ON THE PRIMAL-DUAL STEEPEST DESCENT ALGORITHM
FOR EXTENDED LINEAR-QUADRATIC PROGRAMMING

Ciyou Zhu *

Department of Mathematical Sciences
Johns Hopkins University, Baltimore, MD 21218

June 1992; revised May 1993.

Abstract. The aim of this paper is twofold. First, we propose new variants for the
primal-dual steepest descent algorithm as one in the family of primal-dual projected
gradient algorithms developed by Zhu and Rockafellar [1] for large-scale extended
linear-quadratic programming. The variants include a second update scheme for
the iterates, where the primal-dual feedback is arranged in a new pattern, as well as
alternatives for the “perfect line search” in the original version of [1]. Secondly, we
prove new linear convergence results for all these variants of the algorithm, including
the original version as a special case, without the additional assumptions used in
[1]. For the variants with the second update scheme, a much sharper estimation for
the rate of convergence is obtained aws a result of the new primal-dual feedback
pattern.

Keywords. Extended linear-quadratic programming, large-scale numerical opti-
mization, projected gradient algorithm, primal-dual feedback.

* This work was supported by Eliezer Naddor Postdoctoral Fellowship in Math-
ematical Sciences at the Department of Mathematical Sciences, the Johns Hopkins
University, during the year 1991-92.

Currrent address: Mathematics and Computer Science Division, Argonne National

Laboratory, Argonne, IL 60439.

1. Introduction.

The primal-dual steepest descent algorithm (PDSD for short) is one in the family
of primal-dual projected gradient algorithms proposed by Zhu and Rockafellar [1]
for large-scale extended linear-quadratic programming, which arises as a flexible

modeling scheme in dynamic and stochastic optimization [2-10].

Let L(u,v) be the Lagrangian function defined as
L(u,v) = pu+ tu-Pu+ ¢gv — 1v-Qv — v-Ru, (1.1)

where p € IR", ¢ € IR™, R € IR™*" and the matrices P € IR"*" and Q € IR™*™ are
symmetric and positive semidefinite. Let U and V be nonempty polyhedral convex
sets in IR"™ and IR™ respectively. The primal problem of extended linear-quadratic

programming is to

(P) minimize f(u) over all u € U, where f(u) := sup L(u,v).
veEV

Associated with this primal problem is the dual problem

(Q) maximize ¢g(v) over all v € V, where ¢g(v) := inf['] L(u,v).
ue

The problems (P) and (Q) are called fully quadratic if both the matrices P and @
are actually positive definite. The basic properties of the objective functions f and
¢, and the duality relationship between (P) and (Q), are included in the following

two theorems.

Theorem 1.1 [5] (properties of the objective functions). The objective functions
fin (P) and ¢ in (Q) are piecewise linear-quadratic: in each case the space can be
partitioned in principle into a finite collection of polyhedral cells, relative to which
the function has a linear or quadratic formula. Moreover, f is convex while ¢ is
concave. In the fully quadratic case of (P) and (Q), f is strongly convex and ¢ is

strongly concave, both functions having continuous first derivatives.

Theorem 1.2 [5], [2] (duality and optimality).
(a) If either of the optimal values inf(’P) or sup(Q) is finite, then both are finite

and equal, in which event optimal solutions u and v exist for the two problems. In

1

the fully quadratic case, both the optimal values inf(P) and sup(Q) are finite and
equal, and the optimal solutions u and v are unique.

(b) A pair (u,v) is a saddle point of L(u,v) over U x V if and only if u solves
(P) and v solves (Q), or equivalently, f(u) = g(v).

Hence the extended linear-quadratic programming can be cast in the form of

finding a saddle point (u, v) of the Lagrangian L(u, v) over U x V. With the notations

PV,Q(T) = Sup{r-v - %v-Qv} for r € R™,

veV (1 2)
pu.p(s) =sup{su— Ltu-Pu} for s € R", '
uelU

the objective functions in (P) and (Q) can be written as

flu) =pu+ ju-Pu+ pyolg — Ru), 3
g(v) =¢v — Lv-Quv — pU’P(RTv — D). '

According to Rockafellar [5], the p terms here can represent “sharp” constraints as
well as penalty terms of piecewise linear-quadratic nature. These terms provide rich

possibilities in mathematical modeling.

