
SOLVING LARGE-SCALE MINIMAX PROBLEMS WITHTHE PRIMAL-DUAL STEEPEST DESCENT ALGORITHMCiyou Zhu *Department of Mathematical SciencesJohns Hopkins University, Baltimore, MD 21218June 1992; revised June 1993.Abstract. This paper shows that the primal-dual steepest descent algorithm de-veloped Zhu and Rockafellar for large-scale extended linear-quadratic programmingcan be used in solving constrained minimax problems related to a general C2 saddlefunction. It is proved that the algorithm converges linearly from the very beginningof the iteration if the related saddle function is strongly convex-concave uniformlyand the cross elements between the convex part and the concave part of the vari-ables in its Hessian are bounded on the feasible region. Better bounds for theasymptotic rates of convergence are also obtained. The minimax problems wherethe saddle function has linear cross terms between the convex part and the concavepart of the variables are discussed speci�cally as a generalization of the extendedlinear-quadratic programming. Some fundamental features of these problems arelaid out and analyzed.Keywords. Minimax problem, saddle function, large-scale numerical optimiza-tion, primal-dual projected gradient algorithm.* This work was supported by Eliezer Naddor Postdoctoral Fellowship in Math-ematical Sciences at the Department of Mathematical Sciences, the Johns HopkinsUniversity, during the year 1991{92.Currrent address: Mathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, IL 60439. 1



1. Introduction.Let U and V be nonempty closed convex sets in lRn and lRm respectively, and letthe Lagrangian L(u; v) de�ned on U�V be a �nite-valued saddle function convex inu and concave in v: Consider the problem of �nding a saddle point (�u; �v) of L(u; v)over U � V; i.e., �nding a pair (�u; �v) 2 U � V such thatL(�u; v) � L(�u; �v) � L(u; �v) 8u 2 U; 8v 2 V: (1:1)As is well known, a large variety of optimization problems can be cast in thisformulation. For instance, the convex programming problemminimize '(u) over u 2 U;subject to hi(u) � 0; i = 1; : : : ;m;with ' and hi's being �nite convex functions on U; is equivalent to the minimaxproblem of the LagrangianL(u; v) = '(u) + mXi=1 vihi(u) over U � lRm+ :Another special case which has signi�cant large-scale application is the extendedlinear-quadratic programming problems (ELQP for short) recently introduced inthe context of multistage and stochastic optimization [3{11], where the sets U andV are polyhedral, and the associated saddle function L(u; v) is linear-quadratic,L(u; v) = p�u+ 12u�Pu+ q�v � 12v�Qv � v�Ru; (1:2)with the matrices P 2 lRn�n and Q 2 lRm�m being symmetric and positive semidef-inite. (One has p 2 lRn, q 2 lRm, andR 2 lRm�n.) In Section 5, we generalize ELQPto the minimax problem where the Lagrangian has linear cross terms between thevariables u and v: The latter serves as an example to which our algorithm applies,as well as one with signi�cant large-scale applications.Associated with L; U and V are the primal and dual problemsminimize f(u) over all u 2 U; where f(u) := supv2V L(u; v);(P) maximize g(v) over all v 2 V; where g(v) := infu2U L(u; v):(Q)The relationship between (P) and (Q) is included in the following theorem.1



Theorem 1.1 [12, Theorem 36.2] (duality and optimality). A point (�u; �v) is asaddle point of L over U � V if and only if inf(P) is attained at �u; sup(Q) isattained at �v; and these two extrema are equal. If (�u; �v) is a saddle point of L(u; v)over U � V; then f(�u) = L(�u; �v) = g(�v):Let �S( �) be the indicator function related to a convex set S; and let riS be therelative interior of S: The results on the existence of a saddle point may be writtenin the following form.Theorem 1.2 [12, Theorem 37.6] (existence of saddle points). If both of the fol-lowing conditions hold, then there exists a saddle point (�u; �v) of L(u; v) over U �V:(a) The convex functions L( � ; v) + �U ( �) for v 2 riV have no common directionof recession.(b) The convex functions �L(u; �)+�V ( �) for u 2 riU have no common directionof recession.It is easy to see that condition (a) in Theorem 1.2 will be satis�ed if eitherL(u; v) is strongly convex in u or the set U is bounded. Similarly condition (b)will be satis�ed if either L(u; v) is strongly concave in v or the set V is bounded.In the case of minimax problems where the Lagrangian has linear cross terms, lessstringent criteria for these two conditions to be satis�ed will be given in Section 5.For solving the optimization problems posed in this minimax setting, one pos-sible approach, which is capable of taking advantage of the problem structure inlarge-scale applications, is the splitting method. See Chen and Rockafellar [13] fora thorough discussion on the forward-backward splitting methods in Lagrangianoptimization, and Zhu [14] for some recent convergence results. In this paper, weare going to show that another possible approach, which can also take advantage ofthe problem structure and has been tested successfully on large-scale ELQP, is theprimal-dual steepest descent algorithm developed in [1, 2].The primal-dual steepest descent algorithm (PDSD for short) was proposed byZhu and Rockafellar [1] as a method designed for solving large-scale ELQP problemsarising in dynamic and stochastic optimization. The name stems from the inter-pretation of the search direction as corresponding to the projected gradient on thefeasible set in the norm induced by a certain matrix in the Lagrangian. This algo-2



rithm shows promise for large-scale optimization problems since it requires relativelysimple computations to be performed in a manner conducive to decomposition.In [2], Zhu developed new variants of PDSD for ELQP by introducing di�erentupdate schemes and step length rules. All the variants were put in a uni�ed frame-work. Zhu proved that the algorithm, when applied to ELQP, converges linearlyfrom the very beginning of the iteration. New estimations for the convergence ratioof the algorithm were also obtained.In this paper, we extend the algorithm and its convergence theory to the classof minimax problems related to a general C2 saddle function. In Section 2, wepresent the algorithm after laying out some computationally useful properties ofthe problem. These properties are the counterparts of the corresponding results ofRockafellar [8] on ELQP. In Section 3, we prove global linear convergence resultsfor each variant of the algorithm formulated in Section 2. In Section 4, we deriveestimates for the asymptotic rates of convergence of the algorithm. Finally, inSection 5, we discuss the minimax problem with linear cross terms between thevariables u and v in the Lagrangian as a typical example �tting the assumptionsof the paper. We shall use the Euclidean inner product and norm throughout thepaper, denoted by h � ; � i and k � k respectively. We use [w1; w2] to denote the linesegment between two points w1 and w2; and use ]w1; w2[ to denote the same linesegment with the endpoints excluded. The meanings of [w1; w2[ and ]w1; w2] areself-evident from the above conventions.2. The Primal-Dual Steepest Descent Algorithm.In this section, we formulate six variants of the algorithm in a uni�ed framework. We�rst derive some computationally useful properties of the general minimax problem.Suppose the Lagrangian L(u; v) is C2 on some open set containing U � V: For anyU 0 � U and V 0 � V de�ne�U 0;V 0 := inff smallest eigenvalue of r2uuL(u; v) j u 2 U 0; v 2 V 0g (2:1a)�V 0;U 0 := inff smallest eigenvalue of �r2vvL(u; v) j u 2 U 0; v 2 V 0g (2:1b)MU 0;V 0 := supfkr2uvL(u; v)k j u 2 U 0; v 2 V 0g: (2:1c)Note that the order of the subscripts of � also indicates with respect to which vari-able the di�erentiation is performed. The convexity-concavity of L implies �U;V � 03



