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1. Introduction.The primal-dual steepest descent algorithm (PDSD for short) is one in the familyof primal-dual projected gradient algorithms proposed by Zhu and Rockafellar [1]for large-scale extended linear-quadratic programming, which arises as a 
exiblemodeling scheme in dynamic and stochastic optimization [2{10].Let L(u; v) be the Lagrangian function de�ned asL(u; v) = p�u+ 12u�Pu+ q�v � 12v�Qv � v�Ru; (1:1)where p 2 lRn; q 2 lRm; R 2 lRm�n and the matrices P 2 lRn�n and Q 2 lRm�m aresymmetric and positive semide�nite. Let U and V be nonempty polyhedral convexsets in lRn and lRm respectively. The primal problem of extended linear-quadraticprogramming is to(P) minimize f(u) over all u 2 U; where f(u) := supv2V L(u; v):Associated with this primal problem is the dual problem(Q) maximize g(v) over all v 2 V; where g(v) := infu2U L(u; v):The problems (P) and (Q) are called fully quadratic if both the matrices P and Qare actually positive de�nite. The basic properties of the objective functions f andg; and the duality relationship between (P) and (Q); are included in the followingtwo theorems.Theorem 1.1 [5] (properties of the objective functions). The objective functionsf in (P) and g in (Q) are piecewise linear-quadratic: in each case the space can bepartitioned in principle into a �nite collection of polyhedral cells, relative to whichthe function has a linear or quadratic formula. Moreover, f is convex while g isconcave. In the fully quadratic case of (P) and (Q), f is strongly convex and g isstrongly concave, both functions having continuous �rst derivatives.Theorem 1.2 [5], [2] (duality and optimality).(a) If either of the optimal values inf(P) or sup(Q) is �nite, then both are �niteand equal, in which event optimal solutions �u and �v exist for the two problems. In1



the fully quadratic case, both the optimal values inf(P) and sup(Q) are �nite andequal, and the optimal solutions �u and �v are unique.(b) A pair (�u; �v) is a saddle point of L(u; v) over U � V if and only if �u solves(P) and �v solves (Q), or equivalently, f(�u) = g(�v).Hence the extended linear-quadratic programming can be cast in the form of�nding a saddle point (�u; �v) of the LagrangianL(u; v) over U�V:With the notations�V;Q(r) = supv2V fr�v � 12v�Qvg for r 2 lRm;�U;P (s) = supu2Ufs�u� 12u�Pug for s 2 lRn; (1:2)the objective functions in (P) and (Q) can be written asf(u) =p�u+ 12u�Pu+ �V;Q(q �Ru);g(v) =q�v � 12v�Qv � �U;P (RT v � p): (1:3)According to Rockafellar [5], the � terms here can represent \sharp" constraints aswell as penalty terms of piecewise linear-quadratic nature. These terms provide richpossibilities in mathematical modeling.The extended linear-quadratic programming problems in multistage or sto-chastic optimization are usually of very high dimension on the one hand, while pos-sessing special structures, such as the Lagrangian decomposability [7] on the other(see also Section 2). A foundation for numerical schemes regarding these problemshas been laid out by Rockafellar and Wets [2] and Rockafellar [7], and elaboratedfor problems in multistage format by Rockafellar [8]. The PDSD algorithm [1] isdesigned speci�cally to take advantage of these results and to cope with the highdimensionality. The algorithm works with local structure in the primal and dualproblems simultaneously. Computations for problems in multistage format could behandled through the system dynamics in such a way that no huge R matrix shouldbe formed explicitly. A novel kind of primal-dual feedback is introduced between theprimal part and the dual part of the algorithm to trigger advantageous interactiverestarts [1]. The algorithm is capable of solving extended linear-quadratic program-ming problems of both the primal and dual dimensions up to 100,000 e�ectively ona DECstation 3100 [1]. 2



