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1 IntroductionWe are interested in solving a class of nonlinear integer programming prob-lems min f(x) (1)x 2 Bn = f0; 1gnor its natural extension min f(x) (2)x 2 Rn integral;where f : Rn �! R is a general nonlinear function.This class of problems contains many NP-hard problems and has im-portant theoretical and practical applications. For example, consider theproblem that for any norm k k,min k b� Ax k (3)x 2 Rn integral;where b 2 Rm, andA is anm�nmatrix with integer elements. This problem,called the closest vector problem in integer programming, has been provento be NP-complete even for simple norms such as l2 and l1 [11, 24, 25].Another example is related to the solution of a class of more generalproblems: mixed-integer nonlinear programming problems. A mixed-integernonlinear program min g(x; y) (4)y 2 Rmx 2 Rn integralcan be formulated, under appropriate assumptions, as a nonlinear integerprogram min f(x) (5)x 2 Rn integral;where f(x) =min fg(x; y) : y 2 Rng: (6)2



If x is bounded, Problem (2) can be transformed into Problem (1).Therefore, we focus only on Problem (1) in this work.Several approaches to the solution of Problem (1) have been studied.The main ones are enumeration, algebraic, and linearization approaches[1, 2, 7, 16, 17, 20, 21]. For a general review, readers are referred to [8, 13, 19,22, 26]. Most of these approaches consider problems with special structures.For problems with general objective functions, such as Problem (3) andProblem (4), they usually do not apply, owing to their special requirementsfor the form of the objective function.In this work, Problem (1) is considered for general cases. A subgradi-ent approach to the problem is proposed. In this approach, the objectivefunction for a nonlinear integer program is considered as a nonsmooth func-tion over the integer points. The subgradient and the supporting plane forthe function are de�ned, and a necessary and su�cient condition for theoptimal solution is established, based on the theory of nonsmooth analysis[6, 28, 29]. A new algorithm, called the subgradient algorithm, is developed.The algorithm is in some sense an extension of Newton's method to discreteproblems: The algorithm searches for a solution iteratively among the in-teger points. In each iteration, it generates the next point by solving theproblem for a local piecewise linear model. Each local model is constructedusing the supporting planes for the objective function at a set of previouslygenerated integer points. A solution is found when either the optimalitycondition is satis�ed or an iterate is repeated. In either case, the algorithmterminates in �nite steps.This paper presents the theory and the algorithm for the subgradientapproach to nonlinear integer programming. The methods for computingthe supporting planes and solving the linear subproblems are described.Test results for a small set of problems also are given.The paper is organized as follows: Section 2 introduces the de�nitionsof subgradient and supporting plane and presents the necessary and su�-cient optimality condition. Section 3 describes the subgradient algorithmand discusses the stopping criteria, the complexity issues, and the solutionproperties. The issues on computing supporting planes and solving piece-wise linear subproblems are addressed in Sections 4 and 5, respectively. Themathematical formulations are derived, and the methods for solving thesubproblems are given. Section 6 describes the numerical test. Section 7contains concluding remarks. 3



2 The Nonsmooth TheoryGiven a nonlinear objective function f : Rn �! R, consider the restrictionof the function f : Bn �! R. Let this function be denoted by f r. It is afunction over the discrete set of all 0-1 integer points and is nondi�erentiable,or, in other words, nonsmooth.Problem (1) is equivalent to the following nonsmooth problem:min f r(x) (7)x 2 Bn = f0; 1gn:We call f and f r the continuous and discrete objective functions forProblem (1), respectively.De�nition 1 A subgradient of f r at �x 2 Bn is a vector s 2 Rn such thatsT (x� �x) � f r(x)� f r(�x) 8x 2 Bn : (8)De�nition 2 The subdi�erential of f r at �x 2 Bn is the set of all subgradi-ents of f r at �x de�ned by the following equation:@f r(�x) = fs 2 Rn : sT (x� �x) � f r(x)� f r(�x) 8x 2 Bng: (9)De�nition 3 A supporting plane of f r at �x 2 Bn is a hyperplane de�nedby the following equation:g(x) = f r(�x) + sT (x� �x); s 2 @f r(�x): (10)A supporting plane is said to be \good" if it is tight as a bounding func-tion. For example, in Figure 1, B is better than A, and C is the best. Givena subgradient, we can de�ne a supporting plane, and vice versa. Therefore,the notions of subgradient and supporting plane are correlated.Theorem 1 Let f be convex and di�erentiable, and rf(�x) be the gradientof f at �x. Then, rf(�x) 2 @f r(�x) 8�x 2 Bn.Proof: It su�ces to show that for any �x 2 Bn,rf(�x)T (x� �x) � f(x)� f(�x) 8x 2 Bn: (11)4
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0 1Figure 1: Simple examples for supporting planesFor x = �x, the inequality (11) holds obviously. So, we need to consideronly x 6= �x; x 2 Bn . Since f is di�erentiable, the directional derivative of fat �x in the direction of (x� �x), de�ned aslim�!0 f(�x+ �(x� �x))� f(�x)� ; (12)exists and is equal to rf(�x)T (x� �x).Since f is convex, for � 2 (0; 1],f(x)� f(�x) = �f(x) + (1� �)f(�x)� f(�x)�� f(�x+ (1� �)�x)� f(�x)�= f(�x+ �(x� �x))� f(�x)� ; (13)which implies f(x)� f(�x) � lim�!0 f(�x+ �(x� �x))� f(�x)�= rf(�x)T (x� �x): (14)5