and �V;U � 0: From now on, we focus on the general minimax problems with astrongly convex-concave Lagrangian. (If the Lagrangian of the original problemdoes not exhibit this property, the proximal point algorithm can be implemented asan \outer" loop of iteration [8, 15] to create a strongly convex-concave Lagrangianfor the \inner" loop problems.) The following assumption is imposed on the rest ofthe paper.Assumption 2.1 (blanket assumption). MU;V < +1 and the Lagrangian L(u; v)is strongly convex-concave uniformly on U � V in the sense that �U;V > 0 and�V;U > 0:Under this assumption, the subproblems of maximizing L(u; v) in v for �xed uor minimizing L(u; v) in u for �xed v calculate not only the objective values f(u)and g(v); but also the unique vectorsF (u) = argmaxv2V L(u; v) and G(v) = argminu2U L(u; v): (2:2)For large-scale problems, we say that the minimax problem possesses double de-composability (or Lagrangian decomposability) [8] if these subproblems can be de-composed to low dimensional ones and solved easily. The box-separable case ofthe minimax problem with LCT, which will be discussed in Section 5, is a typicalexample of that kind. We shall refer consistently to�u = the unique optimal solution to (P);�v = the unique optimal solution to (Q):The next two propositions are generalizations of the corresponding results on ELQPin Rockafellar [8].Proposition 2.2 (optimality estimates). Suppose û and v̂ are elements of U andV satisfying f(û)� g(v̂) � " for a certain " � 0. Then û and v̂ are "-optimal in thesense that jf(û) � f(�u)j � " and jg(v̂) � g(�v)j � ". Moreover,�U;V kû� �uk2 + �V;Ukv̂ � �vk2 � 2": (2:3)Proof. By Theorem 1.1,f(û) � f(�u) = L(�u; �v) = g(�v) � g(v̂);4



from which the inequalities for f and g follows. Now f(û) � L(û; �v) by the de�nitionof f: Hencef(û) � L(�u; �v) � L(û; �v) �L(�u; �v)= ruL(�u; �v)�(û� �u) + 12 (û� �u)�r2uuL(~u; �v)(û � �u);where ~u 2 [û; �u]: Observe that ruL(�u; �v)�(û� �u) � 0; since �u minimizes L(u; �v) onu 2 U: Moreover, (û� �u)�r2uuL(~u; �v)(û� �u) � �U;V kû� �uk2 by (2.1). Thereforef(û) � L(�u; �v) � 12�U;V kû� �uk2: (2:4)Similarly, we have g(v̂) � L(�u; �v) � � 12�V;Ukv̂ � �vk2: (2:5)Subtracting (2.5) from (2.4), we obtain (2.3).Proposition 2.3 (Lipschitz properties of F and G). The mappings F and G de-�ned by (2.2) are Lipschitz continuous on U and V respectively withkF (u0)� F (u)k � �MU;V =�V;U�ku0 � uk 8u 2 U; u0 2 U; (2:6a)kG(v0) �G(v)k � �MU;V =�U;V �kv0 � vk 8v 2 V; v0 2 V: (2:6b)Proof. For any u0; u00 2 U; let v1 = F (u0) and v01 = F (u00): Then it follows fromthe de�nition of F in (2.2) and the �rst-order optimality condition thatrvL(u0; v1)�(v � v1) � 0 8v 2 V and rvL(u00; v01)�(v � v01) � 0 8v 2 V:Adding these two inequalities with v = v01 in the �rst and v = v1 in the second, wehave 0 �rvL(u0; v1)�(v01 � v1) +rvL(u00; v01)�(v1 � v01)=[rvL(u0; v1)�rvL(u00; v01)]�(v01 � v1)=� (v01 � v1)�r2vuL(~u; ~v)(u00 � u0)� (v01 � v1)�r2vvL(~u; ~v)(v01 � v1);for some ~u 2 [u00; u0] and ~v 2 [v01; v1]: Then(v01 � v1)�r2vuL(~u; ~v)(u00 � u0) � �(v01 � v1)�r2vvL(~u; ~v)(v01 � v1) � 0:5



Therefore with the notations de�ned in (2.1),MU;V kv01 � v1kku00 � u0k � �V;Ukv01 � v1k2;which yields (2.6a). We can prove (2.6b) similarly.The points generated by the mappings F and G as by-products when calculat-ing the objective values contain important information of the problem. Our e�ortin designing the algorithm is concentrated on using this information e�ectively in alarge scale setting. The PDSD algorithm �rst searches on line segments [u;G(F (u))]and [v; F (G(v))] in primal and dual variables respectively to get some intermedi-ate points as candidates for the next iterates. Then the mappings F and G areused again to pass information between the primal part and the dual part of thealgorithm in determining the next pair of primal and dual iterates.De�ne ~� = M2U;V�U;V �V;U : (2:7)The following PDSD algorithm for the general minmax problem contains six vari-ants, including three di�erent step length rules and two update schemes. We shallrefer to the algorithm with, say, update scheme 2 and step length rule (iii), asPDSD{2(iii).Primal-Dual Steepest Descent Algorithm.Step 0 (initialization). Set � := 0 (iteration counter). Specify starting pointsu0 2 U and v0 2 V: Choose one of the step length rules in Step 2. (If rule (iii)is chosen, then also choose some constant � 2 (0; 1):) Choose one of the updateschemes in Step 3. Construct primal and dual sequences fu�g � U and fv�g � Vas follows.Step 1 (optimality test). Ifminf f(u� ); f�G(v�)� g �maxf g(v�); g�F (u�)� g = 0;then terminate with�u = argminf f(u) j u = u�; or u = G(v�) g�v = argmaxf g(v) j v = v�; or v = F (u�) g6



