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SUMMARY

In this paper a discussion of volume integral formulations in three-dimensional nonlin-
ear magnetostatics is presented. Integral formulations are examined in connection with
Whitney’s elements in order to find new approaches. A numerical algorithm based on
an h-formulation is introduced. Results of demanding application problems are shown
demonstrating the characteristics of this kind of volume integral approach. In addition, a
discussion of the parallelized version of the numerical code based on the h-type approach
is presented, appended with numerical results illustrating the advantages of combining
integral formulations with concurrent computing.

INTRODUCTION

A numerical approximation for static or low-frequency electromagnetic problems can be
computed with either partial differential equations (PDEs) or integral equations. Partial
differential equations are often favorable because they offer cost-effective solutions for
three-dimensional problems. Integral equations have their own advantages; for example,
air regions can be excluded, and the exterior boundary condition (i.e., that the magnetic
field vanishes in infinity) is satisfied automatically (see, e.g., [1], [2]). Moreover, in linear
problems, boundary integral equations give often a reasonably accurate solution with a
relative small number of unknowns.

During the past twenty years PDEs have dominated research in the field of numerical
computation of low-frequency electromagnetic fields, and they have almost overwhelmed
the developments in integral formulations. Probably one of the main reasons that integral
equations have not attracted researchers as much as PDEs is the dense integral equation
matrix. It is well known that iterative solvers such as ICCG (incomplete Choleski factor-
ization, conjugate gradient) are effective in solving a sparse systems of equations [3]. On
the other hand, it is not clear how a full system of equations should be effectively solved to
avoid a total execution count of O(n?) with direct methods like LU factorization. PDEs

do not lead to the same problem.

Some groups have developed so-called hybrid formulations in order to combine the desir-
able properties of PDEs and boundary integral equations. This kind of system produces a
matrix that has a dense block whose size is related to the number of nodes on the exterior
boundary; the rest of the matrix is sparse. Hybrid formulations retain the advantages
of having to discretize only nonair (i.e., magnetic and conducting) regions. A difficulty
in hybrid formulations, however, is the size of the dense submatrix: if it becomes large
enough, the sparsity property is lost. Also, in a parallel computing environment, the
equation matrix should be carefully split into submatrices in order to balance the load
between processors. Nevertheless, hybrid formulations are a competitive alternative to
volume integral equations in solving nonlinear problems, having many of the properties
of integral equations but having a less dense, or even a sparse, matrix from the numerical
point of view.

The purpose of this paper is to study the use of integral equations on a workstation and
a high-performance computing environment in order to solve accurately three-dimensional
(3D) nonlinear magnetostatic problems. Our final goal is time-dependent problems; hence,



we have developed and implemented an h-type formulation, which can be generalized to
low-frequency eddy current problems with magnetic materials.

BACKGROUND

One of the first volume integral equation approaches for nonlinear magnetostatics was
the GFUN code, developed in early 1970s [4, 5, 6, 7, 8, 9]. GFUN is based on a piecewise
constant vector approximation of magnetic field strength H inside elements. Components
of H are solved independently within each element; this approach implies that H does not
have any kind of continuity between neighboring elements. As a result, the generation of
the system of equations is simple, and there is also some flexibility in the mesh generation.
For instance, the tesselation by elements does not need to be “finite elements”: two distinct
elements do not have to share a face, an edge, or a vertex.

The GFUN code was shown to be successtul in solving practical problems, but it also led
to some difficulties. The number of unknowns in the system of equations is n = nejements
X 20T = Nejements X 3 for the 2D and 3D case, respectively. This means that in refining
the mesh, the solution time of the integral equation system increases rapidly. In addition,
if susceptibility is large enough, the system matrix becomes illconditioned and causes a
“looping pattern” [8] in the H-field. Results in air are still reasonable, but the H-field
within magnetic parts is useless.

A dense system matrix is inherent to integral equations and thus unavoidable, but
the size of the matrix can be dramatically decreased by approximating field variables in
standard finite element spaces. The looping problem is also avoided by choosing a type
of element that imposes proper continuity properties. The benefits of a proper choice of
basis functions were noticed by Iselin in 1976 [10] and Pasciak in 1983 [11]. They both
introduced a volume integral formulation based on scalar potentials and “nodal elements.”
Recently, Lin Han et al. also published a scalar potential formulation [12].

A good understanding of different formulations and possibilities can be achieved by
examining Whitney elements and integral equations together. Whitney elements are a
class of finite elements (named after English mathematician H. Whitney [13].) Whitney
elements were introduced by Bossavit in connection with computational electromagnetics
[14, 15, 16, 17]. During the past five years, Whitney elements have become popular and
widely used by scientists and engineers in the numerical analysis of electromagnetic fields.
Whitney elements offer a natural basis for imposing correct physical continuity properties
on electromagnetic fields. They differ from traditional elements in the sense that the
degrees of freedom are related to all kinds of simplices in a simplicial mesh, that is, to
edges and to facets as well to nodes. Depending on which simplex the degrees of freedom
are related to, these elements are often called nodal, edge, facet, or volume elements.