2Theorem 2 The subdi�erential @f r(�x) of f r at �x 2 Bn is a convex set.Proof: For any �x, let s1; s2 2 @f r(�x). We show that�s1 + (1� �)s2 2 @f r(�x) for any � 2 [0; 1]: (15)Since s1; s2 2 @f r(�x),s1(x� �x) � f r(x)� f r(�x) 8x 2 Bn ; and (16)s2(x� �x) � f r(x)� f r(�x) 8x 2 Bn : (17)So, for any x 2 Bn and � 2 [0; 1],(�s1 + (1� �)s2)(x� �x)= �s1(x� �x) + (1� �)s2(x� �x)� �(f(x)� f(�x)) + (1� �)(f(x)� f(�x))= f(x)� f(�x); (18)which, by the de�nition of a subgradient (8), implies�s1 + (1� �)s2 2 @f r(�x) for any � 2 [0; 1]: (19)2Theorem 3 A necessary and su�cient condition for x� 2 Bn to be a min-imizer of f r (and also f) over Bn is 0 2 @f r(x�).Proof: By the de�nition of a subgradient (8), 0 2 @f r(x�) for x� 2 Bn ifand only if 0(x� x�) � f r(x)� f r(x�) 8x 2 Bn; (20)which just means thatf r(x�) � f r(x) 8x 2 Bn: (21)2Note that the subgradient of a function at a given point may not beunique. Usually, there are in�nitely many. No general methods can beused to compute all the subgradients, especially for nonlinear nonsmoothfunctions. However, as we will see in the following sections, we can determinea zero subgradient without computing the whole set of the subdi�erential.6



3 The Subgradient AlgorithmA subgradient algorithm, as outlined in Figure 2, solves a nonlinear integerprogramming problem with the following iterative procedure. The algorithmassumes a starting point x(0) 2 Bn. At the ith iteration (i starts from 0to m, an arbitrarily large number), if f r has a zero subgradient at x(i), orx(i) = x(j) for some j < i, then x(i) is an optimal solution, and the algo-rithm stops. Otherwise, a supporting plane gx(i) for f r at x(i) is generated.The supporting planes gx(j) for all j � i de�ne a piecewise linear functionp(x) = maxj�ifgx(j)(x)g. An linear integer subproblem, minx2Bn p(x), isthen solved, and the solution is used by the algorithm as x(i+1) for nextiteration.The algorithm has two stopping criteria. One is the optimality conditionstated in Theorem 3. The other is to test whether an iterate is repeated.We will show in the following that if an iterate is repeated, it must bean optimal solution. This criterion prevents cycling in the algorithm andguarantees that the algorithm will terminate in a �nite number of steps.Theorem 4 Let p(i) be the piecewise linear function constructed in the ithiteration of Algorithm 1. Then for any i, p(i)(x) � f r(x) 8x 2 Bn:Proof: As presented in Algorithm 1,p(i)(x) = maxfg(x) : g 2 Hg= max0�j�ifg(j)(x) : g(j) 2 Hg; (22)where g(j) 2 H is a supporting plane for f r generated in the jth iterationof the algorithm. By the de�nition of a supporting plane (10),g(j)(x) = f r(x(j)) + (s(j))T (x� x(j)); (23)where x(j) 2 Bn is the jth iterate, and s(j) 2 @f r(x(j)). By the de�nition ofa subgradient (8),(s(j))T (x� x(j)) � f r(x)� f r(x(j)) 8x 2 Bn: (24)So, g(j)(x) � f r(x) 8x 2 Bn . Since this is true for all j; 0 � j � i,max0�j�ifg(j)(x) : g(j) 2 Hg � f r(x) 8x 2 Bn; (25)which means that p(i)(x) � f r(x) 8x 2 Bn. 27



Algorithm 1 fA subgradient algorithmg0 fInitializationgT = �, H = �, i = 0pick up x(i) 2 Bn1 fIterationgdo while i � m1:1 fOptimality testinggif x(i) 2 T or 0 2 @f r(x(i)) is known thenx(i) is an optimal solution, stopend if1:2 fGenerating supporting planesgT = T [ fx(i)gH = H [ fgx(i) : gx(i)(x) = f r(x(i)) + sTx(i)(x� x(i)); sx(i) 2 @f r(x(i))g1:3 fSolving a linear integer minimax problemg�nd a solution x(�) forminx2Bn fp(x)=max fg(x) : g 2 Hgg1:4 fUpdatinggi = i+ 1x(i) = x(�)end do Figure 2: Subgradient algorithm8



Theorem 5 Let z(i) and z(i+1) be the optimal values of the linear integerminimax subproblems in the ith and (i + 1)th iterations in Algorithm 1,respectively. Then, for any i, z(i) � z(i+1). If, in addition, x(i+1) is uniqueand x(i+1) 6= x(i+2), then z(i) < z(i+1).Proof: First we prove z(i) � z(i+1).As de�ned in Algorithm 1,z(i) = minx2Bn p(i)(x); and (26)z(i+1) = minx2Bn p(i+1)(x): (27)So, it su�ces to show that p(i)(x) � p(i+1) 8x 2 Bn: By the de�nition ofp(i), for any x 2 Bn ,p(i)(x) = max0�j�ifg(j)(x) : g(j) 2 Hg� max0�j�i+1fg(j)(x) : g(j) 2 Hg= p(i+1)(x): (28)So, p(i)(x) � p(i+1)(x) 8x 2 Bn, and z(i) � z(i+1).Now we show that z(i) < z(i+1) if x(i+1), the solution to the subproblemminx2Bn p(i)(x); (29)is unique, and x(i+1) 6= x(i+2). The proof is by contradiction.Suppose that Problem (29) has an unique solution x(i+1) and that z(i) =z(i+1). Since z(i) = z(i+1), p(i)(x(i+1)) = p(i+1)(x(i+2)). But,p(i+1)(x(i+2)) = max0�j�i+1fg(j)(x(i+2)) : g(j) 2 Hg= max fp(i)(x(i+2)); g(i+1)(x(i+2))g: (30)Then, p(i)(x(i+1)) � p(i)(x(i+2)).However, p(i)(x(i+1)) < p(i)(x(i+2)) by the uniqueness of x(i+1) and thefact that x(i+1) 6= x(i+2). Hence, we have a contradiction. Thus, z(i) 6=z(i+1), and z(i) can only be strictly less than z(i+1) by the �rst argument ofthe theorem. 2Theorem 6 Let T = fx(j) 2 Bn; j < ig be the sequence of integer pointsgenerated by Algorithm 1 up to the ith iteration. If 9j < i such that x(j) =x(i), then x(i) must be an optimal solution.9