The extended linear-quadratic programming problems in multistage or sto-
chastic optimization are usually of very high dimension on the one hand, while pos-
sessing special structures, such as the Lagrangian decomposability [7] on the other
(see also Section 2). A foundation for numerical schemes regarding these problems
has been laid out by Rockafellar and Wets [2] and Rockafellar [7], and elaborated
for problems in multistage format by Rockafellar [8]. The PDSD algorithm [1] is
designed specifically to take advantage of these results and to cope with the high
dimensionality. The algorithm works with local structure in the primal and dual
problems simultaneously. Computations for problems in multistage format could be
handled through the system dynamics in such a way that no huge R matrix should
be formed explicitly. A novel kind of primal-dual feedback is introduced between the
primal part and the dual part of the algorithm to trigger advantageous interactive
restarts [1]. The algorithm is capable of solving extended linear-quadratic program-
ming problems of both the primal and dual dimensions up to 100,000 effectively on
a DECstation 3100 [1].

The convergence of PDSD algorithm was proved in [1] as a special case of the
results on the family of the primal-dual projected gradient algorithms. However,
the estimation on the rate of convergence there is asymptotic and seems far behind
its practical performance. Moreover, the results there were obtained under some
additional eritical face conditions [1]. The primal-dual feedback, which plays an
important role in the practical performance of the algorithm, has no effect in the

derivation of these theoretical estimations.

In this paper, we propose new variants for the algorithm and prove superior
results on the rate of convergence. In Section 2, we propose a second update scheme
for the iterates, where the primal-dual feedback is arranged in a new pattern. We
also give “fixed” or “adaptive” step length rules as alternatives to the “perfect line
search” used in the original version. All these variants, including the original version
of the algorithm, are put in a unified framework. Then, in Section 3, we prove new
linear convergence results for all these variants without the critical face conditions.
The results are of global nature, and the estimates on the rates of convergence
are much improved compared with the ones in [1]. For the variants with the new
update scheme, sharper estimates for the rates are obtainable because of the new
primal-dual feedback pattern. Finally, in Section 4, we discuss our numerical test

results and other possible update schemes.

2. The Primal-Dual Steepest Descent Algorithm.

The family of primal-dual projected gradient algorithms in [1], as well as the finite-
envelope algorithm developed earlier by Rockafellar and Wets [2-7] are all designed
for solving large-scale extended linear-quadratic programming problems arising in
multistage or stochastic optimization, where the problems exhibit the Lagrangian
decomposability (or double decomposability) [7]. The latter term means that for
any fixed u € U it is relatively easy to maximize L(u,v) over v € V', and likewise,
for any fixed v € V it is relatively easy to minimize L(u,v) over u € U. This is the
case, for example, when the matrices P and) are block diagonal, and the sets U
and V are corresponding Cartesian products of polyhedra of low dimensions. These
subproblems of maximization and minimization calculate not only the objective
values f(u) and ¢(v) but also, in the fully quadratic case when L is strongly convex-

concave, the uniquely determined vectors

F(u) = argmax L(u,v) and G(v)=argminL(u,v). (2.1)
veV welU

The mappings F' and G play a central role in the PDSD algorithm.
We cite from [7] and [1] several fundamental properties which are useful later

in this paper. We write

[ewllar = [r-Mrw]?

for the norm corresponding to a symmetric positive definite matrix M. It reduces
to the ordinary Euclidean norm when M is the identity matrix. In this latter case,
the subscript will be dropped. We use the related operator norm for matrices and
use [wy,ws] to denote the line segment between two points w; and w,. We impose
the blanket assumption that the problem s fully quadratic for the rest of the paper

and refer consistently to

u = the unique optimal solution to (P),

v = the unique optimal solution to (Q).

When the problem under consideration is not fully quadratic, an outer loop of
prozimal point iteration can be used to create fully quadratic inner loop problems.
See [2], [7], and [11] for related discussions.

4

Let Pz and Q% be the “square roots” of P and () respectively defined by

orthogonal factorization. Define
v:=v(P,Q,R) :=||Q 2RP™?|. (2.2)

Proposition 2.1 [7] (optimality estimates). Suppose u and v are elements of U
and V satisfying f(u) — g(v) < e for a certain ¢ > 0. Then u and v are c-optimal
in the sense that |f(u) — f(u)| < e and |g(v) — g(v)| < e. Moreover,

lu = ullb + llv = vllg < 2e.

Proposition 2.2 [7] (regularity properties). The functions f and ¢ are continu-

ously differentiable everywhere with
Vf(u)=VyL(u,F(u)) and Vg(v)=V,L(G(v),v),

while the mappings F' and G defined by (2.1) are Lipschitz continuous with

|F(u") — F(u)||g < v||u' — ul|p for all u and u',
|G(v") — G(v)||lp < 7||v' —vllq for all v and v'.

