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1. Introduction.

Let U and V be nonempty closed convex sets in IR" and IR™ respectively, and let
the Lagrangian L(u,v) defined on U x V' be a finite-valued saddle function convex in
u and concave in v. Consider the problem of finding a saddle point (u,v) of L(u,v)

over U x V, i.e., finding a pair (u,v) € U x V such that
L(u,v) < L(u,v) < L(u,v) YueU YveV. (1.1)

As i1s well known, a large variety of optimization problems can be cast in this

formulation. For instance, the convex programming problem
minimize ¢(u) over u € U,
subject to hi(u) <0,i=1,...,m,

with ¢ and h;’s being finite convex functions on U, is equivalent to the minimax

problem of the Lagrangian
L(u,v) = p(u)+ Zvlhl(u) over U x IR
=1

Another special case which has significant large-scale application is the extended
linear-quadratic programming problems (ELQP for short) recently introduced in
the context of multistage and stochastic optimization [3—11], where the sets U and

V' are polyhedral, and the associated saddle function L(u,v) is linear-quadratic,
L(u,v) = pu+ tu-Pu+ ¢gv — 1v-Qv — v-Ru, (1.2)

with the matrices P € IR"”*" and € R™*"™ being symmetric and positive semidef-
inite. (Onehasp € IR", ¢ € R™, and R € IR™*".) In Section 5, we generalize ELQP
to the minimax problem where the Lagrangian has linear cross terms between the
variables u and v. The latter serves as an example to which our algorithm applies,

as well as one with significant large-scale applications.

Associated with L, U and V are the primal and dual problems

(P) minimize f(u) over all u € U, where f(u) := sup L(u,v),
vEV

(Q) maximize g(v) over all v € V, where ¢(v) := inf[']L(u,v).
ue

The relationship between (P) and (Q) is included in the following theorem.
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Theorem 1.1 [12, Theorem 36.2] (duality and optimality). A point (u,v) is a
saddle point of L over U x V if and only if inf(P) is attained at u, sup(Q) is
attained at v, and these two extrema are equal. If (u,v) is a saddle point of L(u,v)

over U x V, then f(u) = L(u,v) = ¢(v).

Let 65(-) be the indicator function related to a convex set S, and let ri S be the
relative interior of S. The results on the existence of a saddle point may be written

in the following form.

Theorem 1.2 [12, Theorem 37.6] (existence of saddle points). If both of the fol-
lowing conditions hold, then there exists a saddle point (u,v) of L(u,v) over U x V.

(a) The convex functions L(-,v) 4 6;(-) for v € 11V have no common direction

of recession.

(b) The convex functions —L(u, - )+6y(-) for u € riU have no common direction

of recession.

It is easy to see that condition (a) in Theorem 1.2 will be satisfied if either
L(u,v) is strongly convex in u or the set U is bounded. Similarly condition (b)
will be satisfied if either L(u,v) is strongly concave in v or the set V is bounded.
In the case of minimax problems where the Lagrangian has linear cross terms, less

stringent criteria for these two conditions to be satisfied will be given in Section 5.

For solving the optimization problems posed in this minimax setting, one pos-
sible approach, which is capable of taking advantage of the problem structure in
large-scale applications, is the splitting method. See Chen and Rockafellar [13] for
a thorough discussion on the forward-backward splitting methods in Lagrangian
optimization, and Zhu [14] for some recent convergence results. In this paper, we
are going to show that another possible approach, which can also take advantage of
the problem structure and has been tested successfully on large-scale ELQP, is the
primal-dual steepest descent algorithm developed in [1, 2].

The primal-dual steepest descent algorithm (PDSD for short) was proposed by
Zhu and Rockafellar [1] as a method designed for solving large-scale ELQP problems
arising in dynamic and stochastic optimization. The name stems from the inter-
pretation of the search direction as corresponding to the projected gradient on the

feasible set in the norm induced by a certain matrix in the Lagrangian. This algo-
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rithm shows promise for large-scale optimization problems since it requires relatively

simple computations to be performed in a manner conducive to decomposition.

In [2], Zhu developed new variants of PDSD for ELQP by introducing different
update schemes and step length rules. All the variants were put in a unified frame-
work. Zhu proved that the algorithm, when applied to ELQP, converges linearly
from the very beginning of the iteration. New estimations for the convergence ratio

of the algorithm were also obtained.

In this paper, we extend the algorithm and its convergence theory to the class
of minimax problems related to a general C? saddle function. In Section 2, we
present the algorithm after laying out some computationally useful properties of
the problem. These properties are the counterparts of the corresponding results of
Rockafellar [8] on ELQP. In Section 3, we prove global linear convergence results
for each variant of the algorithm formulated in Section 2. In Section 4, we derive
estimates for the asymptotic rates of convergence of the algorithm. Finally, in
Section 5, we discuss the minimax problem with linear cross terms between the
variables v and v in the Lagrangian as a typical example fitting the assumptions
of the paper. We shall use the Euclidean inner product and norm throughout the
paper, denoted by (-, -) and || - || respectively. We use [w;,ws3] to denote the line
segment between two points w; and wsy, and use Jwy,ws| to denote the same line
segment with the endpoints excluded. The meanings of [wy,wy[ and Jwy,ws] are

self-evident from the above conventions.

2. The Primal-Dual Steepest Descent Algorithm.

In this section, we formulate six variants of the algorithm in a unified framework. We
first derive some computationally useful properties of the general minimax problem.
Suppose the Lagrangian L(u,v) is C* on some open set containing U x V. For any
U'CcUand V' CV define
Ay yr i=1inf{ smallest eigenvalue of V2, Lu,w) lueU ,veV'y  (21a)
Ayr gy i=inf{ smallest eigenvalue of — Vi, L(u,v) |ue U veV'} (2.1b)
My o =sup{||Vy,L(u,v)|| |[u € U',0 € V'}. (2.1¢)
Note that the order of the subscripts of A also indicates with respect to which vari-

able the differentiation is performed. The convexity-concavity of L implies A;;y > 0
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and Ay > 0. From now on, we focus on the general minimax problems with a
strongly convex-concave Lagrangian. (If the Lagrangian of the original problem
does not exhibit this property, the proximal point algorithm can be implemented as
an “outer” loop of iteration [8, 15] to create a strongly convex-concave Lagrangian
for the “inner” loop problems.) The following assumption is imposed on the rest of

the paper.