Proof: Let j be the integer such that j < i and x(j) = x(i).As de�ned in the algorithm, x(i) is a solution to the linear integer sub-problem minx2Bn p(i�1)(x): (31)So, p(i�1)(x(i)) � p(i�1)(x) 8x 2 Bn: (32)By Theorem 4, p(i�1)(x) � f r(x) 8x 2 Bn : (33)Thus, p(i�1)(x(i)) � f r(x) 8x 2 Bn (34)and, in particular, p(i�1)(x(i)) � f r(x(i)): (35)But, p(i�1)(x(i)) = max0�k�i�1fg(k)(x(i)) : g(k) 2 Hg� g(j)(x(i))= g(j)(x(j))= f r(x(j))= f r(x(i)): (36)Then, f r(x(i)) = p(i�1)(x(i)), andf r(x(i)) � f r(x) 8x 2 Bn: (37)2Theorem 7 Algorithm 1 is �nite.Proof: It follows immediately from Theorem 6 and the fact that there areonly �nitely many distinct points x 2 Bn. 210



Corollary 1 Let T = fx(j) 2 Bn ; j < ig be the sequence of integer pointsgenerated by Algorithm 1 up to the ith iteration. Let z(ji) = f r(x(ji)) be theminimal of f r in T . Then,z(i�1) � z� � z(ji); (38)and also jz(ji) � z(i�1)j = 0 for i su�ciently large; (39)where z(i�1) is de�ned as in Theorem 5, and z� is the optimal value of f rin Bn.Proof: First we prove the inequalities in (38).By Theorem 4, p(i�1)(x) � f r(x) 8x 2 Bn : (40)Therefore, z(i�1) = minx2Bn p(i�1)(x) � minx2Bn f r(x) = z�: (41)The second inequality follows from the fact that any feasible point x 2Bn yields an upper bound f r(x) for the optimal value of f r:Now we show the statement (39).By Theorem 6 and Theorem 7, the algorithm stops at the ith iterationif x(i) = x(j) for some j < i. Then as in the proof for Theorem 6,z(i�1) = p(i�1)(x(i)) = f r(x(i)) = z�: (42)Since now z(ji) = z�, z(i�1) = z(ji): 2Corollary 1 simply implies that at the ith iteration, the algorithm �ndsthe best solution x(ji) among all iterates. The di�erence between the ob-jective value at this solution and the optimal value of f r is bounded byjz(ji) � z(i�1)j, and the bound also decreases with increasing i.Finally, since it is not straightforward to test the optimality conditionin Theorem 3, we state a more constructive, but equivalent, necessary andsu�cient condition in the following theorem.11



Theorem 8 A necessary and su�cient condition for x� 2 Bn to be a min-imizer of f r (and also f) over Bn is that 9s 2 @f r(x�) such thatsi � 0 8i such that x�i = 1; (43)andsi � 0 8i such that x�i = 0: (44)Proof: Necessity follows directly from Theorem 3 and the fact that s = 0satis�es conditions (43) and (44). For su�ciency, suppose that 9s 2 @f r(x�)satisfying conditions (43) and (44). Then,sT (x� x�) � f r(x)� f r(x�) 8x 2 Bn ; (45)and 0 � sT (x� x�) 8x 2 Bn : (46)Therefore, 0(x� x�) � sT (x� x�)� f r(x)� f r(x�) 8x 2 Bn; (47)and then 0 2 @f r(x�). By Theorem 3, x� is a minimizer of f r. 24 Computing the Supporting PlanesIn this section, we describe the methods for computing the supportingplanes. Related subproblems are derived. The solution methods are given.4.1 Optimizing a Supporting Plane: A Lifting ProcessIn the subgradient algorithm, a supporting plane for the discrete objectivefunction at a given integer point is required at each iteration. In general,a supporting plane g for a discrete objective function f r at a given integerpoint �x 2 Bn is a linear function, andg(x) = f r(�x) + sT (x� �x) s 2 @f r(�x); x 2 Rn: (48)To obtain this function, we need to compute a subgradient s 2 @f r(�x) and,in particular, a subgradient such that the supporting plane supports the12



