
MATLAB Implementation of W -MatrixMultiresolution AnalysesMan Kam Kwong�Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4844E-mail: kwong@mcs.anl.govAbstractWe present a MATLAB toolbox on multiresolution analysis basedon the W -transform introduced by Kwong and Tang. The toolboxcontains basic commands to perform forward and inverse transformson �nite 1D and 2D signals of arbitrary length, to perform multires-olution analysis of given signals to a speci�ed number of levels, tovisualize the wavelet decomposition, and to do compression. Exam-ples of numerical experiments are also discussed.1 IntroductionIn [3], Kwong and Tang introduced the concept ofW -matrices and used themto construct nonorthogonal multiresolution analyses applicable to �nite sig-nals of arbitrary length. We refer the readers to Chui [1] and Daubechies [2]and the bibliographies therein for the classical theory of wavelets. Multires-olution analysis is popularized by Mallat [4].�This work was supported by the O�ce of Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. 1



A W -matrix is generated by a pair of suitably chosen vectors. The fam-ily of W -matrices of di�erent sizes generated by the same pair of vectorsde�nes a W -matrix transform (or, more brie
y, W -transform) on �nite sig-nals represented by vectors. It is simply the multiplication of the vector bya matrix of the appropriate size in the family, followed by splitting up theproduct vector into its odd-component and even-component vectors. A mul-tiresolution analysis refers to repeated applications of the W -transform tothe odd-component output signal. See Section 3 and [3] for more details.The most important property of a W -matrix, which is crucial to its prac-tical value, is that both the matrix and its inverse have only a small numberof nonzero elements in each row and each column.It was demonstrated in [3] that a particularly useful special case is thequadratic spline (QS) matrix. It is of order 4: each row and column hasat most four nonzero elements. By varying six parameters, one can obtainother W -transforms, including the well-known Daubechies D4 transform oforder 4. One may optimize to choose the best transform for a given particularapplication. W -matrices of any order are possible, but only those of order 4are covered in this paper.In the rest of the paper, we present a MATLAB toolbox of the generalW -transform of order 4. Our goal is to write highly versatile and user-friendlycommands that are suitable for carrying out both interactive and batch ex-periments. To this end, we design the commands to be able to provide defaultvalues to as many input arguments as possible, and to take di�erent actionsaccording to the form of the input arguments. See Section 3.1.MATLAB toolboxes based on classical orthogonal wavelets are availablein the public domain. Examples are TeachWave (David L. Donoho), Wavelet-Tools (Je�rey C. Kantor), and WavBox (Carl Taswell). They, of course, donot have our new transforms.Section 2 is an overview of the available commands. It serves also as atutorial. Section 3 gives detail explanations of the coding of each command.Section 4 presents examples of M-�les used for experimentation. Section 5contains information on how to obtain the toolbox.2



2 Overview of CommandsWe assume that the readers are familiar with MATLAB, both as an inter-active package and as a programming language, and that the M-�les of thecommands discussed in this paper have been properly installed (see Sec-tion 5). The best way to proceed is to invoke a MATLAB session and trythe following hands-on tutorial.First let us generate a sample signal to experiment with.>> t = 0:0.01:1;>> x = t .* sin(20*t);The �rst line generates a linear vector t, useful as a shorthand in thenext line to construct x (or additional sample signals in the future). Anotherinteresting sample signal is x = t .* cos(10*t) .* sin(20*t).The command to invoke a W -transform is kwt. In its simplest form>> y = kwt(x);transforms x into a new vector y using the default QS transform. To seewhat kwt does to x, we graph both the input and output vectors using>> plot(x), plot(y)
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Figure 1. Plot of original signal x = t sin(20t)3
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Figure 2. Plot of the QS transform of xOne sees clearly that y is made up of two parts. Its �rst half resembles theoriginal signal x, while the second half consists of relatively small components.Indeed, we can ask kwt to split the output signal into two parts using thefollowing form of the command:>> [y1, y2] = kwt(x);The commands>> length(x), length(y), length(y1), length(y2)give the lengths of x, y, y1, and y2; they are 101, 101, 51, and 50, respectively.It is a general rule that the input and output vectors are equal in length. Thesplit output vectors are each half the length of the input vector if it is even;otherwise, y1 has one more component than y2.The versatility of the command kwt lies in its ability to handle correctlyinput signals of di�erent formats: row or column vectors as well as matri-ces. In the last case, a two-dimensional W -transform (once in the horizontaldirection and once in the vertical direction) is performed to produce foursubmatrices. If one has a matrix L representing a grayscale image, such asthe popular Lena (intensity range: 0{255), one should try>> image(kwt(L)/16), axis('image'), colormap(gray(256))4