The convergence of PDSD algorithm was proved in [1] as a special case of theresults on the family of the primal-dual projected gradient algorithms. However,the estimation on the rate of convergence there is asymptotic and seems far behindits practical performance. Moreover, the results there were obtained under someadditional critical face conditions [1]. The primal-dual feedback, which plays animportant role in the practical performance of the algorithm, has no e�ect in thederivation of these theoretical estimations.In this paper, we propose new variants for the algorithm and prove superiorresults on the rate of convergence. In Section 2, we propose a second update schemefor the iterates, where the primal-dual feedback is arranged in a new pattern. Wealso give \�xed" or \adaptive" step length rules as alternatives to the \perfect linesearch" used in the original version. All these variants, including the original versionof the algorithm, are put in a uni�ed framework. Then, in Section 3, we prove newlinear convergence results for all these variants without the critical face conditions.The results are of global nature, and the estimates on the rates of convergenceare much improved compared with the ones in [1]. For the variants with the newupdate scheme, sharper estimates for the rates are obtainable because of the newprimal-dual feedback pattern. Finally, in Section 4, we discuss our numerical testresults and other possible update schemes.
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2. The Primal-Dual Steepest Descent Algorithm.The family of primal-dual projected gradient algorithms in [1], as well as the �nite-envelope algorithm developed earlier by Rockafellar and Wets [2{7] are all designedfor solving large-scale extended linear-quadratic programming problems arising inmultistage or stochastic optimization, where the problems exhibit the Lagrangiandecomposability (or double decomposability) [7]. The latter term means that forany �xed u 2 U it is relatively easy to maximize L(u; v) over v 2 V , and likewise,for any �xed v 2 V it is relatively easy to minimize L(u; v) over u 2 U: This is thecase, for example, when the matrices P and Q are block diagonal, and the sets Uand V are corresponding Cartesian products of polyhedra of low dimensions. Thesesubproblems of maximization and minimization calculate not only the objectivevalues f(u) and g(v) but also, in the fully quadratic case when L is strongly convex-concave, the uniquely determined vectorsF (u) = argmaxv2V L(u; v) and G(v) = argminu2U L(u; v): (2:1)The mappings F and G play a central role in the PDSD algorithm.We cite from [7] and [1] several fundamental properties which are useful laterin this paper. We write kwkM = [w�Mw] 12for the norm corresponding to a symmetric positive de�nite matrix M: It reducesto the ordinary Euclidean norm when M is the identity matrix. In this latter case,the subscript will be dropped. We use the related operator norm for matrices anduse [w1; w2] to denote the line segment between two points w1 and w2: We imposethe blanket assumption that the problem is fully quadratic for the rest of the paperand refer consistently to�u = the unique optimal solution to (P);�v = the unique optimal solution to (Q):When the problem under consideration is not fully quadratic, an outer loop ofproximal point iteration can be used to create fully quadratic inner loop problems.See [2], [7], and [11] for related discussions.4



Let P 12 and Q 12 be the \square roots" of P and Q respectively de�ned byorthogonal factorization. De�ne
 := 
(P;Q;R) := kQ� 12RP� 12 k: (2:2)Proposition 2.1 [7] (optimality estimates). Suppose u and v are elements of Uand V satisfying f(u) � g(v) � " for a certain " � 0. Then u and v are "-optimalin the sense that jf(u) � f(�u)j � " and jg(v)� g(�v)j � ". Moreover,ku� �uk2P + kv � �vk2Q � 2":Proposition 2.2 [7] (regularity properties). The functions f and g are continu-ously di�erentiable everywhere withrf(u) = ruL(u;F (u)) and rg(v) = rvL(G(v); v);while the mappings F and G de�ned by (2.1) are Lipschitz continuous withkF (u0)� F (u)kQ � 
ku0 � ukP for all u and u0;kG(v0) �G(v)kP � 
kv0 � vkQ for all v and v0:Proposition 2.3 [7, 1] (modi�ed gradient projection). For arbitrary u 2 U andv 2 V , G(F (u)) � u = P -projection of �rPf(u) on U � u;F (G(v)) � v = Q-projection of rQg(v) on V � v;where rP f(u) = P�1rf(u) symbolizes the gradient of f relative to the P -norm,while rQg(v) = Q�1rg(v) symbolizes the gradient of g relative to the Q-norm.Moreover, the vector G(F (u)) � u is a feasible descent direction of f at u unlessu = �u: Similarly, the vector F (G(v))�v is a feasible ascent direction of g at v unlessv = �v:The PDSD algorithm �rst searches on line segments [u;G(F (u))] and [v; F (G(v))]in primal and dual variables respectively to get some intermediate points as can-didates for the next iterates. (Proposition 2.3 above suggests the name \projectedgradient.") Then a novel kind of primal-dual feedback is incorporated in the updat-ing. In the case of \forward feedback," the next iterates will be chosen between the5