A integral formulation based on edge elements was introduced by Albanese and Rubi-
nacci, who developed a formulation for eddy current problems with nonmagnetic materials
[18], [19]. The formulation presented in this paper complements Albanese and Rubinacci’s
approach in the sense that a combination of these two formulations is capable of solving
eddy current problems with magnetic materials.



FINITE ELEMENT SPACES

In this section we summarize the background of Whitney elements, based on the articles

published by Bossavit [14, 15, 16, 17, 20].

Let us take a bounded region of space V. The surface of V' is S. Region V is split into
a finite number of tetrahedra such that the tesselation satisfies the standard properties of
finite element meshes: two distinct tetrahedra share nothing, a node, a proper edge, or a
proper facet. It is also assumed that curved surfaces are approximated with straight-sided
tetrahedra. The sets of nodes, edges, facets, and tetrahedra are denoted N, K. F', and T',
respectively. All nodes are numbered, and a node connectivity list is formed for the edges,
facets, and tetrahedra: node n = {i}, edge e = {17, j}, facet f = {1,, k}, and tetrahedron
t ={i,J,k,1}. Coordinates of node n = {i} are denoted with r;.

Our purpose is to consider functions and vector fields constructed with Whitney ele-
ments. Having a set of degrees of freedom and basis functions, the functions and vector

g = Zgi w; . (1)

fields are linear combinations

Finite element spaces W? spanned by the basis functions are generated by elements of
degree p associated with p-simplices, p = 0,1, 2,3 (for nodes, edges, facets, and tetrahedra,
respectively). The barycentric function A; is a piecewise linear continuous function in
V', which equals 1 in r;, is positive in tetrahedra sharing n = {i}, and equals 0 inside
tetrahedra that do not contain vertex n = {i}. The basis functions that span spaces W©,

Wt and W? are
w, = X, n=/{i}, (2)
we = ANV =MNVA, e={ij}, (3)
wr = 20V X VAL 4+ VA x VA + VA x V), f={e, 5k} (4)

As can be seen, the basis function w, of node n is equivalent to that of a classical
Lagrange element of order 1. It can be shown that a scalar field in W° is continuous,
a vector field in W' is tangentially continuous, and a vector field in W? has normal
continuity.

In constructing ¢’s, the degrees of freedom are g; = ¢(ri), 9. = [. g, and gy = [; g (i.e.,
g at ry, circulation of ¢ along edge e, flux of g across facet f), for p = 0,1, 2, respectively.

Spaces W W1, W2, and W? are related to each other such that
grad W° c W', curl W' C W2, div W* C W*. (5)

In other words, grad w, and curl w, are a linear combination of some w.’s and wy’s,
respectively. Once the simplices are numbered, one can form incidence matrices G, C,
and D, which represent the incidence relations between the simplices. For example, the
size of G 1S Negdes X Npodes, and all the entries of G are —1, 0, or 1. If V and S are simply
connected, we can write

grad ¢p = Z{(Ggf))ewe | e€ E}. (6)
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A property between W and W1, which is useful in developing integral formulations,
can now be easily verified: the kernel of curl in W' is exactly grad W°. Similarly, the
kernel of div in W? is precisely curl W?'. These injective properties are shown with a
sequence

div
—

d [
wo s w2 W w3,

Similarly for the vector spaces W?, p = 0, 1, 2, 3, spanned by the vectors of the degrees
of freedom, one can form a sequence (assuming simply connected V and 5)

we G w! S w2 B, we.

TREE-CO-TREE SEPARATION

Heretofore we have considered how one Whitney space can be mapped into a kernel of
another one (rightmost to it in the sequence). For integral equations, we wish also to know
the inverse: we wish to represent a gradient, curl, or div field using edge, facet, or volume
elements, respectively. For instance, since the kernel of curl in W1 is exactly grad W°,
there exists a set of degrees of freedom that represents a gradient field in W' (assuming
simply connected V). Similarly there is a set of degrees of freedom representing a curl
field in W?2. From a practical point of view, there is a problem in selecting an independent
set of degrees of freedom. This problem was indirectly solved by Albanese and Rubinacci
[18, 19]. They implied a “two-component gauge” [21]

T-u=20 (7)

for vector potential 7' by forming a co-tree from the graph of all edges in the mesh and
disregarding the degrees of freedom associated with the tree edges. The purpose of a
gauge is to remove the choice of an arbitrary gradient field related to a vector potential;
that is, a gradient field can be added to the vector potential without altering the curl
of it. In Albanese and Rubinacci’s case, the number of unknowns was decreased by the
number of tree edges, to remove the arbitrary choice of a gradient field.

