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Abstract: Solutions for TEAM benchmark problems 13
and 20, obtained with an h-type volume integral formulation,
are presented. Results computed with an increasing number
of unknowns are shown in order to study the convergence of
the numerical calculations. Some theoretical questions and

aspects of parallelism are also highlighted.

I. INTRODUCTION

Nonlinear magnetostatic problems are often solved nu-
merically using formulations based on partial differential
equations (PDEs). Although several integral formula-
tions were invented many years ago to solve magneto-
static problems, they have not been as popular as PDEs,
probably because of the dense system of equations. Per-
haps also the theoretical background of volume integral
formulations has not been as well established as in the
case of PDEs.

Our purpose is to demonstrate that integral formula-
tions for magnetostatics can be developed using the same
approach as with PDE solvers. Adopting the standard
procedure of weighted residuals and employing proper fi-
nite element spaces, one can show that integral formu-
lations arise from the same well-known theory as PDE
formulations. A solution of a well-posed integral formu-
lation minimizes the energy stored in the magnetic field in
the same manner as PDEs. In this paper the main prin-
ciples are discussed. Solutions presented for the TEAM
benchmark problems verify the method.

II. AN h-TYPE INTEGRAL FORMULATION

For simplicity let us assume that Q and its boundary
T are simply connected (without losing the generality of
multiply connected regions). If no currents are present in
Q, the magnetic field strength H is a gradient field. Also,
in a multiply connected region, H is locally a gradient
field, but it does not necessarily have a unique scalar

potential in Q.

To set up a discrete problem, we use Whitney elements
[2, 3, 4]. H is approximated in the space grad W°. Since
grad W° = W1 nker(curl), one has two options for ap-
proximating H.

HU = S dugrad(n,) (1)

n=1

or
Nedges

H' = ) hew., (2)
e=1

where w, and w, are the basis functions of Whitney
spaces W? and W1, respectively. In the case of (2) the
degrees of freedom h, are not independent, and further
examination is required.

Circulation of a gradient field around any closed path
vanishes. Therefore, one of the degrees of freedom in each
loop of the mesh can be determined from the others. An
independent set can easily be found by forming a tree
from the graph of all edges in the mesh. The correspond-
ing basis functions are determined from the incidence re-
lationships of the (oriented) tree and co-tree edges [8, 1].
Let us denote the coefficients associated with the tree
edges with h!. The set of degrees of freedom associated
with the graph of all edges is given by

h = Rh', (3)

where R is an n.gges X Nyree incidence matrix whose ele-
ments are all either -1, 0, or 1 [10]. The basis functions
associated with the tree edges are thus

Nedges

V; = Z Reiwe, (4)
e=1

and the approximation of H is

Niree

H' = > hlv.. (5)
e=1



Since our goal i1s time-dependent problems, we approx-
imate H as in (5). In practice, the choice between (1) and
(5) affects the generation of the integral equation matrix
and the right hand side (RHS). However, assuming exact
arithmetic, they both lead to the same solution. Also,
the amount of work required to generate the system of
equations is about the same in the static case. In eddy-
current problems, however, choice (5) seems preferable
to (1), even if neither choice excludes generalization from
static to time-dependent problems.

The weighted residual form is developed by multiplying
equation V - B = 0 with a test function ¢, integrating
over {2, and applying integral relationships analogous to
Green’s first identity to get

//,LH'VZ'dU—//JHm(X,H)~VZ'dUI//,LHS~VZ'dU,VVZ',
Q Q Q
(6)

where H” and H’ are the magnetic fields from magne-
tization and source currents, respectively. Moreover, it
can be shown that the solution of (6) minimizes

W:/dv/BH~dB, (7)

which is the energy associated with the establishment of a
current distribution in the presence of magnetic materials
[10, 15].

Finally, we notice that if also H”™ and H?® are approxi-
mated in W'Nker(curl), the solution of (6) can be shown
to be equivalent to that of

he — A" (h') = h, Ve € T, (8)
where T is the set of tree edges [10].
ITI. IMPLEMENTATION

The code based on the formulation described in this pa-
per is called GFUNET. The current version runs on both
sequential and parallel machines. The system of equa-
tions is solved with LU factorization or with GMRES,
and a nonlinear problem is iterated using the standard
Newton-Raphson method.

