
Solutions of TEAM Problems 13 and 20 Usinga Volume Integral FormulationLauri Kettunen and Kimmo ForsmanTampere University of TechnologyLaboratory of Electricity and MagnetismP.O. Box. 692, FIN-33101 Tampere, FINLANDDavid Levine and William GroppArgonne National LaboratoryMathematics and Computer Science Division9700 South Cass AvenueArgonne, Illinois 60439, U.S.A.Abstract: Solutions for TEAM benchmark problems 13and 20, obtained with an h-type volume integral formulation,are presented. Results computed with an increasing numberof unknowns are shown in order to study the convergence ofthe numerical calculations. Some theoretical questions andaspects of parallelism are also highlighted.I. IntroductionNonlinear magnetostatic problems are often solved nu-merically using formulations based on partial di�erentialequations (PDEs). Although several integral formula-tions were invented many years ago to solve magneto-static problems, they have not been as popular as PDEs,probably because of the dense system of equations. Per-haps also the theoretical background of volume integralformulations has not been as well established as in thecase of PDEs.Our purpose is to demonstrate that integral formula-tions for magnetostatics can be developed using the sameapproach as with PDE solvers. Adopting the standardprocedure of weighted residuals and employing proper �-nite element spaces, one can show that integral formu-lations arise from the same well-known theory as PDEformulations. A solution of a well-posed integral formu-lation minimizes the energy stored in the magnetic �eld inthe same manner as PDEs. In this paper the main prin-ciples are discussed. Solutions presented for the TEAMbenchmark problems verify the method.II. An h-type Integral FormulationFor simplicity let us assume that 
 and its boundary� are simply connected (without losing the generality ofmultiply connected regions). If no currents are present in
, the magnetic �eld strength H is a gradient �eld. Also,in a multiply connected region, H is locally a gradient�eld, but it does not necessarily have a unique scalar

potential in 
.To set up a discrete problem, we use Whitney elements[2, 3, 4]. H is approximated in the space grad W 0. Sincegrad W 0 = W 1 \ ker(curl), one has two options for ap-proximatingH.H1 = nnodesXn=1  ngrad(wn); (1)or H1 = nedgesXe=1 hewe ; (2)where wn and we are the basis functions of Whitneyspaces W 0 and W 1, respectively. In the case of (2) thedegrees of freedom he are not independent, and furtherexamination is required.Circulation of a gradient �eld around any closed pathvanishes. Therefore, one of the degrees of freedom in eachloop of the mesh can be determined from the others. Anindependent set can easily be found by forming a treefrom the graph of all edges in the mesh. The correspond-ing basis functions are determined from the incidence re-lationships of the (oriented) tree and co-tree edges [8, 1].Let us denote the coe�cients associated with the treeedges with ht. The set of degrees of freedom associatedwith the graph of all edges is given byh = Rht; (3)where R is an nedges � ntree incidence matrix whose ele-ments are all either -1, 0, or 1 [10]. The basis functionsassociated with the tree edges are thusvi = nedgesXe=1 Reiwe; (4)and the approximation of H isH1 = ntreeXe=1 hteve: (5)



Since our goal is time-dependent problems, we approx-imateH as in (5). In practice, the choice between (1) and(5) a�ects the generation of the integral equation matrixand the right hand side (RHS). However, assuming exactarithmetic, they both lead to the same solution. Also,the amount of work required to generate the system ofequations is about the same in the static case. In eddy-current problems, however, choice (5) seems preferableto (1), even if neither choice excludes generalization fromstatic to time-dependent problems.The weighted residual form is developed by multiplyingequation r � B = 0 with a test function  , integratingover 
, and applying integral relationships analogous toGreen's �rst identity to getZ
 �H �vidv�Z
 �Hm(�;H) �vidv = Z
 �Hs �vidv; 8vi;(6)where Hm and Hs are the magnetic �elds from magne-tization and source currents, respectively. Moreover, itcan be shown that the solution of (6) minimizesW = ZV dv BZ0 H � dB; (7)which is the energy associated with the establishment of acurrent distribution in the presence of magnetic materials[10, 15].Finally, we notice that if also Hm and Hs are approxi-mated in W 1\ker(curl), the solution of (6) can be shownto be equivalent to that ofhe � hme (ht) = hse; 8e 2 T; (8)where T is the set of tree edges [10].III. ImplementationThe code based on the formulationdescribed in this pa-per is called GFUNET. The current version runs on bothsequential and parallel machines. The system of equa-tions is solved with LU factorization or with GMRES,and a nonlinear problem is iterated using the standardNewton-Raphson method.The most time-consuming parts are the matrix gener-ation, which is a O(n2) process, and the solver, whichscales O(n3) if LU factorization is used, and mO(n2) ifGMRES is adopted (m is the number of iterations). Inpractice, we have found that the GMRES either withblock diagonal (BDD) or with incomplete LU decom-position (ILU) preconditioner is signi�cantly faster thandirect LU factorization with back substitution. For in-stance, in solving a system of 3,692 equations, LU factor-ization requires about 400 CPU-seconds whereas GMREStakes only about 65 CPU-seconds to reach the tolerence of