Let us denote the number of edges with n.4..s and the number of edges in a tree with
Neree- By definition of a tree, tree edges connect all the nodes of a mesh without forming
any closed loops. Thus, by interpeting the edge-circulations along tree edges as differences
in scalar potential, (in a simply connected region) a scalar potential field in W can be
formed up to a constant. The gradient of this scalar field is in the kernel of curl in
W1, Thus, if we wish to approximate a gradient field in W', the number of independent
unknowns equals the number of tree edges in the mesh. All the edge-circulations along
co-tree edges can be defined with the aid of tree edges, since the sum of the degrees of
freedom around any closed path formed by a co-tree edge and the corresponding set of
tree edges must be zero (Fig. 1). Thus, after a tree is formed and all the edges are
numbered, a rectangular incidence matrix R, entries of which are all —1, 0, or 1, can be



formed (the size of R is negges X Niyree), and the degrees of freedom h can be calculated
with the coefficients h' of tree edges:

h = Rh'. (8)

In the same manner a curl field can be represented, with the degrees of freedom asso-
ciated with a set of facets that does not possess any closed volumes. (The sum of the
degrees of freedom around any closed surface must be zero.) An incidence matrix S simi-
lar to R can be formed, and all the degrees of freedom b are found from a reduced set of
coefficients b':

b — Sb'. (9)
A gradient field b in W1 is thus
Nedges Nedges Ntree Nedges Ntree
h = Z how, = Z Rh').w, = Z h( Z weR: ;) = Z hiv; . (10)
e=1 e=1 e=1 =1

The new basis functions v associated with the tree edges are hence linear combinations
of w.’s. Similarly, we find basis functions for a curl field b in W2, If we form a set of
facets that does not possess closed volumes, we can define new basis functions v, which
are linear combinations of w;’s:

b:bewf:Zbﬁvj . (11)
! J

Hence we have three alternatives for expressing a gradient field A = grad ¢ or a curl field
h = Z On grad w, = Z:hew6 = Zhive \ (12)
b:Z:a6 curl w6:bewf :Zbl}vf ) (13)

e ! !

b= curl a:

INTEGRAL FORMULATIONS AND VARIOUS ALTERNATIVES

Let us denote magnetic flux density with B, magnetic field strength with H, and mag-
netization with M. A physical description of magnetostatic fields can be developed using
the idea of superposition of fields from current and magnetization sources. Let B* and
H?® be B and H from current sources in the absence of magnetic materials, respectively.
Fields caused by magnetization are denoted with B™ and H™. The total B and H fields
are hence

B=B"+ B (14)

and

H=H"+H. (15)

Source fields B® and H* generated by currents J are constructed as follows:

A%(r) = fﬂly/’ I g (16)
47TVS |r — /|



B? = curl A*, and H® = %OBS. V* is the region where J(r) # 0. Fields B™ and H™ are
given by

po [ M) x(r—r'),
Ay =12 | d 1
=t [ ML (1
Vm
(X is a cross product) B™ = curl A™, and

JE— / . —_— /

H™(r) = —B™ — M = grad —1/ MO =) gl = _grad g (18)
o 47rvm lr — /|

The subregion of V', where y # 0, is denoted by V™. Assuming isotropic materials, H
and B are related to magnetization M such that

M = x(|H|)H (19)
and | |
M=~ ammn? (20)

Let us assume that V™ and S™ are simply connected. B and H are approximated in
W? and W1, respectively. Multiplying Maxwell’s equations

VxH=J (21)

and

V-B=0, (22)

with appropriate test functions a’ and 1’, respectively, and applying integral relationships
(i.e., theorems analogous to Green’s first identity), we get

1 1 1
/(a’ X —curl A)-n — / curla - —curl A™ = / curla' - — B? (23)
Sm # Vm # Vm #
and p
/ 'Mbld_f + / grad 'y grad ¢ = / gradp’ - uH* . (24)
Sm vm vm
From (23) and (24) we get the following variational forms:
1 / 1 / 1 / / 2 .
/—B-b—/—Bm-b:/—Bs-b, Vo € W2 ker(div) (25)
f f f
Vm Vm Vm
and
/ pH - b — / pH™ - h' = / pH® b, YR e W N ker(curl). (26)
vm vm vm

In Equations (23)—(26), any (simply connected) region where J = 0 can be selected
instead of V. We call (25) and (26) b- and h-type volume integral formulations. As

7



expected, the background of the integral equation approach is similar to that of PDEs
and hybrid formulations. For instance, (26) can be interpreted as arising from the same
ground as the PDE scalar potential formulations [22] or the h-type hybrid formulations
[17], [23]. Similarly, the weighted residual form of GFUN by Simkin [24] can now be
understood to be related to Equations (22), (24), and (26).

We have now several alternatives for generating a numerical algorithm. We can either
use the b-formulation and solve a or bt from (13) and (25), or use the h-formulation (26)
and solve ¢ or h from (12) and (26). If the b-formulation is used and a is selected, a
gauge A-wu similar to Albanese and Rubinacci’s gauge has to be added in order to achieve
a unique solution [25].