intermediate points and their images under the mappings F and G; while in the caseof \backward feedback," the next iterates will be chosen between the intermediatepoints and the images of the current iterates under the mappings F and G: Thiskind of interactive e�ect ties the primal and dual part of the operation closely, andhas proven to be important to the performance of the algorithm.In the following, we introduce new variants of PDSD algorithm. The secondupdate scheme for the iterates corresponds to the backward feedback, for which asharper bound for the rate of convergence is obtained. We also give alternativesfor the \perfect line search" used in the original version. We put all these variants,including two di�erent update schemes and three step length rules, in a uni�edframework. We refer to the algorithm with, say, update scheme 2 and step lengthrule (iii), as PDSD{2(iii). Under this convention, the PDSD algorithm in [1] isreferred to as PDSD{1(i).Primal-Dual Steepest Descent Algorithm.Step 0 (initialization). Set � := 0 (iteration counter). Specify starting pointsu0 2 U and v0 2 V: Choose one of the step length rules in Step 2. (If rule (iii)is chosen, then also choose some constant � 2 (0; 1); and let ��1 = ��1 = 1:)Choose one of the update schemes in Step 3. Construct primal and dual sequencesfu�g � U and fv�g � V as follows.Step 1 (optimality test). Ifminf f(u� ); f�G(v�)� g �maxf g(v�); g�F (u�)� g = 0;then terminate with�u = argminf f(u) j u = u�; or u = G(v�) g�v = argmaxf g(v) j v = v�; or v = F (u�) gbeing optimal solutions to (P) and (Q):Step 2 (line search). Use one of the following step length rules chosen atinitialization to determine �� and �� for generating intermediate pointsû�+1 :=(1� ��)u� + ��G(F (u�));v̂�+1 :=(1� ��)v� + ��F (G(v�));6



in primal and dual variables respectively.(i) Perfect line search:�� := argmin�2[0;1] f�(1� �)u� + �G(F (u�))�;�� := argmax�2[0;1] g�(1� �)v� + �F (G(v�))�:(ii) Fixed step lengths:�� := minf1; 12
2 g and �� := minf1; 12
2 g:(We adopt the convention 0�1 = +1 in this paper.)(iii) Adaptive step lengths:�� := max����1�j �� f�(1� ���1�j)u� + ���1�jG(F (u�))� � f(u�)� �f(u�) � g(F (u�))�(� 12���1�j); j 2 f0; 1; 2; : : :g	;�� := max����1�j �� g(v�) � g�(1� ���1�j)v� + ���1�jF (G(v�))�� �f(G(v� )) � g(v�)�(� 12���1�j); j 2 f0; 1; 2; : : :g	:Step 3 (update the iterates). Use one of the following rules chosen at initial-ization to determine the next iterates.1. Update with forward feedback:u�+1 := argminf f(u) j u = û�+1 or u = G(v̂�+1) g;v�+1 := argmaxf g(v) j v = v̂�+1 or v = F (û�+1) g:(If both the arguments give the same objective value, use the �rst one in updatingfor decisiveness. The same rule applies also to the next set of formulas.)2. Update with backward feedback:u�+1 := argminf f(u) j u = û�+1 or u = G(v�) g;v�+1 := argmaxf g(v) j v = v̂�+1 or v = F (u�) g:Then return to Step 1 with the counter � increased by 1.Observe that the primal-dual feedback also takes place in the optimality test.It follows from Proposition 2.2 that F (u�) ! �v and G(v�) ! �u as u� ! �u and7