The inverse W -transform is one of the following:>> ikwt(y)>> ikwt(y1,y2)One should verify that each of these is practically (within the accuracy ofnumerical error) identical to the original vector x.Lossy compression of a signal is achieved by discarding small componentsof y2, or by quantizing. The command>> cy2 = largesta(10, y2);produces a new vector that retains the largest (in absolute value) ten com-ponents of y2 and truncates the rest to 0. The actual number of componentsretained may be di�erent from 10 if more than one component ties for thetenth place. The vector cy = [y1, cy2] is now a (lossily) compressed rep-resentation of the original signal x. It has only 61 nonzero components. Ittakes, however, more than 61 data units to record cy, since both the locationand magnitude of the nonzero elements of y2 need to be stored. Further-more, the magnitude of the components of y1 is no longer within the rangeassigned to the original signal and thus may require more bits to represent.With more advanced techniques, the result can usually be stored by usingjust a few extra units in addition to the 61 units. The compression ratioachieved is thus approximately 100=65.Alternatively, the command>> cy2 = largesta(0.2,y2);retains the largest (in absolute value) two-tenths of the components of y2.The compression ratio can be raised by lowering the 0:2 threshold, the �rstinput argument to largesta.Another tool for compression is the command>> quant(y2,5)which quantizes the components of y2 by using a quantization interval oflength 5. 5



A much higher compression ratio is achievable by repeating the com-pression process on y1, once or several more times, leading naturally to themethod of multiresolution analysis. In theory, one can continue the processto as many levels as possible until the most recently obtained y1 is of length2. In practice, however, after a few levels, further compression produces ei-ther intolerable errors or very little additional bene�t. To obtain a three-levelmultiresolution analysis on x is simple:>> z = wma(x,3);When x is a row vector, the structure of z is [y31 y32 y22 y12], where y31denotes the third-level y1 and so on.Since a multiresolution analysis produces a variable number of wavelets,it is not feasible to ask wma to output the separate wavelets automatically.We provide another function to carve out speci�ed wavelets from the outputof wma. For 1D signals,>> w = maw(z,2);gives the second-level multiresolution analysis wavelet from z, obtained aboveby using wma. Similarly,>> v = maw(z,3,1);gives the y1 vector at the top level of a three-level multiresolution analysis.For 2D signals, the third input argument speci�es which of the four sub-matrices is to be carved out. One can also call the interactive m-�le wmai(which is not a function) to do the multiresolution analysis. MATLAB thenprompts for the signal and the number of levels.Enter signal to be analyzed: LEnter number of levels : 3The results of the three-level analysis are stored in the signals WL11, WL12,WL21, etc. 6



For visualization,>> wplot(z,3)plots the components y31, y32, y22, y12 of z to give the familiar third-level wavelet coe�cient diagram. Since the wavelet coe�cients are usuallytoo small to show up signi�cantly on the graph, we use the command>> wplot(z,3,0.01)to magnify the second-level wavelet coe�cients 100 = 1=0:01 times, the third-level coe�cients 1002 times, and so on.
Figure 3. Plot of multiresolution analysis wavelet componentsInverse multiresolution analysis is as expected:>> X = iwma(z,3);The multilevel wavelet representation of the signal must be assembled into asingle vector or matrix, such as z, before iwma is called.7