Proposition 2.3 [7, 1] (modified gradient projection). For arbitrary u € U and
velV,

G(F(u)) —u = P-projection of —Vpf(u) on U — u,

F(G(v)) —v = Q-projection of Vgg(v) on V — v,

where Vp f(u) = P~V f(u) symbolizes the gradient of f relative to the P-norm,
while Vog(v) = Q 'Vg(v) symbolizes the gradient of ¢ relative to the (-norm.
Moreover, the vector G(F(u)) — u is a feasible descent direction of f at u unless

u = u. Similarly, the vector F(G(v))—v is a feasible ascent direction of g at v unless

Il
ol

v

The PDSD algorithm first searches on line segments [u, G(F(u))] and [v, F(G(v))]
in primal and dual variables respectively to get some intermediate points as can-
didates for the next iterates. (Proposition 2.3 above suggests the name “projected
gradient.”) Then a novel kind of primal-dual feedback is incorporated in the updat-

ing. In the case of “forward feedback,” the next iterates will be chosen between the

S

intermediate points and their images under the mappings F' and G, while in the case
of “backward feedback,” the next iterates will be chosen between the intermediate
points and the images of the current iterates under the mappings F' and G. This
kind of interactive effect ties the primal and dual part of the operation closely, and

has proven to be important to the performance of the algorithm.

In the following, we introduce new variants of PDSD algorithm. The second
update scheme for the iterates corresponds to the backward feedback, for which a
sharper bound for the rate of convergence is obtained. We also give alternatives
for the “perfect line search” used in the original version. We put all these variants,
including two different update schemes and three step length rules, in a unified
framework. We refer to the algorithm with, say, update scheme 2 and step length
rule (iii), as PDSD-2(iii). Under this convention, the PDSD algorithm in [1] is
referred to as PDSD—1(i).

Primal-Dual Steepest Descent Algorithm.

Step O (initialization). Set v := 0 (iteration counter). Specify starting points
u’ € U and v° € V. Choose one of the step length rules in Step 2. (If rule (iii)
is chosen, then also choose some constant 6 € (0,1), and let a_y = f_; = 1.)

Choose one of the update schemes in Step 3. Construct primal and dual sequences

{u”} C U and {v”} CV as follows.
Step 1 (optimality test). If

min{ f(u), F(G(v*)) } — max{ g(v"), g (F(u")) } = 0.
then terminate with
u = argmin{ f(u)|u=u", or u=G(v")}
v = argmax{ ¢(v)|v=0", or v =F(u")}

being optimal solutions to (P) and (Q).
Step 2 (line search). Use one of the following step length rules chosen at

initialization to determine «, and 3, for generating intermediate points

@ =(1 — ay) + 0, G(F(u)),
(1=)" + By F(G("),

6

in primal and dual variables respectively.

(i) Perfect line search:

OPRES argminf((l —aju” + QG(F(UV))>7
a€0,1]

By :zargmaxg((l — B’ + ﬂF(G(v")))
pelo,1]

(ii) Fixed step lengths:

1 1
ay, = min{l,ﬁ} and [, := min{l,ﬁ}.

(We adopt the convention 0~! = +oo in this paper.)
(iii) Adaptive step lengths:
ay = max { ay 187 | F((1 = ay—16)u” + ay 1 8IG(F(u"))) = f(u”)
< (f(u”) = g(F(u")))(=$a,187), j € {0,1,2,...} },
By = max { By—16’ ‘ g(v") = 9((1 - 5u—15j)vy + 5V—15jF(G(vV))>
< (F(G(0") = g(0"))(=$Bs=187), 5 € {0,1,2,...} }.

Step 3 (update the iterates). Use one of the following rules chosen at initial-

ization to determine the next iterates.

1. Update with forward feedback:
uu—i—l = argmin{ f(u) | u = ﬁll+1 or u — G(ﬁu—l—l) }7
vt = argmax{ g(v)|v = 87" or v = F(a*T")},

(If both the arguments give the same objective value, use the first one in updating

for decisiveness. The same rule applies also to the next set of formulas.)

2. Update with backward feedback:

u’t = argmin{ f(u)|u = """ or u = G(v")},

vt = argmax{ ¢g(v)|v = 0" or v = F(u")}.

Then return to Step 1 with the counter v increased by 1.

Observe that the primal-dual feedback also takes place in the optimality test.

It follows from Proposition 2.2 that F(v”) — v and G(v¥) — u as v’ — u and

7

v¥ — v. With the optimality test in Step 1, the algorithm will terminate if either
u” = u or v¥ = v by Theorem 1.2.

In Step 2, there are three step length rules to choose from. By Theorem 1.1 and
Proposition 2.2, the objective functions in the line searches are piecewise quadratic
and continuously differentiable. In the typical decomposable case when P and @)
are diagonal, and U and V are “boxes” representing upper and lower bounds, one
can further get the explicit expressions for the derivatives of these functions. By
taking advantage of all these properties, even the perfect line search will not be

prohibitively difficult. In our numerical experimentations, the perfect line search

takes approximately two-thirds of the time in each iteration.

