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SUMMARYIn this paper a discussion of volume integral formulations in three-dimensional nonlin-ear magnetostatics is presented. Integral formulations are examined in connection withWhitney's elements in order to �nd new approaches. A numerical algorithm based onan h-formulation is introduced. Results of demanding application problems are showndemonstrating the characteristics of this kind of volume integral approach. In addition, adiscussion of the parallelized version of the numerical code based on the h-type approachis presented, appended with numerical results illustrating the advantages of combiningintegral formulations with concurrent computing.INTRODUCTIONA numerical approximation for static or low-frequency electromagnetic problems can becomputed with either partial di�erential equations (PDEs) or integral equations. Partialdi�erential equations are often favorable because they o�er cost-e�ective solutions forthree-dimensional problems. Integral equations have their own advantages; for example,air regions can be excluded, and the exterior boundary condition (i.e., that the magnetic�eld vanishes in in�nity) is satis�ed automatically (see, e.g., [1], [2]). Moreover, in linearproblems, boundary integral equations give often a reasonably accurate solution with arelative small number of unknowns.During the past twenty years PDEs have dominated research in the �eld of numericalcomputation of low-frequency electromagnetic �elds, and they have almost overwhelmedthe developments in integral formulations. Probably one of the main reasons that integralequations have not attracted researchers as much as PDEs is the dense integral equationmatrix. It is well known that iterative solvers such as ICCG (incomplete Choleski factor-ization, conjugate gradient) are e�ective in solving a sparse systems of equations [3]. Onthe other hand, it is not clear how a full system of equations should be e�ectively solved toavoid a total execution count of O(n3) with direct methods like LU factorization. PDEsdo not lead to the same problem.Some groups have developed so-called hybrid formulations in order to combine the desir-able properties of PDEs and boundary integral equations. This kind of system produces amatrix that has a dense block whose size is related to the number of nodes on the exteriorboundary; the rest of the matrix is sparse. Hybrid formulations retain the advantagesof having to discretize only nonair (i.e., magnetic and conducting) regions. A di�cultyin hybrid formulations, however, is the size of the dense submatrix: if it becomes largeenough, the sparsity property is lost. Also, in a parallel computing environment, theequation matrix should be carefully split into submatrices in order to balance the loadbetween processors. Nevertheless, hybrid formulations are a competitive alternative tovolume integral equations in solving nonlinear problems, having many of the propertiesof integral equations but having a less dense, or even a sparse, matrix from the numericalpoint of view.The purpose of this paper is to study the use of integral equations on a workstation anda high-performance computing environment in order to solve accurately three-dimensional(3D) nonlinear magnetostatic problems. Our �nal goal is time-dependent problems; hence,2



we have developed and implemented an h-type formulation, which can be generalized tolow-frequency eddy current problems with magnetic materials.BACKGROUNDOne of the �rst volume integral equation approaches for nonlinear magnetostatics wasthe GFUN code, developed in early 1970s [4, 5, 6, 7, 8, 9]. GFUN is based on a piecewiseconstant vector approximation of magnetic �eld strength H inside elements. Componentsof H are solved independently within each element; this approach implies that H does nothave any kind of continuity between neighboring elements. As a result, the generation ofthe system of equations is simple, and there is also some exibility in the mesh generation.For instance, the tesselation by elements does not need to be \�nite elements": two distinctelements do not have to share a face, an edge, or a vertex.The GFUN code was shown to be successful in solving practical problems, but it also ledto some di�culties. The number of unknowns in the system of equations is n = nelements� 2 or n = nelements � 3 for the 2D and 3D case, respectively. This means that in re�ningthe mesh, the solution time of the integral equation system increases rapidly. In addition,if susceptibility is large enough, the system matrix becomes illconditioned and causes a\looping pattern" [8] in the H-�eld. Results in air are still reasonable, but the H-�eldwithin magnetic parts is useless.A dense system matrix is inherent to integral equations and thus unavoidable, butthe size of the matrix can be dramatically decreased by approximating �eld variables instandard �nite element spaces. The looping problem is also avoided by choosing a typeof element that imposes proper continuity properties. The bene�ts of a proper choice ofbasis functions were noticed by Iselin in 1976 [10] and Pasciak in 1983 [11]. They bothintroduced a volume integral formulation based on scalar potentials and \nodal elements."Recently, Lin Han et al. also published a scalar potential formulation [12].A good understanding of di�erent formulations and possibilities can be achieved byexamining Whitney elements and integral equations together. Whitney elements are aclass of �nite elements (named after English mathematician H. Whitney [13].) Whitneyelements were introduced by Bossavit in connection with computational electromagnetics[14, 15, 16, 17]. During the past �ve years, Whitney elements have become popular andwidely used by scientists and engineers in the numerical analysis of electromagnetic �elds.Whitney elements o�er a natural basis for imposing correct physical continuity propertieson electromagnetic �elds. They di�er from traditional elements in the sense that thedegrees of freedom are related to all kinds of simplices in a simplicial mesh, that is, toedges and to facets as well to nodes. Depending on which simplex the degrees of freedomare related to, these elements are often called nodal, edge, facet, or volume elements.A integral formulation based on edge elements was introduced by Albanese and Rubi-nacci, who developed a formulation for eddy current problems with nonmagnetic materials[18], [19]. The formulation presented in this paper complements Albanese and Rubinacci'sapproach in the sense that a combination of these two formulations is capable of solvingeddy current problems with magnetic materials.3



