00 0.110D+03
100 0.19996D+13 18 18 0.00000D+00 0.140D+03 33 20 0.00000D+00 0.160D+03
BDQRTIC 1000 1 0.22510D+06 10 10 0.39838D+04 0.992D+01 24 12 0.39838D+04 0.127D+402
10 0.22424D+10 16 16 0.39838D+04 0.165D+02 38 17 0.39838D+04 0.185D+02
100 0.22410D+14 22 22 0.39838D+04 0.231D+02 51 23 0.39838D+04 0.254D+02
BRYBND 5000 1 0.12490D+06 24 17 0.13587D-19 0.327D+402 49 16 0.12928D-16 0.381D+02
10 0.10765D+12 37 26 0.14231D-19 0.510D+02 50 24 0.98532D-17 0.551D+02
100 0.12303D+18 - IL - - 810 189 0.35466D-16 0.473D+403
DIXON3DQ 5000 1 0.80000D+01 2 2 0.11414D-24 0.600D+00 2 2 0.11414D-24 0.560D+00
10 0.24200D+03 2 2 0.34514D-23 0.570D+00 2 2 0.34514D-23 0.570D+00
100 0.20402D+05 2 2 0.29050D-21 0.560D+00 2 2 0.29050D-21 0.560D+00
DIXMAANA 3000 1 0.20501D+05 6 6 0.10000D+01 0.165D+01 8 6 0.10000D+01 0.205D+01
10 0.80013D+10 18 12 0.10000D+01 0.366D+401 19 12 0.10000D+01 0.455D 401
100 0.80000D+16 29 21 0.10000D+01 0.654D 401 19 19 0.10000D+01 0.724D+401
DIXMAANB 3000 1 0.43242D 405 6 6 0.10000D+01 0.162D+01 15 6 0.10000D+01 0.218D+01

