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1. Introduction.Let lRn be the n-dimensional Euclidean space, and let the Euclidean inner productand norm be denoted by h�; �i and j � j respectively. A multifunction T : lRn !! lRnis said to be a monotone operator ifhz � z0; w � w0i � 0 whenever w 2 T (z); w0 2 T (z0): (1:1)It is said to be maximal monotone if, in addition, the graph f(z;w) 2 lRn � lRn jw 2 T (z)g is not properly contained in the graph of any other monotone operatorT 0 : lRn !! lRn:Such operators have been studied extensively because of their role in convexanalysis and certain other �elds. A fundamental problem is that of determining anelement z such that 0 2 T (z): Some of the most important problems in the areaof convex programming and related �elds, such as variational inequality problems,can all be cast into this general framework. (See e.g. [19].)We denote by �Z the solution set of the equation 0 2 T (z); and let T�1 bethe inverse of T; i.e., T�1(w) = fz 2 lRn j w 2 T (z)g: Obviously T�1 is maximalmonotone if and only if T is maximal monotone. The e�ective domain of T isde�ned by the set fz 2 lRn j T (z) 6= ;g: Suppose the operator T can be written inthe split form T = T + h; (1:2)where T : lRn !! lRn is a maximal monotone operator and h : lRn ! lRn is asingle-valued function. Then the original problem of �nding z such that 0 2 T (z)is equivalent to the following problem:Find a �z 2 lRn satisfying 0 2 T (�z) + h(�z): (1:3)Suppose �Z 6= ;: Consider the following iterationzk+1 = (I + T )�1(I � h)(zk); k = 0; 1; 2; � � � : (1:4)It has been shown by Minty [11] that the proximal mapping (I + T )�1 is a single-valued mapping and its e�ective domain is all of lRn: Therefore, the iteration (1.4)is well de�ned. It is easy to see that �z 2 �Z if and only if �z is a �xed point of thealgorithmic mapping de�ned by (1.4). 1



As pointed out by Tseng [22, 23] and Chen and Rockafellar [3{6], the iteration(1.4), despite its simplicity, is a powerful tool for the development of decompositionmethods. Numerous existing algorithms for convex programming and variationalinequality problems can be shown to be special cases of this iteration. Hence,any results on the convergence of (1.4) have numerous implications for all thesealgorithms. As a special case, it is easy to see that the proximal point algorithm isalso included in the family (1.4) by taking h = 0:Convergence of the splitting algorithm has been extensively studied [1b, 3{7,9, 16, 23]. As to the rate of convergence, Chen and Rockafellar [6] proved, undersome commonly used hypothesis, that the iteration scheme converges linearly fromthe very beginning if h is strongly monotone (which implies in turn that T itselfis strongly monotone). In [3{6], Chen and Rockafellar also explored the possibilityof introducing \step sizes" in the iteration and replacing the identity operator Iwith some speci�cally chosen mappings to enhance the convergence under the samestrong monotonicity assumption. But the assumption that T is strongly monotone(or less stringently, strictly monotone) often excludes some important applications.For instance, the assumption certainly does not hold when the solution �z is notunique.In this paper, we establish asymptotic rate-of-convergence results without sucha strong monotonicity assumption on T: Instead, we relate the rate of convergence tosome \growth conditions" on T �1 and h�1 at some speci�c points, as Luque [10] didfor the proximal point algorithm. With a careful study of the geometrical aspectsof the convergence of the sequence fzkg generated by (1.4), we are able to drawconclusions about the rate of convergence of fzkg itself, while Luque's conclusionson the proximal point algorithm are mostly on the convergence of fdist( �Z; zk)g to0 [10]. Hence we even get new results on the proximal point algorithm as a specialcase of the iteration scheme (1.4) when h = 0:We focus on the fundamental iteration scheme (1.4). The result that is mostuseful to us is the following Proposition 1.1 given by Gabay, where the convergenceis established on the assumption of some co-coercive property of h: A functionh : Z ! lRn is said to be co-coercive with modulus � > 0 ifhh(z) � h(z0); z � z0i � �jh(z) � h(z0)j2 8z 2 Z; 8z0 2 Z: (1:5)2