FINITE ELEMENT SPACESIn this section we summarize the background of Whitney elements, based on the articlespublished by Bossavit [14, 15, 16, 17, 20].Let us take a bounded region of space V . The surface of V is S. Region V is split intoa �nite number of tetrahedra such that the tesselation satis�es the standard properties of�nite element meshes: two distinct tetrahedra share nothing, a node, a proper edge, or aproper facet. It is also assumed that curved surfaces are approximated with straight-sidedtetrahedra. The sets of nodes, edges, facets, and tetrahedra are denoted N , E, F , and T ,respectively. All nodes are numbered, and a node connectivity list is formed for the edges,facets, and tetrahedra: node n = fig, edge e = fi; jg, facet f = fi; j; kg, and tetrahedront = fi; j; k; lg. Coordinates of node n = fig are denoted with ri.Our purpose is to consider functions and vector �elds constructed with Whitney ele-ments. Having a set of degrees of freedom and basis functions, the functions and vector�elds are linear combinations g = Xi gi wi : (1)Finite element spaces W p spanned by the basis functions are generated by elements ofdegree p associated with p-simplices, p = 0; 1; 2; 3 (for nodes, edges, facets, and tetrahedra,respectively). The barycentric function �i is a piecewise linear continuous function inV , which equals 1 in ri, is positive in tetrahedra sharing n = fig, and equals 0 insidetetrahedra that do not contain vertex n = fig. The basis functions that span spaces W 0,W 1, and W 2 arewn = �i; n = fig; (2)we = �ir�j � �jr�i; e = fi; jg; (3)wf = 2(�ir�j �r�k + �jr�k �r�l + �kr�i �r�j); f = fi; j; kg: (4)As can be seen, the basis function wn of node n is equivalent to that of a classicalLagrange element of order 1. It can be shown that a scalar �eld in W 0 is continuous,a vector �eld in W 1 is tangentially continuous, and a vector �eld in W 2 has normalcontinuity.In constructing g's, the degrees of freedom are gi = g(ri), ge = Re g, and gf = Rf g (i.e.,g at ri, circulation of g along edge e, ux of g across facet f), for p = 0; 1; 2, respectively.Spaces W 0, W 1, W 2, and W 3 are related to each other such thatgrad W 0 � W 1; curl W 1 � W 2; div W 2 � W 3 : (5)In other words, grad wn and curl we are a linear combination of some we's and wf 's,respectively. Once the simplices are numbered, one can form incidence matrices G, C,and D, which represent the incidence relations between the simplices. For example, thesize of G is negdes � nnodes, and all the entries of G are �1, 0, or 1. If V and S are simplyconnected, we can writegrad  = X f(G  )ewe j e 2 E g : (6)4



A property between W 0 and W 1, which is useful in developing integral formulations,can now be easily veri�ed: the kernel of curl in W 1 is exactly grad W 0. Similarly, thekernel of div in W 2 is precisely curl W 1. These injective properties are shown with asequence W 0 grad�! W 1 curl�! W 2 div�! W 3 :Similarly for the vector spaces Wp, p = 0, 1, 2, 3, spanned by the vectors of the degreesof freedom, one can form a sequence (assuming simply connected V and S)W0 G�! W1 C�! W2 D�! W3 :TREE{CO-TREE SEPARATIONHeretofore we have considered how one Whitney space can be mapped into a kernel ofanother one (rightmost to it in the sequence). For integral equations, we wish also to knowthe inverse: we wish to represent a gradient, curl, or div �eld using edge, facet, or volumeelements, respectively. For instance, since the kernel of curl in W 1 is exactly grad W 0,there exists a set of degrees of freedom that represents a gradient �eld in W 1 (assumingsimply connected V ). Similarly there is a set of degrees of freedom representing a curl�eld inW 2. From a practical point of view, there is a problem in selecting an independentset of degrees of freedom. This problem was indirectly solved by Albanese and Rubinacci[18, 19]. They implied a \two-component gauge" [21]T � u = 0 (7)for vector potential T by forming a co-tree from the graph of all edges in the mesh anddisregarding the degrees of freedom associated with the tree edges. The purpose of agauge is to remove the choice of an arbitrary gradient �eld related to a vector potential;that is, a gradient �eld can be added to the vector potential without altering the curlof it. In Albanese and Rubinacci's case, the number of unknowns was decreased by thenumber of tree edges, to remove the arbitrary choice of a gradient �eld.Let us denote the number of edges with nedges and the number of edges in a tree withntree. By de�nition of a tree, tree edges connect all the nodes of a mesh without formingany closed loops. Thus, by interpeting the edge-circulations along tree edges as di�erencesin scalar potential, (in a simply connected region) a scalar potential �eld in W 0 can beformed up to a constant. The gradient of this scalar �eld is in the kernel of curl inW 1. Thus, if we wish to approximate a gradient �eld in W 1, the number of independentunknowns equals the number of tree edges in the mesh. All the edge-circulations alongco-tree edges can be de�ned with the aid of tree edges, since the sum of the degrees offreedom around any closed path formed by a co-tree edge and the corresponding set oftree edges must be zero (Fig. 1). Thus, after a tree is formed and all the edges arenumbered, a rectangular incidence matrix R, entries of which are all �1, 0, or 1, can be5