An interesting result of Theorem 3.1 in next section is that the same estimated
rate of convergence as for the perfect line search (i) can be reached by certain
fixed step lengths in rule (ii). However the parameter v of the problem, which
determines the length of steps in (ii), is usually unavailable. Therefore we provide
a third rule with adaptive step lengths, which resembles the Armijo stepsize rule
for unconstrained minimization. However, we here use certain duality gap, instead
of the slope of the line search function, in determining the step lengths. Theorem
3.2 in next section shows that the adaptive step length is well defined, that the step
lengths will be fixed after a finite number of adaptations, and that an estimated

rate of convergence very close to the one with perfect line search is obtainable.

Update scheme 1 in Step 3 can also be written as

ot [) < FGE) 03
T G(8¥T) otherwise, '
~v+1 if Hr+1ly > F ﬁl/—l—l
v+1 . __ v 9 1 g(v) - g(())7
v T { F(a**1) otherwise. (2:4)

We say that there is an interactive restart in the primal variable if u**t! = G(o¥T1),
in which case, the primal iterate is updated by using the dual information. Similarly,
we say that there is an interactive restart in the dual variable if v* 1! = F(av*1),
in which case, the dual iterate is updated by using the primal information. Update

scheme 2 can be written in the same manner as

~v+1 if ~v+1 v
vl JarTh i favTh) < f(G(vY)),
“ T { G(vY) otherwise. (2.5)
Av+1 if g(pvT1) > v
vl JOrT i g(8vT) > g(F(u”)),
v T { F(u”) otherwise, (2:6)

8

with the interactive restarts defined accordingly. Although the practical perfor-
mance of the algorithm with these two different update schemes are very close in
our tests, a sharper bound for the rate of convergence of the algorithm with scheme

2 will be obtained in the next section.

To conclude Section 2, we give a lemma that will be used later in deriving
convergence results. The proof of the lemma follows closely the idea in the proofs
of Rockafellar and Wets [2, Proposition 3 and Theorem 5].

Lemma 2.4. For any u € U,
(1= a)u+aG(F(u))) — flu) < (flu) = g(F(u))(—a +7a?) (2.7)
for all « € [0,1]. Similarly, for any v € V,
9(v) = g((1 = B)o + BF(G(v) < (f(G(v)) = g(0) (=B +~75%) (2.8)
for all € [0,1].

Proof. Forany ug € U, denote vy := F(ug) and ug := G(v1). Then the Lagrangian

L(u,v) can be written in the expanded form at (u,vq) as
L(uvv) = L(uvvl) + VUL(uvvl)'(v - 1)1) - %(v - vl)'Q(v - 1)1),
where the term V,L(u,v1)-(v — v1) can be further written as

VoL(u,v1)(v —v1) = VyL(ug,v1)(v —v1) — (v — v1)-R(u — up).

Note that v1 = F(ug) means vy is the argmax of L(ug,v) on V, which in turn implies
VoL(ug,v1)(v —v1) <0 for all v € V. Hence
L(u,v) < L(u,v1) — (v —v1)-R(u —ug) — L(v — v1)-Q(v — vy1). (2.9)

Now for any u € [ug, uz] and v = F(u), it follows from (2.9) that
L(u, F(u)) — L(u,v)

—(F(u) — v1>-R(u —Ug) — %(F(u) — v1>Q<F(u) — v1>

Jmax {w-R(u —uo) — juw-Qu}

= 3w — w0} (RTQ ' R)(u — uo)
HIQERPH)PH (u — o)
< 472w — woll? (2.10)

IA

IA

However, L(u, F(u)) = f(u) and
L((1 = a)ug + aus,vy) < (1 — a)L(ug,vr) + aL(uz,vy)
= (1 —a)f(uo) + ag(vi)
for 0 < o < 1. Thus, by taking v = (1 — a)ug + aus in (2.10), we get
F((1 = o + auz) — fluo) + a(fluo) = g(01)) < 20292 fuz — ol (211)
On the other hand,

flug) — g(v1) = L(ug,v1) — L(uz,v1)
= VuL(uz,v1)(ug — uz) + L(ug — uz)-Plug — uz)

by the definition of vy and wuz. Observe that V, L(ug, vy)-(ug — uz) > 0 since uz is
the argmin of L(u,vy) on U. Therefore

Fluo) = g(v1) = 3(uo — ug)-Plup — uz) = $fluz — uol/p. (2.12)