Notice that a co-coercive function is Lipschitz continuous and monotone. Moreover,a co-coercive function with modulus � � 1 is �rmly nonexpansive.Proposition 1.1 [7, Section 6]. If h is a co-coercive function with modulus greaterthan 12 ; then the sequence fzkg generated by the iteration (1.4) converges to asolution of (1.4) from any starting point z0 in Z:Since we are going to investigate the asymptotic rate of convergence of thesequences generated by the splitting iteration (1.4) when h satis�es the conditionin Proposition 1.1, we make the following blanket assumptions regarding T and h:Assumption 1.2 (blanket assumptions).(a) The multivalued mapping T : lRn !! lRn is a maximal monotone operator.(b) The function h : lRn ! lRn is co-coercive with modulus � > 12 :(c) The solution set �Z of problem (1.3) is nonempty.The rest of the paper is organized as follows. In Section 2, we present somefundamental facts about the splitting iteration (1.4) and give the structure of thesolution set �Z of the problem, together with the de�nitions of some terminologythat will be used repeatedly throughout the paper. In Section 3, we establish theQ- and R-rates of convergence of the sequence generated by the splitting algorithm.At the end of the section, we also point out some signi�cant consequences of thesenew results. Finally, in Section 4, we specialize to the case of h = 0 and derive newresults regarding to the proximal point algorithm.2. Fundamental Properties.Let yk := (I � h)(zk); k = 0; 1; 2; � � � : (2:1)Then zk+1 = (I + T )�1(yk); and we haveyk+1 = (I � h)(I + T )�1yk; k = 0; 1; 2; � � � : (2:2)The sequence fykg as a by-product of the iteration will play an important role inour analysis. In addition, we shall make use of the notationP := (I + T )�1 and Q := I � P = (I + T �1)�1: (2:3)3



Chen and Rockafellar [4, Proposition 3.4] observed that the algorithmic map-ping de�ned by (1.4) is nonexpansive. The following proposition gives more detailedestimates on the sequences fzkg and fykg: De�newk+1 := Q(yk) 2 T (zk+1); k = 0; 1; 2; � � � : (2:4)Proposition 2.1 (some useful inequalities). Under the blanket assumption 1.2, forany �z 2 �Z there holdjzk+1 � �zj2 + jwk+1 � �wj2 � jyk � �yj2 � jzk � �zj2 � �jh(zk) � h(�z)j2 (2:5)and jyk+1 � �yj2 + jwk+1 � �wj2 + �jh(zk+1) � h(�z)j2 � jyk � �yj2; (2:6)for k = 0; 1; � � � ; where �w := Q(�y) 2 T (�z); �y := (I � h)(�z) and � = 2�� 1:Proof. Let y := (I � h)z and y0 := (I � h)z0 for arbitrary z and z0 in lRn: Theny � y0 = z � z0 � �h(z) � h(z0)�; and we havejy � y0j2 = jz � z0j2 � 2hz � z0; h(z) � h(z0)i+ jh(z) � h(z0)j2� jz � z0j2 � (2�� 1)jh(z) � h(z0)j2:Let z = zk and z0 = �z; we get the second half of (2.5). The �rst half of (2.5) followsdirectly from [19, Proposition 1]. Applying (2.5) to two consecutive k's, we get(2.6).Proposition 2.2 (structure of �Z). The set h( �Z) is a singleton. Denoting theunique element in h( �Z) by �v, we have ��v 2 T (�z) for all �z 2 �Z and�Z = T �1(��v) \ h�1(�v): (2:7)Proof. Let �z and �z0 be two arbitrary elements in �Z: Then both �z and �z0 are �xedpoints of the algorithmic mapping de�ned by (1.4). Let zk = �z0 in (2.5). Thenzk+1 = �z0; and it follows from (2.5) that h(�z0) = h(�z): Now for every �z 2 �Z we have0 2 T (�z) + h(�z); which is equivalent to ��v 2 T (�z); and (2.7) follows directly.Introducing the notationZT := T �1(��v) and Zh := h�1(�v); (2:8)we can write �Z = ZT \Zh: Note that both ZT and Zh are closed convex sets in lRnbecause T and h are maximal monotone. (See e.g. [24].) Let lB(v; �) denote theopen ball in lRn with center at v and radius �:4