formed (the size of R is nedges � ntree), and the degrees of freedom h can be calculatedwith the coe�cients ht of tree edges: h = Rht: (8)In the same manner a curl �eld can be represented, with the degrees of freedom asso-ciated with a set of facets that does not possess any closed volumes. (The sum of thedegrees of freedom around any closed surface must be zero.) An incidence matrix S simi-lar to R can be formed, and all the degrees of freedom b are found from a reduced set ofcoe�cients bt: b = Sbt: (9)A gradient �eld h in W 1 is thush = nedgesXe=1 hewe = nedgesXe=1 (Rht)ewe = ntreeXi=1 hti(nedgesXe=1 weRe;i) = ntreeXi=1 htivi : (10)The new basis functions v associated with the tree edges are hence linear combinationsof we's. Similarly, we �nd basis functions for a curl �eld b in W2. If we form a set offacets that does not possess closed volumes, we can de�ne new basis functions v, whichare linear combinations of wf 's: b =Xf bfwf =Xj btjvj : (11)Hence we have three alternatives for expressing a gradient �eld h = grad � or a curl �eldb = curl a: h =Xn �n grad wn =Xe hewe =Xe hteve ; (12)b =Xe ae curl we =Xf bfwf =Xf btfvf : (13)INTEGRAL FORMULATIONS AND VARIOUS ALTERNATIVESLet us denote magnetic ux density with B, magnetic �eld strength with H, and mag-netization with M . A physical description of magnetostatic �elds can be developed usingthe idea of superposition of �elds from current and magnetization sources. Let Bs andHs be B and H from current sources in the absence of magnetic materials, respectively.Fields caused by magnetization are denoted with Bm and Hm. The total B and H �eldsare hence B = Bm +Bs (14)and H = Hm +Hs : (15)Source �elds Bs and Hs generated by currents J are constructed as follows:As(r) = �04� ZV s J(r0)jr � r0jdv0 ; (16)6



Bs = curl As, and Hs = 1�0Bs. V s is the region where J(r) 6= 0. Fields Bm and Hm aregiven by Am(r) = �04� ZVm M(r0)� (r � r0)jr � r0j3 dv0 ; (17)(� is a cross product) Bm = curl Am, andHm(r) = 1�0Bm �M = grad" �14� ZVm M(r0) � (r � r0)jr � r0j3 dv0# = �grad �: (18)The subregion of V , where � 6= 0, is denoted by V m. Assuming isotropic materials, Hand B are related to magnetization M such thatM = �(jHj)H (19)and M = ( 1�0 � 1�(jBj))B: (20)Let us assume that V m and Sm are simply connected. B and H are approximated inW 2 and W 1, respectively. Multiplying Maxwell's equationsr�H = J (21)and r �B = 0; (22)with appropriate test functions a' and  ', respectively, and applying integral relationships(i.e., theorems analogous to Green's �rst identity), we getZSm (a0 � 1� curl A) � n� ZVm curl a0 � 1� curl Am = ZVm curl a0 � 1� Bs (23)and ZSm � 0@ dn + ZVm grad  0 � � grad � = ZVm grad  0 � �Hs : (24)From (23) and (24) we get the following variational forms:ZVm 1� B � b0 � ZVm 1� Bm � b0 = ZVm 1� Bs � b0; 8b0 2 W 2 \ ker(div) (25)and ZVm �H � h0 � ZVm �Hm � h0 = ZVm �Hs � h0; 8h0 2 W 1 \ ker(curl): (26)In Equations (23){(26), any (simply connected) region where J = 0 can be selectedinstead of V m. We call (25) and (26) b- and h-type volume integral formulations. As7