Assumption 2.1 (blanket assumption). M,y < +oo and the Lagrangian L(u,v)
is strongly convex-concave uniformly on U x V in the sense that A\;;y, > 0 and

AV’U > 0.

Under this assumption, the subproblems of maximizing L(u,v) in v for fixed u
or minimizing L(u,v) in u for fixed v calculate not only the objective values f(u)
and ¢g(v), but also the unique vectors

F(u) = argmax L(u,v) and G(v)=argminL(u,v). (2.2)
veV welU

For large-scale problems, we say that the minimax problem possesses double de-
composability (or Lagrangian decomposability) [8] if these subproblems can be de-
composed to low dimensional ones and solved easily. The boz-separable case of
the minimax problem with LCT, which will be discussed in Section 5, is a typical

example of that kind. We shall refer consistently to

u = the unique optimal solution to (P),

v = the unique optimal solution to (Q).

The next two propositions are generalizations of the corresponding results on ELQP

in Rockafellar [8].

Proposition 2.2 (optimality estimates). Suppose 4 and ¢ are elements of U and
V satisfying f(t) — g(0) < e for a certain ¢ > 0. Then @ and ¢ are s-optimal in the
sense that |f(u) — f(u)| < e and |g(0) — g(v)| < e. Moreover,

/\U,vHﬁ—ﬂHZ‘|‘/\V,UH5—5H2 < 2e. (2.3)
Proof. By Theorem 1.1,

fla) 2 f(u) = L(u,v) = g(v) = g(0),



from which the inequalities for f and g follows. Now f(@) > L(u, v) by the definition
of f. Hence

f(a) — L(u,v) > L(4,v) — L(u,v)

= Vo L(u,0)(t —u) + (0 — u)- V2, L(t,v) (0 — u),

=

where @ € [, u]. Observe that V, L(u,v)-(t — u) > 0, since u minimizes L(u,v) on
—Uu

u € U. Moreover, (i — u)-V2, L(w,v)(t ) > A VHu — u||* by (2.1). Therefore

fla) — L(u,v) > sy lla —al?. (2.4)
Similarly, we have

g(0) — L(u,v) < =3y |0 — o). (2.5)
Subtracting (2.5) from (2.4), we obtain (2.3). O

Proposition 2.3 (Lipschitz properties of F' and G). The mappings F' and G de-
fined by (2.2) are Lipschitz continuous on U and V' respectively with

1F (") = Fu)ll < (Myy /[ Avo) v’ —ul YueU ' €U, (2.6a)
IG(") = G(o)|| < (Myy/Apy)llv' —v]| Yo eV, v V. (2.60)

Proof. For any ug,uj € U, let v1 = F(ug) and v] = F(uy). Then it follows from
the definition of F' in (2.2) and the first-order optimality condition that

VoL(ug,v1)(v —v1) <0 YoeV and V,L(ug,v))(v—20]) <0 YoeV.

Adding these two inequalities with v = v} in the first and v = vy in the second, we

have

0 ZVUL(uov vl)'(vi - 1)1) + VUL(u67 vi)'(vl - vi)
=[VyL(uop,v1) — VoL(ug, vp)]-(vy — v1)
= (0 = o)V Ly 5)(ath — o) — (v — 01}V (5 5)(0 — 1),

for some @ € [ug, up] and 0 € [v],v1]. Then
(0] — 00 P2, )y — o) > —(0h — 00} V2 L, )0 — 1) > 0.
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Therefore with the notations defined in (2.1),
My llog = v1||lug — woll = Ay prllof — o1,

which yields (2.6a). We can prove (2.6b) similarly. O

The points generated by the mappings F' and G as by-products when calculat-
ing the objective values contain important information of the problem. Our effort
in designing the algorithm is concentrated on using this information effectively in a
large scale setting. The PDSD algorithm first searches on line segments [u, G(F(u))]
and [v, F(G(v))] in primal and dual variables respectively to get some intermedi-
ate points as candidates for the next iterates. Then the mappings F' and G are
used again to pass information between the primal part and the dual part of the

algorithm in determining the next pair of primal and dual iterates.

Define 2
g=—"2" (2.7)
AuvAvu
The following PDSD algorithm for the general minmax problem contains six vari-
ants, including three different step length rules and two update schemes. We shall
refer to the algorithm with, say, update scheme 2 and step length rule (iii), as

PDSD-2(iii).

Primal-Dual Steepest Descent Algorithm.

Step O (initialization). Set v := 0 (iteration counter). Specify starting points
u® € U and v° € V. Choose one of the step length rules in Step 2. (If rule (iii)
is chosen, then also choose some constant 6 € (0,1).) Choose one of the update
schemes in Step 3. Construct primal and dual sequences {u”} C U and {v'} C V

as follows.