De�nition 2.3 (growth conditions). The multifunction T �1 is said to satisfy thegrowth condition (in some neighborhoods of ��v) with the pair of positive constants(r; �) if there exists � > 0 such that8w 2 lB(��v; �); 8z 2 T �1(w) dist(ZT ; z) � �jw � (��v)jr: (2:9)Similarly, the multifunction h�1 is said to satisfy the growth condition (in someneighborhoods of �v) with the pair of positive constants (s; �) if there exists � > 0such that 8w 2 lB(�v; �); 8z 2 h�1(w) dist(Zh; z) � �jw� �vjs: (2:10)For polyhedral T and h; there exists positive � and � such that these condi-tions are satis�ed with (1; �) and (1; �) respectively by Robinson [17]. Actually,when r = s = 1; (2.9) and (2.10) reduce to the locally upper Lipschitz conditionsintroduced in [17] with modulus � and � on T �1 and h�1 respectively. Hence thegrowth conditions here may be viewed as a slight generalization of that concept. Forinstance, (2.9) may be called as a locally upper Lipschitz condition with modulus� and order r on T �1:The growth condition is certainly much weaker than the strong monotonicitycondition. On one hand we have the following proposition.Proposition 2.3. If a multifunction F : lRn !! lRn is strongly monotone withmodulus � > 0; i.e.,hz � z0; w � w0i � �jz � z0j2 8w 2 F (z); 8w0 2 F (z0); (2:11)then jz � z0j � ��1jw �w0j 8z 2 F�1(w); 8z0 2 F�1(w0); (2:12)or in other words, the inequality in the growth condition for F holds with (1; ��1)globally everywhere (not only within certain neighborhood of some speci�c point).Proof. Note that w 2 F (z) and w0 2 F (z0) are equivalent to z 2 F�1(w)and z0 2 F�1(w0) respectively. Hence (2.12) follows directly from (2.11) and theinequality jz � z0jjw � w0j � hz � z0; w � w0i:5



On the other hand, there is no lack of examples where the growth condition issatis�ed while the strong monotonicity condition is not.Example 2.1. Consider the function F : lR! lR de�ned asF (z) =8<: log z; if z > 1;0; if �1 � z � 1;� log(�z); if z < �1:Obviously F is maximal monotone, but not strongly monotone. With some ele-mentary calculus, it is easy to verify that F is co-coercive with modulus 1 and thatwithin a certan neighborhood of w = 0; the growth condition for F�1 is satis�edwith the pair (1; 2):Next, we give a multidimensional example of optimization. Recall that thenormal cone NC(z) of a closed convex set C at z 2 C is de�ned byNC(z) = fu 2 lRn j hu; u0 � zi � 0; u0 2 Cg: (2:13)Moreover, NC(z) is the subgradient of the corresponding indicator function �C ofC at z [18].Example 2.2. Let f : lR2 ! lR2 be the function de�ned asf(z1; z2) =8<: (z1 log z1 � z1); if z1 > 1;�1; if �1 � z1 � 1;��z1 log(�z1) + z1�; if z1 < �1:Let S be the closed convex set S = f z 2 lR2 j jzj � 2 g: Consider the convexprogramming problem minf(z) subject to z 2 S:Let T = NS ; and let h = rf; i.e.,h(z) =8<: (log z1; 0); if z1 > 1;(0; 0); if �1 � z1 � 1;�� log(�z1); 0�; if z1 < �1:Then the problem of minimization is equivalent to the equation 0 2 T (z) + h(z):Obviously, h in this problem is not strongly monotone. We show, in the following,6