The default W -transform used by kwt and wma is controlled by a globalvariable kw set by the startup �le startup.m. Typing >> kw reveals thedefault value [1 3 3 1]/4, comprising the coe�cients in the 2-scale dilationequation for the wavelet associated with the QS transform. In [3], the QStransform is de�ned using [1 3 3 1], but we discover that, in practice, itis more convenient to use one-fourth of the vector. This only a�ects thetransform by a scaling. By setting kw to other values, such as>> kw = [1, 2, 2, 1]one can choose a di�erent W -transform. The particular choice kw = kwdau(kwdau is another vector automatically set by the startup �le startup.m)gives the Daubechies transform of order 4. Our implementation of theDaubechies transform di�ers from the conventional one in the way it treatsthe endpoint components; see [3]. Unlike kwqs and kw1, the vector kwdauhas six components.kwdau = [0.4830 0.8365 0.2241 -0.1294 0.2679 -3.7321]A second method to call a speci�c W -transform, without altering the de-fault value of kw, is to supply the parameter vector as an additional argumentto the function invoked. The commands>> y = kwt(x,kwdu);>> y = wma(x,kwdu,3);use the Daubechies transform but retain the QS transform as the default forfuture calls.The decomposition e�ected by a W -transform is in general not orthogo-nal. In [3], it is shown that for the QS transform this is not a real drawback inpractice. For most reasonable signals, the error incurred by discarding smallcomponents of y2 is on the same order of magnitude as the optimal compres-sion obtainable by using orthogonal decomposition. For the perfectionist,we provide an orthogonal compensation procedure that can further improvethe compression performance. Let e be the part of y2 to be discarded, forinstance, 8



>> e = y2 - cy1;where cy1 = largesta(0.1, y2) as de�ned before. Then>> cy1 = oc(y1,e);produces a vector cy1 to be used in place of y1, in such a way that the pair(cy1, cy2) gives a better approximation to x than the pair (y1, cy2).The commands mentioned above provide an adequate set of buildingblocks for writing more complicated M-�les for experimentation. Examplesgiven in Section 4 include M-�les to compare twoW -transforms, to compress2D images, and to search for an optimal W -transform. Other commandsin the toolbox include sf, which constructs the scaling function; wf, whichconstructs the wavelet function, and sdil, which solves a 2-scale dilationequation.

9



3 The MATLAB ProgramsIn this section, we present the MATLAB codes of the commands given inSection 2. The algorithms are explained in detail for the bene�t of thosewho need to adapt the codes to other languages.Each command is contained in a separate MATLAB M-�le. We assumethat the readers are familiar with the rudiments of MATLAB programming.The commands have not been written in the most robust form; rigorouschecking for correct formats of input arguments is lacking in most cases.Comments and feedback are appreciated.When listing our M-�les, we leave out the comments, except those per-taining to the usage of the command. For reference, we have added linenumbers.3.1 User-FriendlinessIn this subsection, we discuss our goal and standard for writing user-friendlyMATLAB commands. Our objective is to help readers understand the designof the programs presented below. Fortunately, the MATLAB language ispowerful enough to allow us to implement most of what we wanted.The ability to allow some input arguments to be omitted and to assumedefault values greatly simpli�es the syntax of the commands when used incommon situations. This feature is especially helpful to beginners.Two techniques are employed to assign default values. The global variablekw is used to designate the default W -transform used by kwt, ikwt, wma, etc.A user can interactively change the default by assigning new values to kw.Since many global variables can be dangerous, however, we refrain from usingmore. Instead, for other default arguments, such as the number of levels usedby wma and the quantization level used by quant, the default values are builtinto the programs themselves. A user cannot conveniently change a defaultvalue without modifying the M-�le. We believe that such modi�cation is notdi�cult to do, and we have supplied easy-to-follow instructions in the M-�lesusing comments.If possible, we make a command accept an argument in any reasonable10



format. For instance, kwt does not fuss if the input signal x is a row or acolumn vector and will produce a row or column output vector accordingly.In a similar vein, we attempt to make a command more 
exible in ac-commodating the order of the input arguments. For instance, wma(4,x)and wma(x,4) are both permitted and produce the same answer. Anotherexample is largesta(4,y) and largesta(y,4).We also try to pack more functionality into a single command. The actualaction and output of a command can be di�erent depending on the formatof the input or output arguments. Some examples follow.� Most toolboxes have di�erent commands for 1D and 2D transforms.Our command kwt will perform a 1D or a 2D transform accordingto whether the input signal is 1D or 2D. Also kwt will separate outthe wavelet vectors/matrices if there are two output arguments for 1Dsignals or four output arguments for 2D signals.� The command ikwt(y1,y2) or ikwt(y1,y2,y3,y4) �rst assembles theinput vector/matrices into a single vector/matrix before performing theinverse W -transform.� The command largesta(r,y) will extract the largest r componentsof y if r is greater than 1 but the largest fraction r of the total numberof components if r is less than 1.� The command quant(y,10) quantizes the components of y to the near-est 10, 20, etc., while quant(y,'10') quantizes the components of yinto approximately 10 levels.Error-checking is part of being user-friendly. We repeat our earlier re-mark that we have not spent su�cient e�ort on perfecting this aspect ofour commands (we will do our best when time permits). We believe that thecommands are su�ciently easy to use that few users will really need extensiveerror-checking. 11