Combining (2.11) and (2.12), we get

f(uo + a(ug — Uo)) — flug) < (f(UO) - 9(”1)>(_0‘ + ’72042>

for 0 < o < 1, which yields (2.7). One can prove (2.8) similarly. O

3. Global Linear Convergence of the PDSD Algorithm.

In this section, we prove linear convergence results for all the six variants of the
PDSD algorithm formulated in Section 2. We first give results for the algorithms
with (1) perfect line search and (ii) fixed step lengths. Define the function 6 :
[0,+00) — (0,1) as

1—s ifs< i,
0(s) = { 1 s> 1, (3.1)

Theorem 3.1 (convergence of PDSD with step length rules (i) and (ii)).
(a) The sequences {f(u”)} and {g(v")} generated by PDSD-1(i) or PDSD-1(ii)

converge linearly to the common optimal value f(u) = ¢(v) in the sense that

F’™) = flu) < (1—6(+) (f(u”) = f(u)), (3.2)
g(v) — gt < (1= 6(+%)) (g(

10

<
~—
|
Q
~~
4
A
~—
~—
~~
w
w
~—

Moreover,
Y B y B v+1
[u ™ —allb + o * =0l <2(1-60(+") " (F(u”) —g(®)). (3.4

(b) The sequences { f(u”)} and {g(v")} generated by PDSD-2(i) or PDSD-2(ii)

converge linearly to the common optimal value f(u) = ¢(v) in the sense that

Fu"*h) —g(u"™) < 1 ; ZEQ (f(”) = g(v")). (3-5)
Moreover,
ot =l ot ol < 2(g) G —a) G0)

Proof. It follows from (2.7) that
F((1— au® 1 aG(P(u*)) — f(u*) < (F(u*) — g(F(u*))(~a +1%0%) (37)
for all @ € [0,1]. But min{ —a +9?a? |0 < a <1} = —6(~?) with
: 2 2 : 1
argmin{ —a + 70" |0 < o <1} = min{l1, 2—2}
Y

\ 21?} in rule (ii),

(f(u") = g(F(u")))(=0(+")). (3.8)

Hence for the fixed step length «, = min{1

FIA =’ + a,G(F(u")) — f(u”)

IA

Obviously (3.8) is also true for the step length o), = argminf((l—a)u”+aG(F(u”))>
a€0,1]
in rule (i), since the perfect line search should not make the first term of (3.8) any

larger. According to the update scheme in Step 3, we have f(u’™1) < f((1—a,)u”+
a,G(F(u"))). Therefore

Flu™) = fu?) < (f(u”) — g(F(u”))) (=0(+*)). (3.9)
Similarly it follows from (2.8) that

g(v") = g((1 = Bp” + BF(G(v"))) < (F(G(0")) = g(v")) (=B +~7p%) (3.10)

11

for all # € [0,1], which yields
g(v”) = g(v" ") < (F(G(0")) = g(v")) (—0(+7)). (3.11)
Combining (3.9) and (3.11), we get

Fu?) = g(0”) = fu") + (") = 0") (F(u”) — g(v”) — g(F(u")) + F(G(v"))).

3.12
With the vth duality gap <, and the vth auziliary duality gap &, defined as .
ev = f(u”) —g(v") and &, := f(G(v")) — g(F(u”)) (3.13)
respectively, (3.12) can be written in the form
v = evp1 2 0(77) (e + &),
or equivalently,
ot < (1=0(7%))es — (7). (3.14)

If update scheme 2 is used in Step 3 of the algorithm, then f(u”*!) < f(G(v"))
and g(v"T1) > g(F(u")). Hence ¢,41 < &,. Therefore (3.14) implies

et < (1=007%))e, —0(v% Jepta,

from which (3.5) follows. Using (3.5) for v = 0,1,..., we get

v+1 v+1 1—6(7%)\ "+ 0 0
f) =g < (Tgom) () = o0,

which yields (3.6) by Proposition 2.1.
If update scheme 1 is used in Step 3 of the algorithm, then the relation ¢,41 <

€, 1s not necessarily ture. However, by Theorem 1.2,
flu) > f(u)=g(v) > g(v) forallueU, velV.
Hence it follows from (3.9) and (3.11) that

Flu”™h) — Fu?) < (F(u”) — f(w)) (—6(+*)),
g(v”) — g(v**) < (g(v) — g(v")) (—6(17)).

12

These two inequalities yield (3.2) and (3.3) respectively. Moreover, observe that
£, > 0. Hence by (3.14), we have

F™h) = g(0"™) < (1= 6(v*)) (f(u") = g(v")). (3.15)

Using (3.15) for v = 0,1,..., we get

Fu™) = g0) < (1= 605%) T (F(u") = g(0"),
which yields (3.4) by Proposition 2.1. O

Next we give convergence results for the algorithm with adaptive step lengths
(iii). We have to show, in the first place, that these step lengths are well defined.
Let the function 6 : [0, +00) — (0,1) be defined as

f(s) = min{%, 41_3} (3.16)

Obviously 6(s) > é(s) for all s € [0,4+00), and the equality holds when s > 1.

