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1 IntroductionThe past several years have seen an increasing number of reports of the successful applicationof genetic algorithms for solving optimization problems. During the same time period, parallelcomputers have matured to the point where, at the high end, they are challenging the role oftraditional vector supercomputers as the fastest computers in the world. On a di�erent front,motivated primarily by signi�cant economic considerations, but also by advances in computingand operations research technology, many major airlines have been exploring alternative methodsfor deciding how 
ight crews (pilots and 
ight attendants) should be assigned in order to satisfy
ight schedules and minimize the associated crew costs. Our objective in this work was to unifythese factors by developing a parallel genetic algorithm and applying it to the solution of theset partitioning problem|a di�cult combinatorial optimization problem used by many airlinesas a mathematical model for assigning 
ight crews to 
ights.There were a number of motivations for developing a parallel genetic algorithm for the set par-titioning problem (SPP). First is the particularly challenging nature of the SPP. The challengesinclude the NP-completeness of �nding feasible solutions, and the enormous size of problems ofcurrent industrial interest. Second, because of its use as a model for crew scheduling by mostmajor airlines, there is great practical value in developing a successful algorithm. Third, geneticalgorithms can provide 
exibility in handling variations of the SPP model that may be useful.The evaluation function can be easily modi�ed to handle constraints such as cumulative 
ighttime, mandatory rest periods, or limits on the amount of work allocated to a particular base notexplicitly part of the SPP model. Fourth, genetic algorithms contain a population of possiblesolutions. As noted by Arabeyre et al. [3], \The knowledge of a family of good solutions is farmore important than obtaining an isolated optimum." Finally, we believe genetic algorithmshave great potential for scaling to take advantage of the larger and larger numbers of processorsincreasingly available on parallel computers.The rest of this paper is laid out as follows. In Section 2 we describe the set partitioningproblem. We give a mathematical statement of the problem, discuss its application to airlinecrew scheduling, and review previous solution approaches. Section 3 describes the sequentialgenetic algorithm on top of which the parallel genetic algorithm was built. Section 4 describesthe parallel genetic algorithm. Section 5 presents the parallel experiments we performed anddiscusses the results. Finally, Section 6 contains concluding remarks and suggests areas forfurther research.2 The Set Partitioning ProblemThe set partitioning problem (SPP) may be stated mathematically asMinimize z = nXj=1 cjxj (1)subject to nXj=1 aijxj = 1 for i = 1; : : : ; m (2)2



xj = 0 or 1 for j = 1; : : : ; n; (3)where aij is binary for all i and j, and cj > 0: The goal is to determine values for the binaryvariables xj that minimize the objective function z.The following notation is common in the literature [12, 21] and motivates the name \setpartitioning problem." Let I = f1; : : : ; mg be a set of row indices, J = f1; : : : ; ng a set ofcolumn indices, and P = fP1; : : : ; Png, where Pj = fi 2 I jaij = 1g; j 2 J . Pj is the set of rowindices that have a one in the jth column. jPj j is the cardinality of Pj . A set J� � J is called apartition if [j2J� Pj = I (4)j; k 2 J�; j 6= k ) Pj\Pk = ;: (5)Associated with any partition J� is a cost given by Pj2J� cj . The objective of the SPP is to�nd the partition with minimal cost.The following additional notation will be used in Sections 3.2 and 3.3. Ri = fj 2 J jaij = 1gis the (�xed) set of columns that intersect row i, while ri = fj 2 Rijxj = 1g is the (changing)set of columns that intersect row i included in the current solution. �j1 is the change in theevaluation function (see Section 3.2) as a result of setting xj to one. �j is the change in theevaluation function when complementing xj . �j1 and �j measure both the cost coe�cient, cj ,and the impact on constraint feasibility (see Section 3.2.)The best-known application of the SPP is airline crew scheduling. In this formulation eachrow (i = 1; : : : ; m) represents a 
ight leg (a takeo� and landing) that must be 
own. Thecolumns (j = 1; : : : ; n) represent legal round-trip rotations (pairings) that an airline crew might
y. Associated with each assignment of a crew to a particular 
ight leg is a cost, cj . The matrixelements aij are de�ned byaij = ( 1 if 
ight leg i is on rotation j0 otherwise. (6)Airline crew scheduling is a very visible and economically signi�cant problem. Estimates ofover a billion dollars a year for pilot and 
ight attendant expenses have been reported [1, 5].Even a small improvement over existing solutions can have a large economic bene�t.At one time, solutions to the SPP were generated manually. However, airline crew schedulingproblems have grown signi�cantly in size and complexity. In 1981 problems with 400 rows and30,000 columns were described as \very large" [22]. Today, problems with hundreds of thousandsof columns are \very large," and one benchmark problem has been generated with 837 rows and12,753,313 columns [6].Because of the widespread use of the SPP (and often the di�culty of its solution), a number ofalgorithms have been developed. These can be classi�ed into two types: approximate algorithmswhich try to �nd \good" solutions quickly, and exact algorithms which attempt to solve the SPPto optimality. Here we mention some of the more recent methods. See Balas and Padberg [4]for a survey of older methods. 3



An important approximate approach (as well as the starting point for most exact approaches)is to solve the linear programming (LP) relaxation of the SPP. In the LP relaxation, the inte-grality restriction on xj is relaxed, but the lower and upper bounds of zero and one are kept. Anumber of authors [5, 13, 22] have noted that for \small" SPP problems the solution to the LPrelaxation either is all integer, in which case it is also the optimal integer solution, or has onlya few fractional values that are easily resolved. However, in recent years it has been noted thatas SPP problems grow in size, fractional solutions occur more frequently, and simply roundingor performing a \small" branch-and-bound tree search may not be e�ective [2, 5, 13].Branch-and-bound may be viewed as an exact approach if the algorithm runs until an integersolution (if one exists) is proven optimal, or as an approximate approach if the algorithm isterminated \early" with a \good" integer solution. Various bounding strategies have been used,including linear programming and Lagrangian relaxation. Fischer and Kedia [11] use continuousanalogs of the greedy and 3�opt methods to provide improved lower bounds. Of recent interestis the work of Eckstein [10], who has developed a general-purpose mixed-integer programmingsystem for use on the CM-5 parallel computer and applied it to, among other problems, setpartitioning. The most successful approach appears to be the work of Ho�man and Padberg.They present an exact approach based on the use of branch-and-cut|a branch-and-bound{likescheme with additional preprocessing and constraint generation at each node in the search tree.They report optimal solutions for a large set of real-world SPP problems [16].3 The Sequential Genetic AlgorithmIn this section we describe the sequential GA we used as the basis for the parallel geneticalgorithm. The choice of algorithm, the selection of parameter settings, and the developmentof a local search heuristic to use with the sequential GA were the result of signi�cant researchand experimentation. Here, we summarize the sequential algorithm. The interested reader isreferred to [18, 19] for additional details.3.1 Problem RepresentationA solution to the SPP problem is given by specifying values for the binary decision variables xj .The value of one (zero) indicates that column j is included (not included) in the solution. Thissolution may be represented by a binary vector x� with the interpretation that xj is one (zero)if bit j is one (zero) in the binary vector.Representing an SPP solution in a GA is straightforward and natural. A bit in a GA stringis associated with each column j. The bit is one if column j is included in the solution, andzero otherwise. To make e�cient use of memory, we had each bit in a computer word representa column. Because most computers today are byte addressable, this approach improves storagee�ciency by at least a factor of eight compared with integer or character implementations. Itdoes, however, require the development of specialized functions to set, unset, and toggle a bitand to test whether a bit is set.�We use x interchangeably as the solution to the SPP problem or as a bitstring in the GA population as in,for example, Figure 2. 4