10 0.17227D+11 - IL - - - IL - -

100 0.16116D+17 - IL - - - IL - -
DIXMAANC 3000 1 0.74483D+05 15 15 0.10000D+01 0.450D+01 15 13 0.10000D+01 0.506D 401

10 0.34452D+11 - IL - - - IL - -

100 0.32233D+17 - IL - - - IL - -
DIXMAANI 3000 1 0.12022D+05 100 33 0.10000D+01 0.119D+02 108 18 0.10000D+01 0.907D+01
10 0.80004D+10 184 58 0.10000D+01 0.217D+402 152 32 0.10000D+01 0.157D+402
100 0.80000D+16 263 77 0.10000D+01 0.287D+402 247 41 0.10000D+01 0.209D+02
EDENSCH 2000 1 0.73583D+407 13 13 0.12003D+05 0.442D+401 31 16 0.12003D+05 0.666D+401
10 0.15184D+12 19 19 0.12003D+05 0.666D+401 53 20 0.12003D+05 0.877D+01
100 0.16253D+16 24 24 0.12003D+05 0.848D+01 48 25 0.12003D+05 0.106D+02
ENGVAL1 5000 1 0.29494D+06 8 8 0.55487D+04 0.536D 401 7 7 0.55487D+04 0.548D+401
10 0.31990D+10 14 14 0.55487D+04 0.983D+01 27 14 0.55487D+04 0.124D+02
100 0.31994D+14 20 20 0.55487D+04 0.143D+402 49 20 0.55487D+04 0.186D+02
FLETCBV2 10000 1 -0.50013D 400 1 1 0.00000D+00 0.460D+00 1 1 0.00000D+00 0.380D+00
10 0.39995D 402 2 2 -0.50013D 400 0.207D+01 2 2 -0.50013D 400 0.215D+401
100 0.48995D+04 2 2 -0.50013D 400 0.212D+401 2 2 -0.50013D 400 0.212D+401
FREUROTH 5000 1 0.50486D+07 461 83 0.60793D+06 0.956D+02 424 53 0.60821D+06 0.785D+402
10 0.15963D+09 444 77 0.60726D+06 0.894D+02 200 30 0.35200D+07 0.414D+02
100 0.13056D+15 92 45 0.42206D+06 0.426D+02 155 51 0.53488D+06 0.605D+02
LIARWHD 10000 1 0.58500D+07 13 13 0.81983D-21 0.217D+403 13 9 0.49397D-27 0.148D+03
10 0.97359D+11 22 21 0.63218D-17 0.363D+03 24 12 0.11125D-16 0.205D+03
100 0.10189D+16 26 26 0.16259D-16 0.463D+03 48 18 0.31712D-21 0.319D+03
MOREBV 5000 1 0.15969D-06 2 2 0.58271D-14 0.100D+01 2 2 0.58271D-14 0.940D+00
10 0.15983D-04 2 2 0.22833D-09 0.950D+00 2 2 0.22833D-09 0.960D+00
100 0.17190D-02 2 2 0.32151D-04 0.910D+00 2 2 0.32151D-04 0.910D+00
NONDIA 10000 1 0.39996D+07 6 6 0.47632D-24 0.909D+02 10 5 0.11200D-20 0.737D+402
10 0.12099D+11 34 34 0.53482D-25 0.595D+403 20 16 0.19919D-28 0.274D+403
100 0.10200D+15 39 39 0.22382D-20 0.681D+03 52 21 0.65733D-17 0.367D+03
NONDQUAR 10000 1 0.10006D+05 20 20 0.41398D-09 0.965D+03 20 20 0.41413D-09 0.970D+03
10 0.99981D+08 25 25 0.12450D-08 0.122D+04 25 25 0.12538D-08 0.123D+04
100 0.99980D+12 31 31 0.73954D-09 0.152D+04 31 31 0.87210D-09 0.153D+04
PENALTY1 100 1 0.11448D+12 47 38 0.90255D-03 0.493D+01 10 7 0.90249D-03 0.780D+00
10 0.11448D+16 51 43 0.90255D-03 0.557D 401 7 7 0.90249D-03 0.850D+00
100 0.11448D+20 55 48 0.90257D-03 0.625D 401 30 16 0.90252D-03 0.213D+401
PENALTY2 100 1 0.16885D+07 24 21 0.97096D+05 0.296D+01 26 20 0.97096D+05 0.300D+01
10 0.15939D+11 27 26 0.97096D+05 0.369D 401 47 27 0.97096D+05 0.411D+401
100 0.15939D+15 31 31 0.97096D+05 0.444D+401 70 31 0.97096D+05 0.481D+401
POWELLSG 10000 1 0.53750D+06 16 16 0.10947D-04 0.143D+402 33 15 0.83906D-05 0.179D+02
10 0.40385D+10 21 21 0.32920D-04 0.190D+02 28 22 0.11695D-04 0.257D+402
100 0.40251D+14 27 27 0.19556D-04 0.247D+402 31 27 0.54051D-05 0.316D+02
QUARTC 1000 1 0.19850D+15 35 35 0.22354D-09 0.231D+401 35 35 0.22354D-09 0.287D+401
10 0.18125D+15 35 35 0.20411D-09 0.229D+401 35 35 0.20411D-09 0.285D+401
100 0.65804D+14 34 34 0.37515D-09 0.223D+401 35 34 0.37515D-09 0.278D+401

28

Table A-4: Results of the CUTE test problems (continued)