Theoretically, assuming exact arithmetic, the solution is the same whether a or b’ is
solved. The same holds also for ¢ and h'. From the numerical point of view, however,
there are some differences. If b* or h' is solved, one has to form a set of facets or edges
that does not possess closed volumes and loops, respectively. In addition, one has to form
a connectivity list, including data on how the coefficients of the rest of the facets or edges
can be expressed in terms of the coefficients of this independent set. This requires extra
operations generating the integral equation matrix, compared with the case if a or ¢ is
chosen to be solved.

Another aspect of the comparison of the formulations is the possibility of generalization
to a larger class of problems. If J(r) # 0 in V™, H fails to be a gradient field, and
then it is sensible to choose h to be solved. The most interesting class of problem where
J(r) # 0 in V™ is the low-frequency (i.e., eddy current) problems. If h is chosen as
a solution variable in the static case, the formulation can be combined with the eddy
current formulation by Albanese and Rubinacci [18],[19] for time-dependent problems. In
the static limit, the solution variable is h'. In the time-dependent case, if the system has
no magnetic parts, then t is solved (i.e., circulations of electric vector potential 7" along
the co-tree edges); if there are magnetic and conducting objects, the solution variable is

h (along all the edges).

The choice between a b- or an h-formulation depends on the type of problem, and it is
difficult to predict which one gives more accurate results with the same amount of work.
In fact, having both a b- and an h-type of solution would be optimal, in the sense that
with both solutions one has an indicator of how the mesh should be refined.

At this point we have chosen the h-formulation of Equation (26) with h* as a solution
variable for implementation. We have some practical reasons for this choice. First, as
already mentioned, this approach has a natural extension to eddy current problems. Sec-
ond, the number of unknowns is n-1 for each distinct region, where n is the number of
nodes in the region. A b-formulation typically has far more unknowns. (The ratio of the
number of tree edges and co-tree edges is 1:6 for a regular infinite mesh.) Finally, the
amount of temporary data needed to store during the iteration of nonlinear solution is
smaller with the h-formulation. In the generation of the integral equation matrix one has
to form data that depends only on the geometry. In order to avoid regeneration of this
information, the data is stored on a temporary file. In the case of (26), we have to store



(Netements X Niree X 3) real numbers (in either single or double precision). A b-formulation
requires (Neiements X Neotree X 3) Numbers to be stored.

NUMERICAL IMPLEMENTATION

In V™ H is a gradient field and we need to solve only the degrees of freedom h? related
to the tree edges. Thus H is given by

H=> hlov. . (27)

The integral equation matrix L is the sum of two matrices H and H™. Element {7, j} of
matrix H is

Hi,j = / HU; - Uy (28)

Vm

The entries of H™ are

m vi(r) -vi(r') — 3(vir) - (r =) (v(r') - (r = 1'))
H =— / / u(r)x(r’)[ e e p— dodv' . (29)
Vm Vm
An alternative approach of forming matrix H™ is to approximate H™ in W, that is, in
the same finite element space as H. In this case element {7, 5} of H™ is defined by

| — 1|3

= — / ,u(r)vi(r)-zezve[kz;(—l)k / M) - = 17) . (30)

The degrees of freedom associated with H™ are equivalent to the differences in scalar
potential between the end nodes of edges. Therefore, Equation (30) includes an additional
sum statement, which is denoted with index k. Here, {ry | k = 1,2} are the end nodes of
edge e.

The system of equations to be solved is now

tht6 =(H+ Hm)hi =f, (31)
where f contains the terms due to source currents:

fi= [ bz v (32

Vm

The resulting integral equation matrix is asymmetric with both choices of matrix H™.
In the case of (29) a symmetric matrix is, however, available by multiplying both sides of

(26) with x/u.

Main Parts of the Software



We have implemented the h-formulation of (26) with both options of forming H™ (i.e.,
(29) and (30)). In addition, we have written a parallel version with H” formed as in (30).
The code we have developed is called GFUNET.

The main parts of the software are routines that find a tree, form the paths correspond-
ing with co-tree edges, generate the integral equation and Jacobian matrix, compute the
terms on the right-hand side, and solve the system of equations.

The data of a tree and paths corresponds with the nonzero entries of the incidence
matrix R in (8). Earlier, we chose a tree rather arbitrarily, but recently we have changed
the tree generation routines. A tree is spanned from a “root node,” and we attempt to
minimize the number of edges in paths (a path is a set of tree edges that connect the end
nodes of a co-tree edge). The purpose of the minimization of the length of paths is related
to iterative solvers. If the paths are short and the indices of edges properly set, the entries
of the matrix with the largest absolute value come closer to the diagonal. Otherwise we
have not encountered the choice of a tree to be significant. The CPU-time required to
form a tree and the corresponding paths is usually fractions of seconds and in any case
meaningless compared with the total execution time.