objective function as tightly as possible. However, @f r usually is not givenexplicitly, and therefore it is not easy to obtain an arbitrary subgradient.Note that in principle, given an arbitrary objective function f for Prob-lem (1), we can always replace it with a strictly convex function ~f withoutchanging the solution of the problem. For example, we can de�ne a functionq : Rn �! R such thatq(x) = nXi=1 (xi � 1=2)2k � n=4k; (49)where k > 0 is an integer, and let~f(x) = f(x) + �q(x); (50)where � > 0 is a su�ciently large number. Since q(x) = 0; 8x 2 Bn, ~fand f agree on all x 2 Bn. Therefore, they correspond to the same discreteobjective function f r and have the same solution set. However, since qis strictly convex, ~f is strictly convex for � su�ciently large. Therefore,without loss of generality, in the following discussion, we always assumethat the objective function f for Problem (1) is strictly convex.By Theorem 1, if f is convex and di�erentiable, rf(�x), the gradient off at �x, is a subgradient of f r at �x. A trivial way to choose s, therefore,is to set s to rf(�x). Unfortunately, with this subgradient, g usually is too\steep" to be a preferred supporting plane;To obtain a \better" subgradient, we introduce a method called thelifting process. The process starts with the subgradient s = rf(�x) andthen updates it such that the corresponding supporting plane g is \lifted,"in other words, made \atter" or \closer" to f r. The updated s remains asubgradient as long as g still supports f r at �x:g(x) � f r(x) 8x 2 Bn: (51)The lifting process continues until the best possible supporting plane isobtained. However, for every update, the condition (51) must be veri�ed.For a given subgradient s, if S is de�ned such that x 2 S if f(x) � g(x),the condition (51) is equivalent to that the interior of S does not contain0-1 integer points.Figure 3 illustrates with a simple example how the lifting process isconducted and the condition (51) is guaranteed. In this example, the liftingprocess is applied to �nd a subgradient of f r at �x. First, s is set to rf(�x).13
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The supporting plane de�ned by this subgradient is g(0). Then, s is updatedto \lift" g(0) a little bit, and g(1) and S(1) are obtained. De�neA = fx 2 Rn : xi � 0; if �xi = 1; and xi � 1 if �xi = 0; i = 1; : : : ; ng: (52)Geometrically, A is a region that contains Bn , and its boundary is formedby hyperplanes xi = 1 � �xi; i = 1; : : : ; n. Once it has been observed thatthe interior of A contains no points in Bn other than �x, the condition (51)holds for g(1) if S(1) is inside of A. Therefore, in order to obtain bettersubgradients, s can further be updated until the corresponding S hits theboundary of A (e.g., g(2) and S(2) in Figure 3).Let g(0) be the supporting plane of f r at �x such thatg(0)(x) = f r(�x) +rf(�x)T (x� �x): (53)Then, we have the following formal de�nitions and results.De�nition 4 For any i > 0, let g(i�1) be a supporting plane of f r at �x andg(i) the supporting plane of f r obtained by updating the gradient of g(i�1).Then, g(i) is said to be lifted from g(i�1) if g(i)(x) � g(i�1)(x) 8x 2 Bn andthere exists at least one point x 2 Bn such that g(i)(x) > g(i�1)(x):De�nition 5 For any s 2 Rn, the following setS = fx 2 Rn : f(x) � g(x)g (54)is called the projection set of s on Rn with respect to the function f at �x,where g is de�ned such that g(x) = f r(�x) + sT (x� �x); 8x 2 Rn.Theorem 9 For any s 2 Rn and convex function f , the projection set S ofs with respect to f at �x is convex.Proof: Let x; x0 2 S. We show that�x+ (1� �)x0 2 S 8� 2 [0; 1]: (55)This follows immediately from the fact thatf(�x+ (1� �)x0) � �f(x) + (1� �)f(x0)� �g(x) + (1� �)g(x0)= g(�x+ (1� �)x0); (56)because that f is convex, x; x0 2 S, and g is linear. 215



Theorem 10 For any s 2 Rn, s 2 @f r(�x) if and only ifx 62 S� 8x 2 Bn; (57)where S� is the interior of the projection set S of s with respect to f at �x.Proof: First we prove su�ciency:If x 62 S� 8x 2 Bn, f(x) � g(x) 8x 2 Bn, where g(x) = f r(�x)+sT (x��x).This is equivalent tof r(x) � f r(�x) + sT (x� �x) 8x 2 Bn : (58)So, s 2 @f r(�x) by the de�nition of a subgradient (8).Now we prove necessity:If s 2 @f r(�x),sT (x� �x) � f r(x)� f r(�x) 8x 2 Bn : (59)Then, g(x) � f r(x) = f(x) 8x 2 Bn; (60)implying that x 62 S� 8x 2 Bn: 2Theorem 10 provides a necessary and su�cient condition to check whethers 2 @f r(�x). While this condition cannot be tested directly, a su�cient con-dition in Theorem 11 can be used instead in practice.Theorem 11 Let A and S be de�ned as in (52) and (54), respectively.Then, for any s 2 Rn, s 2 @f r(�x) if S � A.Proof: It is easy to see that �x is the only point in Bn contained in A�,the interior of A. Since S � A, �x is also the only possible point in Bn thatcan be contained in S�, the interior of S. But, �x is a boundary point of S.Therefore, x 62 S� 8x 2 Bn, and s 2 @f r(�x) by Theorem 9. 24.2 A Nonlinear Least Squares FormulationNow consider the updated subgradient s and its corresponding projectionset S. Let di be the distance between S and the ith boundary of A, x = �ci,where �ci = 1� �xi by the de�nition of A in (52). Then, d = (d1; : : : ; dn) is a16



function of s, and the lifting process described in the preceding section canbe formulated mathematically as a special nonlinear optimization problem:min k d(s) k (61)st: di(s) � 0 i = 1; : : : ; n:Problem (61) does not need to be solved exactly. A feasible solution willsu�ce, since only a \good-enough" subgradient is sought. The problem canbe solved by using the following two relaxation rules:1. Keep the feasibility while making the objective function value as smallas possible but not necessarily optimal.2. Minimize the objective function while keeping the amount of infeasi-bility as small as possible but not necessarily zero.Algorithm 2 (Figure 4) is designed to obtain an approximate solutionto Problem (61). First, s is set to an initial value. Then, a \better" s isobtained by updating back and forth each component of s. If d(s) � 0,s is updated so that the corresponding supporting plane can be \lifted".Otherwise, some components of s are updated to \lower" the supportingplane. The algorithm stops when a good enough subgradient is obtained.While Algorithm 2 usually requires many updates, another approach isto solve the problem without considering the constraints:min k d(s) k : (62)The solution to this problem, for the case of l2 norm, can be obtained by astandard nonlinear least squares method [10, 27]. Let s� be the solution, and� =k d(s�) k be the optimal value. Then, we say s� is an �-approximation tothe solution for Problem (61) in the sense that it solves exactly the followingproblem: min k d(s) k (63)st: di(s) + � � 0 i = 1; : : : ; n:With this approximation, the total amount of infeasibility caused by s� isalways bounded by a quantity in the order of O(�). The smaller the � is, thebetter the solution s� will be. 17



Algorithm 2 fAn update methodg0 fInitializationgfor i = 1; : : : ; n doset initial values for si, si, and siend do1 fUpdatinggif di(s) � 0 8i thenif k d(s) k small enough, stopfor i = 1; : : : ; n dosi = sisi = si + (si � si)=2end doelsefor 8i such that di(s) < 0 dosi = sisi = si � (si � si)=2end if2 fBacktrackingggoto 1 Figure 4: An update method
18