Standard Tensor
func n 0 inutf fecn grad finalf time fecn grad finalf time
SINQUAD 10000 1 0.65610D+00 25 20 0.39609D-10 0.975D+03 66 21 0.35876D-15 0.103D+04
10 0.00000D+00 1 1 0.35876D-15 0.290D+00 1 1 0.35876D-15 0.300D+00
100 0.65610D+04 18 18 0.69625D-08 0.881D+03 47 19 0.42524D-15 0.966D+03
SROSENBR 5000 1 0.48500D+05 9 8 0.93253D-11 0.297D+401 16 7 0.10927D-17 0.332D+401
10 0.44893D+10 97 66 0.38588D-18 0.279D+02 65 33 0.22535D-15 0.179D+02
100 0.51123D+14 - IL - - 204 97 0.26051D-08 0.547D+402
TQUARTIC 1000 1 0.81000D+00 2 2 0.39936D-27 0.270D+00 2 2 0.39936D-27 0.260D+00
10 0.00000D+00 1 1 0.39936D-27 0.200D-01 1 1 0.39936D-27 0.200D-01
100 0.81000D+02 2 2 0.12622D-24 0.260D+00 2 2 0.12622D-24 0.260D+00
TRIDIA 10000 1 0.50005D+08 2 2 0.41242D-24 0.119D+01 2 2 0.41242D-24 0.117D+401
10 0.50005D+10 2 2 0.13131D-22 0.117D+401 2 2 0.13131D-22 0.117D+401
100 0.50005D+12 2 2 0.33835D-20 0.117D+401 2 2 0.33835D-20 0.117D+401
WOODS3 10000 1 0.27296D+08 28 23 0.31973D-14 0.259D+02 49 21 0.33996D-17 0.305D+02
10 0.22566D+12 51 42 0.42521D-12 0.484D+02 72 34 0.42039D-09 0.503D+02
100 0.22122D+16 73 60 0.27578D-10 0.698D+02 100 49 0.16526D-16 0.730D+02
WOODS31 10000 1 0.55500D+06 9 9 0.17486D-11 0.949D+01 12 8 0.25903D-20 0.103D+02
10 0.41460D+10 15 15 0.38193D-13 0.165D+02 22 14 0.26198D-19 0.196D+02
100 0.40591D+14 21 21 0.61171D-14 0.236D+02 33 20 0.17403D-17 0.285D+402
Table A-5: Results of the rank n — 1 test problems from the CUTE collection
Standard Tensor
func n k2 initf fen grad finalf time fen grad finalf time
BRYBND 5000 1 0.12488D+06 488 30 0.17586D-10 0.376D+03 176 10 0.13179D-10 0.130D+03
10 0.10765D+12 - IL - - 1088 60 0.85644D-10 0.785D+403
100 0.12303D+18 3396 201 0.97750D-21 0.263D+04 1560 84 0.16631D-11 0.111D+404
DIXON3DQ 5000 1 0.40000D+01 6 2 0.62536D-17 0.712D+01 6 2 0.62536D-17 0.718D+401
10 0.12100D+03 6 2 0.18917D-15 0.713D+401 6 2 0.18917D-15 0.713D+401
100 0.10201D+05 6 2 0.15948D-13 0.713D+401 6 2 0.15948D-13 0.713D+401
NONDQUAR 10000 1 0.10003D+05 - IL - - 182 24 0.57721D-07 0.635D+03
10 0.99981D+08 - IL - - 4414 187 0.17004D-07 0.608D+04
100 0.99980D+12 - IL - - 3820 194 0.62846D-07 0.560D+04
QUARTC 1000 1 0.45000D+05 57 15 0.61708D-05 0.631D+401 13 4 0.24654D-07 0.144D+401
10 0.45000D+09 81 21 0.36635D-05 0.905D+01 29 5 0.53107D-07 0.240D+01
100 0.45000D+13 101 26 0.11038D-04 0.113D+02 130 22 0.50906D-06 0.107D+02
SROSENBR 5000 1 0.48481D+05 30 8 0.11403D-09 0.477D+402 44 7 0.45822D-12 0.422D+02
10 0.44888D+10 286 65 0.23622D-12 0.440D+03 121 21 0.16587D-10 0.146D+03
100 0.51122D+14 - IL - - 242 49 0.35217D-11 0.344D+03
TQUARTIC 1000 1 0.32368D+04 38 12 0.38436D-15 0.433D+401 17 4 0.98215D-17 0.155D 401
10 0.15962D-23 1 1 0.98215D-17 0.200D-01 1 1 0.98215D-17 0.200D-01
100 0.32368D+06 23 8 0.20695D-15 0.275D+401 28 9 0.14036D-15 0.335D+401
TRIDIA 10000 1 0.50005D+08 6 2 0.41155D-14 0.267D+02 6 2 0.41155D-14 0.266D+02
10 0.50005D+10 6 2 0.44999D-12 0.266D+02 6 2 0.44999D-12 0.266D+02
100 0.50005D+12 11 3 0.14577D-13 0.531D+402 11 3 0.14914D-13 0.535D+402
WOODS3 1000 1 0.27296D+07 248 49 0.52712D-11 0.236D+02 224 32 0.41898D-10 0.168D+02
10 0.22566D+11 342 67 0.63594D-11 0.324D+402 245 38 0.20790D-11 0.199D+02
100 0.22122D+15 446 87 0.44137D-11 0.423D+402 308 47 0.22064D-10 0.247D+402
WOODS31 1000 1 0.55491D+05 86 18 0.25201D-09 0.816D+01 50 10 0.21981D-08 0.463D+401
10 0.41460D+09 116 24 0.21634D-09 0.111D+02 84 16 0.40452D-08 0.765D 401
100 0.40591D+13 146 30 0.19591D-09 0.139D+02 125 22 0.50008D-08 0.108D+02