Step 1 (optimality test). If

min{ f(u”), f(G(v")) } —max{g(v"),g(F(u")) } =0,
then terminate with

u = argmin{ f(u)|u =u", or u=G((v")}

v = argmax{ ¢g(v)|v=0v", or v =F(u")}
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being optimal solutions to (P) and (Q).
Step 2 (line search). Use one of the following step length rules chosen at

initialization to determine «, and 3, for generating intermediate points

@ =(1 — ay ) + 0, G(F(u)),
(1= )" + By F(G("),

in primal and dual variables respectively.
(i) Perfect line search:

OPRES argminf((l —aju” + QG(F(UV))>7
a€0,1]

By :zargmaxg((l — B’ + ﬂF(G(v")))
pelo,1]

(ii) Fixed step lengths:
: 1 - 1
a, :=min{l, —} and [, :=min{l, —}.
20 20

(We adopt the convention 0~! = +oo in this paper.)
111) Adaptive step lengths:
p p g

Q= max{éj ‘f((l 67 )u —I—(SJG(F( ))) flu”)
<f( (uy) 16] ]E{Ov ) 7"'}}7
B3, := max { 87 ‘ g(v”) — ((1 — &Y+ (5]F(G( )))

))(

)
(F(G(")) — g(v"))(=167), j € {0,1,2,...} }.

IA

IA

Step 3 (update the iterates). Use one of the following rules chosen at initial-

ization to determine the next iterates.

1. Update with forward feedback:

w’T = argmin{ f(u)|u = 4" or u = G(p")},

vt = argmax{ g(v)|v = 6" or v = F(a"*1) }.

(If both arguments give the same objective value, use the first one in updating for

decisiveness. The same rule applies also to the next set of formulas.)
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2. Update with backward feedback:

u’t = argmin{ f(u)|u = """ or u = G(v")},
vt = argmax{ ¢g(v)|v = 0" or v = F(u")}.

Then return to Step 1 with the counter v increased by 1.

Observe that the primal-dual feedback occurs in the updating of the iterates,
as well as in the optimality test. This interaction links the primal and dual parts of
the algorithm closely. For instance, with the optimality test in Step 1, the algorithm
will terminate if either ¥ = w or v¥ = v by Theorem 1.1. The primal-dual feedback
in Step 3 of updating has an important effect on the algorithm. In Sections 3 and 4,
sharper estimates of the convergence ratio for the variants with the second update
scheme will be obtained because of the backward feedback pattern in it. The reader

is referred to [2] for more discussion on this.

In Step 2, there are three step length rules to choose from. The fixed step
length in rule (ii) is probably of theoretical significance only, since & is unknown in
most cases. However, Theorem 3.4 in the next section shows that the variant with
the adaptive step length (iii) can achieve a global rate of convergence very close to
the ones with step length (i) or (ii), provided that the parameter ¢ is chosen close to
1. The adaptive step length needs only some kind of backtracking computationally.
When the problem is doubly decomposable, such as the box-separable case discussed
in Section 5, the related computation can be massively parallelized, and even the
perfect line search in rule (iii) will not be prohibitively difficult. In Section 4, we
show that, in general, better asymptotic ratios than the global ones obtained in

Section 3 can be expected for the variants with step rules (i) and (iii).



3. Global Linear Convergence of the PDSD Algorithm.

In this section, we derive global convergence results for all the six variants of the
PDSD algorithm formulated in Section 2. Define the multivalued mappings U :
U=U0 VU=V, Ve: V=2V and Uy : V =3 U as follows.

Uo(u) =lu, G(F(u))], (3.1a)
Vi(u) =U{[F(u), F(E] | £ € Up(u)]}, (3.10)
Vo(v) =[v, F(G(v))]; (3.2a)
Ur(v) = UA[G(v), G(n)] [ € Vo(v)}. (3.20)

v

We first give two lemmas that serve as bases for convergence results. Define
the functions 0 : U = R and 04 : V — IR as

M? M?
Uy (u),F'(u) and ad(v) — G(v),Vo(v)

op(u) =

; (3.3)

Aty (), F () My () o () Ao (0),G(0) AUy (0), Vo ()

where M, . and A, . are defined in (2.1).
Lemma 3.1. For any u € U,

Q= a)u+aG(F(v) - fu) < (f(u) = g(F(u))) (~a +oy(u)a’)  (3.4)
for all « € [0,1]. Similarly, for any v € V,

9(v) = g((1 = B + BF(G(v)) < (f(G(v)) = g(v)) (=B + 0a(v)B?) (3.5)
for all € [0,1].

Proof. Forany uy € U, denote vy := F(ug) and ug := G(v1) = G(F(up)). Then by
the mean value theorem [16], the Lagrangian L(u,v) can be written in the expanded

form at (u,vq) as
L(u,v) = L(u,v1) + Vo L(u,v1 )(v —v1) 4+ (v — vl)-V3vL(u, ) (v —v1)

with some ¢ € [vy,v] depending on w, v and wvy. Furthermore, the term

VoL(u,v1)(v —v1) can be written as
VoL(u,v1)(v —v1) = VyL(ug,v1)-(v —v1) + (v — vl)-V3uL(ﬁ, v1)(u — ug)
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with some @ € [ug, u]. Note that vy = F(ug) means vy is the argmax of L(ug,v) on
V, which in turn implies V, L(ug, vy )-(v —v1) < 0 for all v € V. Therefore

L(u,v) < L(u,v1)+(v—v1)-V3uL(ﬁ,vl)(u—uo)—l—%(v—vl)-vl?vl}(u,ﬁ)(v—vl). (3.6)

Now for any u € [ug,u3] and v = F(u), we have 4 € [ug,u] C Up(ug) and
U € [v1, F(u)] C Vi(ug). Hence it follows from (3.6) that

L(u, F(u)) — L(u,v)
< (F(u) — v1>-V3uL(ﬁ, v1)(u —ug) + %(F(u) — v1>-V3vL(u, ﬁ)(F(u) — v1>

max {w- N2, L(t,v1 )(u — wo) + 3w-V2 L(u,)w}
welR™

= 3w — o)} (V2,L(,01)) (=2, L(w, 8) " V2, L(@,01)(u = uo)