v� ! �v: With the optimality test in Step 1, the algorithm will terminate if eitheru� = �u or v� = �v by Theorem 1.2.In Step 2, there are three step length rules to choose from. By Theorem 1.1 andProposition 2.2, the objective functions in the line searches are piecewise quadraticand continuously di�erentiable. In the typical decomposable case when P and Qare diagonal, and U and V are \boxes" representing upper and lower bounds, onecan further get the explicit expressions for the derivatives of these functions. Bytaking advantage of all these properties, even the perfect line search will not beprohibitively di�cult. In our numerical experimentations, the perfect line searchtakes approximately two-thirds of the time in each iteration.An interesting result of Theorem 3.1 in next section is that the same estimatedrate of convergence as for the perfect line search (i) can be reached by certain�xed step lengths in rule (ii). However the parameter 
 of the problem, whichdetermines the length of steps in (ii), is usually unavailable. Therefore we providea third rule with adaptive step lengths, which resembles the Armijo stepsize rulefor unconstrained minimization. However, we here use certain duality gap, insteadof the slope of the line search function, in determining the step lengths. Theorem3.2 in next section shows that the adaptive step length is well de�ned, that the steplengths will be �xed after a �nite number of adaptations, and that an estimatedrate of convergence very close to the one with perfect line search is obtainable.Update scheme 1 in Step 3 can also be written asu�+1 :=� û�+1; if f(û�+1) � f(G(v̂�+1)),G(v̂�+1) otherwise, (2:3)v�+1 :=� v̂�+1; if g(v̂�+1) � g(F (û�+1)),F (û�+1) otherwise. (2:4)We say that there is an interactive restart in the primal variable if u�+1 = G(v̂�+1);in which case, the primal iterate is updated by using the dual information. Similarly,we say that there is an interactive restart in the dual variable if v�+1 = F (û�+1);in which case, the dual iterate is updated by using the primal information. Updatescheme 2 can be written in the same manner asu�+1 :=� û�+1; if f(û�+1) � f(G(v� )),G(v�) otherwise. (2:5)v�+1 :=� v̂�+1; if g(v̂�+1) � g(F (u�)),F (u�) otherwise, (2:6)8



with the interactive restarts de�ned accordingly. Although the practical perfor-mance of the algorithm with these two di�erent update schemes are very close inour tests, a sharper bound for the rate of convergence of the algorithm with scheme2 will be obtained in the next section.To conclude Section 2, we give a lemma that will be used later in derivingconvergence results. The proof of the lemma follows closely the idea in the proofsof Rockafellar and Wets [2, Proposition 3 and Theorem 5].Lemma 2.4. For any u 2 U;f�(1� �)u+ �G(F (u))� � f(u) � �f(u) � g(F (u))�(��+ 
2�2� (2:7)for all � 2 [0; 1]: Similarly, for any v 2 V;g(v) � g�(1� �)v + �F (G(v))� � �f(G(v)) � g(v)�(�� + 
2�2� (2:8)for all � 2 [0; 1]:Proof. For any u0 2 U; denote v1 := F (u0) and u2 := G(v1): Then the LagrangianL(u; v) can be written in the expanded form at (u; v1) asL(u; v) = L(u; v1) +rvL(u; v1)�(v � v1) � 12 (v � v1)�Q(v � v1);where the term rvL(u; v1)�(v � v1) can be further written asrvL(u; v1)�(v � v1) = rvL(u0; v1)�(v � v1) � (v � v1)�R(u� u0):Note that v1 = F (u0) means v1 is the argmax of L(u0; v) on V; which in turn impliesrvL(u0; v1)�(v � v1) � 0 for all v 2 V: HenceL(u; v) � L(u; v1)� (v � v1)�R(u� u0)� 12 (v � v1)�Q(v � v1): (2:9)Now for any u 2 [u0; u2] and v = F (u); it follows from (2.9) thatL�u;F (u)�� L(u; v1)� ��F (u) � v1��R(u� u0)� 12�F (u)� v1��Q�F (u)� v1�� maxw2lRmfw�R(u� u0)� 12w�Qwg= 12 (u� u0)��RTQ�1R�(u� u0)= 12k(Q� 12RP� 12 )P 12 (u� u0)k2� 12
2ku� u0k2P (2:10)9