3.2 Evaluation FunctionThe evaluation function measures \how good" a solution to the SPP problem a string is. Thisfunction needs to take into account not just the cost of the columns included in the solution (theSPP objective function value) but also the degree of (in)feasibility of a string. However, the GAoperators often produce infeasible solutions. In fact, since just �nding a feasible solution to theSPP is NP-complete [23], it may be that many or most strings in the population are infeasible.We used for our evaluation functionnXj=1 cjxj + mXi=1 �i�i(x); (7)where �i(x) = ( 1 if constraint i is infeasible,0 otherwise.The �rst term is the SPP objective function, and the second term is the penalty function. Thepenalty function indicates whether a constraint is infeasible, but does not measure the magnitudeof the infeasibility. The term �i is a scalar weight that penalizes constraint i's infeasibility.Choosing a suitable value for �i is a di�cult problem. A good choice for �i should re
ectnot just the \costs" associated with making constraint i feasible, but also the impact on otherconstraints (in)feasibility. In [25] Richardson et al. studied the choice of �i for the set coveringproblem (SCP). In the SCP, the equality in Equation (2) is replaced by a � constraint. Unlikethe SPP, however, the SCP is not a highly constrained problem. In the SCP, constraint i isinfeasible only if jrij = 0; however, it is easily made feasible by (even randomly) selecting anxj ; j 2 Ri to set to one. On the other hand, such an approach will not work with jrij = 0for the SPP, since any xj ; j 2 Ri set to one, while it will satisfy constraint i, may introduceinfeasibilities into other currently feasible constraints. Similarly, if we try to make a constraintwith jrij > 1 feasible by setting all but one of the xj ; j 2 ri to zero, we may undercover othercurrently feasible constraints.We know of no method to calculate an optimal value for �i. Therefore, we made the empiricalchoice of �i = maxj fcj jj 2 Rig. This choice is similar to the \P2" penalty in [25], where itprovided an upper bound on the cost to satisfy the violated constraints of the SCP. In the caseof the SPP, however, the choice of �i provides no such bound, and it is possible the GA may�nd infeasible solutions more attractive than feasible ones (for several problems discussed in thenext section this situation did happen.)3.3 The ROW HeuristicOur early experience with a generational replacement genetic algorithm [18], as well as subse-quent experience with a steady-state genetic algorithm [19], was that both had trouble �ndingoptimal (often even feasible) solutions. This result led us to develop a local search heuristicto hybridize with the GA to assist in �nding feasible, or near-feasible, strings to apply the GAoperators to. 5



foreach nitersi = chose row( random or max )improve (i; jrij, best or �rst)endfor Figure 1: ROW HeuristicThe heuristic we developed is called ROW (since it takes a row-oriented view of the problem).The basic outline is given in Figure 1. ROW works as follows. For some number of iterations(the parameter niters), one of the m rows of the problem is selected by choose row (eitherrandomly or according to the largest infeasibility). For any row there are three possibilities:jrij = 0, jrij = 1, and jrij > 1. The action of improve in these cases varies and also variesaccording to whether we are using a best-improving or �rst-improving strategy. In the case of abest-improving strategy we apply one of the following rules.1. jrij = 0: For each j 2 Ri calculate �j1 . Set to one the column that minimizes �j1 .2. jrij = 1: Let k be the unique column in ri. Calculate �0j , the change in the evaluationfunction when xk  0 and xj  1; j 2 Ri. If �0j < 0 for at least one j, set xk  0 andxl  1, for �0l < �0j ; 8j.3. jrij > 1: For each j 2 ri calculate �00j , the change in the evaluation function when xk  0; 8k 2 ri; k 6= j. Set xk  0; 8k 2 ri; k 6= j, where �00j < �00k; 8k.The �rst-improving version of ROW di�ers from the best-improving version in the followingways. If jrij = 0, we select a random column j 2 Ri and set xj  1. If jrij = 1, we set xk  0and xj  1 as soon as we �nd any �0j < 0; j 2 Ri. Finally, if jrij > 1, we randomly select acolumn k 2 ri, leave xk = 1, and set all other xj = 0; j 2 ri. In the cases where jrij = 0 andjrij > 1, since we have no guarantee we will �nd a \�rst-improving" solution, but know that wemust modify the current solution to get feasible, we make a random move that makes constrainti feasible, without measuring all the implications (cost component and (in)feasibility of otherconstraints).For the results presented in this paper we used the following settings for ROW. The number ofiterations of ROW that were applied to try to improve a string was one. Choosing the constraintto apply ROW to was done randomly. A �rst-improving selection strategy was used.3.4 Hybrid Steady-State Genetic AlgorithmAfter much experimentation [18, 19] we settled on an algorithm that hybridized the ROW heuris-tic with a steady-state genetic algorithm (SSGA). We call the hybrid algorithm SSGAROW.Figure 2 presents the speci�c implementation we used.P (t) is the population of strings at generationy t. Each generation one new string is insertedyWe use generation and iteration interchangeably. 6



t 0initialize P (t)evaluate P (t)foreach generationROW (xrandom 2 P (t))select(x1;x2) from P (t)if( r < pc ) thenxnew = crossover(x1;x2)else xnew = mutate(x1;x2)endifdelete (xworst 2 P (t))while (xnew 2 P (t))mutate(xnew)P (t + 1) P (t) [ xnewevaluate P (t+ 1)t  t+ 1endforFigure 2: Hybrid Steady-State Genetic Algorithminto the population. The �rst step is to pick a random string, xrandom, and apply the ROWheuristic to it. Next, two parent strings, x1 and x2, are selected by holding two binary tourna-ments, and a random number, r 2 [0; 1], is generated. If r is less than the crossover probabilityof 0:6, we create two new o�spring via uniform crossover with parameter 0:7 [27], and randomlyselect one of them, xnew , to insert in the population. Otherwise, we randomly select one ofthe two parent strings, make a copy of it, and apply mutation to complement bits in the copywith probability 1=n. In either case, the new string is tested to see whether it duplicates astring already in the population. If it does, it undergoes (possibly additional) mutation untilit is unique. The least-�t string in the population, xworst, is deleted, xnew is inserted, and thepopulation is reevaluated.4 The Parallel Genetic AlgorithmThe parallel genetic algorithm we used is based on an island model. In population genetics anisland model is one where separate and isolated subpopulations evolve independently and in par-allel. The island model genetic algorithm (IMGA) is analogous to the island model of populationgenetics. A GA population is divided into several subpopulations, each of which is randomlyinitialized and runs an independent sequential GA on its own subpopulation. Occasionally, �tstrings migrate between subpopulations.The migration of strings between subpopulations is a key feature of the IMGA. First, itallows the distribution and sharing of above-average schemata via the strings that migrate.7