expected, the background of the integral equation approach is similar to that of PDEsand hybrid formulations. For instance, (26) can be interpreted as arising from the sameground as the PDE scalar potential formulations [22] or the h-type hybrid formulations[17], [23]. Similarly, the weighted residual form of GFUN by Simkin [24] can now beunderstood to be related to Equations (22), (24), and (26).We have now several alternatives for generating a numerical algorithm. We can eitheruse the b-formulation and solve a or bt from (13) and (25), or use the h-formulation (26)and solve � or ht from (12) and (26). If the b-formulation is used and a is selected, agauge A �u similar to Albanese and Rubinacci's gauge has to be added in order to achievea unique solution [25].Theoretically, assuming exact arithmetic, the solution is the same whether a or bt issolved. The same holds also for � and ht. From the numerical point of view, however,there are some di�erences. If bt or ht is solved, one has to form a set of facets or edgesthat does not possess closed volumes and loops, respectively. In addition, one has to forma connectivity list, including data on how the coe�cients of the rest of the facets or edgescan be expressed in terms of the coe�cients of this independent set. This requires extraoperations generating the integral equation matrix, compared with the case if a or � ischosen to be solved.Another aspect of the comparison of the formulations is the possibility of generalizationto a larger class of problems. If J(r) 6= 0 in V m, H fails to be a gradient �eld, andthen it is sensible to choose h to be solved. The most interesting class of problem whereJ(r) 6= 0 in V m is the low-frequency (i.e., eddy current) problems. If ht is chosen asa solution variable in the static case, the formulation can be combined with the eddycurrent formulation by Albanese and Rubinacci [18],[19] for time-dependent problems. Inthe static limit, the solution variable is ht. In the time-dependent case, if the system hasno magnetic parts, then t is solved (i.e., circulations of electric vector potential T alongthe co-tree edges); if there are magnetic and conducting objects, the solution variable ish (along all the edges).The choice between a b- or an h-formulation depends on the type of problem, and it isdi�cult to predict which one gives more accurate results with the same amount of work.In fact, having both a b- and an h-type of solution would be optimal, in the sense thatwith both solutions one has an indicator of how the mesh should be re�ned.At this point we have chosen the h-formulation of Equation (26) with ht as a solutionvariable for implementation. We have some practical reasons for this choice. First, asalready mentioned, this approach has a natural extension to eddy current problems. Sec-ond, the number of unknowns is n-1 for each distinct region, where n is the number ofnodes in the region. A b-formulation typically has far more unknowns. (The ratio of thenumber of tree edges and co-tree edges is 1:6 for a regular in�nite mesh.) Finally, theamount of temporary data needed to store during the iteration of nonlinear solution issmaller with the h-formulation. In the generation of the integral equation matrix one hasto form data that depends only on the geometry. In order to avoid regeneration of thisinformation, the data is stored on a temporary �le. In the case of (26), we have to store8



(nelements � ntree � 3) real numbers (in either single or double precision). A b-formulationrequires (nelements � ncotree � 3) numbers to be stored.NUMERICAL IMPLEMENTATIONIn V m, H is a gradient �eld and we need to solve only the degrees of freedom hte relatedto the tree edges. Thus H is given byH =Xe hteve : (27)The integral equation matrix L is the sum of two matrices H and Hm. Element fi; jg ofmatrix H is Hi;j = ZVm �vi � vj: (28)The entries of Hm areHmi;j = � ZVm ZVm �(r)�(r0)�vi(r) � vj(r0)jr � r0j3 � 3(vi(r) � (r � r0))(vj(r0) � (r � r0))jr � r0j5 �dvdv0 : (29)An alternative approach of forming matrix Hm is to approximate Hm in W 1, that is, inthe same �nite element space as H. In this case element fi; jg of Hm is de�ned byHmi;j = � ZVm �(r)vi(r) �Xe ve� 2Xk=1(�1)k ZVm �(r0)vj(r0) � (rk � r0)jrk � r0j3 dv0�edv : (30)The degrees of freedom associated with Hm are equivalent to the di�erences in scalarpotential between the end nodes of edges. Therefore, Equation (30) includes an additionalsum statement, which is denoted with index k. Here, frk j k = 1; 2g are the end nodes ofedge e.The system of equations to be solved is nowLhte = (H+Hm)hte = f ; (31)where f contains the terms due to source currents:fi = ZVm �(Xe hseve) � vi : (32)The resulting integral equation matrix is asymmetric with both choices of matrix Hm.In the case of (29) a symmetric matrix is, however, available by multiplying both sides of(26) with �=�.Main Parts of the Software 9