being optimal solutions to (P) and (Q):Step 2 (line search). Use one of the following step length rules chosen atinitialization to determine �� and �� for generating intermediate pointsû�+1 :=(1� ��)u� + ��G(F (u�));v̂�+1 :=(1� ��)v� + ��F (G(v�));in primal and dual variables respectively.(i) Perfect line search:�� := argmin�2[0;1] f�(1� �)u� + �G(F (u�))�;�� := argmax�2[0;1] g�(1� �)v� + �F (G(v�))�:(ii) Fixed step lengths:�� := minf1; 12~� g and �� := minf1; 12~� g:(We adopt the convention 0�1 = +1 in this paper.)(iii) Adaptive step lengths:�� := max� �j �� f�(1� �j)u� + �jG(F (u�))� � f(u� )� �f(u�) � g(F (u�))�(� 12�j); j 2 f0; 1; 2; : : :g	;�� := max� �j �� g(v�) � g�(1� �j)v� + �jF (G(v� ))�� �f(G(v� )) � g(v�)�(� 12�j); j 2 f0; 1; 2; : : :g	:Step 3 (update the iterates). Use one of the following rules chosen at initial-ization to determine the next iterates.1. Update with forward feedback:u�+1 := argminf f(u) j u = û�+1 or u = G(v̂�+1) g;v�+1 := argmaxf g(v) j v = v̂�+1 or v = F (û�+1) g:(If both arguments give the same objective value, use the �rst one in updating fordecisiveness. The same rule applies also to the next set of formulas.)7



2. Update with backward feedback:u�+1 := argminf f(u) j u = û�+1 or u = G(v�) g;v�+1 := argmaxf g(v) j v = v̂�+1 or v = F (u�) g:Then return to Step 1 with the counter � increased by 1.Observe that the primal-dual feedback occurs in the updating of the iterates,as well as in the optimality test. This interaction links the primal and dual parts ofthe algorithm closely. For instance, with the optimality test in Step 1, the algorithmwill terminate if either u� = �u or v� = �v by Theorem 1.1. The primal-dual feedbackin Step 3 of updating has an important e�ect on the algorithm. In Sections 3 and 4,sharper estimates of the convergence ratio for the variants with the second updatescheme will be obtained because of the backward feedback pattern in it. The readeris referred to [2] for more discussion on this.In Step 2, there are three step length rules to choose from. The �xed steplength in rule (ii) is probably of theoretical signi�cance only, since ~� is unknown inmost cases. However, Theorem 3.4 in the next section shows that the variant withthe adaptive step length (iii) can achieve a global rate of convergence very close tothe ones with step length (i) or (ii), provided that the parameter � is chosen close to1: The adaptive step length needs only some kind of backtracking computationally.When the problem is doubly decomposable, such as the box-separable case discussedin Section 5, the related computation can be massively parallelized, and even theperfect line search in rule (iii) will not be prohibitively di�cult. In Section 4, weshow that, in general, better asymptotic ratios than the global ones obtained inSection 3 can be expected for the variants with step rules (i) and (iii).
8



3. Global Linear Convergence of the PDSD Algorithm.In this section, we derive global convergence results for all the six variants of thePDSD algorithm formulated in Section 2. De�ne the multivalued mappings U0 :U !! U; V1 : U !! V; V0 : V !! V and U1 : V !! U as follows.U0(u) =[u;G(F (u))]; (3:1a)V1(u) = [ f[F (u); F (�)] j � 2 U0(u)g; (3:1b)V0(v) =[v; F (G(v))]; (3:2a)U1(v) = [ f[G(v); G(�)] j � 2 V0(v)g: (3:2b)We �rst give two lemmas that serve as bases for convergence results. De�nethe functions �p : U ! lR and �d : V ! lR as�p(u) = M2U0(u);F (u)�U0(u);F (u)�V1(u);U0(u) and �d(v) = M2G(v);V0(v)�V0(v);G(v)�U1(v);V0(v) ; (3:3)where M�;� and ��;� are de�ned in (2.1).Lemma 3.1. For any u 2 U;f�(1 � �)u+ �G(F (u))� � f(u) � �f(u) � g(F (u))����+ �p(u)�2� (3:4)for all � 2 [0; 1]: Similarly, for any v 2 V;g(v)� g�(1 � �)v + �F (G(v))� � �f(G(v)) � g(v)���� + �d(v)�2� (3:5)for all � 2 [0; 1]:Proof. For any u0 2 U; denote v1 := F (u0) and u2 := G(v1) = G(F (u0)): Then bythe mean value theorem [16], the Lagrangian L(u; v) can be written in the expandedform at (u; v1) asL(u; v) = L(u; v1) +rvL(u; v1)�(v � v1) + 12 (v � v1)�r2vvL(u; ~v)(v � v1)with some ~v 2 [v1; v] depending on u; v and v1: Furthermore, the termrvL(u; v1)�(v � v1) can be written asrvL(u; v1)�(v � v1) = rvL(u0; v1)�(v � v1) + (v � v1)�r2vuL(~u; v1)(u� u0)9