This increases the overall selective pressure since additional reproductive trials are allocated tothose strings that are �t enough to migrate [29]. At the same time, the introduction of migrantstrings into the local population helps to maintain genetic diversity, since the migrant stringarrives from a di�erent subpopulation which has evolved independently.An IMGA is characterized by several choices: the type of sequential GA run on each sub-population, how many strings to migrate and how often to migrate them, how to choose thestring(s) to migrate and the string(s) to replace, and the logical topology the subpopulationsare arranged in. The choice of \communication" parameters in the IMGA echoes the competingthemes of selective pressure and population diversity in sequential GAs. Frequently migratingmany �t strings and deleting the least �t strings increase the selective pressure, but decreasethe population diversity. The choice of logical topology and neighbors to communicate with willa�ect how \fast" �t strings may migrate among subpopulations.We �xed the number of strings to migrate to one. There were two reasons for this choice.First, it seemed intuitively appealing in conjunction with a SSGA; integrating a single arrivingmigrant string is similar to how the SSGA integrates its own newly created o�spring. Theprimary di�erences are that the migrant string arrives from a di�erent subpopulation and ispresumably of above-average �tness. The second reason was simply to cut down on the size of theparameter space being explored and to focus on choices for the other parameters. For a similarreason, we also chose to �x the logical topology of the subpopulations to a two-dimensionaltoroidal mesh. Each processor exchanged strings with its four neighbors, alternating betweenthem each migration generation (i.e., north, east, west, south, north, : : : ). The sequential GArun on each subpopulation was SSGAROW.To determine suitable values for the other communication parameters, we performed a limitedset of experiments, described in [19]. To summarize, the best string in a subpopulation wasselected to migrate to a neighboring subpopulation every 1,000 iterations. The string to deletewas selected by holding a probabilistic binary tournament (with parameter 0:4).The IMGA we used is shown in Figure 3. The di�erence between Figure 3 and Figure 2 isthe addition of the if block to determine whether a string is to be migrated this iteration. If so,the neighboring subpopulation to migrate the string to is determined, and the string to migrate,xmigrate, is selected and sent to the neighbor. A migrant string, xrecv, is then received from aneighboring population, and the string to delete, xdelete is determined and replaced by xrecv .5 Parallel ExperimentsOur hypothesis was that a parallel genetic algorithm could be developed that would solve real-world set partitioning problems and, further, that the e�ectiveness of the parallel GA wouldimprove as the number of subpopulations increased. To test this, we implemented the algorithmdescribed in Sections 3 and 4 and tested it on a parallel computer on a set of real-world SPPproblems. 8



t 0initialize P (t)evaluate P (t)foreach generationROW (xrandom 2 P (t))select(x1;x2) from P (t)if( r < pc ) thenxnew = crossover(x1;x2)else xnew = mutate(x1;x2)endifdelete (xworst 2 P (t))while (xnew 2 P (t))mutate(xnew)P (t + 1) P (t) [ xnewif ( migration generation) thento = neighbor(myid; gen)xmigrate = string to migrate(P(t+1))send string(to;xmigrate)xrecv = recv string ( )xdelete = string to delete(P(t+1))replace string(xdelete;xrecv; P (t+ 1))endifevaluate(Pt+1)t t+ 1endfor Figure 3: Island Model Genetic Algorithm
9



5.1 Computational EnvironmentThe parallel computer we used for our experiments was an IBM SP1 with 128 nodes, eachof which consisted of an IBM RS/6000 Model 370 workstation processor, 128 MB of memory,and a 1 GB disk. Each node ran its own copy of the AIX operating system. The SP1 uses ahigh-performance switch for connecting the nodes. The SP1 supports the distributed-memoryprogramming model.Our code was written in C and used the Chameleon [15] message-passing library. Chameleonis designed to provide a portable, high-performance message-passing system. Chameleon runson top of many other message-passing systems, both vendor-speci�c and third party, allowingwidespread portability. In our case Chameleon ran on top of IBM's EUI-H message-passingsoftware.Random number generation was done using an implementation of the universal random num-ber generator proposed by Marsaglia, Zaman, and Tseng [20], and translated to C from James'version [17]. Each time a parallel run was made, all subpopulations were randomly seeded. Thiswas done by having one processor get and broadcast to all the other processors the microsecondportion of the value returned by the Unix gettimeofday system call. Each processor then addedits processor id to this value and used the resulting unique value as its random number seed.For the random number generator in [20] each unique seed gives rise to an independent sequenceof random numbers of size � 1030 [17].Each test problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations. Eachsubpopulation was of size 100. As additional subpopulations were added to the computation,the total number of strings in the global population increased. Our assumption was that eventhough we were doubling the computational e�ort required whenever we added subpopulations,by mapping each subpopulation to an SP1 processor, the total elapsed time would remainrelatively constant (except for the parallel computing overheads associated with string migration,which we felt would be relatively small). A run was terminated either when the optimal solutionwas foundz or when all subpopulations had performed 100,000 iterations.5.2 Test ProblemsTo test the parallel genetic algorithm, we selected a subset of forty problems from the test setused by Ho�man and Padberg [16]. The test problems are given in Table 1, where they havebeen sorted according to increasing numbers of columns. The columns in this table are the testproblem name, the number of rows and columns in the problem, the number of nonzeros in theA matrix, the optimal objective function value for the LP relaxation, and the objective functionvalue of the optimal integer solution.Table 2 gives attributes of the solution to the LP relaxation and results from solving theinteger programming problem with the lp solvex program. The columns in this table are thename of the test problem, the number of simplex iterations required by lp solve to solve thezFor these tests, the value of the (known) optimal solution was stored in the program which tested the bestfeasible solution found each iteration against the optimal solution and stopped if they were the same.xWe note that as a public-domain program lp solve should not be used as the standard by which to judgethe e�ectiveness of linear and integer programming solution methodology. Our interest here was in being able to10