We have implemented the h-formulation of (26) with both options of forming Hm (i.e.,(29) and (30)). In addition, we have written a parallel version with Hm formed as in (30).The code we have developed is called GFUNET.The main parts of the software are routines that �nd a tree, form the paths correspond-ing with co-tree edges, generate the integral equation and Jacobian matrix, compute theterms on the right-hand side, and solve the system of equations.The data of a tree and paths corresponds with the nonzero entries of the incidencematrix R in (8). Earlier, we chose a tree rather arbitrarily, but recently we have changedthe tree generation routines. A tree is spanned from a \root node," and we attempt tominimize the number of edges in paths (a path is a set of tree edges that connect the endnodes of a co-tree edge). The purpose of the minimization of the length of paths is relatedto iterative solvers. If the paths are short and the indices of edges properly set, the entriesof the matrix with the largest absolute value come closer to the diagonal. Otherwise wehave not encountered the choice of a tree to be signi�cant. The CPU-time required toform a tree and the corresponding paths is usually fractions of seconds and in any casemeaningless compared with the total execution time.The terms on the right-hand side are integrated analytically or semi-analytically usingBiot-Savart's law. To compute the circulation of Hs along edges, one may select Gaussianintegration with a �xed number of integration points or an adaptive scheme.The routines requiring the most CPU-time are the integral equation matrix generationand the solver. At �rst glance it may seem that the matrix generation becomes verycomplicated because the data of the tree and the corresponding paths has to be involvedin the system of equations. In practice, however, the integral equation matrix can be builte�ciently without allocating any extra memory.To reduce the number of coe�cients locally from six to three, we �rst de�ne a local treeand a local basis for each tetrahedron [25], [26]. A tetrahedron has four nodes, and thus alocal tree has three edges. Let us denote a tetrahedron with V t. The local basis functionsare constant vectors in V t. Thus H is a constant vector and � a scalar in V t. Let us nowconsider (31) with Hm formed as in (30). We may rearrange terms of Eq. (30) such thatZV t �(r0)v(r0) � (r � r0)jr � r0j3 dv0 = �(r0)v(r0) � ZV t r � r0jr � r0j3dv0: (33)Excluding susceptibility, the rest of the terms on the right-hand side of (33) dependsolely on the geometry of the problem. Computation of these terms requires a majorpart of the time needed to generate the integral equation matrix. Therefore these termsare computed only once and then stored in a �le to be read during solving a nonlinearproblem by iteration. This is, however, a critical part of the integral formulation. Thesize of these �les is (nelements � ntree � 3) entries, and they easily become very large.Unfortunately, this property is inherent in integral equations, since all the entities havea contribution to each other. (However, the GFUN code does not su�er from a similarproblem; susceptibility can be removed by division from the entries of the matrix, because10



of the lack of tangential continuity in H. On the other hand, the integral equation matrixof GFUN requires even more space than our temporary data storage �les.)In Equation (33), terms v(r0) � ZV t r � r0jr � r0j3dv0 (34)can be integrated analytically. In the software we have a ag that can be set to employeither fully analytic integration or numerical integration combined with analytic integra-tion for the self-�eld terms. In our experience, it seems that from the practical point ofview all the other terms except those for which r 2 V t can be integrated numericallywithout losing accuracy.If matrix Hm is chosen as in (30), it can be shown (Appendix A) that is not necessaryto form the second volume integral at all. Assuming exact arithmetic, the solution isprecisely the same whether or not the second volume integral is taken into account.If Hm is formed according to (29), the �rst integral can be carried out analytically andthe second numerically. The drawback of this alternative is the amount of space neededfor temporary data storage. There is even more data to be stored than in the case of(30). (The amount of data depends on the number of integration points.) In addition, inour experience, results of this option are in all cases inaccurate compared with the resultsbased on (30).The system of equations resulting from (30) and (31) is nonsymmetric. We have usedLU factorization with back substitution and the generalized minimal residual (GMRES)iterative solver with restart option to solve the system of equations. The e�ciency of theGMRES solver depends on the preconditioner, on the number of cycles before restart,and on the initial guess. To achieve the full performance of a GMRES solver requiresconsiderable testing, and we are still examining di�erent options.The nonlinear problem due to � = �(jHj) is solved by iteration. An initial guess for� is inserted, and typically we �rst iterate �ve to eight cycles with simple update ofsusceptibility before switching to Newton-Raphson iteration. In the generation of theJacobian matrix, the precomputed geometry-dependent data is used. The time neededto generate the Jacobian matrix is typically only 1.25{2.0 times greater than the timeneeded to update the integral equation matrix.The parallel version is based on Chameleon parallel programming tools [27], whichprovide a low-overhead interface to many vendors' message-passing libraries. Chameleonalso supplies a uniform interface for program startup. In combination with message-passing packages such as p4 [28] or PVM [29], [30], the software needs no changes to run ona collection of workstations connected via Ethernet as well as on parallel supercomputers.In the parallel version, each processor generates a rowwise decomposed block of theintegral equation matrix (and the right-hand side) without any data broadcast. After thesolution of the system of equations, the leading processor collects the solution vector andtests the convergence of the nonlinear iteration. If more cycles are needed, each processor11