4.3 Computing Extreme Points of a Convex BodyNo matter what methods are used to solve Problem (61), the major compu-tation will be the evaluation of the function d(s) for all s. For i = 1; 2; : : : ; n,di(s) is computed by �nding the extreme point of S along the xi directionand then calculating the distance between the extreme point and the ithboundary of A. The extreme point of S along the xi direction can be foundby solving a constrained optimization problem:min xi � 2�cixi (64)st: x 2 S;or equivalently, min xi � 2�cixi (65)st: f(x)� g(x) � 0;where f , g, and S are de�ned as before, and �ci = 1 � �xi. This problem isnot very hard to solve. Its objective function is linear, and there is only onenonlinear constraint. As we will show below, the solution of this problem isunique, and the �rst-order necessary condition is also su�cient. Therefore,the solution can be obtained by solving a system of nonlinear equations.In the rest of this section, we discuss mathematical properties related toProblem (64). We describe how to solve the problem in greater detail innext section.For simplicity, we assume in the following statements that �xi = 1 8i.Then, Problem (64) is reduced tomin xi (66)st: f(x)� g(x) � 0:Lemma 1 Given s 2 @f r(�x) and its corresponding projection set S, if S isclosed and bounded, the solution of Problem (66) exists and is unique.Proof: Existence can be proved by the fact that the objective function iscontinuous, and S is closed and bounded.Now we prove the uniqueness. The proof is by contradiction.Suppose that xi and x̂i are both solutions of Problem (66). Then, zi =�xi + (1� �)x̂i for any � 2 (0; 1) is also a solution, because x̂ii = xii, andzii = �xii + (1� �)x̂ii= �xii + (1� �)xii= xii: (67)19



However, since f is strictly convex and xi; x̂i 2 S,f(zi) < �f(xi) + (1� �)f(x̂i)� �g(xi) + (1� �)g(x̂i)= g(zi); (68)which implies that zi is an interior point of S. This is a contradiction to thefact that any solution of Problem (66) is an extreme point of S. 2Lemma 2 For Problem (66), de�ne a Lagrangian functionli(x; ui) = xi + ui(f(x)� g(x)); (69)where ui is a scalar. Then, for any i; 0 � i � n, a necessary and su�cientcondition for xi to be an optimal solution to Problem (66) is that 9ui � 0such that rxli(xi; ui) = 0ui(f(xi)� f(�x)� sT (xi � �x)) = 0f(xi)� f(�x)� sT (xi � �x) � 0; (70)which, with rxli(xi; ui) written explicitly, is equivalent toui(f 0x1(xi)� s1) = 0ui(f 0x2(xi)� s2) = 0...ui(f 0xi�1(xi)� si�1) = 01 + ui(f 0xi(xi)� si) = 0 (71)ui(f 0xi+1(xi)� si+1) = 0...ui(f 0xn(xi)� sn) = 0ui(f(xi)� f(�x)� sT (xi � �x)) = 0(f(xi)� f(�x)� sT (xi � �x)) � 0:Proof: Necessity follows directly from the �rst-order necessary conditionfor a nonlinear constrained optimization problem [12, 15, 31].20



Note that the ith equation of (71) implies that ui > 0, and r2xli(xi; ui) =uir2f(xi) is positive de�nite. So, the necessary condition is also su�cientby the second-order su�ciency condition for a nonlinear constrained opti-mization problem [12, 15, 31]. 2Lemma 3 Given ŝ 2 Rn and its corresponding projection set Ŝ, let x̂i bean extreme point of Ŝ along the xi direction, then there is a neighborhoodN(ŝ; �) of ŝ and a function xi : Rn �! Rn continuous and di�erentiablein N(ŝ; �) such that x̂i = xi(ŝ): (72)Proof: Rewrite (71) in the following way:F1(xi; ui; s) = ui(f 0x1(xi)� s1) = 0F2(xi; ui; s) = ui(f 0x2(xi)� s2) = 0...Fi�1(xi; ui; s) = ui(f 0xi�1(xi)� si�1) = 0Fi(xi; ui; s) = 1 + ui(f 0xi(xi)� si) = 0 (73)Fi+1(xi; ui; s) = ui(f 0xi+1(xi)� si+1) = 0...Fn(xi; ui; s) = ui(f 0xn(xi)� sn) = 0H(xi; ui; s) = (f(xi)� f(�x)� sT (xi � �x)) = 0;where the last equality holds because ui > 0 from the ith equality andui(f(xi)� f(x̂)� sT (xi � x̂)) = 0: (74)So, the inequality in (71) is removed.Let F = (F1; F2; : : : ; Fn; H). Then (73) is equivalent toF (xi; ui; s) = 0: (75)By Lemmas 1 and 2, given ŝ; 9x̂i and ûi such that F (x̂i; ûi; ŝ) = 0. Andx̂i; ûi are also unique. 21