3.2 The Startup File%%% startup.m1 global kw2 kwqs = [ 1 3 3 1 ]/4;3 kw1 = [ 1 2 2 1 ];4 kw =kwqs;5 dr = sqrt(3);6 dau = [1 dr 2*dr-3 dr-2];7 ndau = dau/norm(dau);8 wdau = ndau(4:-1:1).*[1 -1 1 -1];9 kwdau = [ ndau ndau(3)/wdau(3) ndau(1)/wdau(1)];10 clear dr dau ndau wdauThe commands in this �le are to be appended to those in one's startup�le, which usually contains path setting and other routine startup commands.These commands declare a global variable kw; de�ne three variables kwqs,kwdau, and kw1; and set kw initially to kwqs. The global variable kw containsthe parameter vector that determines the default W -transform used by thecommands kwt, wma, and their families. The variables kwqs, kwdau, and kw1are parameter vectors for the QS, Daubechies, and a third sample transform,respectively. A general parameter vector has six components, as explained inSection 3.3. The fourth and �fth components, when omitted, take the defaultvalues 1 and -1, respectively. When one has developed her own favorite W -transforms, their corresponding parameter vectors can be added to the list,simply following the format of line 2 or 3 to de�ne more variables. Line 10clears the temporary variables used only to construct kwdau.If these variable names con
ict with ones normally used in one's ownworkspace, the reader can change his own notations or modify all the M-�lesin this paper accordingly. 12



3.3 The W -transform kwtAccording to the general theory outlined in [3], an arbitrary vector h =[h1; h2; h3; h4] and two constants c and d are �rst chosen. The vectorg = [g1; g2; g3; g4] = [h1=c; h2=c; h3=d; h4=d] (1)together with h then form a basic pair of vectors that are used to constructthe W -matrices (of even and odd sizes, respectively):W = 0BBBBBBBBBBBBBBB@ g1 + g2 g3 g4h1 + h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4. . .g1 g2 g3 + g4h1 h2 h3 + h4
1CCCCCCCCCCCCCCCA (2)and W = 0BBBBBBBBBBBBBBBBB@ g1 + g2 g3 g4h1 + h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4. . .g1 g2 g3 g4h1 h2 h3 h4h1 h2 + h3 + h4

1CCCCCCCCCCCCCCCCCA : (3)The correspondingW -transform kwt(x) of a column vector x is computedby choosing a W of the appropriate size, forming the matrix product Wx,and then separating out the odd and even components of the resulting vector.y1 = odd components of Wx (4)y2 = even components of Wx (5)13



We de�ne kwt(x) to be either the pair y1 and y2 or the vector obtained byappending y2 to y1.For a row vector x, kwt(x) is de�ned as the transpose of the transformof the transpose of x. For a matrix x, its 2D W -transform is obtained by�rst applying the 1D W -transform to each column of x and then applyingthe same W -transform to each row of the resulting matrix.Most researchers in the wavelet community are, however, more familiarwith another vector, which comprises the coe�cients of the dilation equationand is related to h by g = [h4;�h3; h2;�h1]: (6)We program kwt to use an input argument k, obtained by appending theconstants c and d (if they are di�erent from the default values of 1 and -1, respectively) to g, to designate the choice of the W -transform. Whenk is omitted, its value is taken from the global variable kw. Initially, thedefault parameter vector is kw = [ 1 3 3 1 ]/4, set by the startup.m �le.Although any choice of k will lead to a workable transform, only a carefullychosen one will result in a transform appropriate for compression.% y = kwt(x) default W-transform% [y1, y2] = kwt(x) 1D row/column x% [y1, y2, y3, y4] = kwt(x) 2D matrix x% y = kwt(x,k) general W-transform% determined by k1 function [y, yw, y3, y4] = kwt(x,k)2 if nargin == 13 global kw4 if exist('kw') ~= 1, k = [1 3 3 1]/4; else k = kw; end5 end6 ss=size(x);7 if ss(1) == 1, x = x(:);8 elseif ss(2) > 19 if nargout == 4, [y, yw, y3, y4] = kwt2(x,k);10 else y = kwt2(x,k); end11 return12 end 14