The terms on the right-hand side are integrated analytically or semi-analytically using
Biot-Savart’s law. To compute the circulation of H?® along edges, one may select Gaussian
integration with a fixed number of integration points or an adaptive scheme.

The routines requiring the most CPU-time are the integral equation matrix generation
and the solver. At first glance it may seem that the matrix generation becomes very
complicated because the data of the tree and the corresponding paths has to be involved
in the system of equations. In practice, however, the integral equation matrix can be built
efficiently without allocating any extra memory.

To reduce the number of coefficients locally from six to three, we first define a local tree
and a local basis for each tetrahedron [25], [26]. A tetrahedron has four nodes, and thus a
local tree has three edges. Let us denote a tetrahedron with V*. The local basis functions
are constant vectors in V', Thus H is a constant vector and y a scalar in V*. Let us now
consider (31) with H” formed as in (30). We may rearrange terms of Eq. (30) such that

T’|3 t |7“—7“’|3 '

/ X(r’)ﬁir’_) =) gt = o) - [ (33)

Excluding susceptibility, the rest of the terms on the right-hand side of (33) depend
solely on the geometry of the problem. Computation of these terms requires a major
part of the time needed to generate the integral equation matrix. Therefore these terms
are computed only once and then stored in a file to be read during solving a nonlinear
problem by iteration. This is, however, a critical part of the integral formulation. The
size of these files is (Nejements X Niree X 3) entries, and they easily become very large.
Unfortunately, this property is inherent in integral equations, since all the entities have
a contribution to each other. (However, the GFUN code does not suffer from a similar
problem; susceptibility can be removed by division from the entries of the matrix, because
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of the lack of tangential continuity in H. On the other hand, the integral equation matrix
of GFUN requires even more space than our temporary data storage files.)

In Equation (33), terms
o
o(r) - [ —— (34)
lr — /|
Vt
can be integrated analytically. In the software we have a flag that can be set to employ
either fully analytic integration or numerical integration combined with analytic integra-
tion for the self-field terms. In our experience, it seems that from the practical point of
view all the other terms except those for which r € V' can be integrated numerically

without losing accuracy.

If matrix H™ is chosen as in (30), it can be shown (Appendix A) that is not necessary
to form the second volume integral at all. Assuming exact arithmetic, the solution is
precisely the same whether or not the second volume integral is taken into account.

If H™ is formed according to (29), the first integral can be carried out analytically and
the second numerically. The drawback of this alternative is the amount of space needed
for temporary data storage. There is even more data to be stored than in the case of
(30). (The amount of data depends on the number of integration points.) In addition, in
our experience, results of this option are in all cases inaccurate compared with the results

based on (30).

The system of equations resulting from (30) and (31) is nonsymmetric. We have used
LU factorization with back substitution and the generalized minimal residual (GMRES)
iterative solver with restart option to solve the system of equations. The efficiency of the
GMRES solver depends on the preconditioner, on the number of cycles before restart,
and on the initial guess. To achieve the full performance of a GMRES solver requires
considerable testing, and we are still examining different options.

The nonlinear problem due to y = y(|H]) is solved by iteration. An initial guess for
Y is inserted, and typically we first iterate five to eight cycles with simple update of
susceptibility before switching to Newton-Raphson iteration. In the generation of the
Jacobian matrix, the precomputed geometry-dependent data is used. The time needed
to generate the Jacobian matrix is typically only 1.25-2.0 times greater than the time
needed to update the integral equation matrix.

The parallel version is based on Chameleon parallel programming tools [27], which
provide a low-overhead interface to many vendors’ message-passing libraries. Chameleon
also supplies a uniform interface for program startup. In combination with message-
passing packages such as p4 [28] or PVM [29], [30], the software needs no changes to run on
a collection of workstations connected via Ethernet as well as on parallel supercomputers.

In the parallel version, each processor generates a rowwise decomposed block of the
integral equation matrix (and the right-hand side) without any data broadcast. After the
solution of the system of equations, the leading processor collects the solution vector and
tests the convergence of the nonlinear iteration. If more cycles are needed, each processor

11



updates susceptibility data and its block of the matrix.
TEST RESULTS AND APPLICATIONS

In this section we give results demonstrating characteristics of the integral formulations.
The first two examples are the international TEAM benchmark problems number 13
and 20 [31], [32]. The third example is a positron accumulator ring dipole magnet of
the Advanced Photon Source (APS) of Argonne National Laboratory. For the first two
examples, measured data is available. The results of the integral formulation of the last
problem are compared with the solution computed by TOSCA [33], which is a commercial
FEM software for nonlinear 31D magnetostatics.

The applications were chosen such that they also demonstrate the difficulties we have
experienced. In addition, in the results shown in this paper no particular attempt has
been made to minimize the computing time. The options of the code were those we
have found reasonable in general. The results are reported as much as possible as if the
software were used as an engineering tool. All the sequential results are computed on a
DEC Alpha 3000-600 AXP and the parallel results on an IBM SP1 with RS/6000 model

370 processors.
TEAM Problem 13

TEAM problem 13 consists of thin steel plates, which are excited below the saturation
level (Fig. ) [31]. One of the main difficulties in the problem is a narrow air gap between
the steel plates. The groups who have solved the problem agree that a high number of
elements is required in order to achieve accurate results below the saturation level [34].