IA

IA

%<Ml?lo(u0),F(u0)//\Vl(uo),uo(uo)) Hu - uOH2 (37)
for all u € [ug, usz]. Note that L(u,F(u)) = f(u) and that
L((1 = a)ug + aus,vy) < (1 — a)L(ug,vr) + aL(uz,vy)
= (1 —a)f(uo) + ag(vi)

for 0 < o < 1. Thus, by taking v = (1 — a)ug + ausy in (3.7), we get

F((1 = a)uo + auz) — f(uo) + a(f(uo) — g(v1))

< %042 (Mazlo(uo),F(uo)//\vl(uo),uo(uo)>HU2 - U0H2-
Again by the mean value theorem,

flug) — g(v1) = L(ug,v1) — L(uz,v1)
= VuL(ug,v1)(ug —uz) + L(ug — uz)-V2, L{u' 01 )(ug — uz)

for some u' € [ug, uz] = Up(ug). Observe that V, L(usg, v1)-(ug — uz) > 0, since ug is

the argmin of L(u,vy) on U. Therefore

\%

Flug) = g(v1) > $(ug — u2) Vi, L{u' 01 ) (g — us)
> Ity Py 2 — wol|®
or, equivalently,
(F(uo) = 9(v1)) [ Aty (ug). Fluo) = Elluz — uoll®. (3.9)
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Combining (3.8) and (3.9), we get

MG o) o)

FQ = aJuo + auz) = fluo) < (fuo) = g(v1)) (—a + 5 \
Uo (o), F'(uo) Vi (uo),Uo(uo)
< (fluo) = g(v1)) (—a + op(ug)a?) (3.10)
for 0 < o < 1, which yields (3.4). We can prove (3.5) similarly. O

Lemma 3.2. Suppose u” € U, v¥ € V, «,, € [0,1] and 3, € [0,1] for some integer
v > 0. If there exists ¢, > 0 such that

FA = ap)u” + @, GF(u")) = f(u”)
g(v") = g((1 = By 0" + B, F(G(v")))

then in the PDSD algorithm,

(a) the new pair (u”*' v*T1) generated by the update scheme 1 satisfies

Flu™) — f(u)
g(v) — g(v”th)

(1= C)(f(u”) = f(u)), (3.13)
(1 - CV)(g(T)) - g(vy)>7 (3'14)

IAIA

(b) while the new pair (u”T1 v¥T1) generated by the update scheme 2 satisfies

f(u”+1) — g(v”+1) < %(f(u”) — g(v")). (3.15)

Proof. According to the update scheme in Step 3 of the algorithm, we have

F™) < F((1 = an)u” + @, G(F(u"))),
Q(UV—H) > 9((1 - 5V)UV + 5VF(G(UV))>'

Hence (3.11) and (3.12) imply

Define the vth duality gap ¢, and the vth auziliary duality gap £, as

gy = f(u”) —g(v") and &, := f(G(v")) — g(F(u")) (3.18)
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respectively. By combining (3.16) and (3.17), we get
Ev+1 S (1 — C,,)@,, — C,,g,,. (319)

If update scheme 2 is used, then f(u’T1) < f(G(v")) and g(v*t!) > g(F(u¥)).
Hence ¢,41 < &,. Therefore (3.19) implies

Epg1 < (1 - Cu)gu — CuEut1,

which yields (3.15).
On the other hand, if update scheme 1 is used, then the relation ¢,41 < &, is

not necessarily ture. However, by Theorem 1.1,
flu) > f(u)=g(v) > g(v) forallueU, velV.
Hence if follows from (3.16) and (3.17) that
Fu?* ) = fu”) < (F(u”) = f(@)(=Co),
g(v") = g(0" ) < (g(v) = g(v")(=C0).
These two inequalities yield (3.13) and (3.14) respectively. O

Define the function 6 : [0, 4+00) — (0,1) as

1—s ifs< i,
0(s) = { 1 s> 1. (3.20)

The following theorem gives convergence results for the algorithms with perfect line
search (1) and fixed step length (ii).

Theorem 3.3 (convergence of PDSD with step length rules (i) and (ii)).
(a) The sequences {f(u”)} and {g(v")} generated by PDSD-1(i) or PDSD-1(ii)

converge linearly to the common optimal value f(u) = ¢(v) in the sense that

F ) = f(a) < (1 6(6)) (f(u?) — f(a))

e (f(w”) — fu)) if0<s <1,

- { 1—1/(46)) (F(u”) = f(w)) if 5 > 1, (3.21)
g(v) — g(v"™) < (1 -6(5)) (g(v) — g(v*))

[ o(g(v) —g(v")) if0 <6< g,

- { 1—1/(45)) (9(v) — g(v")) it > 1. (3:22)



Moreover,

gl = al + Ayl = ol < 2(1 - 66)7 (f(u’) = g(u®).  (3.23)

)

(b) The sequences { f(u”)} and {g(v")} generated by PDSD-2(i) or PDSD-2(ii)

converge linearly to the common optimal value f(u) = ¢(v) in the sense that

Pt = (e 41) £ 1T (1)~ g(07)), o
:{(& (2—5))(f(u”) - g(v")) f0<o<i,
(1—1/(26 +0.5)) (f(u”) —g(v")) ifs > 1.

