
A Data Transfer Library for Communicating Data-Parallel TasksB. Avalani�, A. Choudhary�, I. Fostery, R. Krishnaiyer�, and M. XuyAbstractMany computations can be structured as sets of communicating data-parallel tasks. Individualtasks may be coded in HPF, pC++, etc.; periodically, tasks exchange distributed arrays via channeloperations, virtual �le operations, message passing, etc. The implementation of these operations iscomplicated by the fact that the processes engaging in the communication may execute on di�erentnumbers of processors and may have di�erent distributions for communicated data structures. Inaddition, they may be connected by di�erent sorts of networks. In this paper, we describe a com-municating data-parallel tasks (CDT) library that we are developing for constructing applications ofthis sort. We outline the techniques used to implement this library, and we describe a range of datatransfer strategies and several algorithms based on these strategies. We also present performance re-sults for several algorithms. The CDT library is being used as a compiler target for an HPF compileraugmented with Fortran M extensions.1 IntroductionWe consider the problem of e�cient data transfer in computations comprising sets of concurrently ex-ecuting data-parallel tasks. Programs with this structure occur in numerous domains, including mul-tidisciplinary analysis and image processing. Each task executes a data-parallel program on multipleprocessors. Periodically, tasks exchange data, for example, using send and receive operations on a sharedchannel.E�cient data transfer between data-parallel tasks is a nontrivial problem. Sending and receiving tasksmay execute on di�erent numbers of processors and use di�erent data distributions for communicated datastructures. Tasks may execute on overlapping or disjoint sets of processors within the same computer,or on di�erent computers connected by various types of network such as Ethernet or ATM wide areanetwork. The data to be transferred may be fully distributed, using block or cyclic distributions in oneor more dimensions, or may be replicated. Finally, tasks may perform a series of transfers using the samedata distributions, or may change data distributions on each transfer. A 
exible data transfer libraryshould allow e�cient execution in at least the most common of these situations. We have designed sucha library and used it to experiment with several alternative data transfer algorithms.There are intriguing similarities between some aspects of the data transfer problem and the problemsof array redistribution in HPF [15, 12], all-to-all communication [4, 5, 14], and parallel I/O [3]. Sometechniques developed for those problems can be applied to the data transfer problem; some techniquesdescribed in this paper may be applicable to parallel I/O. In other related work, Hatcher and Quinn [9]describe an implementation of communicating data-parallel C tasks on iWarp; however, communicationspass via a single control processor. Subhlok et al. [13] consider communicating HPF tasks, also on iWarp.Foster et al. [7] describe the use of Fortran M constructs to coordinate HPF computations, but do notconsider data redistribution.The principal contributions of this paper are the description of a simple but 
exible data transferlibrary for communicatingdata-parallel tasks, a description and preliminary analysis of novel data transferstrategies and algorithms, and experimental results allowing evaluation of the e�ciency of some of thesealgorithms.�Computer Information Science/Computer Science Engineering, Syracuse University, Syracuse, NY 13244.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.1



2 The Communication LibraryOur communicating data-parallel tasks (CDT) library comprises two components:1. A set of interface routines allows a compiler or library writer to supply data distribution information,to invoke send and receive operations, and to provide other information to the runtime library thatwill allow it to choose e�cient data transfer algorithms.2. A runtime library provides an implementation of the interface routines. It uses parameters providedby the interface routines to select between alternative data transfer algorithms.The library is designed to support point-to-point communication between pairs of data-parallel tasks.Collective operations such as multicast can use many of the same techniques but also introduce additionalissues.2.1 InterfaceThe interface supports communication from one task (the sender) to another (the receiver). The senderand receiver tasks are assumed to be HPF-like data-parallel computations executing HPF, Vienna Fortran,Fortran D, or pC++ [2, 8, 10, 11] programs as S and R \processes" (HPF processors), respectively. Theinterface allows the sender to send an arbitrary array, distributed using any legal HPF distribution overits S processes; the receiver must receive into an array of the same size and shape, which again can bedistributed using any legal HPF distribution over its R processes.The interface comprises �ve main functions, for which we provide a high-level description in thefollowing. The interface separates the actions of initializing and executing a communication. In theinitialization phase, sending and receiving tasks can exchange distribution information and precomputecommunication schedules. In the execution phase, the actual data transfer is performed. The advantageof this separation is that if the same communication is to be performed many times, initialization costscan be amortized over many communications.cdt sender init(SENDDIST, COUNT, RECEIVER, HANDLE): This routine performs initial-ization in the sender