updates susceptibility data and its block of the matrix.TEST RESULTS AND APPLICATIONSIn this section we give results demonstrating characteristics of the integral formulations.The �rst two examples are the international TEAM benchmark problems number 13and 20 [31], [32]. The third example is a positron accumulator ring dipole magnet ofthe Advanced Photon Source (APS) of Argonne National Laboratory. For the �rst twoexamples, measured data is available. The results of the integral formulation of the lastproblem are compared with the solution computed by TOSCA [33], which is a commercialFEM software for nonlinear 3D magnetostatics.The applications were chosen such that they also demonstrate the di�culties we haveexperienced. In addition, in the results shown in this paper no particular attempt hasbeen made to minimize the computing time. The options of the code were those wehave found reasonable in general. The results are reported as much as possible as if thesoftware were used as an engineering tool. All the sequential results are computed on aDEC Alpha 3000-600 AXP and the parallel results on an IBM SP1 with RS/6000 model370 processors.TEAM Problem 13TEAM problem 13 consists of thin steel plates, which are excited below the saturationlevel (Fig. ) [31]. One of the main di�culties in the problem is a narrow air gap betweenthe steel plates. The groups who have solved the problem agree that a high number ofelements is required in order to achieve accurate results below the saturation level [34].We have conducted many experiments with problem 13 and found that, even with asmall number of elements, results are not unreasonable. This seems to be a characteristicfeature of the h-type integral formulation. Thus we exploit the advantage of being ableto compute reasonable results quickly with a small amount of elements by interpolatingan initial guess from an existing solution. The number of cycles and the total computingtime of a large problem are in many cases reduced by inserting a better initial guess thanjust a constant susceptibility in each material.In our case, one-fourth of TEAM problem 13 has to be discretized. Results of thebenchmark problem computed with three di�erent discretizations are shown in Figs. 3and 4. The number of nodes, elements, and equations with the charged CPU-times of themain parts of the sequential code are shown in Table 1.We believe that TEAM problem 13 �ts well with integral equations. Because onlymagnetic regions have to be discretized and the steel plates are thin, a relatively largenumber of elements can be concentrated close to the air gap and to the bend of theplates (Fig. 5). With PDEs such a re�nement of tetrahedra would contain also numerouselements in the air close to the gap and the bend.In this kind of problem consisting of thin plates, one may argue that a hybrid formulationis not, in principle, any better than a volume integral approach. The ratio between theinterior nodes and the exterior nodes is very small; thus, from the numerical point of view,12



Table 1: Timing of the main parts of GFUNET: TEAM problem 13 with three di�erentmeshes Case 1 2 3Number of nodes 184 803 3694Number of elements 487 2503 14625Number of equations 182 801 3692Tree generation (s) 0.01 0.16 3.0Path generation (s) 0.002 0.003 0.03RHS generation (s) 7.6 30.9 141Matrix generation (s) 5.2 100 2692Matrix update (s) 0.08 2.7 157Jacobian generation (s) 0.15 4.4 237LU-solver (s) 0.09 3.9 348Number of iterations 13 10 11Total CPU-time (s) 16.0 207 8809the sparsity property of the equation matrix of the hybrid formulation is lost. Therefore,in both cases, one has to solve a dense system of equations.TEAM Problem 20TEAM problem 20 (Fig. 6) o�ers a good test example for studying the accuracy offorce calculations, because measured data is available [32]. As in problem 13, problem 20includes narrow air gaps between two separate pieces of steel. The air gaps cause somedi�culties in computing the force between the distinct parts, if integral equations areused.First of all, if the force is computed with Maxwell's stress tensor, the solution is a�ectedby large numerical errors in the magnetic �eld just outside the steel. The errors are dueto the fact that the element or elements close to point in air where the �eld has to becomputed dominate the solution. In the case of problem 20, one should have a very largenumber of elements close to the air gaps to avoid this problem. Compared with integralequations, PDEs have the bene�t of o�ering easy and quick computation of the energystored in the magnetic �eld. This allows the use of virtual work to estimate forces. Withintegral equations such an approach is not as practical, because the energy is not easilyavailable. (Neither virtual work or Maxwell's stress tensor is optimal, however, becausethey are both known to be somewhat unstable in numerical computation.)For these reasons we have looked at the option of interpreting magnetization withequivalent currents: Jm = curl M and Km = M � n. Once the current distributionis found, the forces between magnetic parts can be integrated:F = Z Jm �B + Z Km �B: (35)13



Table 2: Forces of TEAM problem 20 with three di�erent meshesCase 1 2 3 MeasuredNumber of nodes 155 1013 2869Number of elements 366 3815 12562Number of equations 153 1011 2867Total CPU-time (s), 1000 AT 13.7 490.6 5590Total CPU-time (s), 3000 AT 10.3 278.5 3137Total CPU-time (s), 4500 AT 12.4 250.9 3185Total CPU-time (s), 5000 AT 12.3 262.1 3076Force Fz (N), 1000 AT 9.3 8.6 8.6 8.1 � 4%Force Fz (N), 3000 AT 62.3 57.3 57.7 54.4 � 4%Force Fz (N), 4500 AT 82.1 77.7 78.1 75.0 � 4%Force Fz (N), 5000 AT 87.2 82.9 83.4 80.1 � 4%In our case, Jm vanishes within the tetrahedra, and we have to deal only with surfacecurrent density Km. This approach seems to be robust with our h-formulation. In addi-tion, the use of equivalent currents is straightforward and does not require expertise inchoosing integration surfaces as Maxwell's stress tensor does. In practice, we compute Banalytically and integrate the cross product over facets numerically with Gaussian inte-gration. The drawback of this approach is the time-consuming analytic integration of B.(This e�ciency of force computations could be further improved by combining numericaland analytic integration.)The forces computed with the sequential version are compared with the measured datain Table 2. (The reproducibility of the measurements is 4 % [35].) The accuracy of thecomputed forces of case 1 is noteworthy. Even when the charged CPU-time is less than15 seconds, the accuracy is about 10%. (The charged CPU-time of the cases I = 1000AT is bigger than the others because the geometric-dependent data has to be formedonly once for each mesh.) On the other hand, with an increasing number of elements,convergence toward the measured values is slow. At this stage TEAM problem 20 hasbeen available only for a short time, and it is too early to say how accurately the measuredvalues will match results computed with various methods. (There is always the di�cultyof de�ning accurately the BH-curve.) However, we have observed that the accuracy ofthe h-type integral formulation is sensitive to the distribution of elements. It is oftenquite di�cult to predict how the mesh should be re�ned to increase overall accuracy. Inour experience, each problem has some critical regions that must be properly discretized.Re�ning the mesh somewhere else seems to have only small, if any, e�ect on the accuracyof the solution.APS PAR-Dipole MagnetThe last example is a dipole magnet from the Advanced Photon Source at ArgonneNational Laboratory. The poles are curved, and the magnet has shielding plates in front14