However, L�u;F (u)� = f(u) andL�(1� �)u0 + �u2; v1� � (1� �)L(u0; v1) + �L(u2; v1)= (1� �)f(u0) + �g(v1)for 0 � � � 1: Thus, by taking u = (1� �)u0 + �u2 in (2.10), we getf�(1� �)u0 + �u2�� f(u0) + ��f(u0)� g(v1)� � 12�2
2ku2 � u0k2P : (2:11)On the other hand,f(u0)� g(v1) = L(u0; v1)� L(u2; v1)= ruL(u2; v1)�(u0 � u2) + 12 (u0 � u2)�P (u0 � u2)by the de�nition of v1 and u2: Observe that ruL(u2; v1)�(u0 � u2) � 0 since u2 isthe argmin of L(u; v1) on U: Thereforef(u0)� g(v1) � 12 (u0 � u2)�P (u0 � u2) = 12ku2 � u0k2P : (2:12)Combining (2.11) and (2.12), we getf�u0 + �(u2 � u0)�� f(u0) � �f(u0) � g(v1)�(�� + 
2�2�for 0 � � � 1; which yields (2.7). One can prove (2.8) similarly.3. Global Linear Convergence of the PDSD Algorithm.In this section, we prove linear convergence results for all the six variants of thePDSD algorithm formulated in Section 2. We �rst give results for the algorithmswith (i) perfect line search and (ii) �xed step lengths. De�ne the function � :[0;+1)! (0; 1) as �(s) = � 1� s if s < 12 ;14s if s � 12 : (3:1)Theorem 3.1 (convergence of PDSD with step length rules (i) and (ii)).(a) The sequences ff(u� )g and fg(v�)g generated by PDSD{1(i) or PDSD{1(ii)converge linearly to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1) � f(�u) � �1� �(
2)��f(u� )� f(�u)�; (3:2)g(�v)� g(v�+1) � �1� �(
2)��g(�v) � g(v�)�: (3:3)10



Moreover,ku�+1 � �uk2P + kv�+1 � �vk2Q � 2�1� �(
2)��+1�f(u0)� g(u0)�: (3:4)(b) The sequences ff(u� )g and fg(v�)g generated by PDSD{2(i) or PDSD{2(ii)converge linearly to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1)� g(v�+1) � 1� �(
2)1 + �(
2)�f(u�) � g(v�)�: (3:5)Moreover,ku�+1 � �uk2P + kv�+1 � �vk2Q � 2�1� �(
2)1 + �(
2)��+1�f(u0)� g(u0)�: (3:6)Proof. It follows from (2.7) thatf�(1� �)u� + �G(F (u� ))�� f(u�) � �f(u�) � g(F (u�))�(��+ 
2�2) (3:7)for all � 2 [0; 1]: But minf��+ 
2�2 j 0 � � � 1 g = ��(
2) withargminf��+ 
2�2 j 0 � � � 1 g = minf1; 12
2 g:Hence for the �xed step length �� = minf1; 12
2 g in rule (ii),f�(1� ��)u� + ��G(F (u�))�� f(u� ) � �f(u� )� g(F (u�))����(
2)�: (3:8)Obviously (3.8) is also true for the step length �� = argmin�2[0;1] f�(1��)u�+�G(F (u�))�in rule (i), since the perfect line search should not make the �rst term of (3.8) anylarger. According to the update scheme in Step 3, we have f(u�+1) � f((1��� )u�+��G(F (u�))): Thereforef(u�+1)� f(u� ) � �f(u� )� g(F (u�))����(
2)�: (3:9)Similarly it follows from (2.8) thatg(v�)� g�(1� �)v� + �F (G(v�))� � �f(G(v� ))� g(v�)�(�� + 
2�2� (3:10)11



for all � 2 [0; 1]; which yieldsg(v�) � g(v�+1) � �f(G(v� )) � g(v�)����(
2)�: (3:11)Combining (3.9) and (3.11), we getf(u�)� g(v�)� f(u�+1) + g(v�+1) � �(
2)�f(u� )� g(v�)� g(F (u�)) + f(G(v� ))�:(3:12)With the �th duality gap "� and the �th auxiliary duality gap ~"� de�ned as"� := f(u� )� g(v�) and ~"� := f(G(v� )) � g(F (u�)) (3:13)respectively, (3.12) can be written in the form"� � "�+1 � �(
2)("� + ~"�);or equivalently, "�+1 � �1� �(
2)�"� � �(
2)~"� : (3:14)If update scheme 2 is used in Step 3 of the algorithm, then f(u�+1) � f(G(v� ))and g(v�+1) � g(F (u�)): Hence "�+1 � ~"� : Therefore (3.14) implies"�+1 � �1� �(
2)�"� � �(
2)"�+1;from which (3.5) follows. Using (3.5) for � = 0; 1; : : : ; we getf(u�+1)� g(v�+1) � �1� �(
2)1 + �(
2)��+1�f(u0)� g(v0)�;which yields (3.6) by Proposition 2.1.If update scheme 1 is used in Step 3 of the algorithm, then the relation "�+1 �~"� is not necessarily ture. However, by Theorem 1.2,f(u) � f(�u) = g(�v) � g(v) for all u 2 U; v 2 V:Hence it follows from (3.9) and (3.11) thatf(u�+1) � f(u� ) � �f(u� )� f(�u)����(
2)�;g(v�)� g(v�+1) � �g(�v) � g(v�)����(
2)�:12