task. SENDDIST indicates the size, shape, and distribution of the array thatis to be communicated, COUNT is an estimate of the number of communication operations to beperformed with this distribution, and RECEIVER names the receiver task. The routine returns aHANDLE containing a pointer to a data structure containing communication schedule information.The COUNT argument allows the runtime library to determine how much time can be spent pre-computing communication schedules. (The interface may eventually expand to allow a compiler orruntime library to provide other information besides estimated execution counts.)cdt receiver init(RECVDIST, COUNT, SENDER, HANDLE): This is the equivalent of the pre-vious routine on the receiver's side.cdt sender exec(HANDLE, DATA): This call performs the actual data transfer; it can be invokedonly after a corresponding initialization call.cdt receiver exec(HANDLE, DATA): This call performs the actual data transfer; it can be invokedonly after a corresponding initialization call.cdt free(HANDLE): This call frees the data structure associated with the supplied HANDLE.The two initialization routines are intended to be executed as a single collective operation by the twotasks participating in a communication operation. The implementation must ensure correct behaviorwhen the same task is involved in several concurrent data transfer operations: for exmaple, if executingin a pipeline. 2



2.2 Data Transfer AlgorithmsThe CDT library is designed to incorporate a wide range of data transfer algorithms, each with perfor-mance advantages in di�erent situations. We �rst present a set of basic strategies that can be used indesigning these algorithms. These strategies trade o� communication volume for number of messages invarious ways. For simplicity, we restrict our attention to the general problem of redistributions involvingfully distributed arrays, in which all senders must communicate the same amount of data to all receivers.Other redistributions are special cases of this problem. We assume S senders and R receivers, and anarray of size D. Without loss of generality, we assume S � R. Figure 1 illustrates these strategies.
All-to-all Centralized Staged MultistageFigure 1: Four di�erent communication strategies when S = 4, R = 2. In each case, sending processorsare on the left and receiving processors on the right. Squares represent staging processors, which wouldtypically be mapped to sending processors.1. All-to-All. Each sender sends data to each receiver. This strategy can be useful if message startupsare cheap and the network connecting senders and receivers provides high connectivity.2. Multistage. As in all-to-all communication [5], the number of messages required for a data transfercan be reduced by combining data destined for each receiver using a multistage communicationstructure, such as a butter
y. Total data volume is increased, however. This strategy can be usefulif message startups are expensive and the amount of data to be transferred is small.3. Staged. We can accumulate data on a set of C staging processors, typically a subset of thesending processors. Each staging processor then transfers data to a single receiver, which distributesdata among receivers if C < R. This strategy increases total data volume (as each data value iscommunicated more than once) but reduces the number of messages sent from senders to receivers.Hence, it can be useful if message startup costs from senders to receivers are high: for example, ifsenders and receivers execute on separate MPPs connected by a local area network or wide areanetwork.While the multistage and staged strategies seek to reduce the number of messages, another strategythat can be e�ective if message startups are inexpensive is to break up data transfers into smaller piecesso as to pipeline computation on data with its communication. This strategy is not supported directlyby our interface, and requires compiler assistance if it is to be performed automatically.These strategies can be used in various combinations to develop a wide range of algorithms. We havechosen to focus on �ve in our initial investigations.1. All-to-All. This involves S �R messages and the communication of D data.2. Centralized. All data is accumulated in a single sender, which then distributes it to receivers.This requires a total of S+R� 1 messages (S� 1 for accumulation and R for distribution) and thetransfer of approximately 2D data. This algorithm does not permit concurrent execution but maybe useful if a network provides low connectivity.3. Staged. Data is accumulated in R senders using all-to-all communication; these staging processorsthen send it to the receivers. This requires a total of S �R messages ((S � 1)�R for accumulation3



and R for transfer) and the transfer of approximately 2D data. This algorithm may be useful ifsender and receiver are connected by a network with high message startup costs.4. Multistage. A butter
y-like combining network is used to achieve data transfer in O(log2 S)steps. This algorithm requires a total of about S log2 S messages and the transfer of approximatelyD log2 S data. This algorithm may be useful in an MPP with high connectivity if message startupcosts are high.5. All-to-All/Staged Hybrid. This is a variant of the all-to-all algorithm appropriate when S > R.It proceeds in a synchronous fashion, in multiple steps. In each step, R senders transfer data to Rreceivers. At the same time, the (S �R) idle senders engage in staging. As illustrated in Figure 2,this algorithm can reduce the number of messages from senders to receivers relative to all-to-all,without increasing the amount of data transferred.