13 if length(k) == 4, c=1; d=-1;14 elseif length(k) == 5, c=k(5); d=-1;15 elseif length(k) == 6, c=k(5); d = k(6);16 else k = [1 3 3 1]/4; c=1; d=-1;17 end18 C=-k(4)/c; D=k(3)/c; A=-k(2)/d; B=k(1)/d;19 s=size(x);20 n=floor(s(1)/2);21 x1=x(1:2:s(1),:);22 x2=x(2:2:s(1),:);23 if s(1) == 2*n24 y=[ (C+D)*x1(1,:)+A*x2(1,:)+B*x1(2,:)25 C*x2(1:n-2,:)+D*x1(2:n-1,:)+A*x2(2:n-1,:)+B*x1(3:n,:)26 C*x2(n-1,:)+D*x1(n,:)+(A+B)*x2(n,:) ];27 yw=[ c*(C+D)*x1(1,:)+d*(A*x2(1,:)+B*x1(2,:))28 c*(C*x2(1:n-2,:)+D*x1(2:n-1,:))+d*(A*x2(2:n-1,:) ...29 +B*x1(3:n,:))30 c*(C*x2(n-1,:)+D*x1(n,:))+d*(A+B)*x2(n,:) ];31 else32 y=[ (C+D)*x1(1,:)+A*x2(1,:)+B*x1(2,:)33 C*x2(1:n-1,:)+D*x1(2:n,:)+A*x2(2:n,:)+B*x1(3:n+1,:)34 C*x2(n,:)+(A+B+D)*x1(n+1,:) ];35 yw=[ c*(C+D)*x1(1,:)+d*(A*x2(1,:)+B*x1(2,:))36 c*(C*x2(1:n-1,:)+D*x1(2:n,:))+d*(A*x2(2:n,:) ...37 +B*x1(3:n+1,:)) ];38 end39 nargout <= 140 if ss(1) == 1, y = [y' yw'];41 else y = [y; yw]; end42 elseif ss(1) == 1,43 y = y'; yw = yw';44 endLine 1 declares kwt to be a function that has at most two input argu-ments and at most four output arguments. The case of having four outputarguments occurs when x is a matrix and the user wants the 2D transformto be separated out into four submatrices.15



Lines 2{5 check whether the argument k is present. If not, its value isthen taken from the global variable kw. To take care of the case in which theglobal variable kw may have been inadvertently erased, line 4 sets kw to thedefault QS transform.Lines 6{12 examine the format of x and choose the various paths. Line7 changes x to a column vector if it is input as a row vector. (Lines 42 and45 convert the output back into a row vector to match the input format.)Line 8 checks whether x is a 2D matrix. If it is, the work is delegated to theM-�le kwt2.m. A user has no need to use kwt2 directly; it is provided merelyto make the coding easier to understand. We omit the listing of kwt2.m.Lines 13{17 check the format of the parameter vector k, supplying thedefault values for c and d if necessary.Line 18 computes the components of g = [ C, D, A, B ]. The namesused to denote the components have been retained from previous versions ofthe program.Lines 21 and 22 extract the odd and even components of x. These areused to simplify the computation of the W -transform.Line 23 checks whether the length of x is even. If so, lines 24{30 computethe transform. Note that in the implementation of the W -transform, wedo not use matrix multiplication. Lines 32{37 compute the transform forodd-length x.Finally, lines 39{44 put the output in the correct format according to thenumber of output arguments requested and the format of the input signal.
16