These two inequalities yield (3.2) and (3.3) respectively. Moreover, observe that~"� � 0: Hence by (3.14), we havef(u�+1)� g(v�+1) � �1� �(
2)��f(u�) � g(v�)�: (3:15)Using (3.15) for � = 0; 1; : : : ; we getf(u�+1)� g(v�+1) � �1� �(
2)��+1�f(u0)� g(v0)�;which yields (3.4) by Proposition 2.1.Next we give convergence results for the algorithm with adaptive step lengths(iii). We have to show, in the �rst place, that these step lengths are well de�ned.Let the function ~� : [0;+1)! (0; 1) be de�ned as~�(s) = minf12 ; 14sg: (3:16)Obviously �(s) � ~�(s) for all s 2 [0;+1); and the equality holds when s � 12 :Theorem 3.2 (convergence of PDSD with step length rule (iii)).(a) For any choice of � 2 (0; 1); the step lengths �� and �� in the PDSD algorithmwith rule (iii) are well de�ned. Both �� and �� are nonincreasing as � increases,and �� > �minf1; 12
2 g and �� > �minf1; 12
2 g (3:17)for all �: Moreover, both �� and �� will be �xed after a �nite number of iterations.(b) The sequences ff(u�)g and fg(v�)g generated by PDSD{1(iii) converge lin-early to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1)� f(�u) � �1� �~�(
2)��f(u� )� f(�u)�; (3:18)g(�v)� g(v�+1) � �1� �~�(
2)��g(�v) � g(v�)�: (3:19)Moreover,ku�+1 � �uk2P + kv�+1 � �vk2Q � 2�1� �~�(
2)��+1�f(u0) � g(u0)�: (3:20)13



(c) The sequences ff(u�)g and fg(v�)g generated by PDSD{2(iii) converge lin-early to the common optimal value f(�u) = g(�v) in the sense thatf(u�+1)� g(v�+1) � 1� �~�(
2)1 + �~�(
2)�f(u�) � g(v�)�; (3:21)Moreoverku�+1 � �uk2P + kv�+1 � �vk2Q � 2�1� �~�(
2)1 + �~�(
2)��+1�f(u0) � g(u0)�: (3:22)Proof. First, we claim that for all nonnegative � � minf1; 12
2 g;f�(1� �)u� + �G(F (u�))�� f(u� ) � �f(u� )� g(F (u�))����2 �: (3:23)This follows directly from (2.7) and the fact that��+ 
2�2 � ��2 for all 0 � � � minf1; 12
2g:Hence the step length �� = ���1�j in rule (iii), where j is the �rst element in theordered nonnegative integer set f0; 1; 2; : : :g satisfyingf�(1� ���1�j)u� + ���1�jG(F (u�))�� f(u� ) � �f(u� )� g(F (u�))�(� 12���1�j);(3:24)is well de�ned. Obviously f��g is nonincreasing.According to the claim and the step rule, we have either �� = ���1 or���1�j�1 > minf1; 12
2 g with j � 1; because otherwise ���1�j�1 instead of ���1�jwill be taken as the step length �� : Suppose ���1 > �minf1; 12
2 g: Then in eithercase, �� = ���1�j > �minf1; 12
2 g: (3:25)Note that ��1 = 1 > �: This proves the �rst inequality in (3.17) by induction.The second inequality in (3.17) regarding �� can be proved similarly, and the lastconclusion in part (a) is now obvious.Combining (3.24) and (3.25), we havef�(1� ��)u� + ��G(F (u�))� � f(u�) � �f(u�) � g(F (u�))����2 minf1; 12
2 g�:14