of the coils. In addition, the ends of the poles are beveled (Figs. 7 and 8). Because thegeometry is nontrivial, this problem is a challenging test for integral formulations. Onedi�culty with integral methods is the amount of memory needed for the matrix, whichincreases as O(n2), where n is the number of equations. Therefore, the maximum numberof equations is fairly easily met (in a sequential computer), if geometrically complicatedproblems are solved.The main di�culty in solving particle accelerator magnets with the h-type integralformulation is to identify a suitable discretization. We have found that the magnetic �eldbetween the poles of a dipole, a quadrupole, or a sextupole magnet is sensitive to the�nite element mesh. Unless the mesh is properly re�ned, the B-�eld in the air gap tendsto oscillate and to be slightly excessive.Because of symmetry, one-fourth of the APS dipole magnet has to be discretized. Weexperimented with two di�erent meshes. In the smaller case the number of nodes andtetrahedra were 3,212 and 13,257, respectively. The mesh is shown in Figure 9. The solu-tion time was 7,896 seconds on a DEC Alpha 3000-600 AXP. The larger mesh contained7,537 nodes and 34,645 elements; the solution time was 7,028 seconds on an IBM SP1with 64 processors.Results of the integral formulation are compared with results computed with TOSCA[33] using a very large number of elements and nodes. The end �elds of the dipole alongan arc in the center of the beam chamber computed with GFUNET and TOSCA areplotted in Figure 10. Here, the solid line is the result computed with TOSCA. The resultscomputed with GFUNET are the squares (13,257 elements) and solid circles (34,645elements).The results show that the magnitude of the B-�eld is quite accurate with the lessdense mesh, but the solution slightly oscillates in the region between the poles (l < 372mm). Increasing the number of equations with a factor of two reduces the amplitude ofthe oscillation, but does not remove the problem completely. The oscillation problem ispartly related to the tetrahedral mesh, and another problem is to de�ne which way themesh should be re�ned in order to increase accuracy. (In addition, the order in which theHm-�eld is integrated fromM 's inside the tetrahedra may cause some cancellation errorsin large problems.) In any case, this example clearly indicates that it is possible to solvegeometrically complicated problems with integral equations. Further studies are needed,however, in order to recognize the source of the slight oscillation e�ect.Parallel VersionProbably the main disadvantages of integral equation formulations are the dense ma-trix and the amount of memory and disk space required for data storage. In a parallelcomputing environment the amount of data to be kept in the main memory or stored intoa temporary �le is not such a restrictive problem as in a sequential computer. With alarger number of processors in use, the amount of memory and often also the amount ofdisk space available becomes larger. Therefore, a parallel computer o�ers not only moreprocessing power, but also a platform for solving bigger problems.15



The parallel version we have implemented is based on the formulation following from(30) and (31). The most important routines to run in parallel are the integral equation andJacobian matrix generation, right-hand side generation, and the solver. In the rest of theroutines, the CPU-time and the amount of communication needed among the processorsare unimportant compared with the total CPU-time and the whole computing process.Therefore, details of the rest of the routines are not discussed in depth.We split the matrices rowwise such that each processor generates and updates certainrows of the integral equation matrix and the Jacobian matrix. During generation of thematrices no data broadcasting between the processors is needed. In addition, only a verysmall amount of overlapping data has to be computed on two or more processors. Asa result, the CPU-time needed to generate and update the matrices decreases linearlywith an increasing number of processors. (The matrices are generated by computing thedi�erence in scalar potential between the end nodes of each edge. As the matrices aredecomposed by equations that are related to edges, and since nodes often belong to twoor more edges, several processors may have to compute the same contributions to thesecommon nodes.)A challenging task in developing the parallel version is the solver. Since the matrixresulting from (30) is asymmetric (and nothing else is known), the system of equationshave been solved with LU factorization. We have also developed a parallel version ofa GMRES iterative solver. In general, the solution time of iterative solvers involving adense matrix scale as O(n2) per iteration. The number of iterations is heavily dependenton the initial guess and on the choice of matrix preconditioner. Typically the GMRESiterative solver has been signi�cantly faster than LU factorization in the tests we havecarried out. Because we are still examining the performance of various preconditioners ina parallel computer, no timing results are presented in this paper.In Table 3 timing results for the PAR-dipole magnet and for TEAM problem 13 withdense meshes are shown. The CPU-times of parallelized routines are measured on theleading processor, whereas the total CPU-time is measured in three di�erent manners.The minimum, the maximum, and the average CPU-time taken by the processors areshown in order to give an insight into the balance of the load between the processors.(The Hs-�eld due to currents is computed with relative accuracy. Thus the load inthe RHS generation is not distributed uniformly, and the CPU-time may decrease morequickly than linearly.) Results of the computed �elds are shown in Figures 3, 4, and 10.These results demonstrate the advantages of parallel computing when integral equationsare employed. The most important routines lend themselves to concurrent computing,and a remarkable speedup can be achieved. In addition, because of large amounts of diskspace and main memory, problems leading to very large dense systems of equations canbe solved without di�culty and within reasonable time.CONCLUSIONSIn this paper the theoretical background of a b and h-type volume integral formulation ispresented, demonstrating that volume integral approaches can be developed from the samebasis as partial di�erential equation and hybrid formulations. One can develop several16