We have conducted many experiments with problem 13 and found that, even with a
small number of elements, results are not unreasonable. This seems to be a characteristic
feature of the h-type integral formulation. Thus we exploit the advantage of being able
to compute reasonable results quickly with a small amount of elements by interpolating
an initial guess from an existing solution. The number of cycles and the total computing
time of a large problem are in many cases reduced by inserting a better initial guess than
just a constant susceptibility in each material.

In our case, one-fourth of TEAM problem 13 has to be discretized. Results of the
benchmark problem computed with three different discretizations are shown in Figs. 3
and 4. The number of nodes, elements, and equations with the charged CPU-times of the
main parts of the sequential code are shown in Table 1.

We believe that TEAM problem 13 fits well with integral equations. Because only
magnetic regions have to be discretized and the steel plates are thin, a relatively large
number of elements can be concentrated close to the air gap and to the bend of the
plates (Fig. 5). With PDEs such a refinement of tetrahedra would contain also numerous
elements in the air close to the gap and the bend.

In this kind of problem consisting of thin plates, one may argue that a hybrid formulation
is not, in principle, any better than a volume integral approach. The ratio between the
interior nodes and the exterior nodes is very small; thus, from the numerical point of view,
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Table 1: Timing of the main parts of GFUNET: TEAM problem 13 with three different

meshes

Case 1 2 3
Number of nodes 184 803 3694
Number of elements 487 2503 14625
Number of equations 182 801 3692
Tree generation (s) 0.01  0.16 3.0
Path generation (s) 0.002 0.003  0.03
RHS generation (s) 7.6 30.9 141
Matrix generation (s) 52 100 2692
Matrix update (s) 0.08 2.7 157
Jacobian generation (s)  0.15 4.4 237
LU-solver (s) 0.09 3.9 348
Number of iterations 13 10 11
Total CPU-time (s) 16.0 207 8809

the sparsity property of the equation matrix of the hybrid formulation is lost. Therefore,
in both cases, one has to solve a dense system of equations.

TEAM Problem 20

TEAM problem 20 (Fig. 6) offers a good test example for studying the accuracy of
force calculations, because measured data is available [32]. As in problem 13, problem 20
includes narrow air gaps between two separate pieces of steel. The air gaps cause some
difficulties in computing the force between the distinct parts, if integral equations are
used.

First of all, if the force is computed with Maxwell’s stress tensor, the solution is affected
by large numerical errors in the magnetic field just outside the steel. The errors are due
to the fact that the element or elements close to point in air where the field has to be
computed dominate the solution. In the case of problem 20, one should have a very large
number of elements close to the air gaps to avoid this problem. Compared with integral
equations, PDEs have the benefit of offering easy and quick computation of the energy
stored in the magnetic field. This allows the use of virtual work to estimate forces. With
integral equations such an approach is not as practical, because the energy is not easily
available. (Neither virtual work or Maxwell’s stress tensor is optimal, however, because
they are both known to be somewhat unstable in numerical computation.)

For these reasons we have looked at the option of interpreting magnetization with
equivalent currents: J” = curl M and K™ = M x n. Once the current distribution
is found, the forces between magnetic parts can be integrated:

F:/meB—l—/KmxB. (35)
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Table 2: Forces of TEAM problem 20 with three different meshes

Case 1 2 3 Measured
Number of nodes 155 1013 2869
Number of elements 366 3815 12562
Number of equations 153 1011 2867

Total CPU-time (s), 1000 AT 13.7 490.6 5590
Total CPU-time (s), 3000 AT 10.3 278.5 3137
Total CPU-time (s), 4500 AT 12.4 250.9 3185
Total CPU-time (s), 5000 AT 12.3 262.1 3076

Force F, (N), 1000 AT 9.3 8.6 8.6 8.1+ 4%
Force F, (N), 3000 AT 62.3 573 57T 544 4+ 4%
Force F, (N), 4500 AT 82.1 777 781 75.0 + 4%
Force F, (N), 5000 AT 872 829 834 80.1 +4%

In our case, J™ vanishes within the tetrahedra, and we have to deal only with surface
current density K. This approach seems to be robust with our A-formulation. In addi-
tion, the use of equivalent currents is straightforward and does not require expertise in
choosing integration surfaces as Maxwell’s stress tensor does. In practice, we compute B
analytically and integrate the cross product over facets numerically with Gaussian inte-
gration. The drawback of this approach is the time-consuming analytic integration of B.
(This efficiency of force computations could be further improved by combining numerical
and analytic integration.)