3.4 The Inverse W -transform ikwt% y = ikwt(x) default inverse W-transform% y = ikwt(x1,x2) 1D x1, x2% y = ikwt(x1,x2,x3,x4) 2D matrices% y = ikwt(x,k) general inverse W-transform1 function y=ikwt(x1,x2,x3,x4,k)2 ss=size(x1);3 if nargin == 14 if ss(1) == 1, x = x1(:);5 elseif ss(2) > 1 & nargin == 1, y = ikwt2(x1); return6 else x = x1;7 end8 elseif nargin == 29 if min(ss) > 110 y = ikwt2(x1,x2); return11 elseif size(x2,1) == 1 & size(x2,2) < 7 & size(x2,2) > 312 x = x1(:); k = x2;13 else x = [x1(:); x2(:)];14 end15 elseif nargin == 316 x = [x1(:); x2(:)]; k = x3;17 elseif nargin == 418 y = ikwt2([x1 x2; x3 x4]); return19 elseif nargin == 520 y = ikwt2([x1 x2; x3 x4],k); return21 end22 if exist('k') ~=123 global kw24 if exist('kw') ~= 1, k = [1 3 3 1]/4; else k = kw; end25 end26 if length(k) == 4, c=1; d=-1;27 elseif length(k) == 5, c=k(5); d=-1;28 elseif length(k) == 6, c=k(5); d = k(6);29 else k = [1 3 3 1]/4; c=1; d=-1;30 end 17



31 C=-k(4)/c; D=k(3)/c; A=-k(2)/d; B=k(1)/d;32 DD = (A*D-B*C);33 s=size(x); n=floor(s(1)/2);34 if s(1) == n*235 x1=x(1:n,:);36 x2=x(n+1:s(1),:);37 y1=[ (d*x1(1,:)-x2(1,:))/(C+D)38 (C*(c*x1(1:n-1,:)-x2(1:n-1,:))...39 +A*(d*x1(2:n,:)-x2(2:n,:)))/DD ]/(d-c);40 y2=[ (D*(-c*x1(1:n-1,:)+x2(1:n-1,:))...41 +B*(-d*x1(2:n,:)+x2(2:n,:)))/DD42 (-c*x1(n,:)+x2(n,:))/(A+B) ]/(d-c);43 y=zeros(s);44 y(1:2:2*n,:)=y1; y(2:2:s(1),:)=y2;45 else46 x1=x(1:n+1,:);47 x2=x(n+2:s(1),:);48 y1=[ (d*x1(1,:)-x2(1,:))/(C+D)49 (C*(c*x1(1:n-1,:)-x2(1:n-1,:))...50 +A*(d*x1(2:n,:)-x2(2:n,:)))/DD ]/(d-c);51 DDD = A*D+A^2+A*B-B*C;52 y1=[y1; (C*(c*x1(n,:)-x2(n,:))/(d-c)+A*x1(n+1,:))/DDD];53 y2=(D*(-c*x1(1:n-1,:)+x2(1:n-1,:))...54 +B*(-d*x1(2:n,:)+x2(2:n,:)))/DD/(d-c);55 y2=[y2; (-(D+A+B)*(c*x1(n,:)-x2(n,:))/(d-c)...56 -B*x1(n+1,:))/DDD];57 y=zeros(s);58 y(1:2:s(1),:)=y1; y(2:2:s(1),:)=y2;59 end60 if ss(1) == 1, y = y'; endA remarkable and useful property of a W -matrix is that its inverse is alsogenerated by a pair of vectors of length 4. Furthermore, all W -matrices ofeven, or odd, sizes have the same structure; they di�er only in the numberof pairs of basic vectors used.Using MAPLE, we are able to obtain the formula for the inverse matrixof a general W -matrix. The algorithm for computing inverse W -transform18



consists of merging y1 and y2 by interlacing their components and thenmultiply by the inverse W -matrix.To make ikwt more user-friendly, we allow the input of 1D signals ei-ther as two separate vectors y1 and y2 or as one single vector obtained byappending y2 to y1, and the input of 2D images either as four separatesmatrices or as one single matrix. The parameter vector k may be suppliedas an argument or omitted (kw is used as default). Ambiguity arises andCAUTION must be exercised when there are two input arguments each oflength between 4 and 6, since the second argument can be interpreted eitheras y2 or as k. In such a case, the latter interpretation prevails.Lines 3{21 examine the number of input arguments and choose the appro-priate path, in particular, delegating the work to ikwt2 if there is indicationthat the input signal is a matrix. The listing of ikwt2 is omitted.Lines 22{32 check the existence and format of k and extract from it thecoe�cients used in the inverse transform.Lines 34{44 perform the inverse transform on even-lengthed signals andlines 46{58 on odd-lengthed signals. The formulas used are slightly morecomplicated than the corresponding ones for the forward transform. This isbecause the inverse matrix has a factor the reciprocal of the determinant ofthe W -matrix and components in both the �rst two rows and the last tworows have rather involved expressions. Other than that, the formulas arestraightforward. Line 60 puts the output in a row vector if the input signalis a row vector.
19