Table 1: Parallel Test ProblemsProblem No. No. No. LP IPName Rows Cols Nonzeros Optimal Optimalnw41 17 197 740 10972.5 11307nw32 19 294 1357 14570.0 14877nw40 19 404 2069 10658.3 10809nw08 24 434 2332 35894.0 35894nw15 31 467 2830 67743.0 67743nw21 25 577 3591 7380.0 7408nw22 23 619 3399 6942.0 6984nw12 27 626 3380 14118.0 14118nw39 25 677 4494 9868.5 10080nw20 22 685 3722 16626.0 16812nw23 19 711 3350 12317.0 12534nw37 19 770 3778 9961.5 10068nw26 23 771 4215 6743.0 6796nw10 24 853 4336 68271.0 68271nw34 20 899 5045 10453.5 10488nw43 18 1072 4859 8897.0 8904nw42 23 1079 6533 7485.0 7656nw28 18 1210 8553 8169.0 8298nw25 20 1217 7341 5852.0 5960nw38 23 1220 9071 5552.0 5558nw27 22 1355 9395 9877.0 9933nw24 19 1366 8617 5843.0 6314nw35 23 1709 10494 7206.0 7216nw36 20 1783 13160 7260.0 7314nw29 18 2540 14193 4185.3 4274nw30 26 2653 20436 3726.8 3942nw31 26 2662 19977 7980.0 8038nw19 40 2879 25193 10898.0 10898nw33 23 3068 21704 6484.0 6678nw09 40 3103 20111 67760.0 67760nw07 36 5172 41187 5476.0 5476nw06 50 6774 61555 7640.0 7810aa04 426 7195 52121 25877.6 26402kl01 55 7479 56242 1084.0 1086aa05 801 8308 65953 53735.9 53839nw11 39 8820 57250 116254.5 116256aa01 823 8904 72965 55535.4 56138nw18 124 10757 91028 338864.3 340160kl02 71 36699 212536 215.3 219nw03 59 43749 363939 24447.0 2449211



Table 2: Solution Characteristics of the Parallel Test ProblemsProblem LP LP LP IPName Iters Nonzeros Ones Nodesnw41 174 7 3 9nw32 174 10 4 9nw40 279 9 0 7nw08 31 12 12 1nw15 43 7 7 1nw21 109 10 3 3nw22 65 11 2 3nw12 35 15 15 1nw39 131 6 3 5nw20 1240 18 0 15nw23 3050 13 3 57nw37 132 6 2 3nw26 341 9 2 11nw10 44 13 13 1nw34 115 7 2 3nw43 142 9 2 3nw42 274 8 1 9nw28 1008 5 2 39nw25 237 10 1 5nw38 277 8 2 7nw27 118 6 3 3nw24 302 10 4 9nw35 102 8 4 3nw36 74589 7 1 789nw29 5137 13 0 87nw30 2036 10 0 45nw31 573 7 2 7vnw19 120 7 7 1nw33 202 9 1 3nw09 146 16 16 1nw07 60 6 6 1nw06 58176 18 2 151aa04 >7428 234 5 >1kl01 >26104 68 0 >37aa05 >6330 202 53 >4nw11 200 21 17 3aa01 >23326 321 17 >1nw18 >162947 68 27 >62kl02 >188116 91 1 >3nw03 4123 17 6 312



LP relaxation plus the additional simplex iterations required to solve LP subproblems in thebranch-and-bound tree, the number of variables in the solution to the LP relaxation that werenot zero, the number of the nonzero variables in the solution to the LP relaxation that were one(rather than having a fractional value), and the number of nodes searched by lp solve in itsbranch-and-bound tree search before an optimal solution was found.The optimal integer solution was found by lp solve for all but the following problems: aa04,kl01, aa05, aa01, nw18, and kl02, as indicated in Table 2 by the \>" sign in front of the numberof simplex iterations and number of IP nodes for these problems. For aa04 and aa01, lp solveterminated before �nding the solution to the LP relaxation. For aa05, kl01, and kl02, lp solvefound the solution to the LP relaxation but terminated before �nding any integer solution. Anonoptimal integer solution was found by lp solve for nw18 before it terminated. Terminationoccurred either because the program aborted or because a user-speci�ed resource limit wasreached.Many of these problems are \long and skinny"; that is, they have few rows relative to thenumber of columns (it is common in the airline industry to generate subproblems of the completeproblem that contain only a subset of the 
ight legs the airlines are interested in, solve thesubproblems, and try to create a solution to the complete problem by piecing together thesubproblems). Of these test problems, all but two of the �rst thirty have fewer than 3,000columns (nw33 and nw09 have 3,068 and 3,103 columns, respectively). The last ten problems aresigni�cantly larger, not just because there are more columns, but also because there are moreconstraints.For lp solve many of the smaller problems are fairly easy, with the integer optimal solutionbeing found after only a small branch-and-bound tree search. There are, however, some ex-ceptions where a large tree search is required (nw23, nw28, nw36, nw29, nw30). These problemsloosely correlate with a higher number of fractional values in the LP relaxation than many ofthe smaller problems, although this correlation does not always hold true (e.g., nw28 with fewfractional values requires a \large" tree search, while nw33 with \many" fractional values doesnot). For the larger problems lp solve results are mixed. On the nw problems (nw07, nw06,nw11, nw18, and nw03) the results are quite good, with integer optimal solutions found for all butnw18. Again, the size of the branch-and-bound tree searched seems to correlate loosely with thedegree of fractionality of the solution to the LP relaxation. On the kl and aa models, lp solvehas considerably more di�culty and does not �nd any integer solutions.5.3 Experimental ResultsThe results of our experiments are summarized in Tables 3{6. Table 3 shows the percent fromoptimality of the best solution found in any of the subpopulations as a function of the number ofsubpopulations. An entry of \O" in the table indicates the optimal solution was found. An entryof \X" in the table means no integer feasible solution was found by any of the subpopulations.A numerical entry is the percent from the optimal solution of the best feasible solution foundby any subpopulation after the 100,000-iteration limit was reached. A blank entry means thatthe test was not made (usually because of a resource limit or an abort). The solution valuescharacterize the solution di�culty of the test problems and to make a \ballpark" comparison against traditionaloperations research methodology. For this purpose we believe lp solve was adequate.13