Moreover,

1—6(6)

m)m (F(u”) = g(u®)). (3.25)

Ao e+t = all? 4 Ay e = af* < 2(

)

Proof. Note that Uy(u) and Vi(u) are subsets of U, while Vy(v) and U (v) are
subsets of V. Hence for any u € U and v € V,

Al (w), F(w) = AUV AV () to(w) = Av,os Mutg(uy, puy < Muv,

Mo (0),G(0) = AV,05 Aty (0),V6(0) = AU,vs M), vo(o) < Moy

Therefore,
g >op(u) and &> o4(v) (3.26)

for all u € U and v € V. Substituting (3.26) in (3.4) and (3.5), we get

F(1 = a)u+aG(F(u)) — fu) < (f(u) — g(F(u))(—a +Ga?), (3.27)
g(v) — g((1 = B)v + BF(G(v))) < (f(G(v)) — g(v)) (=B +5B%), (3.28)

for all @ € [0,1] and 8 € [0, 1].
Observe that min{ —a +da? |0 <a <1} = —0(5) < 0 with

1
argmin{ —o + 50?0 < o <1} = min{1, 2—~}
o
Hence for the fixed step length o, = min{1, 5=} in rule (ii), (3.27) implies

FIL = a)u” + a,G(F(u”))) = f(u”) < (f(u”) = g(F(u”))) (=6(5)).  (3.29)
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Obviously (3.29) is also true for the step length o), = argminf((l—a)u”+aG(F(u”))>
a€0,1]
in rule (i), since the perfect line search should not make the first term of (3.29) any

larger. According to the update scheme in Step 3, we have f(u’™1) < f((1—a, )u”+
a,G(F(u"))). Therefore

Fla”™h) = f(u”) < (f(u”) — g(F(u"))) (-0(5)). (3.30)
Similarly it follows from (3.28) that in the dual variable,

). (3.31)

Qr

g(v") = g(v"™) < (F(G(")) — g(v")) (-6

Now by invoking Lemma 3.2 with ¢, = 6(5), we get (3.21), (3.22) and (3.24).
Using (3.24) for v = 0,1,..., we get

1 - 6(5)

m) ah (f(uo) - 9(”0)>7

Flurtt) = g(or ) < (

which yields (3.25) for PDSD-2 by Proposition 2.2.
Note that f(u) = ¢g(v). Combining (3.21) and (3.22), we get

Fu™h) —g(v"™) < (1 -6(5)) (f(u”) = g(v")). (3.32)
Using (3.32) for v =0,1,..., we get
F*h) = g0y < (1-6(6)"" (F(u®) — g(v")).

which yields (3.23) for PDSD-1 by Proposition 2.2. O

Next we give convergence results for the algorithm with adaptive step lengths
(iii). We have to show, in the first place, that these step lengths are well defined.
Let the function 6 : [0,+00) — (0,1) be defined as

f(s) = min{%, 41_3}‘ (3.33)

Obviously 6(s) > é(s) for all s € [0,4+00), and the equality holds when s > 1.
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Theorem 3.4 (convergence of PDSD with step length rule (iii)).
(a) For any ¢ € (0,1), the step lengths «, and (3, in the PDSD algorithm with

rule (iii) are well defined. Moreover,
: 1 , 1
ay > émin{l, —} and f, > émin{l, —} (3.34)
20 20

for all v.

(b) The sequences {f(u”)} and {g(v")} generated by PDSD-1(iii) converge lin-

early to the common optimal value f(u) = g(v) in the sense that

Flu*) = flu) < (1—66(5)) (f(u") = f(u))

[ (8/2)(f(u”) = f(u)) if0 <6< g,

- { (1—6/(46)) (F(u”) — f(w) if& > 1, (3:35)
g(v) — g™ < (1 - 66(5)) (9(v) — g(v*))

[ (6/2)(g(v) — g(v")) if0< 6 < i,

- { (1—6/(45)) (g(0) — g(v*)) it & > 3. (3.36)

Moreover
v — v — qr~y\vT1
Apvllu?™ —all + Ay pllo? ™ = ol <2(1-66(5)) " (f(u®) —g(u)).  (3.37)

(¢) The sequences {f(u”)} and {g(v"”)} generated by PDSD-2(iii) converge lin-

early to the common optimal value f(u) = g(v) in the sense that

1—60(5)

Fla”™h) = g(v"™h) < 468 &)(f (v")),
:{(( —8)/(2+8)) (f(u") —g(v”))  HO<G <4,
(1-1/(2 0+05))(f( ”) g(v¥)) ifo > 4.
(3.38)

Moreover

1—66(5)
14 66(5)

v+1
Aowlla = al? 4+ Ayl = o < o )7 ()~ o). (339)

Proof. First, we claim that for all nonnegative o < min{1, ﬁ(w)}?
p

—

F((L= @) +aG(F(a") = f(u’) < (fu”) = g(Fa' D) (). (3.40)

15



This follows directly from (3.4) and the fact that

}.

— 1
—a -+ ap(u”)a2 < 7@ for all 0 < o < min{1, 5

op(u)
Hence the step length a, = 67 in rule (iii), where j is the first element in the ordered

nonnegative integer set {0,1,2,...} satisfying
FI(L =" + 8 G(F(u”))) — fu”) < (f(u”) = g(F(u”))(=567),  (3.41)

is well defined. Moreover, §/~! > min{1, m} if j # 0, because otherwise 67!
instead of ¢ will be taken as the step length according to rule (iii). Thus

1
20, (u?)

o, =& > §min{l, } = 266(o,(u”)). (3.42)

Combining (3.41) and (3.42), we have

F((1 = auu” + @ G(F())) — f(u”) < (f(u") — g(F(u*))) (~60(,(u"))).
< (F(u") = g(F(u*)) (~60(5)),  (3.43)

where the last inequality follows from (3.26) and (3.33). Similarly,

g(0") = g((1= B )o” + B F(G(0")) < (FG(0")) — g(0")) (~66(oau”))).
< (F(GW") = (o) (~56(5).  (3.44)

Now by invoking Lemma 3.2 with (, = (5@(&), we get (3.35), (3.36) and (3.38).
The inequality (3.37) follows from (3.35) and (3.36) in the same manner as (3.23)
follows from (3.21) and (3.22) in Theorem 3.3. Similarly, (3.39) follows from (3.38)
in the same manner as (3.25) follows from (3.24) in Theorem 3.3. O

4. Asymptotic Rates of Convergence.

Define
2

F=-—"" 4.1
o= (4.1)