that all the blanket conditions and the growth conditions for the problem are sat-is�ed. Note that �Z = S \ f z 2 lR2 j � 1 � z1 � 1 g and h( �Z) = 0 in this problem.Hence according to (2.8),ZT = T �1(0) = S and Zh = h�1(0) = f z 2 lR2 j � 1 � z1 � 1 g:It follows from Example 2.1 that h is co-coercive with modulus 1 and that the growthcondition (2.10) on h�1 is satis�ed with the pair (1; 2): Now for the multifunctionT = NS ; the set ZT coincides with the e�ective domain of T : Hence dist(ZT ; z) = 0for all z 2 T �1(w); whatever w is. Therefore, the growth condition (2.9) on T �1 issatis�ed with any positive pair (r; �):Recall that the tangent cone TC(z) of C at z 2 C is the polar of the normalcone TC(z) = N�C(z) = fu 2 lRn j hu; u00i � 0; u00 2 NC(z)g: (2:14)Obviously C � TC(z) + z 8z 2 C: (2:15)Hence for any �z 2 �Z; we have �Z \ (N �Z(�z) + �z) = f�zg; which is equivalent toZT \ Zh \ (N �Z(�z) + �z) = f�zg; or(ZT � �z) \ (Zh � �z) \N �Z(�z) = f0g: (2:16)A slightly more stringent condition on the sets ZT ; Zh and N �Z(�z); which will beused in our analysis, is as follows.De�nition 2.4 (regularity condition). The sets ZT and Zh are said to satisfy theregularity condition ifTZT (�z) \ TZh(�z) \N �Z (�z) = f0g 8�z 2 �Z: (2:17)Observe that T �Z(�z) \ N �Z(�z) = f0g: Hence (2.17) will be true if the inclusionTZT \Zh(�z) � TZT (�z) \ TZh(�z) holds actually as an equalityTZT \Zh(�z) = TZT (�z) \ TZh(�z): (2:18)7



For polyhedral T and h; both ZT and Zh are polyhedral convex sets. ThereforeTZT (�z) and TZh(�z) coincide with ZT � �z and Zh � �z respectively in some neigh-borhood of �z; and the regularity condition is automatically satis�ed. In the generalcase, a su�cient condition for (2.18) to hold for all �z 2 �Z is [1a, Table 4.3]0 2 int(ZT �Zh): (2:19)Speci�cally, the problem in Example 2.2 satis�es (2.19), as could be easily veri�ed.3. Rates of Convergence for the Splitting Algorithm.Lemma 3.1. Let fzkg be an in�nite sequence generated by the splitting iteration(1.4) such that zk ! �z and zk 6= �z for all k: Suppose the regularity condition onZT and Zh is satis�ed. Let �k and �k be de�ned by the following equations for allk dist(TZT (�z); zk � �z) = �kjzk � �zj;dist(TZh(�z); zk � �z) = �kjzk � �zj: (3:1)Then there exists � > 0 such thatlim infk!1 �maxf�k; �kg� � � > 0: (3:2)Proof. We prove the lemma by contradiction. Suppose that such a � does notexist. Then there is a subsequence fzkgK; where K is an in�nite subset of the setof all nonnegative integers, such thatmaxf�k; �kg ! 0 as k !1; k 2 K: (3:3)De�ne uk := zk � �zjzk � �zj :Then all uk's are in the compact set fu 2 lRn j juj = 1g: Therefore there exists some�u with j�uj = 1 such that uk ! �u as k !1; k 2 K0;8



where K0 is an in�nite subset of K: Observe that the distance function dist(C; �) ispositive homogeneous when C is a cone. Hence (3.3) impliesdist(TZT (�z); uk)! 0 as k !1; k 2 K0;dist(TZh(�z); uk)! 0 as k !1; k 2 K0;which in turn implies dist(TZT (�z); �u) = dist(TZh(�z); �u) = 0; (3:4)because the distance function dist(C; �) is continuous. Notice that the tangent conesTZT (�z) and TZh(�z) are closed sets in lRn: Hence it follows from (3.4) that�u 2 TZT (�z) and �u 2 TZh(�z): (3:5)Now we claim that �u 2 N �Z(�z): Indeed, if �u 62 N �Z(�z); then there exists somez0 2 �Z such that hz0 � �z; �ui = " > 0:Hence for su�ciently large k 2 K0; there holdshz0 � �z; zk � �zjzk � �zj i � 12":But zk � z0 = zk � �z + �z � z0: Thenjzk � z0j2 = j�z � z0j2 + jzk � �zj2 + 2h�z � z0; zk � �zi< j�z � z0j2 + jzk � �zj2 � "jzk � �zj< j�z � z0j2 for su�ciently large k 2 K0;which makes zk ! �z impossible because the algorithm mapping de�ned by (1.4) isnonexpansive (by [4, Proposition 3.4] or by (2.5)), and z0 is a �xed point of thatmapping. Therefore we get�u 2 TZT (�z) \ TZh(�z) \N �Z(�z) with �u 6= 0;which contradicts the regularity condition 2.4.9