themselves are given in Table 4. Table 5 contains the �rst iteration on which some subpopulationfound a feasible solution. Table 6 is similar except that it contains the �rst iteration on whichsome subpopulation found an optimal solution. In Table 6 an entry of \F" means a nonoptimalinteger feasible solution was found.Entries in the tables marked with a superscript a did not complete. If an entry is given, it isfrom a partially completed run. We give the speci�c results here. Since output statistics werereported only every 1,000 iterations, that is the resolution with which results are reported inTable 5. nw10 aborted at 37,000 iterations when run using 128 subpopulations. nw12 aborted at11,000 iterations when run using 128 subpopulations. nw09 aborted at 63,000 iterations when runusing 64 subpopulations. kl01 aborted at 76,000 iterations when run using 128 subpopulations.kl02 aborted at 76,000 iterations when run using 1 subpopulation, and at 76,000 iterations whenrun using 16 subpopulations. nw03 aborted at 24,000 iterations when run using 1 subpopulation,at 50,000 iterations when run using 2 subpopulations, and at 24,000 iterations when run using4 subpopulations.One way of looking at Table 3 is to consider it as consisting of four parts (recall that the rows ofthe table are sorted by increasing numbers of columns in the test problems). The �rst two partsare de�ned by the rows between and including nw41 and nw06 (the �rst thirty two problems).We can think of dividing this rectangle into two triangular parts by drawing a diagonal linefrom the upper left part of the table (nw41 with one subpopulation) to the bottom right (nw06with 128 subpopulations). Most of the results in the \upper triangle" are \O," indicating thatan optimal solution was found. For these problems the hybrid SSGAROW algorithm was ableto �nd the optimal solution to all but one problem. For approximately two-thirds of theseproblems only four subpopulations were necessary before the optimal solution was found. Forthe other one-third of the problems, additional subpopulations are necessary in order to �ndthe optimal solution. For numerical entries in the \lower triangle," we observe that in generalthe best solution found improved as additional subpopulations participate, even if the optimalsolution was not reached. Using 64 subpopulations, the optimal solution was found for 30 of the�rst 32 test problems. nw06, with 6,774 columns, was the largest problem for which we foundan optimal solution.The next two parts of Table 3 are de�ned by rows aa04 to nw18 (kl01 is similar to kl02 andnw03 in that increasingly better integer feasible solutions were found as additional subpopulationswere added, and so we \logically" group kl01 with kl02 and nw03) and by the last two problemskl02 and nw03. The �rst of these, aa04 through nw18, de�ne the group of problems we were notable to solve. For these problems we were unable to �nd any integer feasible solutions. (Oneobvious point to note from Table 1 is the large number of constraints in aa01, aa04, aa05, andnw18 (we will return to nw18 in a moment). We note from Table 2 that these problems haverelatively high numbers of fractional values in the solution to the LP relaxation and that theywere di�cult for lp solve also.)For these problems, Table 7 summarizes the average number of infeasible constraints acrossall strings in all subpopulations as a function of the number of subpopulations. One trend is thegeneral decrease in the average number of infeasible constraints as additional subpopulations areadded. For the aa problems the incremental improvement, however, appears to be decreasing.For nw11 and nw18 (and also nw10 for which no feasible solution was found), the GA was ableto �nd infeasible strings with higher �tness than feasible ones and had concentrated its search14



Table 3: Percent from Optimality vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 O O O O O O O Onw32 0.0006 O 0.0006 O O O O Onw40 O O 0.0036 O O O O Onw08 X 0.0219 O O O O O Onw15 O O O 0.0001 4.4285 O O Onw21 0.0037 0.0037 O O O O O Onw22 0.0735 0.0455 0.0252 O O O O Onw12 0.1375 0.0912 0.0332 0.0218 0.0094 O O 0:0246anw39 0.0425 O O O O O O Onw20 0.0091 O O O O O O Onw23 O O O O 0.0006 O O Onw37 O 0.0163 O O O O O Onw26 0.0011 O O O O O O Onw10 X X X X X X X Xanw34 0.0203 0.0214 O O O O O Onw43 0.0831 0.0626 0.0350 O O O O Onw42 0.2727 0.0229 O O O O O Onw28 0.0469 O O O O O O Onw25 0.1040 0.1137 O O O O O Onw38 0.0323 O O O O O O Onw27 0.0818 0.0567 O 0.0039 O O O Onw24 0.0826 0.0215 O 0.0015 0.0038 O O Onw35 0.0770 O 0.0171 O O O O Onw36 0.0038 0.0010 0.0194 0.0010 0.0019 O O Onw29 0.0580 O O 0.0116 O O O Onw30 0.1116 O O O O O O Onw31 0.0069 0.0069 O O O O O Onw19 0.1559 0.1332 0.0715 0.0880 0.0148 O O Onw33 0.0128 O O O O O O Onw09 0.0398 X 0.0363 0.0231 0.0155 0.0151 0:154a Onw07 0.3089 O O O O O O Onw06 2.0755 0.2532 O 0.1779 0.0448 0.0291 O Oaa04 X X X X Xkl01 0.0524 0.0359 0.0368 0.0303 0.0239 0.0184 0.0082 0:0092aaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 0:1004a 0.1004 0.0502 0.0593 0:0593a 0.0410 0.0045nw03 0.2732 0:1125a 0:1371a 0.0481a See text for discussion. 15



Table 4: Best Solution Found vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 11307 11307 11307 11307 11307 11307 11307 11307nw32 14886 14877 14886 14877 14877 14877 14877 14877nw40 10809 10809 10848 10809 10809 10809 10809 10809nw08 X 36682 35894 35894 35894 35894 35894 35894nw15 67743 67743 67743 67755 67746 67743 67743 67743nw21 7436 7436 7408 7408 7408 7408 7408 7408nw22 7498 7302 7160 6984 6984 6984 6984 6984nw12 16060 15406 14588 14426 14252 14118 14118 14466anw39 10509 10080 10080 10080 10080 10080 10080 10080nw20 16965 16812 16812 16812 16812 16812 16812 16812nw23 12534 12534 12534 12534 12542 12534 12534 12534nw37 10068 10233 10068 10068 10068 10068 10068 10068nw26 6804 6796 6796 6796 6796 6796 6796 6796nw10 X X X X X X X Xanw34 10701 10713 10488 10488 10488 10488 10488 10488nw43 9644 9462 9216 8904 8904 8904 8904 8904nw42 9744 7832 7656 7656 7656 7656 7656 7656nw28 8688 8298 8298 8298 8298 8298 8298 8298nw25 6580 6638 5960 5960 5960 5960 5960 5960nw38 5738 5558 5558 5558 5558 5558 5558 5558nw27 10746 10497 9933 9972 9933 9933 9933 9933nw24 6836 6450 6314 6324 6338 6314 6314 6314nw35 7772 7216 7340 7216 7216 7216 7216 7216nw36 7342 7322 7456 7322 7328 7314 7314 7314nw29 4522 4274 4274 4324 4274 4274 4274 4274nw30 4382 3942 3942 3942 3942 3942 3942 3942nw31 8094 8094 8038 8038 8038 8038 8038 8038nw19 12598 12350 11678 11858 11060 10898 10898 10898nw33 6764 6678 6678 6678 6678 6678 6678 6678nw09 70462 X 70222 69332 68816 68784 68804a 67760nw07 7168 5476 5476 5476 5476 5476 5476 5476nw06 24020 9788 7810 9200 8160 8038 7810 7810aa04 X X X X Xkl01 1143 1125 1126 1119 1112 1106 1095 1096aaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 241a 241 230 232 232a 228 220nw03 31185 27249a 27852a 25671a See text for discussion. 16