The forces computed with the sequential version are compared with the measured data
in Table 2. (The reproducibility of the measurements is 4 % [35].) The accuracy of the
computed forces of case 1 is noteworthy. Even when the charged CPU-time is less than
15 seconds, the accuracy is about 10%. (The charged CPU-time of the cases [ = 1000
AT is bigger than the others because the geometric-dependent data has to be formed
only once for each mesh.) On the other hand, with an increasing number of elements,
convergence toward the measured values is slow. At this stage TEAM problem 20 has
been available only for a short time, and it is too early to say how accurately the measured
values will match results computed with various methods. (There is always the difficulty
of defining accurately the BH-curve.) However, we have observed that the accuracy of
the h-type integral formulation is sensitive to the distribution of elements. It is often
quite difficult to predict how the mesh should be refined to increase overall accuracy. In
our experience, each problem has some critical regions that must be properly discretized.
Refining the mesh somewhere else seems to have only small, if any, effect on the accuracy
of the solution.

APS PAR-Dipole Magnet

The last example is a dipole magnet from the Advanced Photon Source at Argonne
National Laboratory. The poles are curved, and the magnet has shielding plates in front
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of the coils. In addition, the ends of the poles are beveled (Figs. 7 and 8). Because the
geometry is nontrivial, this problem is a challenging test for integral formulations. One
difficulty with integral methods is the amount of memory needed for the matrix, which
increases as O(n?), where n is the number of equations. Therefore, the maximum number
of equations is fairly easily met (in a sequential computer), if geometrically complicated
problems are solved.

The main difficulty in solving particle accelerator magnets with the h-type integral
formulation is to identify a suitable discretization. We have found that the magnetic field
between the poles of a dipole, a quadrupole, or a sextupole magnet is sensitive to the
finite element mesh. Unless the mesh is properly refined, the B-field in the air gap tends
to oscillate and to be slightly excessive.

Because of symmetry, one-fourth of the APS dipole magnet has to be discretized. We
experimented with two different meshes. In the smaller case the number of nodes and
tetrahedra were 3,212 and 13,257, respectively. The mesh is shown in Figure 9. The solu-
tion time was 7,896 seconds on a DEC Alpha 3000-600 AXP. The larger mesh contained
7,537 nodes and 34,645 elements; the solution time was 7,028 seconds on an IBM SP1

with 64 processors.

Results of the integral formulation are compared with results computed with TOSCA
[33] using a very large number of elements and nodes. The end fields of the dipole along
an arc in the center of the beam chamber computed with GFUNET and TOSCA are
plotted in Figure 10. Here, the solid line is the result computed with TOSCA. The results
computed with GFUNET are the squares (13,257 elements) and solid circles (34,645
elements).

The results show that the magnitude of the B-field is quite accurate with the less
dense mesh, but the solution slightly oscillates in the region between the poles (I < 372
mm). Increasing the number of equations with a factor of two reduces the amplitude of
the oscillation, but does not remove the problem completely. The oscillation problem is
partly related to the tetrahedral mesh, and another problem is to define which way the
mesh should be refined in order to increase accuracy. (In addition, the order in which the
H™-field is integrated from M’s inside the tetrahedra may cause some cancellation errors
in large problems.) In any case, this example clearly indicates that it is possible to solve
geometrically complicated problems with integral equations. Further studies are needed,
however, in order to recognize the source of the slight oscillation effect.

Parallel Version

Probably the main disadvantages of integral equation formulations are the dense ma-
trix and the amount of memory and disk space required for data storage. In a parallel
computing environment the amount of data to be kept in the main memory or stored into
a temporary file is not such a restrictive problem as in a sequential computer. With a
larger number of processors in use, the amount of memory and often also the amount of
disk space available becomes larger. Therefore, a parallel computer offers not only more
processing power, but also a platform for solving bigger problems.
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The parallel version we have implemented is based on the formulation following from
(30) and (31). The most important routines to run in parallel are the integral equation and
Jacobian matrix generation, right-hand side generation, and the solver. In the rest of the
routines, the CPU-time and the amount of communication needed among the processors
are unimportant compared with the total CPU-time and the whole computing process.
Therefore, details of the rest of the routines are not discussed in depth.

We split the matrices rowwise such that each processor generates and updates certain
rows of the integral equation matrix and the Jacobian matrix. During generation of the
matrices no data broadcasting between the processors is needed. In addition, only a very
small amount of overlapping data has to be computed on two or more processors. As
a result, the CPU-time needed to generate and update the matrices decreases linearly
with an increasing number of processors. (The matrices are generated by computing the
difference in scalar potential between the end nodes of each edge. As the matrices are
decomposed by equations that are related to edges, and since nodes often belong to two
or more edges, several processors may have to compute the same contributions to these
common nodes.)