29

Table A-6: Results of the rank n — 2 test problems from the CUTE collection

Standard Tensor
func n 0 inutf fecn grad finalf time fecn grad finalf time

BRYBND 5000 1 0.12487D+06 527 29 0.42357D-09 0.454D+403 268 14 0.30203D-08 0.219D+03
10 0.10765D+12 824 46 0.16732D-15 0.724D+403 670 32 0.34308D-10 0.519D+03

100 0.12303D+18 - IL - - 1401 68 0.26897D-12 0.110D+04

DIXON3DQ 5000 1 0.80000D+01 7 2 0.62564D-17 0.938D+01 7 2 0.62564D-17 0.938D+01
10 0.24200D+03 7 2 0.18928D-15 0.934D+01 7 2 0.18928D-15 0.934D+01

100 0.20402D+05 7 2 0.15948D-13 0.933D+401 7 2 0.15948D-13 0.936D+01

NONDQUAR 10000 1 0.10002D+05 - IL - - 1109 70 0.14468D-06 0.271D+04
10 0.99980D+08 - IL - - 1674 86 0.96220D-07 0.332D+04

100 0.99980D+12 - IL - - 1923 101 0.40263D-07 0.382D+04

QUARTC 1000 1 0.45000D+05 57 15 0.61708D-05 0.646D+01 13 4 0.24654D-07 0.145D+401
10 0.45000D+09 81 21 0.36635D-05 0.921D+401 101 17 0.53107D-07 0.819D+01

100 0.45000D+13 101 26 0.11038D-04 0.115D+02 130 22 0.50906D-06 0.107D+02

SROSENBR 5000 1 0.48481D+05 72 13 0.82242D-14 0.108D+03 91 15 0.23908D-16 0.128D+03
10 0.44890D+10 429 77 0.69440D-04 0.683D+03 465 68 0.14337D-16 0.615D+03

100 0.51122D+14 - IL - - 1294 201 0.80433D+06 0.183D+04

TQUARTIC 1000 1 0.32335D+04 48 12 0.94635D-16 0.565D+401 30 6 0.65443D-18 0.305D+01
10 0.15946D-23 1 1 0.15946D-23 0.200D-01 1 1 0.15946D-23 0.200D-01

100 0.32335D+406 49 12 0.18893D-15 0.564D+401 54 12 0.56162D-18 0.636D+01

TRIDIA 10000 1 0.50005D+08 8 2 0.41344D-14 0.349D+02 8 2 0.41344D-14 0.349D+02
10 0.50005D+10 8 2 0.45002D-12 0.350D+02 8 2 0.45002D-12 0.349D+02

100 0.50005D+12 15 3 0.25973D-12 0.703D+02 15 3 0.25973D-12 0.709D+02

WOODS3 1000 1 0.27277D+407 196 31 0.77284D-13 0.189D+02 168 26 0.18453D-12 0.165D+02
10 0.22564D+11 325 51 0.68702D-06 0.316D+02 289 41 0.10869D-12 0.268D+02

100 0.22121D+15 434 68 0.56038D-05 0.423D+402 89 11 0.11251D-08 0.684D+01

WOODS31 1000 1 0.55470D+05 118 18 0.18927D-09 0.107D+02 91 16 0.10966D-07 0.975D+401
10 0.41458D+09 - NC - - 127 22 0.30436D-08 0.136D+02

100 0.40590D+13 - NC - - 31 6 0.19654D-08 0.324D+401

30