Table 5: First Feasible Iteration vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 676 299 393 353 233 127 310 89nw32 185 590 520 562 415 373 257 145nw40 376 710 434 384 204 223 211 275nw08 X 5893 33876 8067 6669 8393 6167 4819nw15 2031 1233 1019 1228 766 767 501 624nw21 786 813 618 584 654 627 471 392nw22 860 597 540 504 466 426 143 235nw12 3308 2007 2379 2586 1615 1963 1847 2000anw39 1017 755 923 516 530 347 447 325nw20 1128 895 912 893 380 619 316 324nw23 2291 2089 1686 1498 525 1178 1249 956nw37 734 384 620 544 196 502 361 165nw26 1055 978 971 881 760 331 423 474nw10 X X X X X X X Xanw34 1336 672 865 505 354 436 462 295nw43 1036 989 1025 736 636 675 320 437nw42 1178 936 774 540 460 500 323 361nw28 784 372 494 71 289 199 228 13nw25 474 731 788 221 328 315 356 369nw38 875 1040 873 662 693 418 311 398nw27 874 726 516 658 313 540 437 403nw24 1020 772 898 763 749 670 456 507nw35 1505 1263 1084 926 721 893 812 634nw36 696 625 493 400 390 361 286 104nw29 1070 604 441 556 424 558 342 294nw30 500 622 584 649 481 498 377 356nw31 1447 1118 1029 675 358 369 580 236nw19 1656 807 933 1020 857 812 602 616nw33 986 550 815 645 538 493 296 281nw09 20787 X 18414 11324 11593 11737 8000a 9025nw07 1132 1278 589 1307 928 777 636 677nw06 7472 10036 5658 3920 2846 3440 1788 2385aa04 X X X X Xkl01 3095 5146 3641 4836 3324 3299 3573 4000aaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 6000a 4436 6626 4721 4000a 4840 4521nw03 10563 9000a 7000a 3944a See text for discussion. 17



Table 6: First Optimal Iteration vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64 128nw41 3845 1451 551 623 758 402 398 362nw32 F 1450 F 3910 2740 2697 2054 1006nw40 540 1597 F 1658 2268 958 979 696nw08 X F 34564 8955 14760 10676 8992 10631nw15 4593 17157 5560 F F 929 692 1321nw21 F F 7875 3929 4251 1818 1868 2514nw22 F F F 29230 3370 3037 2229 1820nw12 F F F F F 62976 34464 Fanw39 F 2345 3738 1079 1396 900 1232 913nw20 F 2420 3018 5279 27568 2295 2282 1654nw23 2591 6566 3437 3452 F 1723 2125 1477nw37 75737 F 1410 1386 1443 1370 835 779nw26 F 84765 52415 24497 13491 1660 1512 2820nw10 X X X X X X X Xanw34 F F 2443 1142 1422 1110 1417 843nw43 F F F 11004 3237 21069 4696 3296nw42 F F 2702 3348 1070 1223 1187 724nw28 F 903 1897 1232 776 718 371 191nw25 F F 2634 70642 4351 5331 1024 1896nw38 F 68564 27383 1431 1177 1093 603 514nw27 F F 610 F 2569 1669 3233 2135nw24 F F 908 F F 11912 2873 4798nw35 F 3659 F 3182 1876 1224 1158 634nw36 F F F F F 3367 2739 4200nw29 F 17212 5085 F 17146 1368 2243 795nw30 F 3058 1777 1154 1650 846 866 949nw31 F F 1646 3085 1287 1890 1682 732nw19 F F F F F 79125 27882 37768nw33 F 1670 1659 7946 1994 2210 829 873nw09 F X F F F F Fa 71198nw07 F 29033 7459 4020 4831 1874 2543 1935nw06 F F 51502 F F F 48215 19165aa04 X X X X Xkl01 F F F F F F F Faaa05 X X X Xnw11 X X X X X X X Xaa01 X X X X X Xnw18 X X X X X X X Xkl02 Fa F F F Fa F Fnw03 F Fa Fa Fa See text for discussion. 18



on those strings. For these problems the best (infeasible) string had an evaluation function valueapproximately half that of the optimal integer solution. In this case the GA has little chanceof ever �nding a feasible solution. This is, of course, simply the GA exploiting the fact that forthese problems the penalty term used in the evaluation function is not strong enough. For thethree aa problems this is not the case. On average, near the end of a run an (infeasible) solutionhas an evaluation function value approximately twice that of the optimal integer solution.The last two problems, kl02 and nw03, have many columns and an increasing number ofconstraints. However, the GA was able to �nd integer feasible solutions on all runs we triedand a very good one for kl02 with 128 subpopulations. The trend here is similar to all but theinfeasible problems. We conjecture that with \enough" subpopulations the GA would computeoptimal solutions to these problems also. We caution, however, that this is speculation.Table 7: No. of Infeasible Constraints vs. No. SubpopulationsProblem Number of SubpopulationsName 1 2 4 8 16 32 64nw11 1.6 1.7 2.7 2.1 2.1 2.4 2.4nw18 17.7 12.4 14.5 15.2 14.5 14.1 14.2aa04 26.3 22.9 25.5 17.9 16.3aa05 95:0y 84.5 62.2 56.2aa01 70.1 66.0 75.2 70.0 53.0 54.6Table 5 shows the �rst iteration when a feasible solution was found by one of the subpopula-tions. If we recall that the migration frequency is set to 1,000, we see that even on one processor,over one-fourth of the problems �nd feasible solutions before any migration takes place. Thenumber of problems for which this occurs grows as subpopulations are added. With 128 subpop-ulations, 27 problems have feasible solutions before the �rst migration occurs. The ones that donot are the problems where the penalty term was not strong enough, no feasible solution wasever found, or they are the largest problems we tried. The implication is that the ROW heuris-tic does a good job of decreasing the infeasibilities; and by simply running enough copies of asequential GA, the likelihood of one of them \getting lucky" increases. The excessive iterationsnw08 takes to get feasible is, again, due to the fact that the penalty term is not strong enough.In this case, however, the penalty is \almost strong enough"; hence, less �t feasible solutionseventually are found \in the neighborhood" of the best (infeasible) strings in the population. Asimilar problem occurred with nw09.Table 6 is similar to Table 5; here it is the iteration when an optimal solution was found byone of the subpopulations that is shown. Again, we see a general trend of the �rst optimal iter-ation's occurring earlier as we increase the number of subpopulations. With one subpopulationan optimal solution was found for only one problem (nw40) before migration occurred. With128 subpopulations the optimal solution was found for 13 problems before migration occurred.Several problems show signi�cant decrease in the iteration count as the number of subpopula-tions increases. As an example, by the time 128 subpopulations are being used to solve nw37,nw38, and nw29, which initially take tens of thousands of iterations to �nd the optimal solution,the optimal solution has been found before any string migration has occurred.19