3.5 The W -Multiresolution Analysis wmaThe command wma carries out a multiresolution analysis on a signal x up ton levels using the parameter vector k. As usual, the default k is taken fromkw. The default n is 3. The arguments n and k can be input in either order.% y = wma(x) default W-multiresol. anal., n = 3% y = wma(x,n) n-level analysis% y = wma(x,n,k) general W-multiresol. anal.%% [y, ind] = wma(x) ind can be used to separate out the% wavelet vectors1 function [y, ind] = wma(x,n,k)2 if nargin == 1, n = 3;3 elseif nargin ==2, if length(n) > 1, k = n; n = 3; end4 else if length(k)==1, tmp = n; n = k; k = tmp; end5 end6 if exist('k') ~=17 global kw,8 if exist('kw') ~= 1, k = [1 3 3 1]/4; else k = kw; end9 end10 ss = size(x); ind = ss;11 for ii = 1:n12 y(1:ss(1),1:ss(2)) = kwt(x,k);13 ss = ceil(ss/2); ind = [ss; ind];14 x = y(1:ss(1),1:ss(2));15 endLine 1 indicates that the function has an optional output ind, which givesthe indices marking the ends of the various segments of the transformed signalat all the levels. For instance, if ind is the matrix[ 1 13; 1 26; 1 51; 1 101 ],then the �rst-level y2 is made up of the 52-nd to the 101-st components, thesecond-level y2 is of the 27-th to the 51-st components, the third-level y2 of20



the 14-th to the 26-th components, and �nally the third-level y1 of the 1-stto the 13-th components. That the �rst column of ind are all 1 indicatesthat the signal is one dimensional. If x is a matrix, the �rst column of indwill give the corresponding indices in the vertical direction.Lines 2{5 check the number and format of the input arguments, �guringout which argument is n and which is k and supplying the default value forn if needed. Lines 6{9 supply the default value for k if needed.Lines 11{16 form the main loop that calls kwt to perform the transformand then �nd the size and signal to be transformed at the next level.
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3.6 The Inverse W -Multiresolution Analysis iwmaThe inverse W -multiresolution analysis is similar to the forward analysisexcept that ikwt is invoked instead of kwt, and the highest level is dealtwith �rst. The arguments n and k can be input in either order.The various wavelet vectors/submatrices must be �rst assembled into onesingle signal x before input into the function.% y = iwma(x) default inverse W-multiresol. transf.% n = 3% y = iwma(x,n) n-level default inverse W-ma% y = iwma(x,n,k) general inverse W-ma1 function y = iwma(x,n,k)2 if nargin == 1, n = 3;3 elseif nargin == 2, if length(n) > 1, k = n; n = 3; end4 else if length(k)==1, tmp = n; n = k; k = tmp; end5 end6 if exist('k') ~=17 global kw,8 if exist('kw') ~= 1, k = [1 3 3 1]/4; else k = kw; end9 end10 ss(n,:) = size(x);11 for ii = n-1:-1:112 ss(ii,:) = ceil(ss(ii+1,:)/2);13 end14 for ii = 1:n15 x(1:ss(ii,1),1:ss(ii,2)) = ...16 ikwt(x(1:ss(ii,1),1:ss(ii,2)),k);17 end18 y = x; 22



3.7 Extracting Multiresolution Analysis Wavelets maw% z = maw(y,j) j-th level wavelet vector for 1D y% z = maw(y,j,1) (top) j-th level y1 vector for 1D y%% z = maw(y,j,h) h-th submatrix (out of 4) at j-th level% for 2D y1 function z = maw(y,j,h)2 ind = size(y);3 if min(ind) == 14 ind = length(y);5 for i = 1:j-1, ind = ceil(ind/2); end6 if nargin == 2, z = y(ceil(ind/2)+1:ind);7 else z = y(1:ceil(ind/2)); end8 else9 for i = 1:j-1, ind = ceil(ind/2); end10 ind0 = ceil(ind/2);11 if ~exist('h'), h = 1; end12 if h == 1, z = y(1:ind0(1),1:ind0(2));13 elseif h == 2, z = y(1:ind0(1),ind0(2)+1:ind(2));14 elseif h == 3, z = y(ind0(1)+1:ind(1),1:ind0(2));15 else z = y(ind0(1)+1:ind(1),ind0(2)+1:ind(2));16 end17 endFor one-dimensional signals, we need only one index to specify the levelat which to extract the wavelet. Thus maw(y,3) gives the level 3 wavelet.Supply a second index if one requires the top-level y1 vector.For two-dimensional signals, we need one index to specify the level andanother index to specify which of the four submatrices is needed.Lines 3{7 handle the 1D case and lines 8{17 the 2D case.23