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Step 2 Step 3Figure 2: A data transfer from four senders to two receivers using the \all-to-all/staged hybrid" algorithm.The transfer proceeds in three steps. In the arrays of blocks to the left of the sending processors, columnI represents data destined for processor I, while row J represents data from processor J . Notice thestaging performed in the �rst stage. This allows the data transfer to proceed in three instead of fourstages, as would be required with the all-to-all algorithm.2.3 ImplementationA prototype of the data transfer library has been constructed using the Fortran M (FM) [6] extensions toFortran. For the purposes of the experimental studies described in the next section, calls to this librarywere incorporated by hand into code generated by the Syracuse HPF compiler [1]. We are developingcompiler extensions that will allow communications to be speci�ed using FM-like CHANNEL statementsembedded in HPF programs. The compiler would then generate calls to CDT interface routines toperform the necessary communication. (An alternative approach would be to call the CDT routines asHPF extrinsic procedures.) Figure 3 shows an example of the type of program that might be writtenusing these constructs. (This is one of the programs used for benchmarking purposes.)In our implementation, each HPF task is implemented as a collection of FM processes, and communica-tion both within and between tasks is implemented using FM channels [7]. Communicating data-paralleltasks may execute on the same or di�erent processors; in the experiments described in this paper, weplace them on disjoint sets of processors. Separate channels are established for the transfer of data andcontrol information.Calls to the sender and receiver initialization routines cause designated master processes on each side toexchange data distribution information. This information is then broadcast to the senders and receivers,which can compute the communication schedule in a distributed fashion. The maximum communicationcost incurred by any processor in this exchange should be 1+max(log2 S; log2R) messages. (Our currentimplementation uses an O(N ) broadcast, and maximum cost is 1 + 2 �max(S;R) messages.)4



program example!hpf$ processors pr(24)INPORT (real x(128,128)) piOUTPORT (real x(128,128)) poCHANNEL(in=pi, out=po)PROCESSESPROCESSCALL sender(po) SUBMACHINE(pr(1:16))PROCESSCALL receiver(pi) SUBMACHINE(pr(17:24))ENDPROCESSESendPROCESS sender(po)!hpf$ processors pr(16)outport (real x(128,128)) poreal a(128,128)!hpf$ distribute a(block,*)do i = 1,10call produce(a)SEND(po) aenddoENDCHANNEL(po)endPROCESS receiver(pi)!hpf$ processors pr(8)inport (real x(128,128)) pireal b(128,128)!hpf$ distribute b(*,block)do i = 1,10RECEIVE(pi,end=10) bcall use(b)enddo10 continueendFigure 3: A simple HPF program augmented with syntax (in bold face) for specifying creation andcommunication between concurrent tasks. The main program creates a channel and two tasks, producerand consumer. The two tasks execute on 16 and 8 processors, respectively, and the producer sends asequence of arrays distributed (BLOCK,*) to the consumer, which receives them into an array distributed(*,BLOCK). 5



Calls to the sender and receiver execution routines cause the actual data transfer to take place. In ourcurrent implementation, the communication schedule for each transfer is computed on the 
y during theexecution phase. This is probably the more e�cient strategy if every communication involves a di�erentschedule, as it allows the computation of the schedule to be overlapped with communication. In thefuture, we will precompute schedules whenever the initialization call indicates that the same schedule canbe reused (that is, if COUNT > 1 in cdt sender init and cdt receiver init).3 Experimental StudiesSection 2.2 listed �ve di�erent data transfer algorithms, each apparently suitable for di�erent situations.Our eventual goal is for our library to select optimal algorithms automatically, given information aboutsystem and problem characteristics. As a �rst step, we incorporated the \all-to-all" and \centralized"algorithms into our prototype library. Our implementation supports arbitrary numbers of processorsand distributions on the sending and receiving ends. In this section, we present the results of severalexperimental studies conducted using this library. These provide some insights into the costs of ourdata transfer algorithms. Experiments were performed on the Argonne IBM SP1 multicomputer, whichcomprises 128 RS/6000 microprocessors connected by a multistage crossbar providing peak data rates of6 MB/sec. Processors are also connected via Ethernet.3.1 All-to-All ImplementationsIn our �rst set of experiments, we �x S = R = 8 and measure execution time as a function of array sizefor three implementations of the all-to-all algorithm on 16 processors. The redistribution considered is(BLOCK,*) to (*,BLOCK), which requires all-to-all communication.The �rst implementation considered uses a generic communication strategy that computes communi-cation schedules on the 