TABLE IRESULTS OF TEAM PROBLEM 13Case 1 2 3 4Nodes 184 803 3694 12316Elements 487 2503 14625 55107Equations 182 801 3692 12314Energy (J) 0.03288 0.02984 0.02909 0.02867CPU-time (s) 16.0 207 8809 2510510�8 on a DEC Alpha 3000-600 AXP workstation. How-ever, since we are still testing various preconditioners andother iterative solvers (e.g., BiCG and Bi-CGSTAB) es-pecially in a parallel computing environment, all timingresults presented in this paper are those obtained withLU factorization. A paper about iterative solvers will bepublished later on.Recent developments of GFUNET [7] have made thecode more than an order of magnitude faster than before[11, 9, 5], and therefore results of this paper update allprevious TEAM problem results we have presented. Noattempts have been made to minimize the solution timesby adjusting the parameters of the code. All settings werethose we have found reasonable in general.IV. Team Problem 13TEAM benchmark problem 13 [12] was solved usingseveral meshes with an increasing number of nodes andtetrahedra, in order to study the convergence of the re-sults. Data of four di�erent meshes are shown in Table I.In all cases, elements were distributed in the same man-ner: that is, the size of the tetrahedra varies, but theratio between the number of elements in di�erent regionsremains about the same [6]. The mesh of case 3, con-sisting of 14,625 tetrahedra and 3,694 nodes is shown inFig. 1. GFUNET can also take full advantage of the sym-metry, and a solution computed with a coarse mesh canbe inserted as an initial guess to a new solution.The �rst three cases reported were solved on a DEC Al-pha 3000-600 AXP workstation, and the fourth case onan IBM SP1 parallel computer with 58 RS/6000 model370 processors. In addition to the total CPU-time, theenergy stored in the magnetic �eld inside the magneticmaterials is printed in Table I. In the parallel case theCPU-time presented is the maximum CPU-time takenby one processor. Results clearly show the energy min-imization property of the formulation. The average uxdensity in the steel plates is plotted in Fig. 2, and mag-netic ux density along the given line in Fig. 3. Thecomputed results seem to converge close to, but in somepoints slightly above, the measured values.V. Team problem 20The main purpose of TEAM problem 20 [13] is to com-



Fig. 1. Mesh of TEAM problem 13: case 3: 3694 nodes and14,625 elements
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Case 4Fig. 2. TEAM problem 13: average ux density in the steel plates
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Fig. 3. TEAM problem 13: magnetic ux density in air

pare computed forces with measured ones [14]. Whileneither Maxwell's stress tensor nor the method of vir-tual work is attractive with integral equations, forces arecomputed with equivalentmagnetization currents and theLorentz force. Equivalent magnetization currents, de-�ned by Jm = r�M and Km = M � n, produce thesame magnetic �eld as M itself, and therefore they canbe used in force calculations. Moreover, in the discretecase, Jm = 0 everywhere in space as a result of the ap-proximation ofM. Thus the force F acting on the bar ofTEAM problem 20 can be expressed asF = ZS Km �Bda; (9)where S contains all facets of the tetrahedra in the bar.The Lorentz force approach has also another advantage:it is a straightforward method and does not require spe-cial expertise.In Table II the data for three di�erent meshes is shown.In addition, timings of the most important routines ofGFUNET are presented. The mesh of case 3 is shown inFig. 4. In the other three cases, elements were distributedin the same manner. Results were computed on a DECAlpha 3000-600 AXP workstation. In solving large prob-lems, the most time-consuming routines are the matrixgeneration and the solver. As Table II shows, the matrixgeneration scales asO(nnodes�nelements). However, mostof the time needed in matrix generation is spent in inte-gration of geometry-dependent terms. These terms arecomputed only once and then are stored into a �le. Thesame data is used while updating the integral equationmatrix and in Jacobian matrix generation.In a parallel computing environment the integral equa-tion matrix is generated without any data broadcast;therefore, the time needed in matrix generation decreaseslinearly with an increasing number of processors. E�-ciency of the parallel LU solver was found to be about75{80% on an IBM SP1. However, the amount of databroadcast becomes greater with an increasing number ofprocessors, and at some point the global e�ciency is over-whelmed by data transfer. In practice, the optimal num-ber of processors depends on the size of the problem andon the properties of the connecting network.In Table III forces and ux densities at the points givenin the problem de�nition are listed. Results solved witha highly re�ned mesh consisting of 50,263 tetrahedra and10,327 nodes are also shown (case 4). This case wassolved on the IBM SP1 using 47{64 processors. The B�elds computed along the given lines are shown in Fig. 5and Fig. 6. Also in this problem the computed resultsconverge close to the measured values. However, the B�eld in the case of 1000 AT and the forces seem to con-verge above the measured data.