Lemma 3.2. If in addition to the conditions of Lemma 3.1, the growth conditionson T �1 and h�1 are satis�ed with (r; �) and (s; �) respectively, then for any t > 0;there hold, for �y = (I � h)(�z) and su�ciently large k;jyk+1 � �yjjyk � �yjt � �jyk+1 � �yj2(1�1=t) + ��k+1� �2=rjyk+1 � �yj2(1=r�1=t)+ ���k+1� �2=sjyk+1 � �yj2(1=s�1=t)��t=2; (3:6)andjzk+2 � �zjjzk � �zjt � �jzk+2 � �zj2(1�1=t) + ��k+2� �2=rjzk+2 � �zj2(1=r�1=t)+ ���k+2� �2=sjzk+2 � �zj2(1=s�1=t)��t=2: (3:7)Proof. By Proposition 2.2, the inequalities (2.6) and (2.5) can be written asjyk+1 � �yj2 + jwk+1 � (��v)j2 + �jh(zk+1)� �vj2 � jyk � �yj2; (3:8)jzk+1 � �zj2 + jwk+1 � (��v)j2 � jyk � �yj2 � jzk � �zj2 � �jh(zk) � �vj2; (3:9)where wk+1 := Q(yk) 2 T (zk+1): The growth condition 2.3, together with (2.15)and (3.1), yields, for su�ciently large k;�kjzk � �zj = dist(TZT (�z) + �z; zk) � dist(ZT ; zk) � �jwk � (��v)jr ;�kjzk � �zj = dist(TZh(�z) + �z; zk) � dist(Zh; zk) � �jh(zk) � �vjs;or equivalently (�k=�)1=rjzk � �zj1=r � jwk � (��v)j; (3:10)(�k=�)1=sjzk � �zj1=s � jh(zk)� �vj: (3:11)Substituting (3.10) and (3.11) in (3.8) and (3.9), and noticing that jyk��yj � jzk��zjby the second half of (3.9), we getjyk+1� �yj2+ ��k+1� �2=rjyk+1� �yj2=r + ���k+1� �2=sjyk+1� �yj2=s � jyk� �yj2; (3:12)10



jzk+1 � �zj2 + ��k+1� �2=rjzk+1 � �zj2=r � jzk � �zj2 � ���k� �2=sjzk � �zj2=s; (3:13)for su�ciently large k: By (3.12), we havejyk+1 � �yjjyk � �yj � 1�1 + ��k+1� �2=r jyk+1 � �yj2=r�2 + ���k+1� �2=sjyk+1 � �yj2=s�2�1=2 ;from which (3.6) follows. Applying (3.13) to two consecutive k's and noticing thatjzk+2 � �zj � jzk+1 � �zj; we havejzk+2 � �zjjzk � �zj � 1�1 + ��k+2� �2=r jzk+2 � �zj2=r�2 + ���k+2� �2=sjzk+2 � �zj2=s�2�1=2 ;from which (3.7) follows.An in�nite sequence fukg with uk ! �u; uk 6= �u; is said to converge at leastQ-linearly, Q-superlinearly with order �t or Q-sublinearly iflim supk!1 juk+1 � �ujjuk � �uj �  < 1;lim supk!1 juk+1 � �ujjuk � �ujt = 0; for all t satisfying �t > t > 1or lim supk!1 juk+1 � �ujjuk � �ujt = 0; for some t satisfying 0 < t < 1correspondingly. (cf. [12]. The de�nition of Q-sublinear convergence here is some-how di�erent from the one given in [12].) Similarly, fukg will be said to convergeat least R-linearly, R-superlinearly with order �t or R-sublinearly iflim supk!1 juk � �uj1=k �  < 1;lim supk!1 juk � �uj1=tk = 0 for all t satisfying �t > t > 1or lim supk!1 juk � �uj1=k = 1correspondingly. 11