Di�erentiate F with respect to xi and ui,r(xi;ui)FT = 0BBBBBB@ r(xi;ui)F1r(xi;ui)F2...r(xi;ui)Fnr(xi;ui)H 1CCCCCCA= 0BBBBBBBBBBBBB@ @2f@x1@x1ui : : : @2f@x1@xiui : : : @2f@x1@xnui 0... . . . ... . . . ... ...@2f@xi@x1ui : : : @2f@xi@xiui : : : @2f@xi@xnui f 0xi � si... . . . ... . . . ... ...@2f@xn@x1ui : : : @2f@xn@xiui : : : @2f@xn@xnui 00 : : : f 0xi � si : : : 0 0 1CCCCCCCCCCCCCA=  uir2f rhrhT 0 ! ; (76)where rh = (0; : : : ; f 0xi � si; 0; : : : ; 0)T .Using the fact that r2f is positive de�nite and rh 6= 0, since f 0xi � si =�1=ui, it is not di�cult to verify that r(xi;ui)F is nonsingular at (x̂i; ûi; ŝ).Therefore, by the implicit function theorem, the lemma is proved. 2From Lemmas 1, 2, and 3, we obtain the following theorem:Theorem 12 Given ŝ 2 Rn and its corresponding projection set Ŝ, let x̂ibe an extreme point of Ŝ along the xi direction. Let d = (d1; d2; : : : ; dn)Tand d̂ = (x̂11 � �c1; x̂22 � �c2; : : : ; x̂nn � �cn)T . Then, there is a neighborhoodN(ŝ; �) of ŝ and a function d : Rn �! Rn continuous and di�erentiable inN(ŝ; �) such that d̂ = d(ŝ).Proof: Simply set di(s) = xii(s)� �ci and then apply Lemma 3. 24.4 Solving the Constrained SubproblemsIn this section, we discuss the techniques for solving the constrained opti-mization subproblem (64). The solution to such a problem is required toevaluate di; i = 1; : : : ; n in the least squares problem (61). We will again22



only consider the formulation (66). The results can be extended to generalcases.A constrained optimization problem can be expensive to solve [12, 15].However, the problem (66) has a special structure. It is a problem with alinear objective function and a nonlinear convex constraint. Also, as shownin the preceding section, the solution to the problem is unique and can beobtained by solving a system of nonlinear equations:F (x; u) =  rxl(x; u)h(x) ! = 0; (77)where l(x; u) is the Lagrangian function for the problem (66), u is the La-grangian multiplier, and h(x) = f(x)� g(x).Note that the Jacobian of F (x; u) isrF (x; u)T =  r2xl(x; u) rh(x)rTh(x) 0 ! ; (78)and r2xl(x; u) is symmetric positive de�nite (the proof for Lemma 2). There-fore, to solve the system (77), we can use the quasi-Newton method with astructural BFGS secant update by [30, 9]. Also, in computing the Newtonstep, we can take advantage of this special property to solve each linearsystem e�ciently.By a secant method for solving a system of nonlinear equationsF (x) = 0; (79)where F : Rn �! Rn, we mean the iterative procedureBs = �F (x) (80)x+ = x+ s (81)B+ = B(x; s; y; B); (82)where s is the quasi-Newton step, y = F (x+)�F (x), and B+ is required tosatisfy the secant equation B+s = y; (83)where B+ is an approximate to the �rst-order information for F (x+) andis obtained by updating B with a process called the secant update. Among23



various kinds of secant updates, the BFGS update is in some sense the moste�ective one. However, it requires the Jacobian to be symmetric positivede�nite.Often, in practice, a part of the �rst order information is available, andwe need only to approximate the rest. This kind of secant approximation isreferred to as the structural secant update, for the special structure of theproblem is taken into account. The structural BFGS update approximatesthe unknown part of the �rst order information using the BFGS update, butcomputes the available part exactly.Now consider the system (77). Part of its �rst order information, rh(x),can be computed exactly, while r2xl(x; u) needs to be approximated. Sincer2xl(x; u) is symmetric positive de�nite, we can apply the structural BFGSupdate. Therefore, a secant method for the system (79) can be formulatedas the following iterative procedure:B =  Bl rh(x)rh(x)T 0 ! (84)Bs = �F (x; u) (85)(x+; u+) = (x; u) + s (86)Bl+ = Bl + yyTyTs � BlssTBlsTBls (87)B+ =  Bl+ rh(x+)rh(x+)T 0 ! : (88)Note that in the above procedure, a linear systemBs = �F (89)needs to be solved for each update, whereB =  Bl rhrhT 0 ! (90)with Bl being symmetric positive de�nite. We can solve this system asfollows:First, let s = (x;�)T and �F = (y; �)T , where x; y 2 Rn, and � and �are scalars. Rewrite the system asBlx+rh� = y (91)rhTx = �: (92)24



Solve this system for x and � to obtainx = B�1l (y �rh�) (93)� = rhTB�1l y � �rhTB�1l rh : (94)This is equivalent to the following steps:Bla = rh (95)Blb = y (96)x = b� rh� (97)� = rhT b� �rhTa ; (98)where, since Bl is symmetric positive de�nite, the equations (95) and (96)can be solved by using the Cholesky factorization [18].5 Solving the Linear Integer Minimax Subprob-lemsWe now discuss how to solve the linear integer minimax subproblems in thesubgradient algorithm. The problems are formulated in the following form:minx2Bn fp(i)(x) =max fgx(j)(x); j = 0; : : : ; igg; (99)or, equivalently, min � (100)st: � � gx(j)(x) j = 0; : : : ; i (101)1 � x � 0; x integral; (102)where gx(j) is the jth linear supporting function generated by the algorithm,and i indicates that the problem is the one in the ith iteration.The above problem is a linear integer programming problem with onecontinuous variable and can be solved with an enumeration method [1, 2].Also, observe that p(i+1) is generated by adding one more supporting planeto p(i), which implies that problems in the ith and (i + 1)th iterations arealmost the same except that the problem in the (i+ 1)th iteration has one25