Note that o is related only to quantities defined at the optimal solution. Obviously,
we have A\; o > Apyy, As gz =2 Ay and My 5 < My ;. Therefore ¢ < . In this

section, we show that it is this smaller number o that governs the rate of convergence

w,07\0,%

in the tail of iteration for the variants with perfect line search or adaptive step

length.
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Theorem 4.1 (asymptotic rates of PDSD with step length rule (i)). Suppose the
algorithm does not terminate at the solution pair (u,v) after a finite number of

iterations, then

(a) for the sequences {f(u”)} and {g(v")} generated by PDSD-1(i),

) fluT) — f(u) . [e if0<ao<1i,
e =) = F ) Sl_‘9(0)_{1—1/(40) ito> 4, (+2)
. g(v) — g(v¥*h) e if0<o< i,
hmsup = o o Sl_‘9(0)—{1—1/(40) o>, (4.3)

(b) while for the sequences { f(u”)} and {g(v"”)} generated by PDSD-2(i),

fluTh)y — g(v¥*h) - 1—9(0)_{0/(2—0) if0<o< i
1-1/(2640.5) ifog>1

lim sup

e T R R o

Proof. Observe that the algorithm will terminate at (u,v) if either ¥ = u or

v” = v. Hence under the assumption of the theorem, the denominators in (4.2)-

(4.3) are positive. By Lemma 3.2, we need only to prove that for any positive

¢ < 6(0), there exists an integer v such that for all v > v,

AL —ap)u” + a0, GF(u"))) = f(u”) < (f(u") = g(F(u"))(=C),  (4.5)
9(v") = g((1 = B )" + B F(G(v"))) < (F(G(v")) —g(v"))(=C).  (4.6)

Observe that min{ —a + o,(u”)a? [0 < a <1} = —6(0,(u”)) < 0, with

argmin{ —a + ,(u”)a’ |0 < a <1} = min{1

1
20 ,(u?) -

Hence, it follows from (3.4) in Lemma 3.1 that

FA = a)u” + 0, G(F(u")) = f(u”) < (f(u”) = g(F(u"))) (=0(op(u"))). (4.7)
Similarly,

g(v") = g((1 = Bu)v” + B F(G("))) < (F(G(")) = g(v")) (=0(oa(v”))).  (4.8)

Now according to Theorem 4.3, u¥ — u and v¥ — v as v — oo. Recall that

v = F(u) and u = G(v) by Theorem 1.1. Hence it follows from Proposition 2.3 that
G(v") = u, F(u") = v, G(F(u")) = u, F(G(v")) — v as v — oo.

17



Then for the sets defined in (3.1) and (3.2),
dist(Up(u”),u) — 0, dist(V1(u”),u) — 0, dist(Vo(v"),v) — 0, dist(U1(v”),v) — 0,
as v — 0o, which implies

My ury, pury = Ma o My, or) cor) = Mo as My 07) vo(or) = Aaos

AV () Uo(u”) ™ Aoar Attg(u?), F(u) ™ Auspr AVo(0"),G(0") — Ao

since the Lagrangian L(u,v) is C?. Therefore

op(u”) — & and o4(v”) — &

as ¥ — oo. Hence

as v — 00. Thus the claim is true by (4.7) and (4.8). This completes the proof. O

Theorem 4.2 (asymptotic rates of PDSD with step length rule (iii)). Suppose the
algorithm does not terminate at the solution pair (u,v) after a finite number of

iterations, then

(a) for the sequences {f(u”)} and {¢g(v")} generated by PDSD-1(iii),

: f(u’T) — f(u) _siiay = {9/2 if0<co <4,
hin_>s§p ) — () <1-—66( )_{1—5/(40) o> 1, (4.9)
) g(v) — g(v¥*h) s0(5) = 6/2 if0 <o <1,
oy £ <o) = {12 ) fash @O

(b) while for the sequences { f(u”)} and {g(v"”)} generated by PDSD-2(i),

flu?Ty —g(v¥*h) 1 -66(a) {(2—6)/(2+5) if0<ao<i,

i < = —
b sup e T ) S T a8e) - | L - 1/(260 +0.5) ifo > .

Proof. Note that in the proof of Theorem 3.4, we have proved
FI(L = a)u” + @, GF(u"))) = f(u’) < (f(u”) = g(F(u")) (—68(0p(u"))),
9(v") = g((1 = B )" + B, F(G(v"))) < (F(G(0")) = g(v")) (=08(aa(u”))).

as the first halves of (3.43) and (3.44). These two inequalities lead to the conclusions

of the theorem in the same manner as (4.7) and (4.8) lead to the conclusions of

(4.11)

Theorem 4.1. O
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5. Minimax Problems with LCT.

As an example of a potential large-scale application of the algorithm, we discuss

the minimax problem on U x V with the Lagrangian

L(u,v) = p(u) —(v) — v-Ru, (5.1)

where the matrix R is in R™”" and the functions ¢ : R" — IR U {400} and

Y : R™ — IRU{+o0} are closed proper convex with their effective domains satisfying
U Cdomyp and V C domqp. (5.2)

We refer to such a problem as the minimaz problem with linear cross terms (with
LCT for short). The inclusion (5.2) means that there are no implicit constraints

other than the explicit one (u,v) € U x V for the minimax problem.

Define the functions

pv.p(r) =sup{rv —(v)} for r € R™,
veEV (53)

pu.o(s) =sup{su —o(u)} for s € R".
uelU

The objective functions in (P) and (Q) can be written as

flu) = (u) + pyy(~Ru) and  g(v) = —(v) = py (RTv)  (5.4)

(where the “T” signals the transpose matrix). If U and V are polyhedral convex
sets, and ¢ and 1) are linear-quadratic convex functions, then problems (P) and (Q)

reduce to the ELQP discussed in [3-11].