with some ~u 2 [u0; u]: Note that v1 = F (u0) means v1 is the argmax of L(u0; v) onV; which in turn implies rvL(u0; v1)�(v � v1) � 0 for all v 2 V: ThereforeL(u; v) � L(u; v1)+(v�v1)�r2vuL(~u; v1)(u�u0)+ 12 (v�v1)�r2vvL(u; ~v)(v�v1): (3:6)Now for any u 2 [u0; u2] and v = F (u); we have ~u 2 [u0; u] � U0(u0) and~v 2 [v1; F (u)] � V1(u0): Hence it follows from (3.6) thatL�u;F (u)�� L(u; v1)� �F (u)� v1��r2vuL(~u; v1)(u � u0) + 12�F (u) � v1��r2vvL(u; ~v)�F (u)� v1�� maxw2lRmfw�r2vuL(~u; v1)(u � u0) + 12w�r2vvL(u; ~v)wg= 12 (u� u0)��r2vuL(~u; v1)�T ��r2vvL(u; ~v)��1r2vuL(~u; v1)(u � u0)� 12�M2U0(u0);F (u0)=�V1(u0);U0(u0)�ku� u0k2 (3:7)for all u 2 [u0; u2]: Note that L�u;F (u)� = f(u) and thatL�(1� �)u0 + �u2; v1� � (1� �)L(u0; v1) + �L(u2; v1)= (1� �)f(u0) + �g(v1)for 0 � � � 1: Thus, by taking u = (1� �)u0 + �u2 in (3.7), we getf�(1 � �)u0 + �u2�� f(u0) + ��f(u0) � g(v1)�� 12�2�M2U0(u0);F (u0)=�V1(u0);U0(u0)�ku2 � u0k2: (3:8)Again by the mean value theorem,f(u0)� g(v1) = L(u0; v1) �L(u2; v1)= ruL(u2; v1)�(u0 � u2) + 12 (u0 � u2)�r2uuL(u0; v1)(u0 � u2)for some u0 2 [u0; u2] = U0(u0): Observe that ruL(u2; v1)�(u0 � u2) � 0; since u2 isthe argmin of L(u; v1) on U: Thereforef(u0) � g(v1) � 12 (u0 � u2)�r2uuL(u0; v1)(u0 � u2)� 12�U0(u);F (u)ku2 � u0k2or, equivalently, �f(u0)� g(v1)�=�U0(u0);F (u0) � 12ku2 � u0k2: (3:9)10



Combining (3.8) and (3.9), we getf�(1 � �)u0 + �u2�� f(u0) � �f(u0)� g(v1)����+ �2M2U0(u0);F (u0)�U0(u0);F (u0)�V1(u0);U0(u0) �� �f(u0)� g(v1)����+ �p(u0)�2� (3:10)for 0 � � � 1; which yields (3.4). We can prove (3.5) similarly.Lemma 3.2. Suppose u� 2 U; v� 2 V; �� 2 [0; 1] and �� 2 [0; 1] for some integer� � 0: If there exists �� > 0 such thatf�(1� ��)u� + ��G(F (u�))� � f(u�) � �f(u�) � g(F (u�))�(���); (3:11)g(v�)� g�(1 � ��)v� + ��F (G(v� ))� � �f(G(v� )) � g(v�)�(���); (3:12)then in the PDSD algorithm,(a) the new pair (u�+1; v�+1) generated by the update scheme 1 satis�esf(u�+1) � f(�u) � (1� ��)�f(u�) � f(�u)�; (3:13)g(�v)� g(v�+1) � (1� ��)�g(�v)� g(v�)�; (3:14)(b) while the new pair (u�+1; v�+1) generated by the update scheme 2 satis�esf(u�+1)� g(v�+1) � 1� ��1 + �� �f(u�) � g(v�)�: (3:15)Proof. According to the update scheme in Step 3 of the algorithm, we havef(u�+1) � f�(1� ��)u� + ��G(F (u�))�;g(v�+1) � g�(1� ��)v� + ��F (G(v�))�:Hence (3.11) and (3.12) implyf(u�+1) � f(u�) � �f(u�) � g(F (u�))�(���); (3:16)g(v�)� g(v�+1) � �f(G(v� )) � g(v�)�(���): (3:17)De�ne the �th duality gap "� and the �th auxiliary duality gap ~"� as"� := f(u� )� g(v�) and ~"� := f(G(v� )) � g(F (u�)) (3:18)11



respectively. By combining (3.16) and (3.17), we get"�+1 � (1 � ��)"� � �� ~"� : (3:19)If update scheme 2 is used, then f(u�+1) � f(G(v� )) and g(v�+1) � g(F (u�)):Hence "�+1 � ~"� : Therefore (3.19) implies"�+1 � (1� ��)"� � ��"�+1;which yields (3.15).On the other hand, if update scheme 1 is used, then the relation "�+1 � ~"� isnot necessarily ture. However, by Theorem 1.1,f(u) � f(�u) = g(�v) � g(v) for all u 2 U; v 2 V:Hence if follows from (3.16) and (3.17) thatf(u�+1)� f(u�) � �f(u�) � f(�u)�(���);g(v�)� g(v�+1) � �g(�v)� g(v�)�(���):These two inequalities yield (3.13) and (3.14) respectively.De�ne the function � : [0;+1)! (0; 1) as�(s) = � 1� s if s < 12 ;14s if s � 12 : (3:20)The following theorem gives convergence results for the algorithms with perfect linesearch (i) and �xed step length (ii).Theorem 3.3 (convergence of PDSD with step length rules (i) and (ii)).(a) The sequences ff(u� )g and fg(v�)g generated by PDSD{1(i) or PDSD{1(ii)converge linearly to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1) � f(�u) � �1� �(~�)��f(u�) � f(�u)�= � ~��f(u�)� f(�u)� if 0 � ~� < 12 ;�1� 1=(4~�)��f(u� )� f(�u)� if ~� � 12 ; (3:21)g(�v)� g(v�+1) � �1� �(~�)��g(�v)� g(v�)�= � ~��g(�v) � g(v�)� if 0 � ~� < 12 ;�1� 1=(4~�)��g(�v) � g(v�)� if ~� � 12 : (3:22)12



Moreover,�U;V ku�+1 � �uk2 + �V;Ukv�+1 � �vk2 � 2�1� �(~�)��+1�f(u0)� g(u0)�: (3:23)(b) The sequences ff(u� )g and fg(v�)g generated by PDSD{2(i) or PDSD{2(ii)converge linearly to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1)� g(v�+1) � 1� �(~�)1 + �(~�) �f(u� )� g(v�)�;= ��~�=(2� ~�)��f(u� )� g(v�)� if 0 � ~� < 12 ;�1� 1=(2~� + 0:5)��f(u� )� g(v�)� if ~� � 12 : (3:24)Moreover,�U;V ku�+1 � �uk2 + �V;Ukv�+1 � �vk2 � 2�1� �(~�)1 + �(~�)��+1�f(u0)� g(u0)�: (3:25)Proof. Note that U0(u) and V1(u) are subsets of U; while V0(v) and U1(v) aresubsets of V: Hence for any u 2 U and v 2 V;�U0(u);F (u) � �U;V ; �V1(u);U0(u) � �V;U ; MU0(u);F (u) �MU;V ;�V0(v);G(v) � �V;U ; �U1(v);V0(v) � �U;V ; MG(v);V0(v) �MU;V :Therefore, ~� � �p(u) and ~� � �d(v) (3:26)for all u 2 U and v 2 V: Substituting (3.26) in (3.4) and (3.5), we getf�(1 � �)u+ �G(F (u))� � f(u) � �f(u) � g(F (u))�(��+ ~��2); (3:27)g(v) � g�(1� �)v + �F (G(v))� � �f(G(v)) � g(v)���� + ~��2�; (3:28)for all � 2 [0; 1] and � 2 [0; 1]:Observe that minf��+ ~��2 j 0 � � � 1 g = ��(~�) < 0 withargminf��+ ~��2 j 0 � � � 1 g = minf1; 12~� g:Hence for the �xed step length �� = minf1; 12~�g in rule (ii), (3.27) impliesf�(1 � ��)u� + ��G(F (u� ))�� f(u�) � �f(u� )� g(F (u�))����(~�)�: (3:29)13