y, with each processor computing the destination processor for each of its dataelements. Data elements are accumulated in buckets, one per receiver, and a single message is generatedfor each bucket. This is a general-purpose strategy but performs much unnecessary computation.The second implementation is specialized for the (BLOCK,*) to (*,BLOCK) redistribution. This usesblock copy operations and performs signi�cantly less computation.The third implementation is also specialized for (BLOCK,*) to (*,BLOCK) but does not performinitialization before each communication. This allows us to quantify the cost associated with initialization,and hence the bene�ts of compiler optimizations that minimize the number of initialization operationsperformed.The cost of a single transfer for each of these three implementations (termed generic, optimized, andasync, respectively) was determined by averaging over a large number of identical transfers. Results arepresented in Figure 4, along with �ts from the following simple performance model:T = tmM + tw D(S + R)=2 ; (1)where M is the number of messages per processor: 25 for the �rst two algorithms (as noted above, theprototype implementation uses a rather ine�cient setup strategy) and 8 for the second algorithm, D isthe array size in words, tm is a per-message cost, and tw is a per-word cost. The ts and tm values obtainedare as follows, in �sec; for convenience, the tw values are also expressed as MB/sec.Algorithm M tm tw MB/secGeneric 25 293 19 0.2Optimized 25 288 2.8 1.4Async 8 383 1.8 2.2The �ts are good, suggesting that our simple model is a reasonable characterization of algorithm be-havior. The per-word costs are considerably higher for the generic algorithm, emphasizing the importanceof both incorporating specialized algorithms for common data distributions and precomputing commu-nication schedules. The two \optimized" algorithms achieve data transfer rates of about 1.4 MB/secand 2.2 MB/sec, respectively. As the peak bandwidth of the SP1 is around 6 MB/sec, there is clearly6
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Figure 4: Execution time per data transfer for three di�erent algorithm variants (described in text) withS = R = 8, using all-to-all algorithm on 16 IBM SP1 processorsroom for additional improvement. The per-message costs are surprisingly high, but are reasonably con-sistent across algorithmic variants, although somewhat higher in the async algorithm. We are currentlyinvestigating the reasons for the high per-message costs.As would be expected, the async algorithm, which does not perform initialization at each step, isconsiderably more e�cient than the other two algorithms. Note, however, that the cost associatedwith initialization (17 additional messages) is unrealistically high in our prototype. Using an O(logN )broadcast instead of the current O(N ) broadcast would reduce the number of additional messages to1 + log2N = 4 in this case, making the cost of initialization negligible for all but small arrays and smallnumbers of processors.3.2 All-to-All Vs. CentralizedIn our second experiment, we compare the performance of the all-to-all and centralized algorithms. Thiscomparison is performed using the Ethernet interconnect on the SP1, an environment in which we suspectthat bandwidth limitations may be signi�cant. Results are presented in Figure 5. We �nd that the all-to-all algorithm is always faster; it appears that bandwidth limitations are not an issue, at least in thisproblem size regime.Figure 5 gives in addition to the observed data, �ts to two simple performance models. The all-to-all model is Equation 1, with a �t of tm = 1230 �sec and tw = 41 �sec; the centralized model is thesame but with the data volume term scaled by the number of processors, to re
ect the fact that datacommunication is performed sequentially in this algorithm. The latter model gives a reasonable �t butclearly does not account for all aspects of algorithm behavior.3.3 Other Problem SizesFinally, we present results using the generic all-to-all algorithm for two other con�gurations: S =8=R = 4 and S = 4=R = 2. Performance results are in Figure 6, along with results predicted byEquation 1 with M = 2S + R + 1 and using the tm and tw values obtained previously by the �t to the7
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Figure 5: Execution time per data transfer for all-to-all and centralized algorithm on Ethernet-connectRS6000 workstations, with S = R = 8.generic algorithm. We get an good �t to the model and see that, as should be expected, the S = 4=R = 2data transfer is less costly for small arrays (since there are fewer messages) but more costly for largerarrays (since each processor transfers more data). Note that the crossover point in this graph would beat a lower value of D if a more e�cient initialization algorithm were used.3.4 Other ApplicationsIn addition to the synthetic examples described in this section, we have used our library to implementseveral more substantial programs, some based on a benchmark suite from CMU [13]. For example,a two-dimensional (2-D) fast Fourier transform (FFT) may be implemented as a purely data-parallelprogram or as two communicating data-parallel tasks, each responsible for performing 1-D FFTs in onedirection. The second implementation gives superior performance in many circumstances. Space doesnot permit the presentation of performance results in this paper.4 ConclusionsA general-purpose library for data transfer between communicating data-parallel tasks would be of consid-erable utility in many applications. In this paper, we have presented a design for such a library, outlinedthe algorithms that it might contain, described an approach to its implementation, and presented perfor-mance results from a prototype implementation. In future work, we will extend the range of algorithmsincorporated in our framework, tune and characterize the performance of these algorithms on di�erentarchitectures, and incorporate the framework into an HPF compiler augmented with task-parallel con-structs. We are particularly interested in investigating performance on larger numbers of processors andin providing specialized data transfer algorithms for other common redistributions. Another interestingdirection for further work is the development of specialized network protocols for the types of data trans-fer considered in this paper. For example, Turner et al. [16] describe specialized network protocols forthe execution of data-parallel tasks on workstation networks.8
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