Theorem 3.3 (Q-rates on fykg). Let fzkg be an in�nite sequence generated bythe splitting iteration (1.4) such that zk ! �z and zk 6= �z for all k: Suppose boththe regularity condition on ZT and Zh and the growth conditions on T �1 and h�1with (r; �) and (s; �) respectively are satis�ed. Let �t = minfr; sg; and let � bethe positive constant de�ned in (3.2). Then the sequence fykg de�ned by (2.1)converges to �y = (I � h)(�z) at least Q-linearly withlim supk!1 jyk+1 � �yjjyk � �yj � �1 +minf(�=�)2=r ; �(�=�)2=sg��1=2; (3:14)Q-superlinearly with order �t or Q-sublinearly, according to whether �t = 1; �t > 1 or0 < �t < 1:Proof. The convergence of fykg follows directly from Proposition 2.1. If �t = 1;let t = 1 in (3.6) and take lim sup as k !1: We get (3.14) by Lemma 3.1. Hencefykg converges at least Q-linearly.If �t > 1; then for any t satisfying �t > t > 1; take lim sup in (3.6) as k ! 1:We have, by Lemma 3.1, lim supk!1 jyk+1 � �yjjyk � �yjt = 0: (3:15)Hence fykg converges at least Q-superlinearly with order �t:If �t < 1; then for any t satisfying 0 < t < �t; take lim sup in (3.6) as k ! 1:We have, by Lemma 3.1, lim supk!1 jyk+1 � �yjjyk � �yjt = 0: (3:16)Hence fykg converges at least Q-sublinearly.Theorem 3.4 (R-rates on fykg). Suppose the conditions of Theorem 3.3 are sat-is�ed. Then the sequence fykg converges to �z at least R-linearly or R-superlinearlywith order �t, according to whether �t = 1 or �t > 1:Proof. The conclusions follows from the fact that the Q-linear or Q-superlinearconvergence implies the corresponding R-convergence. (See [12].)Theorem 3.5 (two-step Q-rates on fzkg). Suppose the conditions of Theorem 3.3are satis�ed. Then the sequence fzkg converges to �z at least two-step Q-linearly12



with lim supk!1 jzk+2 � �zjjzk � �zj � �1 +minf(�=�)2=r ; �(�=�)2=sg��1=2; (3:17)two-stepQ-superlinearly with order �t or two-stepQ-sublinearly, according to whether�t = 1; �t > 1 or 0 < �t < 1:Proof. Similar to the proof of Theorem 3.3. Use (3.7) instead of (3.6).In the following, we single out an important special case when both T and hare polyhedral functions in the sense of Robinson [17].Corollary 3.6 (special case for polyhedral T and h). Suppose both T and h in(1.2) are polyhedral. Then there exist � > 0; � > 0 and � > 0 such that for allz0 2 lRn; the sequences fzkg and fykg de�ned by (1.4) and (2.1) have the followingproperties(a) fykg converges to some �y 2 ( �Z � �v) at least Q-linearly withlim supk!1 jyk+1 � �yjjyk � �yj � �1 +minf(�=�)2; �(�=�)2g��1=2 (3:18)(b) fzkg converges to some �z 2 �Z at least R-linearly and two-step Q-linearlywith lim supk!1 jzk+2 � �zjjzk � �zj � �1 +minf(�=�)2; �(�=�)2g��1=2; (3:19)provided that the iteration does not terminate �nitely with some zk 2 �Z:Proof. For polyhedral T and h; there exist � > 0 and � > 0 such that the growthconditions 2.3 on T �1 and h�1 are satis�ed with (1; �) and (1; �) respectively by[17, Corollary]. Observe also that ZT ; Zh and �Z are all polyhedral convex sets.Hence TZT (�z) and TZh(�z) coincide with ZT � �z and Zh � �z respectively in someneighborhood of �z: Therefore the regularity condition 2.4 is also satis�ed.Recall that any convex set C can be partitioned into the collection of relativeinteriors of all its faces [18] and that the tangent cone TC(u) for all u 2 C in theinterior of the same face are same [2, Theorem 2.3]. Now there are only �nitelymany faces for each polyhedral convex set [18]. Hence there are only �nitely manydi�erent TZT (�z)'s and TZh(�z)'s for all �z 2 �Z: Then it follows that there is a uniform13