Obviously (3.29) is also true for the step length �� = argmin�2[0;1] f�(1��)u�+�G(F (u�))�in rule (i), since the perfect line search should not make the �rst term of (3.29) anylarger. According to the update scheme in Step 3, we have f(u�+1) � f((1��� )u�+��G(F (u�))): Thereforef(u�+1) � f(u�) � �f(u�) � g(F (u�))����(~�)�: (3:30)Similarly it follows from (3.28) that in the dual variable,g(v�) � g(v�+1) � �f(G(v� )) � g(v�)����(~�)�: (3:31)Now by invoking Lemma 3.2 with �� = �(~�); we get (3.21), (3.22) and (3.24).Using (3.24) for � = 0; 1; : : : ; we getf(u�+1) � g(v�+1) � �1� �(~�)1 + �(~�)��+1�f(u0) � g(v0)�;which yields (3.25) for PDSD{2 by Proposition 2.2.Note that f(�u) = g(�v): Combining (3.21) and (3.22), we getf(u�+1) � g(v�+1) � �1� �(~�)��f(u� )� g(v�)�: (3:32)Using (3.32) for � = 0; 1; : : : ; we getf(u�+1)� g(v�+1) � �1� �(~�)��+1�f(u0) � g(v0)�;which yields (3.23) for PDSD{1 by Proposition 2.2.Next we give convergence results for the algorithm with adaptive step lengths(iii). We have to show, in the �rst place, that these step lengths are well de�ned.Let the function ~� : [0;+1)! (0; 1) be de�ned as~�(s) = minf12 ; 14sg: (3:33)Obviously �(s) � ~�(s) for all s 2 [0;+1); and the equality holds when s � 12 :14



Theorem 3.4 (convergence of PDSD with step length rule (iii)).(a) For any � 2 (0; 1); the step lengths �� and �� in the PDSD algorithm withrule (iii) are well de�ned. Moreover,�� > �minf1; 12~� g and �� > �minf1; 12~� g (3:34)for all �:(b) The sequences ff(u�)g and fg(v�)g generated by PDSD{1(iii) converge lin-early to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1)� f(�u) � �1� �~�(~�)��f(u� )� f(�u)�= � (�=2)�f(u� )� f(�u)� if 0 � ~� < 12 ;�1� �=(4~�)��f(u�) � f(�u)� if ~� � 12 ; (3:35)g(�v) � g(v�+1) � �1� �~�(~�)��g(�v) � g(v�)�= � (�=2)�g(�v) � g(v�)� if 0 � ~� < 12 ;�1� �=(4~�)��g(�v)� g(v�)� if ~� � 12 : (3:36)Moreover�U;V ku�+1 � �uk+ �V;Ukv�+1 � �vk � 2�1� �~�(~�)��+1�f(u0) � g(u0)�: (3:37)(c) The sequences ff(u�)g and fg(v�)g generated by PDSD{2(iii) converge lin-early to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1)� g(v�+1) � 1� �~�(~�)1 + �~�(~�)�f(u� )� g(v�)�;= ��(2 � �)=(2 + �)��f(u�) � g(v�)� if 0 � ~� < 12 ;�1� 1=(2�~� + 0:5)��f(u�) � g(v�)� if ~� � 12 : (3:38)Moreover�U;V ku�+1 � �uk2 + �V;Ukv�+1 � �vk2 � 2�1� �~�(~�)1 + �~�(~�)��+1�f(u0)� g(u0)�: (3:39)Proof. First, we claim that for all nonnegative � � minf1; 12�p(u�)g;f�(1� �)u� + �G(F (u�))�� f(u� ) � �f(u� )� g(F (u�))����2 �: (3:40)15



This follows directly from (3.4) and the fact that��+ �p(u�)�2 � ��2 for all 0 � � � minf1; 12�p(u�)g:Hence the step length �� = �j in rule (iii), where j is the �rst element in the orderednonnegative integer set f0; 1; 2; : : :g satisfyingf�(1 � �j)u� + �jG(F (u�))� � f(u�) � �f(u�) � g(F (u�))�(� 12�j); (3:41)is well de�ned. Moreover, �j�1 > minf1; 12�p(u�)g if j 6= 0; because otherwise �j�1instead of �j will be taken as the step length according to rule (iii). Thus�� = �j > �minf1; 12�p(u�)g = 2�~�(�p(u�)): (3:42)Combining (3.41) and (3.42), we havef�(1 � ��)u� + ��G(F (u� ))�� f(u�) � �f(u�) � g(F (u�))����~�(�p(u�))�;� �f(u�) � g(F (u�))����~�(~�)�; (3:43)where the last inequality follows from (3.26) and (3.33). Similarly,g(v�)� g�(1 � ��)v� + ��F (G(v� ))� � �f(G(v� )) � g(v�)����~�(�d(u�))�;� �f(G(v� )) � g(v�)����~�(~�)�: (3:44)Now by invoking Lemma 3.2 with �� = �~�(~�); we get (3.35), (3.36) and (3.38).The inequality (3.37) follows from (3.35) and (3.36) in the same manner as (3.23)follows from (3.21) and (3.22) in Theorem 3.3. Similarly, (3.39) follows from (3.38)in the same manner as (3.25) follows from (3.24) in Theorem 3.3.4. Asymptotic Rates of Convergence.De�ne �� = M2�u;�v��u;�v��v;�u : (4:1)Note that �� is related only to quantities de�ned at the optimal solution. Obviously,we have ��u;�v � �U;V ; ��v;�u � �V;U and M�v;�u � MV;U : Therefore �� � ~�: In thissection, we show that it is this smaller number �� that governs the rate of convergencein the tail of iteration for the variants with perfect line search or adaptive steplength. 16