Table 8: Comparison of Solution TimeProblem lp solve HP SSGAROWName Result Secs.b Result Secs.b Result Secs.b Nprocsnw41 O 1 O 0.1 O 4 4nw32 O 2 O 0.2 O 8 2nw40 O 3 O 0.2 O 1 1nw08 O 2 O 0.1 O 135 8nw15 O 3 O 0.1 O 14 1nw21 O 1 O 0.3 O 43 32nw22 O 1 O 0.3 O 65 64nw12 O 1 O 0.1 O 1188 64nw39 O 1 O 0.2 O 16 8nw20 O 1 O 0.6 O 17 2nw23 O 6 O 0.3 O 9 1nw37 O 1 O 0.2 O 16 4nw26 O 2 O 0.3 O 41 32nw10 O 1 O 0.1 X >431 1nw34 O 2 O 0.3 O 18 8nw43 O 2 O 0.4 O 73 16nw42 O 3 O 1.0 O 23 16nw28 O 6 O 0.4 O 8 2nw25 O 3 O 0.6 O 36 64nw38 O 4 O 1.4 O 23 128nw27 O 3 O 0.3 O 7 4nw24 O 4 O 0.6 O 12 4nw35 O 4 O 0.5 O 33 128nw36 O 237 O 3.7 O 128 64nw29 O 29 O 1.0 O 49 128nw30 O 20 O 0.8 O 33 8nw31 O 10 O 1.4 O 34 4nw19 O 9 O 0.5 O 1727 64nw33 O 26 O 1.5 O 25 2nw09 O 8 O 0.5 O 5442 128nw07 O 16 O 0.7 O 129 32nw06 O 589 O 10.4 O 2544 128aa04 X >3600 O 139337 X >1848 1kl01 X >1000 O 35.4 .0092 >11532 128aa05 X >1200 O 215.3 X >3014 2nw11 O 27 O 2.1 X >2548 1aa01 X >600 O 14441 X >2126 1nw18 .0110 >3600 O 62.5 X >2916 1kl02 X >3600 O 134.4 .0045 >43907 128nw03 O 375 O 24.0 .0481 >64994 128b See text for discussion. 20



Table 8 compares the solution value found (the subcolumn Result) and time in CPU seconds(the subcolumn Secs.) of lp solve, the work of Ho�man and Padberg [16] (the column HP), andour work (the column SSGAROW). The subcolumn Result contains a \O" if the optimal solutionwas found, a numerical entry which is the percentage from optimality of the best suboptimalinteger feasible solution found, or an \X" if no feasible solution was found.The timings for lp solve were made on an IBM RS/6000 Model 590 workstation using theUnix time command, which had a resolution of one second. These times include the time toconvert from the standard MPS format used in linear programming to lp solve's input format.The timings for Ho�man and Padberg's work are from Tables 3 and 8 in [16]. These runs weremade on an IBM RS/6000 Model 550 workstation. The results for SSGAROW are the CPUtime charged to processor zero in a run that used the number of processors given in the Nprocscolumn. This is the best solution time achieved where an optimal solution was found. If theentry is numerical, it is the percentage from optimality of the best solution found and the numberof processors used for that run. If no feasible solution was found, it is the time and number ofprocessors used. When either lp solve or SSGAROW did not �nd the optimal solution, thetime is prefaced with a >.We o�er the comparative results in Table 8 with the following caveats. All the timings weredone using a heavily instrumented, unoptimized version of our program that performed manyglobal operations to collect statistics for reporting. A number of possible areas for performanceimprovement exist. Additionally, as noted above, the timings in Table 8 are all from di�erentmodel IBM RS/6000 workstation processors. As such, the reader should adjust them accordingly(depending on the benchmark used, the Model 590 is between a factor of 1.67 and 5.02 timesfaster than the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model550). Nevertheless, we include Table 8 in the interest of providing some \ballpark" timings tocomplement the algorithmic behavior.For many of the �rst thirty-two problems, where all three algorithms found optimal solutionsfor all problems (except SSGAROW on nw10), we observe that the branch-and-cut solutiontimes are approximately an order of magnitude faster than the branch-and-bound times, andthe branch-and-bound times are themselves an order of magnitude faster than SSGAROW. Forproblems where the penalty term was \not strong enough" but the optimal solution was stillfound (nw08, nw12, nw09), SSGAROW performs poorly. In two other cases (nw19, nw06) thesearch simply takes a long time, the problems have larger numbers of columns (2,879 and 6,774,respectively), and the complexity of the steps in the algorithm that involve n become quitenoticeable. There are also some smaller problems for which, if we adjust the times according tothe performance di�erences due to the hardware, SSGAROW seems competitive with branch-and-bound as implemented by lp solve.On the larger problems we observe that branch-and-cut solved all problems to optimality,in most cases quite quickly. Both lp solve and SSGAROW had trouble with the aa prob-lems; neither found a feasible solution to any of the three problems. For the two kl problems,SSGAROW was able to �nd good integer feasible solutions while lp solve did not �nd any fea-sible solutions. Although SSGAROW's kl computations take much more time than is allottedto lp solve, we note from Table 5 that it was able to �nd other feasible solutions much earlierin its search. For the larger nw problems, lp solve did much better than SSGAROW, provingtwo optimal (nw11, nw03) and �nding a good integer feasible solution to the other. SSGAROWhas \penalty troubles" with two of these and takes a long time on nw03 to compute an integer21