� > 0 such that (3.2) in Lemma 3.1 holds for all �z 2 �Z: Therefore we have thecorollary by Theorems 3.3, 3.4 and 3.5.Whether the blanket assumptions are satis�ed, so that the iteration convergesin the �rst place by Gabay's proposition, certainly depends on the particular split-ting, as well as on the operator T in the original problem. However, the requirementthat the modulus � > 12 in the co-coercivity blanket assumption 1.2(b) does notactually impose severe restrictions to the applications of the algorithm. If h is co-coercive, say, with (positive) modulus �� � 12 ; we can simply rescale the problemby multiplying the original equation 0 2 T (z) with ��: This does not change thesolution of the original problem. However, the function (��h) in the scaled splitting��T = ��T + ��hbecomes co-coercive with modulus 1: Iteration (1.4) now takes the formzk+1 = (I + ��T )�1(I � ��h)(zk); k = 0; 1; 2; � � � : (3:20)This amounts to introduce a \step length" in the iteration (1.4). We adopt theunscaled approach in the paper to keep the notation as simple as possible. Theinterested reader will have no di�culty extending all the results into the scaledform.Now, a large number of numerical methods for convex programming and vari-ational inequality problems (such as the projection method of Goldstein [8], certainasymmetric projection methods, and decomposition methods) can all be formu-lated as splitting iterations. With careful rescaling and appropriate splitting, mostof them could be put in the framework of forward-backward iteration (1.4) with theco-coercivity blanket assumption being satis�ed. (See e.g. [7, Theorem 6.1] and [22,23].) Hence, when applied to a�ne variational problems, the corollary ascertains thelinear rate of convergence for these algorithms without any further assumptions onthe strict monotonicity on the function involved. This is something new comparedwith the previous results (cf. [6, 13, 14, 15]). The strict monotonicity assumption,if any (such as implied in the conditions of [15, Theorem 2.9]), would exclude someimportant applications of these algorithms, as pointed out by Tseng [22]. Accordingto Corollary 3.6, we can claim, e.g., that the decomposition methods of Tseng [22]14



for extended linear-quadratic programming have the linear rate of convergence evenwhen the problem is not fully quadratic [20, 25].4. Rates of Convergence for the Proximal Point Algorithm.In the special case when h = 0, the iteration (1.4) reduces to the proximal pointalgorithm [19], and we have yk = zk for all k: Now �v = h(�z) = 0; Zh = h�1(�v) = lRn;and T = T; ZT = �Z. Hence (2.17) in the regularity condition holds automatically.Moreover, (2.10) in the growth condition holds for any positive pair (s; �); andparticularly for s = r: Therefore we have �t = r in Theorems 3.3, 3.4 and 3.5, withthe right-hand sides of (3.14) and (3.17) being reduced to �1 + (�=�)2=r��1=2: Inthe following, we are going to strengthen these results by �rst proving that actually�k ! 1 in Lemma 3.1 for this special case.To put the iteration in a more general scheme, we further allow the proximalconstant ck > 0 to vary with the iteration as Rockafellar did in [19]. Then we getsome new results that complement Rockafellar's [19] and Luque's [10] earlier resultson the proximal point algorithm.With the notation Pk := (I + ckT )�1 (4:1)the proximal point iteration can be written aszk+1 = Pk(zk); k = 0; 1; 2; � � � : (4:2)Lemma 4.1. Let fzkg be an in�nite sequence generated by the proximal pointiteration (4.1) such that zk ! �z and zk 6= �z for all k: Let �k be de�ned by thefollowing equation for all kdist(T �Z(�z); zk � �z) = �kjzk � �zj: (4:3)Then �k ! 1 as k !1:Proof. Obviously �k 2 [0; 1] for all k: Now we prove that 1 is the only clusterpoint of f�kg:Suppose f�kg has another cluster point ~� < 1: De�neuk := zk � �zjzk � �zj :15



Then (similar to the proof of Lemma 3.1,) there is a subsequence f�kgK; where K isan in�nite subset of the set of all nonnegative integers, such that for some �u 2 lRnwith j�uj = 1; there holduk ! �u and dist(T �Z(�z); uk) ! ~� < 1 as k !1; k 2 K: (4:4)Recall that in the proof of Lemma 3.1, we have already shown that such a �umust be in N �Z(�z): Therefore dist(N �Z(�z); �u) = 0: (4:5)Now the tangent cone T �Z is the polar of the normal cone N �Z : Hence it follows fromMoreau decomposition [18, Theorem 31.5] thatdist2(T �Z (�z); �u) = j�uj2 � dist2(N �Z(�z); �u) = 1; (4:6)which contradicts (4.4) in view of the continuity of the distance function.Lemma 4.2. If in addition to the conditions of Lemma 4.1, the growth conditionon T�1 = T �1 is satis�ed with (r; �); then for any t > 0; there holds, for su�cientlylarge k;jzk+1 � �zjjzk � �zjt � �jzk+1 � �zj2(1�1=t) + c2k��k+1� �2=r jzk+1 � �zj2(1=r�1=t)��t=2: (4:7)Proof. By [19, Proposition 1], we havejzk+1 � �zj2 + jwk+1j2 = jzk � �zj2; (4:8)where wk+1 := Qk(yk) 2 ckT (zk+1) with Qk = I � Pk; or equivalently c�1k wk+1 2T (zk+1): The growth condition, together with (2.15) and (4.3), yields, for su�cientlylarge k; �kjzk � �zj = dist(TZT (�z) + �z; zk) � dist(ZT ; zk) � �jc�1k wkjr: (4:9)Solving for jwkj and substituting in (4.8), we getjzk+1 � �zj2 + c2k��k+1� �2=r jzk+1 � �zj2=r � jzk � �zj2 (4:10)16