Theorem 4.1 (asymptotic rates of PDSD with step length rule (i)). Suppose thealgorithm does not terminate at the solution pair (�u; �v) after a �nite number ofiterations, then(a) for the sequences ff(u� )g and fg(v�)g generated by PDSD{1(i),lim sup�!1 f(u�+1) � f(�u)f(u�)� f(�u) � 1� �(��) = � �� if 0 � �� < 12 ;1� 1=(4��) if �� � 12 ; (4:2)lim sup�!1 g(�v) � g(v�+1)g(�v) � g(v�) � 1� �(��) = � �� if 0 � �� < 12 ;1� 1=(4��) if �� � 12 ; (4:3)(b) while for the sequences ff(u� )g and fg(v�)g generated by PDSD{2(i),lim sup�!1 f(u�+1)� g(v�+1)f(u� )� g(v�) � 1� �(��)1 + �(��) = � ��=(2� ��) if 0 � �� < 12 ;1� 1=(2�� + 0:5) if �� � 12 : (4:4)Proof. Observe that the algorithm will terminate at (�u; �v) if either u� = �u orv� = �v: Hence under the assumption of the theorem, the denominators in (4.2){(4.3) are positive. By Lemma 3.2, we need only to prove that for any positive� < �(��); there exists an integer �� such that for all � � ��;f�(1� ��)u� + ��G(F (u�))�� f(u� ) � �f(u� )� g(F (u�))�(��); (4:5)g(v�) � g�(1� ��)v� + ��F (G(v� ))� � �f(G(v� )) � g(v�)�(��): (4:6)Observe that minf��+ �p(u�)�2 j 0 � � � 1 g = ��(�p(u�)) < 0; withargminf��+ �p(u�)�2 j 0 � � � 1 g = minf1; 12�p(u�)g:Hence, it follows from (3.4) in Lemma 3.1 thatf�(1 � ��)u� + ��G(F (u�))� � f(u�) � �f(u�) � g(F (u�))����(�p(u�))�: (4:7)Similarly,g(v�)� g�(1 � ��)v� + ��F (G(v� ))� � �f(G(v� )) � g(v�)����(�d(v�))�: (4:8)Now according to Theorem 4.3, u� ! �u and v� ! �v as � ! 1: Recall that�v = F (�u) and �u = G(�v) by Theorem 1.1. Hence it follows from Proposition 2.3 thatG(v�)! �u; F (u�) ! �v; G(F (u�))! �u; F (G(v�)) ! �v as � !1:17



Then for the sets de�ned in (3.1) and (3.2),dist(U0(u�); �u) ! 0; dist(V1(u�); �u)! 0; dist(V0(v�); �v)! 0; dist(U1(v�); �v)! 0;as � !1; which impliesMU0(u�);F (u�) !M�u;�v; MV0(v�);G(v�) !M�v;�u; �U1(v�);V0(v�) ! ��u;�v;�V1(u�);U0(u�) ! ��v;�u; �U0(u�);F (u�) ! ��u;�v; �V0(v�);G(v�) ! ��v;�u;since the Lagrangian L(u; v) is C2: Therefore�p(u�)! �� and �d(v�)! ��as � !1: Hence �(�p(u�)) ! �(��) and �(�d(v�)) ! �(��)as � !1: Thus the claim is true by (4.7) and (4.8). This completes the proof.Theorem 4.2 (asymptotic rates of PDSD with step length rule (iii)). Suppose thealgorithm does not terminate at the solution pair (�u; �v) after a �nite number ofiterations, then(a) for the sequences ff(u� )g and fg(v�)g generated by PDSD{1(iii),lim sup�!1 f(u�+1)� f(�u)f(u�) � f(�u) � 1� �~�(��) = � �=2 if 0 � �� < 12 ;1� �=(4��) if �� � 12 ; (4:9)lim sup�!1 g(�v)� g(v�+1)g(�v)� g(v�) � 1� ��(��) = � �=2 if 0 � �� < 12 ;1� �=(4��) if �� � 12 ; (4:10)(b) while for the sequences ff(u� )g and fg(v�)g generated by PDSD{2(i),lim sup�!1 f(u�+1)� g(v�+1)f(u� )� g(v�) � 1� ��(��)1 + ��(��) = � (2� �)=(2 + �) if 0 � �� < 12 ;1� 1=(2��� + 0:5) if �� � 12 : (4:11)Proof. Note that in the proof of Theorem 3.4, we have provedf�(1 � ��)u� + ��G(F (u� ))�� f(u�) � �f(u�) � g(F (u�))����~�(�p(u�))�;g(v�)� g�(1� ��)v� + ��F (G(v�))� � �f(G(v� )) � g(v�)����~�(�d(u�))�;as the �rst halves of (3.43) and (3.44). These two inequalities lead to the conclusionsof the theorem in the same manner as (4.7) and (4.8) lead to the conclusions ofTheorem 4.1. 18



5. Minimax Problems with LCT.As an example of a potential large-scale application of the algorithm, we discussthe minimax problem on U � V with the LagrangianL(u; v) = '(u)�  (v) � v�Ru; (5:1)where the matrix R is in lRm�n; and the functions ' : lRn ! lR [ f+1g and : lRm ! lR[f+1g are closed proper convex with their e�ective domains satisfyingU � dom' and V � dom : (5:2)We refer to such a problem as the minimax problem with linear cross terms (withLCT for short). The inclusion (5.2) means that there are no implicit constraintsother than the explicit one (u; v) 2 U � V for the minimax problem.De�ne the functions�V; (r) = supv2V fr�v �  (v)g for r 2 lRm;�U;'(s) = supu2Ufs�u� '(u)g for s 2 lRn: (5:3)The objective functions in (P) and (Q) can be written asf(u) = '(u) + �V; (�Ru) and g(v) = � (v) � �U;'(RT v) (5:4)(where the \T" signals the transpose matrix). If U and V are polyhedral convexsets, and ' and  are linear-quadratic convex functions, then problems (P) and (Q)reduce to the ELQP discussed in [3{11].As an instance �tting the concept of double decomposability, consider the fol-lowing box-separable case, where the functions '(u) and  (v) are separable'(u) = nXj=1'j(uj);  (v) = mXi=1  i(vi);and U and V are Cartesian products of intervals (not necessarily �nite):U = [u�1 ; u+1 ]� : : :� [u�n ; u+n ]; V = [v�1 ; v+1 ]� : : :� [v�m; v+m]:19