more constraint. Therefore, to solve the (i + 1)th problem, we can use theresult from solving the ith problem to reduce the total computation.We present a branch-and-bound procedure for solving the problem (100).A branch-and-bound procedure, as illustrated in Algorithm 3 (Figure 5),solves the problem (100) as follows: First, a relaxed problem, the problemwithout integrality constraints, is solved. If a 0-1 integer solution x is ob-tained, the algorithm terminates, and x is an optimal solution. Otherwise,xj for some j is set to 1 or 0, and two corresponding subproblems are gener-ated. Recursively, for each subproblem, again, a relaxed problem is solved.If the optimal value of the relaxed problem is larger than a known upperbound for the optimal value of the original problem, the subproblem is elim-inated, and is not considered any more. If a 0-1 integer solution is obtained,the solution is locally optimal to the original problem. An upper bound forthe optimal value of the original problem is obtained. Otherwise, the sub-problem is divided, and two more subproblems are generated. The processcontinues until all subproblems are either eliminated or solved. Among all0-1 solutions obtained for the subproblems, the one that yields the smallestobjective value is the optimal solution to the original problem [3, 13, 26].Let the relaxed problem for the problem (100) be the following:min � (103)st: � � gx(j)(x) j = 0; : : : ; i (104)1 � x � 0: (105)In Algorithm 3, p = (p1; p2; : : : ; pn) represents the problem that is the sameas the relaxed problem (103) except that some xj 's are set to 1 or 0, wherepj = 1 if and only if xj is set to 1 (106)pj = 0 if and only if xj is set to 0 (107)pj = ^ otherwise: (108)Also, P is a stack, and push and pop are two standard stack operations.In Algorithm 3, when a locally optimal solution is found, an upper boundfor the optimal value is obtained. Let the upper bound be denoted by z(i).Then, since a solution that provides an objective value better than z(i) isalways desired, the strategy to choose a branching variable is to try thevariable that may reduce the current objective value if it is set to 1. Writea problem p in the following form:min � (109)26



Algorithm 3 fSolving integer minimax problemsg0 fInitializationgp = (^;^; : : : ;^), P = �, push(p; P )z(i)p = �1; z(i) = min0�j�i ff(x(j))g1 fIterationgdo while P 6= �1.1 fProblem selection and relaxationgsolve p = pop(P )let z(i)p be the optimal valuelet x(i)p be the optimal solution1.2 fPrunninggif z(i)p � z(i), go to next loopif x(i)p is integral, z(i) = min (z(i); z(i)p ) and go to next loop1.3 fBranchinggpick up xj for some j with pj = ^set pj = 0, push(p; P )set pj = 1, push(p; P )end do2 fTerminationgthe solution x(i)p for some p that yields z(i) is optimalFigure 5: Solving integer minimax problems27



st: � � bj + aj1x1 + : : :+ ajmxm (110)j = 0; : : : ; i (111)1 � x � 0; (112)assuming pk = ^ 8k = 1; : : : ; m: Then, a branching variable xk for thisproblem is selected if k solves the problem:min1�k�m fmax0�j�i fbj + ajkgg: (113)The relaxed problems can be solved by using a standard dual simplexmethod [4, 5]. Let p(i) and p(i+1) be the relaxed problems for the ith and(i + 1)th linear integer minimax subproblems, respectively. As we havementioned before, p(i+1) is the same as p(i) except that it has one more con-straint. The dual optimal basis for p(i) is dual feasible for p(i+1). Therefore,p(i+1) can be solved with the dual optimal basis for p(i) as its initial basis.Also, if p is a problem, and s is its subproblem, s and p have a similarrelationship as p(i+1) and p(i): s is the same as p except that s contains onemore constraint xj = 1=0 for some j. So, the dual optimal basis for p canbe used as the initial basis for s.6 Preliminary Test ResultsA program has been written to test the subgradient algorithm with the fol-lowing problems:#1:Objective function:Pni=1 x2i � 1:8Pni=1 xi + 0:81nOptimal solution: xi = 1; i = 1; : : : ; n#2:Objective function:2Pni=1 x2i +Pn�1i=1 xixi+1 � 2Pn=2i=1 (1:9x2i�1 + 1:1x2i) + 1:205nOptimal solution: x2i�1 = 1; x2i = 0; i = 1; : : : ; n=2#3:Objective function:Pni=1 (xi � 0:9)8=3 28



Optimal solution: xi = 1; i = 1; : : : ; n#4:Objective function:Pni=1 x2i � 0:8Pni=1 xi + 0:16nOptimal solution: xi = 0; i = 1; : : : ; nThese problems are constructed so that the problem dimensions are scalableand the optimal solutions are easy to verify. Problem #1 is a simple problemwith a separable objective function. Problem #2 represents an unseparablecase. The objective function for Problem #3 is more complicated in a certainway. Problem #4 is a geometrically very symmetric problem. It exempli�esthe case when the subgradient algorithm sometimes may require many stepsto converge.The test was conducted on a parallel machine nCUBE located at Caltech.However, the parallel implementation of the algorithm will not be addressedin this paper. Interested readers are referred to [32] for more details. Thetest was not a complete one in terms of both problem types and sizes. Manyimplementation details still need to be worked out before more numericalstudies can be made. Nevertheless, the results obtained through this simpleimplementation have demonstrated that the subgradient algorithm is verye�ective for solving most of the test problems.Listed in Table 1 to 7 are samples of the test results. The tables containthe problem dimensions, the initial guesses, and the numbers of iterationsrequired to �nd an optimal solution. For a problem of dimension n, thereare 2n number of 0-1 feasible points. Therefore, in the worst case, the algo-rithm may need to search through all these points for an optimal solution.However, the algorithm actually solved the test problems in only a few iter-ations. The major reason is because that the algorithm can determine theoptimal solution as soon as it is generated, using the necessary and su�cientcondition. This fact is not true for all traditional combinatorial methods,for example, the branch-and-bound method, which cannot determine an op-timal solution until all necessary feasible points are enumerated. The initialguesses (or, in other words, the starting points) do make di�erences in re-quired numbers of iterations: Some lead to an optimal solution in a fewsteps, while others may need more steps. However, the mathematics forwhy this is the case and how one can choose good starting points has notyet been fully understood.Table 1 contains the results for Problem #1 of dimension 8 with di�erent29



Table 1: Test problem: #1n Initial Guess Iteration8 (0,0,0,0,0,0,0,0) 28 (0,0,0,0,0,0,0,1) 78 (0,0,0,0,0,0,1,1) 38 (0,0,0,0,0,1,1,1) 38 (0,0,0,0,1,1,1,1) 28 (0,0,0,1,1,1,1,1) 38 (0,0,1,1,1,1,1,1) 28 (0,1,1,1,1,1,1,1) 78 (1,1,1,1,1,1,1,1) 18 (0,1,0,1,0,1,0,1) 28 (0,0,1,1,0,0,1,1) 28 (0,1,1,1,0,1,1,1) 28 (0,0,0,1,0,0,0,1) 3Table 2: Test problem: #1n Initial Guess Iteration8 (0,: : :,0) 216 (0,: : :,0) 232 (0,: : :,0) 230