As an instance fitting the concept of double decomposability, consider the fol-

lowing boz-separable case, where the functions ¢(u) and ¢(v) are separable
plu) =D piluy), (o) => i(vi),
J=1 4

and U and V are Cartesian products of intervals (not necessarily finite):

waut],

V=l 0f ] <o x [o, vl

U=[uy,uf] x...x[u
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The primal problem (P) then takes the form of minimizing

7

Fu) = i) + 3 puz b (= D rists) (55)

j=1
subject to u; < u; < uj' for y =1,...,n, where
pv._,vfl',zpi(wi) = sup  {wiv; — (i)} (5.6)
Y vi_gvigv;l'

Hence the maximization of the Lagrangian in the calculation of f(u) and F(u) can
be decomposed to a set of one-dimensional problems of the type in (5.6)(similarly for
the calculations of ¢(v) and G(v).) Therefore the problem is doubly decomposable,
and the computations related to the mappings F' and G in the algorithm can be

massively parallelized.

The p terms (or the monitoring function in the terminology of [8, 9]) in ELQP
can represent penalties of piecewise linear-quadratic nature, as well as sharp linear
inequality or equality constraints [6]. Now with ¢ and 3 being more general convex
functions than the linear-quadratic ones, the formulation will provide even richer
possibilities. The following proposition points out that the p terms in the box-
separable case are the corresponding conjugate functions [12] extrapolated to the

left and right by linear functions.

Proposition 5.1 (p terms in the box-separable case). Suppose v;" > v, and ¥ :
IR — IRU {40} is a closed proper convex function with |v; , v;"[ C dom;, where
domp; is the effective domain of ;. Let 1} be the conjugate of 1;

¥i(w;) = sup {wiv; — Pi(vi)}.

v; €ERR
Define
b [sup{ws € R o7 0F] 00 (w) £0) i of £ o,
¢ Hoo if v = 400, (5.7)
_ finf{w e R o o006 (w,) £ 0} if o] £ -, |
L] —0 if v, = —o0.
Then

s —wf) + 95 (wd) ) <,

V-
Po ot (Wi) = & ¥ (w;) ifw; < w; <wy, (5.8)
o vi (wi — w7 )+ ¢f (w7 ) ifw; <y
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Proof. We claim that the set

Wi ={wi € R [v;, 0] N0¥; (w;) # 0}

is nonempty and is an interval. To prove this, we observe that Jv;", v [ Nri(dom ;)

is nonempty, since v > v, and v, v C domt;. Hence there exists

Z ? Z

; € Jv;, v [ such that 9 (;) # 0 (5.9)
by [12, Theorem 23.4]. Then
v; € 0P (w;) for some w; € R (5.10)

by [12, Theorem 23.5]. Therefore W, is nonempty. Now for any w}!, w? € W;, there
exist v}, v} € [v], 0] such that v} € 9 (w}) and v? € O (w?), which implies
wl w? € dom(9Y¥). For any w? € Jw! | w?][, it is obvious that w? € r1<dom(8;/) ))
Hence &b*( ?) # 0, and according to [12 Theorem 24.1], there holds v} < v? < v?

for any v} € 9¢¥(w?), which implies w? € W;.

In the following, we first prove the middle part of (5.8) for four different cases:
Case 1: both v, and v} are finite. Then for any w; € Jw; ,w]]|

w; € W;. Hence [v;

171

, we have

1M 9Y¥ (w;) is nonempty, i.e.,

[v

7ol Nargmax{wiv; — 1i(vi)} # 0.
v; €ERR

Therefore
Pi(wi) = max{w;v; —Pi(v;)} = max {wv; —Pi(vy)}
v; €ER vy Svigv;l'

= pm (w0 Vo € Jop wf L (5.10)

Case 2: v, 1is finite while v;" = 4o00. Then w;" = +oo by (5.7). For any
w; € Jw; ,w;] with ; defined in (5.10), there holds w; € W;, and the argument to
PTOVe = .+ wz(wi) = *(w;) is similar to that in Case 1. Now consider w; > ;.
It follows from (5.10) that 0 € w; — 0v;i(0;). Hence the expression w;v; — ¢;(v;)

as a concave function in v; is nondecreasing on | — oo, 9;]. Then for any w; > w;,
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the expression w;v; — ¥;(v;) as a concave function in v; is also nondecreasing on

| — 00, 0;]. Therefore

Pi(wi) = sup {wivi = Pi(vi)} = sup {wivi —ivi)} = p,- o+ (i) Vwi > ;.

v €R v, <w;
Case 3: v; = —oo, while v;" is finite. The proof of this case is similar to that
of Case 2.
Case 4: v; = —o0, and v;" = 4o00. In this case, the conclusion follows directly

from the definition of p - + . (w;).
_|_

Next consider w; > w;" when w;" < +o00. Observe that in such a case, v;" is

finite by (5.7). We have shown in the argument of Case 2 above that for any w; > w;,

the expression w;v; —;(v;) as a concave function in v; is nondecreasing on | — oo, 0;].

Hence the supremum of w;v; — 9;(v;) on v; € [v; v+] will be reached somewhere

A
L

in [0;,v]. Note that 6; > v; . If the supremum is attained on any o; € [0;,v]

then o; € argmax{w,;v; — ¢;(v;)}, or ¥; € 0¢(w;), which is a contradiction to the

v;
definition of w;". Therefore

argmax {w;v; — ;(v;)} = {v;"} Yw; > w;". (5.12)
v, Svigv;l'

Similarly, we can prove

argmax {w;v; —¥i(v;)} ={v; } Yw; <w;. (5.13)
v._gvigv;l'

It follows from (5.12) and (5.13) that

Pvi—,v;r’wi(wi) wivy —abi(v) for all w; > wi, (5.14)

wiv; — (v, ) for all w; < w; . (5.15)

pvi_ ,v?’,zpi(wi)

It is obvious from (5.6) that p - + ; 18 @ convex function. Therefore p -  + p; 18

continuous in the relative interior of its effective domain. Now if w; < w;", then

(5.8) follows from (5.14), (5.15) and (5.11) by elementary calculus. Otherwise if

w; = w], then 1; = w; = w;". Recall that ¢; € Jv;, v [in (5.9). Hence
i (i) = w0 —pi(0) = sup {wvy —i(vi)} = py= o+, (W00),
v, Svigv;l' v
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and (5.8) still follows from (5.14) and (5.15) by elementary calculus. O

With the aid of Proposition 5.1, various p terms can be derived by using conjug-
ate pairs of convex functions. Hence the formulation in this paper not only allows
for the merit function ¢; in the objective (5.5) being more general than linear-
quadratic, but also provides a much wider variety for the monitoring functions p in

modeling the constraints.