The primal problem (P) then takes the form of minimizingf(u) = nXj=1'j(uj) + mXi=1 �v�i ;v+i ; i�� nXj=1 rijuj� (5:5)subject to u�j � uj � u+j for j = 1; : : : ; n; where�v�i ;v+i ; i(wi) = supv�i �vi�v+i fwivi �  i(vi)g: (5:6)Hence the maximization of the Lagrangian in the calculation of f(u) and F (u) canbe decomposed to a set of one-dimensional problems of the type in (5.6)(similarly forthe calculations of g(v) and G(v):) Therefore the problem is doubly decomposable,and the computations related to the mappings F and G in the algorithm can bemassively parallelized.The � terms (or the monitoring function in the terminology of [8, 9]) in ELQPcan represent penalties of piecewise linear-quadratic nature, as well as sharp linearinequality or equality constraints [6]. Now with ' and  being more general convexfunctions than the linear-quadratic ones, the formulation will provide even richerpossibilities. The following proposition points out that the � terms in the box-separable case are the corresponding conjugate functions [12] extrapolated to theleft and right by linear functions.Proposition 5.1 (� terms in the box-separable case). Suppose v+i > v�i and  :lR! lR [ f+1g is a closed proper convex function with ]v�i ; v+i [ � dom i; wheredom i is the e�ective domain of  i: Let  �i be the conjugate of  i �i (wi) = supvi2lRfwivi �  i(vi)g:De�ne w+i =� supfwi 2 lR j [v�i ; v+i ] \ @ �i (wi) 6= ;g if v+i 6= +1;+1 if v+i = +1;w�i =� inffwi 2 lR j [v�i ; v+i ] \ @ �i (wi) 6= ;g if v�i 6= �1;�1 if v�i = �1: (5:7)Then �v�i ;v+i ; i(wi) = 8<: v+i (wi � w+i ) +  �i (w+i ) if w+i � wi; �i (wi) if w�i < wi < w+i ;v�i (wi �w�i ) +  �i (w�i ) if wi � w�i : (5:8)20



Proof. We claim that the setWi = fwi 2 lR j [v�i ; v+i ] \ @ �i (wi) 6= ;gis nonempty and is an interval. To prove this, we observe that ]v�i ; v+i [ \ ri(dom i)is nonempty, since v+i > v�i and ]v�i ; v+i [ � dom i. Hence there existsv̂i 2 ]v�i ; v+i [ such that @ i(v̂i) 6= ; (5:9)by [12, Theorem 23.4]. Thenv̂i 2 @ �i (ŵi) for some ŵi 2 lR (5:10)by [12, Theorem 23.5]. Therefore Wi is nonempty. Now for any w1i ; w2i 2Wi; thereexist v1i ; v2i 2 [v�i ; v+i ] such that v1i 2 @ �i (w1i ) and v2i 2 @ �i (w2i ); which impliesw1i ; w2i 2 dom(@ �i ): For any w3i 2 ]w1i ; w2i [; it is obvious that w3i 2 ri�dom(@ �i )�:Hence @ �i (w3i ) 6= ;; and according to [12, Theorem 24.1], there holds v1i � v3i � v2ifor any v3i 2 @ �i (w3i ); which implies w3i 2Wi:In the following, we �rst prove the middle part of (5.8) for four di�erent cases:Case 1: both v�i and v+i are �nite. Then for any wi 2 ]w�i ; w+i [; we havewi 2Wi: Hence [v�i ; v+i ] \ @ �i (wi) is nonempty, i.e.,[v�i ; v+i ] \ argmaxvi2lR fwivi �  i(vi)g 6= ;:Therefore �i (wi) = maxvi2lRfwivi �  i(vi)g = maxv�i �vi�v+i fwivi �  i(vi)g= �v�i ;v+i ; i(wi) 8wi 2 ]w�i ; w+i [: (5:11)Case 2: v�i is �nite while v+i = +1: Then w+i = +1 by (5.7). For anywi 2 ]w�i ; ŵi] with ŵi de�ned in (5.10), there holds wi 2 Wi; and the argument toprove �v�i ;v+i ; i(wi) =  �i (wi) is similar to that in Case 1. Now consider wi > ŵi:It follows from (5.10) that 0 2 ŵi � @ i(v̂i): Hence the expression ŵivi �  i(vi)as a concave function in vi is nondecreasing on ] �1; v̂i]: Then for any wi > ŵi;21



the expression wivi �  i(vi) as a concave function in vi is also nondecreasing on]�1; v̂i]: Therefore �i (wi) = supvi2lRfwivi �  i(vi)g = supv�i �vifwivi �  i(vi)g = �v�i ;v+i ; i (wi) 8wi > ŵi:Case 3: v�i = �1; while v+i is �nite. The proof of this case is similar to thatof Case 2.Case 4: v�i = �1; and v+i = +1: In this case, the conclusion follows directlyfrom the de�nition of �v�i ;v+i ; i (wi):Next consider wi > w+i when w+i < +1: Observe that in such a case, v+i is�nite by (5.7). We have shown in the argument of Case 2 above that for any wi > ŵi;the expression wivi� i(vi) as a concave function in vi is nondecreasing on ]�1; v̂i]:Hence the supremum of wivi �  i(vi) on vi 2 [v�i ; v+i ] will be reached somewherein [v̂i; v+i ]: Note that v̂i > v�i : If the supremum is attained on any ~vi 2 [v̂i; v+i [;then ~vi 2 argmaxvi fwivi �  i(vi)g; or ~vi 2 @ �i (wi); which is a contradiction to thede�nition of w+i : Thereforeargmaxv�i �vi�v+i fwivi �  i(vi)g = fv+i g 8wi > w+i : (5:12)Similarly, we can proveargmaxv�i �vi�v+i fwivi �  i(vi)g = fv�i g 8wi < w�i : (5:13)It follows from (5.12) and (5.13) that�v�i ;v+i ; i(wi) = wiv+i �  i(v+i ) for all wi > w+i ; (5:14)�v�i ;v+i ; i(wi) = wiv�i �  i(v�i ) for all wi < w�i : (5:15)It is obvious from (5.6) that �v�i ;v+i ; i is a convex function. Therefore �v�i ;v+i ; i iscontinuous in the relative interior of its e�ective domain. Now if w�i < w+i ; then(5.8) follows from (5.14), (5.15) and (5.11) by elementary calculus. Otherwise ifw�i = w+i ; then ŵi = w�i = w+i : Recall that v̂i 2 ]v�i ; v+i [ in (5.9). Hence �i (ŵi) = ŵiv̂i �  i(v̂i) = supv�i �vi�v+i fŵivi �  i(vi)g = �v�i ;v+i ; i(ŵi);22