Therefore, by observing f(u�+1) � f�(1 � ��)u� + ��G(F (u�))� in the updating,we get f(u�+1)� f(u� ) � �f(u� )� g(F (u�))����~�(
2)�: (3:26)Similarly, we haveg(v�) � g(v�+1) � �f(G(v� )) � g(v�)����~�(
2)�: (3:27)Now (3.26) and (3.27) lead to the conclusions in (b) and (c) in the same manner as(3.9) and (3.11) lead to the conclusions in Theorem 3.1.Theorems 3.1 and 3.2 provide global linear convergence results for all the vari-ants of the PDSD algorithm formulated in Section 2 without any additional as-sumptions. The parameter 
 = kQ� 12RP� 12 k of the problem plays an importantrole in the estimations regarding the rates of convergence of the algorithm. It alsocharacterizes the Lipschitzian constant for the mappings F and G in Proposition2.2. In fact, 
 can be viewed as a normalized measure of the \coupling" betweenthe primal and dual variables of the problem. In the extremal case when 
 = 0(which implies R = 0), we have F (u) = �v for all u and G(v) = �u for all v: Hencethe algorithm will terminate in one iteration. On the other hand, a large 
 impliesa di�cult problem for the algorithm.It follows from Theorem 3.1 that for problems with large 
; the duality gap"� = f(u� )�g(v�) of the iterates generated by PDSD{1(i) or PDSD{1(ii) decreasesat least with the ratio 1� �(
2) = 1� 14
2 ; (3:28)while the one generated by PDSD{2(i) or PDSD{2(ii) decreases at least with theratio 1� 1� �(
2)1 + �(
2) � 1� 12
2 : (3:29)These are much improved estimates compared with the earlier results in [1, Theorem4.2] with an asymptotic ratio1� 14(
2 + 1)4 + 5(
2 + 1)2 + 2(
2 + 1) � 1� 14
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under the critical face conditions. However, if the iterates eventually reach thecorresponding critical faces, the technique in [1, Theorem 4.2] still gives a betterasymptotic ratio�1� 10:5(
2 + 1) + 0:5�2 � 1� 10:25
2 (for large 
)under the perfect line search. This is consistent with the observation that thealgorithm with perfect line search often gives better per-step progress towards theend of iteration than other line search rules in our numerical tests.The �xed step length in rule (ii) is related to the parameter 
 of the problem,which is usually unavailable. According to Theorem 3.2, the convergence ratios inTheorem 3.1 for problems with 
2 � 12 could be approached with the adaptive steplengths in rule (iii). Moreover, these step lengths will eventually be �xed after a�nite number of iterations. Comparing the estimations in Theorem 3.2 with theones in Theorem 3.1, one may get the impression that a choice of � close to 1 wouldeventually give better per-step ratios. But such a choice will, at the same time,increase the number of trials in identifying the proper step length. Hence, in thepractical implementation of rule (iii), one has to compromise between these twoends. One can also start the trial of j there with some negative integer instead of0: Then the step length will be allowed to increase if a larger progress in the linesearch is possible.4. Numerical Test Results and Other Update Schemes.Although the estimated rates for PDSD{2 are better than the ones for PDSD{1,we �nd in our numerical tests that their practical performance are actually veryclose. For comparison, we have run PDSD{1(i) and PDSD{2(i) on the transversefamily of the test problems 0.4 { 9.4 used in [1], where both the primal and the dualdimensions are 5140. The stopping criterion in the optimality test for the practicalimplementation of the algorithm isminf f(u� ); f�G(v�)� g �maxf g(v�); g�F (u�)� g � "; (4:1)where " > 0 is a prespeci�ed threshold for the duality gap. The results in termsof CPU times, as well as numbers of iterations, are given in Table 1. For instance,16