Example 1:

1 1
() = =|v;|® and ¥ (w;) = =|w;|?
Yivi) a| | ¥ (w;) 5| |

are a conjugate pair [12], where 1 < o < 400, 1 < # < 400 and é + % = 1. Let

0=v < v;" < 400. Then w; =0 and w;" = (v+)<ﬁi1>. Therefore (5.8) becomes

?

of (wi —w) + 5w’ i wf <wy,
po,v;",zpi(wi) = %(wi)ﬁ Ho<w; < w;i—,
0 if w; <0.

Hence the p term will give any positive w; < w;" a penalty of the form %(wi)ﬁ until

w; reaches w;". After passing w;", the penalty increases linearly with slope v;". For
B = 2, the p term reduces to the piecewise linear-quadratic monitoring function in
ELQP. But the formulation here provides the whole variety of monitoring functions

of w; to the fth power with € (1, +00).
Example 2:

vilogv; —v; if v; >0,
Yi(v;) = { 0 if v; =0, and ¥ (w;)=e""
+00 if v; <0,

are a conjugate pair [12]. Let v;” and v} be such that 0 < v;” < v}t < +o00. Then

w; =logv;, wi =logv]l and (5.8) becomes

v;"(wi — wj') + v;" if w;" < w;y,
P~ vj’,wi(wi): e if w, <w; <w

w; +
v (w; —w; )+ v i w; <ol

7

Hence the p term will give rise to an exponentially increasing penalty between

w; =logv; and w] =logv;.
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Proposition 5.2 (general properties of the p terms). The function py,,, in (5.3)
is lower semicontinuous and convex with a nonempty effective domain. The same

holds for py; .

Proof. The function py,, is in fact the conjugate of b=+ 0y, where 0y 1s
the indicator of V. Note that ¢ is a proper closed convex function by [12, Theorem
9.3] since V' C dom ) is nonempty. Hence the conclusion for py, , follows from [12,

Theorem 12.2]. The conclusion for Pu., can be proved similarly. O

Let “epi” denote the epigraph, and let “rc” denote the recession cone of either a
convex set or a convex function (see [12]). The next proposition gives the condition

for the monitoring functions defined in (5.3) to be finite-valued.

Proposition 5.3 (finiteness conditions for the p terms). Let 7, : R" xR — R"

and g : R™ x IR — IR"™ be the canonical projections
(u,f) > u YueR", f€R and (v,y)—v YoeR" veR

respectively. If

ma(re(epivy)) NreV = {0}, (5.16)
then dom py, = R™ and
argér‘l/ax{r-v —p(v)} #0 YreR™. (5.17)
Similarly, if
7 (re(epie)) NreU = {0}, (5.18)
then dom p; , = R" and
argér[l]ax{s-u —o(u)} #0 YseR" (5.19)

Proof. For any r € IR™, define
() =w()—(r,-). (5.20)
We claim that (5.16) implies
reV, NreV ={0} ¥reR™.
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Then dom py, ,, = IR™, and (5.17) holds by [12, Theorem 27.3].

To prove the claim, we observe that epi ¥, is a nonempty closed convex set.
Hence for any (v,v) € rc(epi ¥, ), there exist {a*, v, y*} with (v¥,v") € epi U,
at >0 and a* 10, such that

(v,7) = lim ot (vk, #) (5.21)

p—00

by [12, Theorem 8.2]. Let
5 = 9 4 (0} and G =7+ ).

Then (v#,4#) € epit), and it follows from (5.21) that

(v.9) = lim a* (v, 54).

p—00

Hence (v,7%) € re(epie)) by [12, Theorem 8.2]. Therefore

T4 (rc(epi \I/r)> C 7yq (rc(epi ;/))) .

But re¥, C wy (rc(epi\I/rD according to the definition of the recession cone of
convex functions [12]. Therefore the claim is true. The conclusion for p;; , can be

proved similarly. O

The conditions in (5.16) and (5.18) are also sufficient for the existence of a

saddle point for the Lagrangian (5.1) over U x V.

Proposition 5.4 (existence of a saddle point). If both (5.16) and (5.18) in Propo-
sition 5.3 hold, then the saddle value of L(u,v) in (5.1) over U x V is finite, and
there exists a saddle point (u,v) of L(u,v) over U x V.

Proof. The function ¥, defined in (5.20) has the same effective domain as .

Hence by the inclusion in (5.2), it is obvious that
epi(P, + 6y ) =epil, N (V x R) £ 0.

Thus
re(epi( U, + 6y, )) = re(epi¥,) Nre(V x R)
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by [12, Corollary 8.3.3]. Therefore
Ta(re(epi(T, + 6y))) C my(re(epil,)) Nmy(re(V x R)).
But 7, (re(V x R)) = re V. Moreover we have already shown that
mq(re(epi ¥,)) C mq(re(epivp)) VU, = —(r, -), r € R™
in the proof of Proposition 5.3. Hence it follows from (5.16) that
mq(re(epi( T, +6y))) = {0},

which implies that for any fixed wu, the function —L(u, - )+ éy( - ) has no direction of
recession. Similarly (5.18) implies that for any fixed v, the function L(-,v) + 67(+)
has no direction of recession. Thus the conclusion of the proposition follows directly

from Theorem 1.2. O
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