for su�ciently large k: Hencejzk+1 � �zjjzk � �zj � 1�1 + c2k��k+1� �2=rjzk+1 � �zj2=r�2)1=2 ; (4:11)from which (4.7) follows.Theorem 4.3 (Q-rates on fzkg). Let fzkg be an in�nite sequence generated bythe proximal point iteration (4.2) such that zk ! �z and zk 6= �z for all k: Supposethe growth condition on T�1 = T �1 is satis�ed with (r; �); and ck is bounded awayfrom 0, i.e. lim infk!1 ck =: �c > 0: (4:12)(a) If �c < +1; then the sequence fzkg converges to �z at least Q-linearly withlim supk!1 jzk+1 � �zjjzk � �zj � 1�1 + (�c=�)2)1=2 ; (4:13)Q-superlinearly with order r or Q-sublinearly, according to whether r = 1; r > 1 or0 < r < 1:(b) If �c = +1; then the sequence fzkg converges to �z at least Q-superlinearlyeven when r = 1:Proof. If r = 1; let t = 1 in (4.7) and take lim sup as k ! 1: We get (4.13) byLemma 4.1. Hence fzkg converges at least Q-linearly or Q-superlinearly, accordingto whether �c is �nite or +1:If r > 1; then for any t satisfying r > t > 1; take lim sup in (4.7) as k ! 1:We have, by Lemma 4.1, lim supk!1 jzk+1 � �zjjzk � �zjt = 0: (4:14)Hence fzkg converges at least with Q-order r:If r < 1; then for any t satisfying r < t < 1; take lim sup in (4.7) as k ! 1:We have, by Lemma 3.1, lim supk!1 jzk+1 � �zjjzk � �zjt = 0: (4:15)Hence fzkg converges at least Q-sublinearly.When T is a polyhedral function, the growth condition is satis�ed with some(1; �) by [17, Corollary]. Therefore we have the following corollary as a special caseof Theorem 4.3. 17



Corollary 4.4 (special case for polyhedral T ). Let fzkg be an in�nite sequencegenerated by the proximal point iteration (4.2) such that zk ! �z and zk 6= �z forall k: Suppose T is a polyhedral function and ck is bounded away from 0 withlim infk!1 ck =: �c > 0:(a) If �c < +1; then the sequence fzkg converges to �z at least Q-linearly and(4.13) holds.(b) If �c = +1; then the sequence fzkg converges to �z at least Q-superlinearly.Hence we conclude that when the proximal point algorithm is applied to theextended linear-quadratic programming problems [20, 21], the sequence generatedby iteration (4.2) converges Q-linearly (or Q-superlinearly if �c = +1) even whenthe solution of the problem is not unique. This result is an improvement of earlierresult of Rockafellar and Wets [21, Theorem 6] in the special case when the exactproximal point iterations is implemented.The result in this section on the proximal point algorithm di�ers from that ofRockafellar [19] in the aspect that we here do not require the solution set �Z to bea singleton. It also di�ers from that of Luque [10] in the aspect that conclusionshere are on the rates of convergence of fzkg itself to the limit point �z; instead onthe rate of convergence of fdist( �Z; zk)g to 0. But we here need the exact proximalpoint iteration being implemented, while [19] and [10] (in most cases) allow forsome \inexact" proximal point iterations. Under certain additional assumptions,the results in this paper can also be extended to the inexact case. These topics willbe treated elsewhere.Acknowledgments. The author thanks Professor J.-S. Pang for his very helpfulcomments on an earlier version of the paper.
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