45(8/6) in the iterations column of PDSD{2(i) for Problem 0.4 means that the algo-rithm terminates successfully in 45 iterations, with 8 interactive primal restarts and6 interactive dual restarts during the process. (The tests are run on a DECstation3100 with double precision, where the software has been updated since the test in[1].) We also tried the algorithm without the primal-dual feedback in the update,namely, using u�+1 := û�+1 and v�+1 := v̂�+1directly in the updating of Step 3. Then the algorithm generates two unrelatedsequences in primal and dual variables respectively until the stopping criterion (4.1)on the duality gap is satis�ed. We refer to this extra version for test purpose asPDSD{0. (In the case of perfect line search, one can prove by using [1, Proposition5.1] that the dual part of this extra version reduces to a special case of the �nitegeneration algorithm [2].) The corresponding results are put in the columns headedPDSD{0(i). The notation �� in these columns signi�es that the algorithm failedto terminate in 100 iterations, in which case the �gure for CPU time is precededby * since it indicates only how long the �rst 100 iterations took. The test resultsshow clearly the importance of the primal-dual feedback. Both PDSD{1(i) andPDSD{2(i) perform much better than PDSD{0(i).Table 1. Test results on problems 0.4-9.4 [1]CPU time (sec.) IterationsProblem Size PDSD{1(i) PDSD{2(i) PDSD{0(i) PDSD{1(i) PDSD{2(i) PDSD{0(i)0.4 5140 110 141 *337 32(7/6) 45(8/6) ��1.4 5140 183 172 *356 52(4/6) 50(3/6) ��2.4 5140 147 224 *341 42(8/4) 67(10/3) ��3.4 5140 35 42 212 9(4/4) 13(3/3) 684.4 5140 72 72 *346 19(7/4) 22(6/4) ��5.4 5140 51 66 178 13(6/4) 20(7/2) 526.4 5140 62 74 82 16(5/7) 23(7/7) 247.4 5140 64 72 92 18(8/3) 22(6/3) 288.4 5140 189 180 *341 55(5/5) 54(3/4) ��9.4 5140 62 65 110 17(6/7) 20(4/1) 35There are other possible variants for the algorithm. Notice that the iteration17



of PDSD{2(i) can be written asu�+1 := argminf f(u) j u 2 [u� ; G(F (u�))] or u 2 G(v�) g;v�+1 := argmaxf g(v) j v 2 [v�; F (G(v� ))] or v 2 F (u�) g:This suggests a third update scheme with four perfect line searches in each iterationu�+1 := argminf f(u) j u 2 [u� ; G(F (u�))] or u 2 [G(v�); G(F (G(v� )))] g; (4:2)v�+1 := argmaxf g(v) j v 2 [v�; F (G(v� ))] or v 2 [F (u�); F (G(F (u� )))] g: (4:3)Obviously, it should converge at least as fast as PDSD{2(i).Recall that the intermediate points resulted from line searches on [u�; G(F (u�))]and [v� ; F (G(v�))] are denoted by û�+1 and û�+1 respectively. Let ~u�+1 and ~u�+1be the corresponding line search results in primal and dual on [G(v�); G(F (G(v� )))]and [F (u�); F (G(F (u� )))] respectively. With a reasoning similar to the one thatleads to (3.8), we are able to getf(u� )� f(û�+1) � �f(u� )� g(F (u�))��(
2); (4:4)g(û�+1) � g(u�) � �f(G(v� )) � g(v�)��(
2); (4:5)f(G(v� )) � f(~u�+1) � �f(G(v� )) � g(F (G(v� )))��(
2); (4:6)g(~u�+1) � g(F (v�)) � �f(G(F (u� ))) � g(F (u�))��(
2): (4:7)Now (4.4) and (4.5) yieldf(û�+1) � g(v̂�+1) ��1� �(
2)��f(u� )� g(v�)�� �(
2)�f(G(v� )) � g(F (u�))�; (4:8)while (4.5) and (4.6) yieldf(~u�+1) � g(~v�+1) ��1� �(
2)��f(G(v� )) � g(F (u�))�� �(
2)�f(G(F (u� ))) � g(F (G(v� )))�: (4:9)Eliminating the term f(G(v� )) � g(F (u�)) in (4.8) and (4.9), we get�1� �(
2)��f(û�+1)� g(v̂�+1)�+ �(
2)�f(~u�+1) � g(~v�+1)�� �1� �(
2)�2�f(u�)� g(v�)�� �(
2)�f(G(F (u� ))) � g(F (G(v�)))�: (4:10)18



According to the update scheme, the duality gap "�+1 should be no larger than eitherf(û�+1) � g(v̂�+1) or f(~u�+1) � g(~v�+1) or f(G(F (u� ))) � g(F (G(v� ))): Hence weobtain an estimate "�+1"� � �1� �(
2)�21 + ��(
2)�2from (4.10) for the third update scheme in (4.2) and (4.3). For problems with large
; this is a slightly better result compared with (3.5) for PDSD{2(i) at the cost oftwo additional line searches.Acknowledgments. The author thanks two anonymous referees for their veryhelpful comments and suggestions. The third update scheme in (4.2) and (4.3) wasdue to one of them.
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