Table 3: Timing of various parallelized routines of GFUNETPAR-dipole TEAM 13Numer of nodes 7537 8997Number of elements 34645 39014Number of equations 7536 8995Processors 16 32 64 64LU-solver (s) 948.2 533.0 308.1 504RHS generation (s) 396.3 204.6 71.7 7.2Matrix generation (s) 824.3 412.6 207.6 288Total CPU-time/min (s) 17895 10769 6383 7741Total CPU-time/max (s) 18413 11530 7028 8467Total CPU-time/aver. (s) 18306 11208 6878 8332kinds of integral approaches connected with Whitney elements showing the advantage ofimposing interface conditions as the physics suggests.Numerical results with a sequential and a parallel version of the h-formulation demon-strate that integral equations are useful in applications problems. On the other hand, thedense equation matrix and the large amounts of data one has to store in the memory areinherent problems related to integral equations. In practice, one must have a relativelypowerful workstation, with enough main memory and disk space, or a parallel computer.However, reasonably accurate results can be obtained even with a very small number ofequations, but then the distribution of elements has to be carefully set. This restrictionholds especially for problems in which the magnetic parts are excited below the saturationlevel. If the problem is magnetized above the saturation level, the h integral formulationis e�cient even with a small number of elements.Based on the tests we have carried out, we feel that in the static case integral equationsare competitive in many cases. There are some important advantages of using integralequations in shape optimization, but the main realm is probably in time-dependent prob-lems with moving objects. The fact that one need not discretize air and that exteriorboundary conditions are automatically incorporated o�ers signi�cant advantages in thiskind of problem.ACKNOWLEDGMENTSWe thank Armo Pohjavirta, John Simkin, C. W. Trowbridge, and Larry Turner for helpfuldiscussions. We thank Sean Pratt, Jennifer Rovegno, Diana Tabor, Hania Yassin, and VectorFields, Inc., for their assistance in developing the parallel version of GFUNET. The authorsgratefully acknowledge use of the Argonne High-Performance Computing Research Facility. TheHPCRF is funded principally by the U.S. Department of Energy O�ce of Scienti�c Computing.The work of the third and fourth authors was supported by the O�ce of Scienti�c Computing,U.S. Department of Energy, under Contract W-31-109-Eng-38.17



APPENDIX AReduction of the Double IntegrationLet us assume that matrix Hm in Equation (31) is generated using Equation (30). Inthis case Hm = Pi hmi vi and Hs = Pi hsivi (the hmi 's depend on hj's). Thus the system ofequations can be written in the formXi hi ZVm �vi � vj �Xi hmi ZVm �vi � vj =Xi hsi ZVm �vi � vj; 8vj 2 W 1 \ ker(curl): (36)Since the integral statements on the left- and right-hand side are equal, an equivalentsolution for (36) can be found by solvinghi � hmi = hsi ; 8i = 1; :::; ntree (37)(i.e., the equations in (36) are linear combinations of Eq. (37)).
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Figure 1: A loop formed by a co-tree edge (boldface) and the corresponding path of treeedgesFigure 2: Geometry of TEAM problem 13 (steel parts shaded, the coil in white)Figure 3: Average ux density in the steel plates of TEAM problem 13. Case 1: dottedline; Case 2: dashed line; Case 3: long-dashed line; Case 4 (parallel version results): solidcircles; measurements [34]: solid lineFigure 4: Magnetic ux density in air of TEAM problem 13. Case 1: dotted line; Case2: dashed line; Case 3: long-dashed line; Case 4 (parallel version results): solid circles;measurements [34]: solid lineFigure 5: TEAM problem 13: surface discretization of Case 3 (3,694 nodes; 14,625 tetra-hedra)Figure 6: Left: steel parts of TEAM problem 20. Right: steel parts and the coil of TEAMproblem 20Figure 7: One-fourth of the APS PAR-dipole magnet without coilsFigure 8: Top view of one-fourth of the APS PAR-dipole magnet with the coilsFigure 9: Discretization on the surface of the APS PAR-dipole magnet without the frontplateFigure 10: End �eld of the APS PAR-dipole along the center of the beam chamber.Smaller mesh: squares; dense mesh: solid circles; TOSCA [33]: solid line22