feasible, but suboptimal solution.We stress that the times given in Table 8 are not just when the optimal solution was foundusing either the branch-and-bound or branch-and-cut algorithms, but when it was proven to beoptimal. In the case of SSGAROW we have \cheated" in the sense that for the test problemsthe optimal solution values are known and we took advantage of that knowledge to specify ourstopping criteria. This was advantageous in two ways. First, we knew when to stop (or when tokeep going). Second, we knew when a solution was optimal, even though SSGAROW inherentlyprovides no such mathematical tools to determine this. For use in a \production" environmentthe optimal solutions are typically not known, and an alternative stopping rule would need tobe implemented. Conversely, however, we believe that if we had implemented a stopping rule,then in the case of many of the problems we would have given up the search earlier when it\became clear" that progress was not being made.From Table 8 we note that the branch-and-cut work of Ho�man and Padberg clearly providesthe best results in all cases. Comparing SSGAROW with lp solve, we see that neither cansolve the aa problems: lp solve does better than SSGAROW on most (but not all) of the nwproblems, and SSGAROW does better than lp solve on the two kl problems. John Gregoryhas suggested [14] that the nwmodels, while \real world," are not indicative of the SPP problemsmost airlines would like to be able to solve, in that they are relatively easy to solve with littlebranching and that more di�cult models may be in production use now, being \solved" byheuristics rather than by exact methods.In conclusion, it is clear that the branch-and-cut approach of Ho�man and Padberg is superiorto both lp solve and SSGAROW in all cases. With respect to genetic algorithms this isnot surprising; several leading GA researchers have pointed out that GAs are general-purposetools that will usually be outperformed when specialized algorithms for a problem exist [8, 9].Comparing SSGAROW with the branch-and-bound approach as implemented by lp solve, we�nd that lp solve fares better for many but not all of the test problems. However, the expectedscalability we believe SSGAROW will exhibit on larger numbers of processors and the moredi�cult models that may be in production usage suggest that the parallel genetic algorithmapproach may still be worthy of additional research.In closing this section, we o�er the following caution about the results we have presented.Each result is stochastic; that is, it depends on the particular random number seed used toinitialize the starting populations. Ideally, we would like to be able to present the results asaverages for each entry obtained over a large number of samples. However, at the time we didthis work, computer time on the IBM SP1 was at a premium, and we were faced with the choiceof either running a large number of repeated trials on a restricted set of test problems (whichitself would raise the issue of which particular test problems to use) or running only a single testat each data point (test problem and number of subpopulations), but sampling over a larger setof test problems. We believe the latter approach is more useful.6 Conclusions and Future WorkThe SPP is a di�cult problem for a genetic algorithm. The primary reason is that the SPPis highly constrained and a GA has di�culties �nding feasible solutions. This is true for both22



the generational replacement GA and the steady-state GA. A hybrid algorithm combining thesteady-state GA with the SPP-speci�c ROW heuristic was more e�ective than either algorithmby itself and was able to �nd feasible (and sometimes optimal) solutions to the smaller SPP testproblems.The ROW heuristic is parameterized according to how much e�ort it should spend trying toimprove a solution. In general, the most successful approach was to \work quicker, not harder"and to make random choices whenever possible. The ROW heuristic is e�ective at makinglocal improvements, particularly with respect to infeasibilities, and the SSGA propagates theseimprovements to other strings thus having a global e�ect.Using the hybrid SSGAROW algorithm in an island model was an e�ective approach forsolving real-world SPP problems of up to a few thousand integer variables. For all but oneof the thirty-two small and medium-sized test problems the optimal solution was found. Forseveral larger problems, good integer feasible solutions were found. We found two limitations,however. First, for several problems the penalty term was not strong enough. The GA exploitedthis by concentrating its search on infeasible strings that had (in some cases signi�cantly) betterevaluations than a feasible string would have had. For these problems, either no feasible solutionwas ever found or the number of iterations and additional subpopulations required to �nd theoptimal solution was much larger than for similar problems for which the penalty term workedwell. A second limitation was the fact that three problems had many constraints. For theseproblems, even though the penalty term seemed adequate, SSGAROW was never able to �nd afeasible solution.Adding additional subpopulations (which increase the global population size) was bene�cial.When an optimal solution was found, it was usually found on an earlier iteration. In cases wherethe optimal solution was not found, but a feasible one was (i.e., on the largest test problems),the quality of the feasible solution improved as additional subpopulations were added to thecomputation. Also notable was the fact that, as additional subpopulations were added, thenumber of problems for which the optimal solution was found before the �rst migration occurredcontinued to increase.We compared SSGAROW with implementations of branch-and-cut and branch-and-boundalgorithms, looking at the quality of the solutions found and the time taken. Branch-and-cutwas clearly superior to both SSGAROW and branch-and-bound, �nding optimal solutions toall test problems in less time. Both SSGAROW and branch-and-bound found optimal solutionsto the small and medium-sized test problems. On larger problems the results were mixed, withboth branch-and-bound and SSGAROW doing better than each other on di�erent problems.The branch-and-bound results seem to correlate with how close to integer feasible the solutionto the linear programming relaxation was. In many cases branch-and-bound took less time, butwe note that the implementation of SSGAROW used was heavily instrumented.Most of the progress made by SSGAROW occurs early in the search. Pro�les of many runsshow that the best solution found rarely changes after about 10,000 iterations. This observationseems to hold true irrespective of the number of subpopulations. More subpopulations lead toa more e�ective early search, but do not help beyond that. We believe that both an adaptivemutation rate and further work on the ROW heuristic can help.Currently, the mutation rate is �xed at the reciprocal of the string length, a well-known choice23



from the GA literature where it plays the role of restoring lost bit values, but does not itself actas a search operator. One possibility is to use an adaptive mutation rate that changes based onthe value of some GA statistic such as population diversity or the Hamming distance betweentwo parent strings [30]. Several researchers [7, 28] make the case for a high mutation rate whenmutation is separated from crossover, as it is in our implementation.We found that the random choice of columns to add or delete to the current solution thatthe ROW heuristic made when constraints were infeasible helped the GA sample new areas ofthe search space. However, when all constraints are feasible, ROW no longer introduces anyrandomness. This is because when all constraints are feasible, all of the alternative moves ROWconsiders degrade the current solution. Therefore, no move is made, and ROW remains trappedin a local optimum. We believe some type of simulated annealing-like move in this case wouldhelp sustain the search.One limitation of the SSGAROW algorithm was its inability to �nd feasible solutions for sixproblems. For three of those, and several others for which optimal solutions were found but withdegraded performance, the penalty function was not strong enough. A number of possibilitiesexist for additional research in this area, including stronger penalty terms (e.g., quadratic), theranking approach of Powell and Skolnick [24], or the dynamic penalty of Smith and Tate [26] forwhich we had mixed results [19]. However, for the aa problems, we are less optimistic. Table 7appears to indicate diminishing returns with respect to the reduction in infeasibilities in theseproblems as additional subpopulations are added to the computation. Much further work onpenalties remains to be done.AcknowledgmentsA number of people helped in various ways during the course of this work. I thank GregAstfalk, Bob Bul�n, Tom Can�eld, Tom Christopher, Remy Evard, John Gregory, Bill Gropp,Karla Ho�man, John Loewy, Rusty Lusk, Jorge Mor�e, Bob Olson, Gail Pieper, Paul Plassmann,Nick Radcli�e, Xiaobai Sun, David Tate, and Stephen Wright. This paper is based on my Ph.D.thesis at Illinois Institute of Technology.References[1] R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent Advances in Crew Pairing Optimiza-tion at American Airlines. INTERFACES, 21:62{74, 1991.[2] R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew Pairing Optimization.IBM Systems Journal, 31(1):71{78, 1992.[3] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather. The Airline Crew Scheduling Problem:A Survey. Transportation Science, 3(2):140{163, 1969.[4] E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, 18(4):710{760, 1976.[5] J. Barutt and T. Hull. Airline Crew Scheduling: Supercomputers and Algorithms. SIAMNews, 23(6), 1990. 24
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