A challenging task in developing the parallel version is the solver. Since the matrix
resulting from (30) is asymmetric (and nothing else is known), the system of equations
have been solved with LU factorization. We have also developed a parallel version of
a GMRES iterative solver. In general, the solution time of iterative solvers involving a
dense matrix scale as O(n?) per iteration. The number of iterations is heavily dependent
on the initial guess and on the choice of matrix preconditioner. Typically the GMRES
iterative solver has been significantly faster than LU factorization in the tests we have
carried out. Because we are still examining the performance of various preconditioners in
a parallel computer, no timing results are presented in this paper.

In Table 3 timing results for the PAR-dipole magnet and for TEAM problem 13 with
dense meshes are shown. The CPU-times of parallelized routines are measured on the
leading processor, whereas the total CPU-time is measured in three different manners.
The minimum, the maximum, and the average CPU-time taken by the processors are
shown in order to give an insight into the balance of the load between the processors.
(The H*-field due to currents is computed with relative accuracy. Thus the load in
the RHS generation is not distributed uniformly, and the CPU-time may decrease more
quickly than linearly.) Results of the computed fields are shown in Figures 3, 4, and 10.

These results demonstrate the advantages of parallel computing when integral equations
are employed. The most important routines lend themselves to concurrent computing,
and a remarkable speedup can be achieved. In addition, because of large amounts of disk
space and main memory, problems leading to very large dense systems of equations can
be solved without difficulty and within reasonable time.

CONCLUSIONS

In this paper the theoretical background of a b and h-type volume integral formulation is
presented, demonstrating that volume integral approaches can be developed from the same
basis as partial differential equation and hybrid formulations. One can develop several
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Table 3: Timing of various parallelized routines of GFUNET

PAR-dipole TEAM 13

Numer of nodes 7537 8997
Number of elements 34645 39014
Number of equations 7536 8995
Processors 16 32 64 64

LU-solver (s) 948.2  533.0 308.1 504
RHS generation (s) 396.3  204.6  TL.7 7.2
Matrix generation (s) 824.3 412.6 207.6 288
Total CPU-time/min (s) 17895 10769 6383 7741
Total CPU-time/max (s) 18413 11530 7028 8467
Total CPU-time/aver. (s) 18306 11208 6878 8332

kinds of integral approaches connected with Whitney elements showing the advantage of
imposing interface conditions as the physics suggests.

Numerical results with a sequential and a parallel version of the hA-formulation demon-
strate that integral equations are useful in applications problems. On the other hand, the
dense equation matrix and the large amounts of data one has to store in the memory are
inherent problems related to integral equations. In practice, one must have a relatively
powerful workstation, with enough main memory and disk space, or a parallel computer.
However, reasonably accurate results can be obtained even with a very small number of
equations, but then the distribution of elements has to be carefully set. This restriction
holds especially for problems in which the magnetic parts are excited below the saturation
level. If the problem is magnetized above the saturation level, the h integral formulation
is efficient even with a small number of elements.

Based on the tests we have carried out, we feel that in the static case integral equations
are competitive in many cases. There are some important advantages of using integral
equations in shape optimization, but the main realm is probably in time-dependent prob-
lems with moving objects. The fact that one need not discretize air and that exterior
boundary conditions are automatically incorporated offers significant advantages in this
kind of problem.
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APPENDIX A
Reduction of the Double Integration

Let us assume that matrix H™ in Equation (31) is generated using Equation (30). In
this case H™ =Y, hv; and H®* = Y, hiv; (the h7"’s depend on h;’s). Thus the system of

equations can be written in the form
Z h; / (g - v; —Z h / po; - v; = Z hi / @i - v;, Yo, € W ker(curl). (36)
i m i vm i Vm

Since the integral statements on the left- and right-hand side are equal, an equivalent
solution for (36) can be found by solving

hi — B = b3, Wi=1, ., e (37)

(i.e., the equations in (36) are linear combinations of Eq. (37)).
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Figure 1: A loop formed by a co-tree edge (boldface) and the corresponding path of tree
edges

Figure 2: Geometry of TEAM problem 13 (steel parts shaded, the coil in white)

Figure 3: Average flux density in the steel plates of TEAM problem 13. Case 1: dotted
line; Case 2: dashed line; Case 3: long-dashed line; Case 4 (parallel version results): solid
circles; measurements [34]: solid line

Figure 4: Magnetic flux density in air of TEAM problem 13. Case 1: dotted line; Case
2: dashed line; Case 3: long-dashed line; Case 4 (parallel version results): solid circles;
measurements [34]: solid line

Figure 5: TEAM problem 13: surface discretization of Case 3 (3,694 nodes; 14,625 tetra-
hedra)

Figure 6: Left: steel parts of TEAM problem 20. Right: steel parts and the coil of TEAM
problem 20

Figure 7: One-fourth of the APS PAR-dipole magnet without coils

Figure 8: Top view of one-fourth of the APS PAR-dipole magnet with the coils

Figure 9: Discretization on the surface of the APS PAR-dipole magnet without the front
plate

Figure 10: End field of the APS PAR-dipole along the center of the beam chamber.
Smaller mesh: squares; dense mesh: solid circles; TOSCA [33]: solid line
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