The most time-consuming parts are the matrix gener-
ation, which is a O(n?) process, and the solver, which
scales O(n®) if LU factorization is used, and m O(n?) if
GMRES is adopted (m is the number of iterations). In
practice, we have found that the GMRES either with
block diagonal (BDD) or with incomplete LU decom-
position (ILU) preconditioner is significantly faster than
direct LU factorization with back substitution. For in-
stance, in solving a system of 3,692 equations, LU factor-
ization requires about 400 CPU-seconds whereas GMRES
takes only about 65 CPU-seconds to reach the tolerence of

TABLE 1
RESULTS OF TEAM PROBLEM 13
Case 1 2 3 4
Nodes 184 803 3694 12316
Elements 487 2503 14625 55107
Equations 182 801 3692 12314
Energy (J) 0.03288 0.02984  0.02909 0.02867

CPU-time (s) 16.0 207 8809 25105

10=% on a DEC Alpha 3000-600 AXP workstation. How-
ever, since we are still testing various preconditioners and
other iterative solvers (e.g., BICG and Bi-CGSTAB) es-
pecially in a parallel computing environment, all timing
results presented in this paper are those obtained with
LU factorization. A paper about iterative solvers will be
published later on.

Recent developments of GFUNET [7] have made the
code more than an order of magnitude faster than before
[11, 9, 5], and therefore results of this paper update all
previous TEAM problem results we have presented. No
attempts have been made to minimize the solution times
by adjusting the parameters of the code. All settings were
those we have found reasonable in general.

IV. TEAM PROBLEM 13

TEAM benchmark problem 13 [12] was solved using
several meshes with an increasing number of nodes and
tetrahedra, in order to study the convergence of the re-
sults. Data of four different meshes are shown in Table I.
In all cases, elements were distributed in the same man-
ner: that is, the size of the tetrahedra varies, but the
ratio between the number of elements in different regions
remains about the same [6]. The mesh of case 3, con-
sisting of 14,625 tetrahedra and 3,694 nodes is shown in
Fig. 1. GFUNET can also take full advantage of the sym-
metry, and a solution computed with a coarse mesh can
be inserted as an initial guess to a new solution.

The first three cases reported were solved on a DEC Al-
pha 3000-600 AXP workstation, and the fourth case on
an IBM SP1 parallel computer with 58 RS/6000 model
370 processors. In addition to the total CPU-time, the
energy stored in the magnetic field inside the magnetic
materials is printed in Table I. In the parallel case the
CPU-time presented is the maximum CPU-time taken
by one processor. Results clearly show the energy min-
imization property of the formulation. The average flux
density in the steel plates is plotted in Fig. 2, and mag-
netic flux density along the given line in Fig. 3. The
computed results seem to converge close to, but in some
points slightly above, the measured values.

V. TEAM PROBLEM 20

The main purpose of TEAM problem 20 [13] is to com-
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Fig. 1. Mesh of TEAM problem 13: case 3: 3694 nodes and
14,625 elements

Fig. 2. TEAM problem 13: average flux density in the steel plates
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Fig. 3. TEAM problem 13: magnetic flux density in air

pare computed forces with measured ones [14]. While
neither Maxwell’s stress tensor nor the method of vir-
tual work is attractive with integral equations, forces are
computed with equivalent magnetization currents and the
Lorentz force. Equivalent magnetization currents, de-
fined by J,, = V x M and K,, = M x n, produce the
same magnetic field as M itself, and therefore they can
be used in force calculations. Moreover, in the discrete
case, J,, = 0 everywhere in space as a result of the ap-
proximation of M. Thus the force F acting on the bar of
TEAM problem 20 can be expressed as

F= /Km « Bda, )
S

where S contains all facets of the tetrahedra in the bar.
The Lorentz force approach has also another advantage:
it 1s a straightforward method and does not require spe-
cial expertise.

In Table IT the data for three different meshes is shown.
In addition, timings of the most important routines of
GFUNET are presented. The mesh of case 3 is shown in
Fig. 4. In the other three cases, elements were distributed
in the same manner. Results were computed on a DEC
Alpha 3000-600 AXP workstation. In solving large prob-
lems, the most time-consuming routines are the matrix
generation and the solver. As Table I shows, the matrix
generation scales as O(Npodes X Nelements ). However, most
of the time needed in matrix generation is spent in inte-
gration of geometry-dependent terms. These terms are
computed only once and then are stored into a file. The
same data is used while updating the integral equation
matrix and in Jacobian matrix generation.