Theorem 3.2 (convergence of PDSD with step length rule (iii)).
(a) Forany choice of 6 € (0,1), the step lengths v, and 3, in the PDSD algorithm

with rule (iii) are well defined. Both «, and 3, are nonincreasing as v increases,

and

1 1
a, > émin{l, W} and f3, > émin{l, W (3.17)

for all v. Moreover, both «, and 3, will be fixed after a finite number of iterations.

(b) The sequences {f(u”)} and {g(v")} generated by PDSD-1(iii) converge lin-

early to the common optimal value f(u) = g(v) in the sense that

FuT) — fa) < (1-80(v%) (f(u”) — f(u)), (3.18)
g(0) — g(v") < (1 —66(+)) (9() — g(v")). (3.19)

Moreover,
T — %+ o+ =0l < 2(1-86(%)" T (F(u®) — g(u”). (3.20)

13

(¢) The sequences {f(u”)} and {g(v"”)} generated by PDSD-2(iii) converge lin-

early to the common optimal value f(u) = g(v) in the sense that

f(uu—l—l) _ g(vu—l—l) < 1-— 69~(72)

= W(ﬂ“”) _g(v,,)>7 (3-21)

Moreover
1—66(v*)

u’ Tt —)% + |0t — o2 <2<7~
=l o =0l < 2(1 5

)) — e, (322)

Proof. First, we claim that for all nonnegative o < min{1, 21?},

—

F((L= @) +aG(F(u") — f(u’) < (fu’) = g(Fa' D) (). (3.23)

This follows directly from (2.7) and the fact that
2 2 o —¢ : 1
—a+7°a” < — forall 0 <o <min{l,—1}.
2 2~2

Hence the step length o, = a, 16 in rule (iii), where j is the first element in the

ordered nonnegative integer set {0,1,2,...} satisfying

F((1 = @ym189)u + ay 1 8GF()) — F(u”) < (F(u) = g(F(@”) (—yapo187),
(3.24)

is well defined. Obviously {«, } is nonincreasing.
According to the claim and the step rule, we have either a, = «,_1 or

1
272
will be taken as the step length «,. Suppose a,_; > é min{1, 21?} Then in either

a,_16771 > min{1, } with j > 1, because otherwise a,,_16’ 7! instead of a,,_;67
case,

: 1
ay, = ay—167 > dmin{l, W} (3.25)

Note that ey = 1 > ¢é. This proves the first inequality in (3.17) by induction.
The second inequality in (3.17) regarding 3, can be proved similarly, and the last

conclusion in part (a) is now obvious.

Combining (3.24) and (3.25), we have

) 1

F = @)+ a, GIR()) = f(u) < (fla”) = gF () (- min{L, 5-5)).

14

Therefore, by observing f(u’*1) < f((l — ay)u? + oz,,G(F(u”))) in the updating,

we get
Flu™) = flu”) < (f(u”) = g(F(u”))) (=66(v7)). (3.26)
Similarly, we have

g(v") —g(v" ™) < (F(G(v")) — g(v")) (—86(~%)). (3.27)

Now (3.26) and (3.27) lead to the conclusions in (b) and (¢) in the same manner as

(3.9) and (3.11) lead to the conclusions in Theorem 3.1. O

Theorems 3.1 and 3.2 provide global linear convergence results for all the vari-
ants of the PDSD algorithm formulated in Section 2 without any additional as-
sumptions. The parameter v = HQ_%RP_%H of the problem plays an important
role in the estimations regarding the rates of convergence of the algorithm. It also
characterizes the Lipschitzian constant for the mappings F' and G in Proposition
2.2. In fact, v can be viewed as a normalized measure of the “coupling” between
the primal and dual variables of the problem. In the extremal case when v = 0
(which implies R = 0), we have F(u) = v for all v and G(v) = u for all v. Hence
the algorithm will terminate in one iteration. On the other hand, a large ~ implies

a difficult problem for the algorithm.