TABLE IITIMING OF THE MAIN PARTS OF GFUNET(TEAM Problem 20 with three meshes)Case 1 2 3Number of nodes 155 1013 3986Number of elements 366 3815 17953Number of equations 153 1011 3984Tree generation (s) 0.01 0.3 3.7Path generation (s) 0.001 0.008 0.03RHS generation (s) 8.1 52.8 220Matrix generation (s) 3.2 190 3500Matrix update (s) 0.06 8.5 207Jacobian generation (s) 0.1 8.0 322LU-solver (s) 0.05 13.9 438Number of iterations 16 12 11Total CPU-time (s) 13.6 491 11367TABLE IIIRESULTS OF TEAM PROBLEM 20Case 1 2 3 4 MeasuredNodes 155 1013 3986 10327Elements 366 3815 17953 50263Bz(P1) (T)1000 A 0.311 0.328 0.323 0.322 0.363000 A 0.755 0.835 0.840 0.835 0.844500 A 0.878 0.984 0.996 0.989 0.995000 A 0.910 1.021 1.035 1.028 1.03Bz(P2) (T)1000 A 0.258 0.272 0.256 0.247 0.243000 A 0.563 0.581 0.571 0.575 0.634500 A 0.621 0.648 0.648 0.654 0.725000 A 0.636 0.664 0.666 0.672 0.74(Bz)ave(�� �) (T)1000 A 0.783 0.746 0.734 0.727 0.723000 A 1.784 1.784 1.787 1.788 1.754500 A 1.984 1.994 1.998 2.000 2.015000 A 2.028 2.039 2.042 2.044 2.05(Bz)ave( � �) (T)1000 A 0.153 0.142 0.128 0.137 0.133000 A 0.379 0.366 0.362 0.362 0.364500 A 0.447 0.444 0.440 0.440 0.435000 A 0.466 0.465 0.461 0.462 0.46Fz (N)1000 A 9.31 8.63 8.53 8.50 8.13000 A 62.29 57.29 57.00 56.57 54.44500 A 82.18 77.73 77.19 76.39 75.05000 A 87.19 82.96 82.40 81.54 80.1CPU-time (s)1000 A 13.7 490 11367 19970 (47 proc.)3000 A 13.3 278 8005 10207 (64 proc.)4500 A 12.4 251 7462 12443 (48 proc.)5000 A 12.3 262 7378 12180 (48 proc.)

Fig. 4. Mesh of TEAM problem 20: case 3, 3986 nodes and 17,953elementsVI. ConclusionThe results computed with GFUNET for the TEAMbenchmarks seem to converge close to the measured val-ues, but not in all cases. At this point, we cannot saywhether this is due to the di�culty in measuring theBH-curve and �eld values or due to numerical reasons.However, according to tests we have carried out for sev-eral other problems, GFUNET has in all cases convergedtoward the same solution as TOSCA [16]. It would beuseful to see the convergence of other methods for theTEAM problems in order to get a better understandingof the numerical methods.AcknowledgmentWe gratefully acknowledge use of the Argonne High-Performance Computing Research Facility. This facilityis funded principally by the U.S. Department of EnergyO�ce of Scienti�c Computing. The work of the third andfourth authors was supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under ContractW-31-109-Eng-38. References[1] R. Albanese and G. Rubinacci. Integral formulation for 3-Deddy-current computation using edge elements. In IEE Pro-ceedings, volume 135, Pt A, No. 7, pages 457{462, 1988.[2] A. Bossavit. Magnetostatic problems in multiply connectedregions: Some properties of the curl operator. In IEE Pro-ceedings, volume 135, Pt A, pages 179{187, 1988.[3] A. Bossavit. Whitney forms: A class of �nite elements forthree-dimensional computations in electromagnetism. In IEEProceedings, volume 135, Pt A, pages 493{499, 1988.[4] A. Bossavit. Simplicial �nite elements for scattering problemsin electromagnetism. Comp. Meth. in Appl. Mech. and Eng.,76:299{316, 1989.[5] K. Forsman and L. Kettunen. Solutions of TEAM problem#20 using integral equations. In Proceedings of Miami Int.ACES/TEAM Workshop, Miami, Florida, 1993.



120.0 122.0 124.0 126.0 128.0 130.0
z (mm)

0.0

0.2

0.4

0.6

0.8

B
x 

(T
)

Case 1
Case 2
Case 3
Case 4
measured

1000 AT

120.0 122.0 124.0 126.0 128.0 130.0
z (mm)

0.0

0.5

1.0

1.5

B
x 

(T
)

Case 1
Case 2
Case 3
Case 4
measured

3000 AT

120.0 122.0 124.0 126.0 128.0 130.0
z (mm)

0.0

0.5

1.0

1.5

2.0

B
x 

(T
)

Case 1
Case 2
Case 3
Case 4
measured

4500 AT

120.0 122.0 124.0 126.0 128.0 130.0
z (mm)

0.0

0.5

1.0

1.5

2.0

B
x 

(T
)

Case 1
Case 2
Case 3
Case 4
measured

5000 AT

Fig. 5. TEAM problem 20. Bx along line a� b at di�erent currentdensities.
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