Table 3: Test problem: #2n Initial Guess Iteration8 (0,0,: : :,0,0) 316 (0,1,: : :,0,1) 232 (0,0,: : :,0,0) 3Table 4: Test problem: #3n Initial Guess Iteration8 (0,0,0,0,0,0,0,0) 28 (0,0,0,0,0,0,0,1) 28 (0,0,0,0,0,0,1,1) 28 (0,0,0,0,0,1,1,1) 2Table 5: Test problem: #3n Initial Guess Iteration16 (0,: : :,0,0,0,0,0,0) 216 (0,: : :,0,0,0,0,0,1) 216 (0,: : :,0,0,0,0,1,1) 216 (0,: : :,0,0,0,1,1,1) 316 (0,: : :,0,0,1,1,1,1) 216 (0,: : :,0,1,1,1,1,1) 231



Table 6: Test problem: #3n Initial Guess Iteration32 (0,: : :,0,1) 332 (0,1,: : :,1) 264 (0,: : :,0) 264 (1,: : :,1) 1Table 7: Test problem: #4n Initial Guess Iteration4 (0,0,0,0) 134 (0,0,0,1) 114 (0,0,1,0) 114 (0,0,1,1) 134 (0,1,0,0) 114 (0,1,0,1) 134 (0,1,1,0) 134 (0,1,1,1) 114 (1,0,0,0) 114 (1,0,0,1) 134 (1,0,1,0) 134 (1,0,1,1) 114 (1,1,0,0) 134 (1,1,0,1) 114 (1,1,1,0) 114 (1,1,1,1) 1332



starting points. Only up to 7 iterations were used by the algorithm to �nd anoptimal solution. When the optimal solution was used as the starting point,the algorithm was able to determine the solution immediately by �nding azero subgradient for the objective function at this solution, and therefore, itonly took one iteration.Tables 2 and 3 contain the results for Problem #1 and #2 with di�er-ent dimensions. We see that with the same staring point, the numbers ofiterations did not change very much as problem dimensions increased.Tables 4, 5, and 6 contain the results for Problem 3 with di�erent startingpoints and problem dimensions. We did not enumerate all possible startingpoints (there are too many). In any case, we can conclude from these resultsthat with a reasonable starting point, the algorithm can �nd an optimalsolution for this problem in only a few iterations. The biggest problem forthis case is of dimension 64. The total number of integer points is 264, a hugenumber. However, the subgradient algorithm did not need to enumeratemany of these points, but stopped immediately after an optimal solutionwas reached.We understand that the nonlinear integer programming problem is NP-hard, and therefore, it is impossible to �nd both an e�cient and a generalsolution [14, 23]. Hence we do not expect the subgradient algorithm to beable to solve all the problems e�ciently, either. Problem #4 shows that thesubgradient algorithm cannot �nd an optimal solution in a small numberof steps. From Table 7, we see that for most starting points, the algorithmenumerated almost all the integer points. The reason is that the problemis geometrically very symmetric. The \lifting" process failed to �nd good-enough supporting planes, and hence the zero subgradient for the optimalsolution. Therefore, the algorithm was not able to stop even if the optimalsolution was found. The algorithm continued until the second optimalitycondition was satis�ed (i.e., an iterate was repeated). However, because ofthe symmetry, the second condition also required many steps.Finally, we point out that we also tested Problem #1 (n = 8) with thesubgradient in each iteration simply set to the gradient of the continuousobjective function. With this choice of subgradient, the algorithm was notable to �nd an optimal solution even in more than 25 iterations. This resultshows the signi�cance of computing good subgradients and hence supportingplanes by the lifting process. 33



7 Concluding RemarksWe have presented a new algorithm for nonlinear integer programming. Ourapproach is based on considering the problem as a nonsmooth problem andusing the subgradient information to linearize the nonlinear objective func-tion. The subgradient algorithm searches for an optimal solution iterativelythrough integer points, and in each iteration, it generates the next pointby solving the problem for a local piecewise linear model, constructed withthe supporting planes for the objective function at a set of integer pointsalready generated. In order to determine whether an iterate is optimal, twooptimality testing criteria have been established and are employed in thealgorithm. One is the necessary and su�cient condition for the optimal so-lution. It is established with standard nonsmooth function theories. Theother one is based on a combinatorial property: an iterate is optimal if it isrepeated. This one, in particular, is useful to keep the algorithm �nite.We have discussed how to compute the supporting planes using spe-cial continuous optimization techniques. Problem formulations and relatedmathematical results are presented, and numerical methods are given.The piecewise linear subproblem can be solved by using standard linearinteger programming methods. However, a special branch-and-bound pro-cedure is designed that exploits the problem structure and hence can solvethe subproblem e�ciently.A program has been written to test the subgradient algorithm. Pre-liminary results show that the algorithm solves most of the test problemse�ectively.Several aspects of this work may be extended. The most important one isa more complete numerical test. This will not be a trivial job because a goodimplementation of the algorithm requires considerable work. In addition,few test problems are available, while arti�cial problems usually are tooarbitrary to make any speci�c conclusions. However, a relatively completetest on a class of quadratic 0-1 integer programs is feasible and will be veryuseful for understanding basic numerical properties of the algorithm. Aperformance comparison between the algorithm and a traditional method,say, a branch-and-bound method, can also be conducted.We have mentioned that any problem can be formulated so that itscontinuous objective function is strictly convex. However, we have not yetgiven a truly practical method to convert a given function, for example,how to choose an appropriate � in (50). More work needs to be done on thissubject. 34
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