It follows from Theorem 3.1 that for problems with large ~, the duality gap
ey = f(u”)—g(v") of the iterates generated by PDSD—-1(i) or PDSD-1(ii) decreases

at least with the ratio

1

1_9(72):1_W7

(3.28)
while the one generated by PDSD—-2(i) or PDSD-2(ii) decreases at least with the

ratio

_1-6(+%) 1

— L~ 1= —. 3.29
1+ 6(72) 242 (3:29)

These are much improved estimates compared with the earlier results in [1, Theorem
4.2] with an asymptotic ratio

1 1

1-— U

A+ D +5(2 + 12+ 2002 +1) 4y

15

under the critical face conditions. However, if the iterates eventually reach the
corresponding critical faces, the technique in [1, Theorem 4.2] still gives a better

asymptotic ratio

1 2 1
1-) ~l—
< 0.5(v> + 1)+ 0.5 09572

for large)

under the perfect line search. This is consistent with the observation that the
algorithm with perfect line search often gives better per-step progress towards the

end of iteration than other line search rules in our numerical tests.

The fixed step length in rule (ii) is related to the parameter v of the problem,
which 1s usually unavailable. According to Theorem 3.2, the convergence ratios in
Theorem 3.1 for problems with v2 > 1 could be approached with the adaptive step
lengths in rule (iii). Moreover, these step lengths will eventually be fixed after a
finite number of iterations. Comparing the estimations in Theorem 3.2 with the
ones in Theorem 3.1, one may get the impression that a choice of ¢ close to 1 would
eventually give better per-step ratios. But such a choice will, at the same time,
increase the number of trials in identifying the proper step length. Hence, in the
practical implementation of rule (iii), one has to compromise between these two
ends. One can also start the trial of j there with some negative integer instead of
0. Then the step length will be allowed to increase if a larger progress in the line

search is possible.

4. Numerical Test Results and Other Update Schemes.

Although the estimated rates for PDSD-2 are better than the ones for PDSD-1,
we find in our numerical tests that their practical performance are actually very
close. For comparison, we have run PDSD-1(i) and PDSD-2(i) on the transverse
famaly of the test problems 0.4 — 9.4 used in [1], where both the primal and the dual
dimensions are 5140. The stopping criterion in the optimality test for the practical

implementation of the algorithm is

min{ f(u”), f(G(v")) } = max{g(v"),g(F(u")) } < =, (4.1)

where ¢ > 0 i1s a prespecified threshold for the duality gap. The results in terms

of CPU times, as well as numbers of iterations, are given in Table 1. For instance,

16

45(8/6) in the iterations column of PDSD-2(i) for Problem 0.4 means that the algo-
rithm terminates successfully in 45 iterations, with 8 interactive primal restarts and
6 interactive dual restarts during the process. (The tests are run on a DECstation
3100 with double precision, where the software has been updated since the test in
[1].)

We also tried the algorithm without the primal-dual feedback in the update,

namely, using

v+1 +1 +1 +1

u =a” and v"70 =0
directly in the updating of Step 3. Then the algorithm generates two unrelated
sequences in primal and dual variables respectively until the stopping criterion (4.1)
on the duality gap is satisfied. We refer to this extre version for test purpose as
PDSD-0. (In the case of perfect line search, one can prove by using [1, Proposition
5.1] that the dual part of this extra version reduces to a special case of the finite
generation algorithm [2].) The corresponding results are put in the columns headed
PDSD-0(i). The notation ** in these columns signifies that the algorithm failed
to terminate in 100 iterations, in which case the figure for CPU time is preceded
by * since it indicates only how long the first 100 iterations took. The test results
show clearly the importance of the primal-dual feedback. Both PDSD-1(i) and

PDSD-2(i) perform much better than PDSD-0(i).

Table 1. Test results on problems 0.4-9.4 [1]

CPU time (sec.) Iterations
Problem | Size |PDSD-1(i)|PDSD2(i)|PDSD-0(i) | PDSD-1(i) | PDSD2(i) |[PDSD-0(i)
0.4 5140 110 141 *337 32(7/6) 45(8/6) ok
1.4 5140 183 172 %356 52(4/6) 50(3/6) ok
2.4 5140 147 224 %341 42(8/4) 67(10/3) ok
3.4 5140 35 42 212 9(4/4) 13(3/3) 68
44 5140 72 72 %346 19(7/4) 22(6/4) ok
5.4 5140 51 66 178 13(6/4) 20(7/2) 52
6.4 5140 62 74 82 16(5/7) 23(7/7) 24
7.4 5140 64 72 92 18(3/3) 22(6/3) 28
8.4 5140 189 180 %341 55(5/5) 54(3/4) ok
9.4 5140 62 65 110 17(6/7) 20(4/1) 35

There are other possible variants for the algorithm. Notice that the iteration

17

of PDSD-2(i) can be written as

u’t = argmin{ f(u)|u € [u”, G(F(u"))] or u € G(v")},

vt = argmax{ g(v)|v € [0*, F(G(v"))] or v € F(u”)}.