In a parallel computing environment the integral equa-
tion matrix is generated without any data broadcast;
therefore, the time needed in matrix generation decreases
linearly with an increasing number of processors. FEffi-
ciency of the parallel LU solver was found to be about
75-80% on an IBM SP1. However, the amount of data
broadcast becomes greater with an increasing number of
processors, and at some point the global efficiency is over-
whelmed by data transfer. In practice, the optimal num-
ber of processors depends on the size of the problem and
on the properties of the connecting network.

In Table IIT forces and flux densities at the points given
in the problem definition are listed. Results solved with
a highly refined mesh consisting of 50,263 tetrahedra and
10,327 nodes are also shown (case 4). This case was
solved on the IBM SP1 using 4764 processors. The B
fields computed along the given lines are shown in Fig. b
and Fig. 6. Also in this problem the computed results
converge close to the measured values. However, the B
field in the case of 1000 AT and the forces seem to con-
verge above the measured data.



TABLE II

TIMING OF THE MAIN PARTS OF GFUNET
(TEAM Problem 20 with three meshes)

Case 1 2 3
Number of nodes 155 1013 3986
Number of elements 366 3815 17953
Number of equations 153 1011 3984
Tree generation (s) 0.01 0.3 3.7
Path generation (s) 0.001 0.008 0.03
RHS generation (s) 8.1 52.8 220
Matrix generation (s) 3.2 190 3500
Matrix update (s) 0.06 8.5 207
Jacoblian generation (s) 0.1 8.0 322
LU-solver (s) 0.05 13.9 438
Number of iterations 16 12 11
Total CPU-time (s) 13.6 491 11367
TABLE III
RESULTS OF TEAM PROBLEM 20
Case 1 2 3 4 Measured
Nodes 155 1013 3986 10327
Elements 366 3815 17953 50263
B.(P) (T)
1000 A 0.311 0.328 0.323 0.322 0.36
3000 A 0.755 0.835 0.840 0.835 0.84
4500 A 0.878 0.984 0.996 0.989 0.99
5000 A 0.910 1.021 1.035 1.028 1.03
B:(P,) (T)
1000 A 0.258 0.272 0.256 0.247 0.24
3000 A 0.563  0.581 0.571 0.575 0.63
4500 A 0.621 0.648 0.648 0.654 0.72
5000 A 0.636 0.664 0.666 0.672 0.74
(Bz)ave(a = 8) (T)
1000 A 0.783 0.746 0.734 0.727 0.72
3000 A 1.784 1.784 1.787 1.788 1.75
4500 A 1.984 1.994 1.998 2.000 2.01
5000 A 2.028 2.039 2.042 2.044 2.05
(B2)ave(r - 8) (T)
1000 A 0.153 0.142 0.128 0.137 0.13
3000 A 0.379 0.366 0.362 0.362 0.36
4500 A 0.447 0.444 0.440 0.440 0.43
5000 A 0.466 0.465 0.461 0.462 0.46
F. (N)
1000 A 9.31 8.63 8.53 8.50 8.1
3000 A 62.29 57.29 57.00 56.57 54.4
4500 A 82.18 77.73 77.19 76.39 75.0
5000 A 87.19 8296 82.40 81.54 80.1
CPU-time (s)
1000 A 13.7 490 11367 19970 (47 pI‘OC.)
3000 A 13.3 278 8005 10207 (64 pI‘OC.)
4500 A 12.4 251 7462 12443 (48 pI‘OC.)
5000 A 12.3 262 7378 12180 (48 pI‘OC.)
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Fig. 4. Mesh of TEAM problem 20: case 3, 3986 nodes and 17,953
elements

VI. CONCLUSION

The results computed with GFUNET for the TEAM
benchmarks seem to converge close to the measured val-
ues, but not in all cases. At this point, we cannot say
whether this is due to the difficulty in measuring the
BH-curve and field values or due to numerical reasons.
However, according to tests we have carried out for sev-
eral other problems, GFUNET has in all cases converged
toward the same solution as TOSCA [16]. Tt would be
useful to see the convergence of other methods for the
TEAM problems in order to get a better understanding
of the numerical methods.
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