and (5.8) still follows from (5.14) and (5.15) by elementary calculus.With the aid of Proposition 5.1, various � terms can be derived by using conjug-ate pairs of convex functions. Hence the formulation in this paper not only allowsfor the merit function 'i in the objective (5.5) being more general than linear-quadratic, but also provides a much wider variety for the monitoring functions � inmodeling the constraints.Example 1:  i(vi) = 1� jvij� and  �i (wi) = 1� jwij�are a conjugate pair [12], where 1 < � < +1; 1 < � < +1 and 1� + 1� = 1: Let0 = v�i < v+i < +1: Then w�i = 0 and w+i = (v+i ) 1(��1) : Therefore (5.8) becomes�0;v+i ; i (wi) =8<: v+i (wi � w+i ) + 1� (w+i )� if w+i � wi;1� (wi)� if 0 < wi < w+i ;0 if wi � 0:Hence the � term will give any positive wi < w+i a penalty of the form 1� (wi)� untilwi reaches w+i : After passing w+i ; the penalty increases linearly with slope v+i : For� = 2; the � term reduces to the piecewise linear-quadratic monitoring function inELQP. But the formulation here provides the whole variety of monitoring functionsof wi to the �th power with � 2 (1;+1):Example 2: i(vi) = ( vi log vi � vi if vi > 0;0 if vi = 0;+1 if vi < 0; and  �i (wi) = ewiare a conjugate pair [12]. Let v�i and v+i be such that 0 < v�i < v+i � +1: Thenw�i = log v�i ; w+i = log v+i and (5.8) becomes�v�i ;v+i ; i (wi) =8<: v+i (wi �w+i ) + v+i if w+i � wi;ewi if w�i < wi < w+i ;v�i (wi � w�i ) + v�i if wi � w�i :Hence the � term will give rise to an exponentially increasing penalty betweenw�i = log v�i and w+i = log v+i : 23



Proposition 5.2 (general properties of the � terms). The function �V; in (5.3)is lower semicontinuous and convex with a nonempty e�ective domain. The sameholds for �U;':Proof. The function �V; is in fact the conjugate of ~ =  + �V ; where �V isthe indicator of V: Note that ~ is a proper closed convex function by [12, Theorem9.3] since V � dom is nonempty. Hence the conclusion for �V; follows from [12,Theorem 12.2]. The conclusion for �U;' can be proved similarly.Let \epi" denote the epigraph, and let \rc" denote the recession cone of either aconvex set or a convex function (see [12]). The next proposition gives the conditionfor the monitoring functions de�ned in (5.3) to be �nite-valued.Proposition 5.3 (�niteness conditions for the � terms). Let �p : lRn � lR ! lRnand �d : lRm � lR! lRm be the canonical projections(u; �)! u 8u 2 lRn; � 2 lR and (v; 
)! v 8v 2 lRm; 
 2 lRrespectively. If �d�rc(epi )� \ rcV = f0g; (5:16)then dom �V; = lRm andargmaxv2V fr�v �  (v)g 6= ; 8r 2 lRm: (5:17)Similarly, if �p�rc(epi')� \ rcU = f0g; (5:18)then dom �U;' = lRn andargmaxu2U fs�u� '(u)g 6= ; 8s 2 lRn: (5:19)Proof. For any r 2 lRm; de�ne	r( �) =  ( �) � hr; � i: (5:20)We claim that (5.16) impliesrc	r \ rcV = f0g 8r 2 lRm:24



Then dom�V; = lRm; and (5.17) holds by [12, Theorem 27.3].To prove the claim, we observe that epi	r is a nonempty closed convex set.Hence for any (v; 
) 2 rc(epi	r); there exist f��; v�; 
�g with (v�; 
�) 2 epi	r;�� > 0 and �� #0; such that (v; 
) = lim�!1��(v�; 
�) (5:21)by [12, Theorem 8.2]. Let~
� = 
� + hr; v�i and ~
 = 
 + hr; vi:Then (v�; ~
�) 2 epi ; and it follows from (5.21) that(v; ~
) = lim�!1��(v�; ~
�):Hence (v; ~
) 2 rc(epi ) by [12, Theorem 8.2]. Therefore�d�rc(epi	r)� � �d�rc(epi )�:But rc	r � �d�rc(epi	r)� according to the de�nition of the recession cone ofconvex functions [12]. Therefore the claim is true. The conclusion for �U;' can beproved similarly.The conditions in (5.16) and (5.18) are also su�cient for the existence of asaddle point for the Lagrangian (5.1) over U � V:Proposition 5.4 (existence of a saddle point). If both (5.16) and (5.18) in Propo-sition 5.3 hold, then the saddle value of L(u; v) in (5.1) over U � V is �nite, andthere exists a saddle point (�u; �v) of L(u; v) over U � V:Proof. The function 	r de�ned in (5.20) has the same e�ective domain as  .Hence by the inclusion in (5.2), it is obvious thatepi(	r + �V ) = epi	r \ (V � lR) 6= ;:Thus rc(epi(	r + �V )) = rc(epi	r) \ rc(V � lR)25



by [12, Corollary 8.3.3]. Therefore�d�rc(epi(	r + �V ))� � �d�rc(epi	r)� \ �d�rc(V � lR)�:But �d�rc(V � lR)� = rcV: Moreover we have already shown that�d�rc(epi	r)� � �d�rc(epi )� 8	r =  � hr; � i; r 2 lRmin the proof of Proposition 5.3. Hence it follows from (5.16) that�d�rc(epi(	r + �V ))� = f0g;which implies that for any �xed u; the function �L(u; �)+ �V ( �) has no direction ofrecession. Similarly (5.18) implies that for any �xed v; the function L( � ; v) + �U ( �)has no direction of recession. Thus the conclusion of the proposition follows directlyfrom Theorem 1.2.Acknowledgments. The author thanks two anonymous referees for their veryhelpful comments and suggestions.
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