This suggests a third update scheme with four perfect line searches in each iteration

u’t = argmin{ f(u)|u € [u”, G(F(u”))] or u € [G(v"), G(F(G(v")))] },(4.2)

vt i= argmax{ g(v) |v € [v”, F(G(v"))] or v € [F(u”), F(G(F(u")))] }.(4.3)

Obviously, it should converge at least as fast as PDSD-2(i).

Recall that the intermediate points resulted from line searches on [u”, G(F(u"))]
and [v”, F(G(v"))] are denoted by a”*! and a**! respectively. Let u**! and u**!
be the corresponding line search results in primal and dual on [G(vY), G(F(G(vY)))]
and [F(u”), F(G(F(u")))] respectively. With a reasoning similar to the one that
leads to (3.8), we are able to get

Flu”) = f@"1) = (f(u") = g(F(u")))6(+*), (4.4)
g(a" ™) — g(u”) = (F(G(v")) — g(v"))8(*), (4.5)
FG(") = f(@" 1) = (F(G(")) = g(F(G(v"))))0(v*) (4.6)
g(a"™) = g(F(v")) = (F(G(F(u"))) — g(F(u")))8(v*) (4.7)
Now (4.4) and (4.5) yield
Fa) —g(6") <(1—6(+%)) (f(u”) = ("))
=0y) (F(G(0")) = g(F(u"))), (4.8)
while (4.5) and (4.6) yield
F@r ™) — g7 <(1-0(+)) (f(G "))

— 0(y*) (F(G(F ()))—g(F(G(v”)))) (4.9)

Eliminating the term f(G(v")) — g(F(u”)) in (4.8) and (4.9), we get

<1 . 9)(f u—l—l V—I—l)) T 9(72)<f(ﬁy+1) . g(ﬁ”“))
<(1-6(v")" (f(") = g(v")) = 0") (F(G(F(u"))) — g(F(G(v")))). (4.10)

18

According to the update scheme, the duality gap ¢,41 should be no larger than either
F@) = g(o") or f(a) — (o) or f(G(F(u"))) — g(F(G(v"))). Hence we
obtain an estimate
Svtl (1 - 9(72)>2
T 14 (002)
from (4.10) for the third update scheme in (4.2) and (4.3). For problems with large
7, this is a slightly better result compared with (3.5) for PDSD-2(i) at the cost of

two additional line searches.

Acknowledgments. The author thanks two anonymous referees for their very
helpful comments and suggestions. The third update scheme in (4.2) and (4.3) was

due to one of them.

19

REFERENCES.

1. C. Zhu and R. T. Rockafellar, “Primal-dual projected gradient algorithms for
extended linear-quadratic programming,” SIAM J. Opt. 3 (1993), pp. 751-783.

2. R. T. Rockafellar and R. J-B Wets, “A Lagrangian finite generation technique for
solving linear-quadratic problems in stochastic programming,” Math. Programming

Studies 28 (1986), pp. 63-93.
3. R. T. Rockafellar and R. J-B Wets, “Linear-quadratic problems with stochastic

penalties: the finite generation algorithm,” in Numerical Techniques for Stochastic
Optimization Problems(Y. Ermoliev and R. J-B Wets eds.), Springer-Verlag Lec-
ture Notes in Control and Information Sciences No. 81, 1987, pp. 545-560.

4. R. T. Rockafellar, “A generalized approach to linear-quadratic programming,”

in Proc. International Conf. on Numerical Optimization and Appl. (Xi’an, China),

1986, pp. 58-66.

5. R. T. Rockafellar, “Linear-quadratic programming and optimal control,” STAM
J. Control Opt. 25 (1987), pp. 781-814.

6. R. T. Rockafellar and R. J-B Wets, “Generalized linear-quadratic problems of
deterministic and stochastic optimal control in discrete time,” SIAM J. Control

Opt. 28 (1990), pp. 810-822.

7. R. T. Rockafellar, “Computational schemes for solving large-scale problems in
extended linear-quadratic programming,” Math. Programming 48 (1990), pp. 447-
474.

8. R. T. Rockafellar, “Large-scale extended linear-quadratic programming and mul-
tistage optimization,” in: Proc. Fifth Mexico-U.S. Workshop on Numerical Analysis
(S. Gomez, J.-P. Hennart, and R. Tapia, eds.), STAM, 1990.

9. A. King, “An implementation of the Lagrangian finite generation method,” in
Numerical Techniques for Stochastic Programming Problems, (Y. Ermoliev and

R. J-B Wets eds.), Springer-Verlag, 1988.

10. J. M. Wagner, Stochastic Programming with Recourse Applied to Groundwater
Quality Management, doctoral dissertation, MIT, 1988.

11. C. Zhu, “Modified proximal point algorithm for extended linear-quadratic pro-
gramming,” Computational Opt. and Applications 1 (1992), pp. 185-205.

20