3.8 Interactive Multiresolution Analysis wmai%%% wmai.m1 SIGNAL = input('Enter signal to be analyzed: ','s');2 LEVELS = input('Enter the number of levels : ');3 if length(LEVELS) == 0, LEVELS = 3; end4 SIZES = 0; eval([ 'SIZES = size(' SIGNAL ');' ])5 if min(SIZES) == 1,6 eval([ '[W' SIGNAL '11, W' SIGNAL '12] = ...7 kwt(' SIGNAL ');' ] )8 else9 eval([ '[W' SIGNAL '11, W' SIGNAL '12, W' SIGNAL '13, ...10 W' SIGNAL '14] = kwt(' SIGNAL ');' ] )11 end12 for ii = 2:LEVELS13 II = int2str(ii);14 if min(SIZES) == 1,15 eval([ '[W' SIGNAL II '1, W' SIGNAL II '2] = ...16 kwt(W' SIGNAL int2str(ii-1) '1);' ] )17 else18 eval([ '[W' SIGNAL II '1, W' SIGNAL II '2, ...19 W' SIGNAL II '3, W' SIGNAL II '4] = ...20 kwt(W' SIGNAL int2str(ii-1) '1);' ] )21 end22 endThe MATLAB command eval is used to concatenate strings to constructvariable names for the wavelet vector/matrix.A disadvantage of using a script, such as wmai, instead of a function isthat a few variables, such as SIGNAL and LEVELS, will be left dangling in theworkspace.Beware of con
icting variable names.24



3.9 Visualization wplot and lbarUsing wplot, one can visualize the top-level y1 and the y2 of all levels inthe traditional plot (Figure 3) used by many wavelet researchers. Built intowplot is the same procedure used by maw to carve out the various segmentsfrom the input signal (lines 13{16). Each segment is then plotted in a subplotusing the subroutine lbar.% wplot(x) plot 3-level multiresol. anal.% wplot(x,n) plot n-level multiresol. anal.% wplot(x,n,r) use r < 1 as magnification factor% wplot(x,n,r,c) use color c1 function wplot(x,n,r,c)2 if exist('n') ~= 1, n = 3; r = 1;3 elseif exist('r') ~=1, if n > 1, n = ceil(n); r = 1;4 else r = n; n = 3; end5 else if n > 1, n = ceil(n);6 else tmp = r; r = n; n = max(2,tmp); end7 end8 if exist('c') ~= 1, c = 'y'; end9 ind = length(x);10 mx = min(min(x),0); Mx = max(max(x),0);11 figure(gcf)12 for ii = n+1:-1:113 if ii > 2, xx = x(ceil(ind/2)+1:ind)/r^(ii-2);14 elseif ii > 1, xx = x(ceil(ind/2)+1:ind);15 else xx = x(1:ind); end16 ind = ceil(ind/2);17 h = subplot(n+1,1,ii);18 lbar(xx,c)19 axis([ 1 length(xx) mx Mx ])20 axis off21 rect = get(h,'pos');22 set(h,'pos',[ rect(1) rect(2)-(n+1-ii)*rect(4)/10 ...23 rect(3) rect(4) ])24 end 25



Lines 2{8 check the input arguments. The argument n speci�es the num-ber of levels (defaults to 3) and argument r is a magni�cation factor used forlower level wavelets; n and r can be input in either order. The argument cspeci�es the color (defaults to yellow) of the plot and can be input only aftern and r.Line 10 determines the lower and upper limits on the vertical axis usedby each subplot. Line 11 raises the current �gure to the foreground.Lines 17{20 do the plotting and adjust the axis limits. Lines 21{23 movethe subplots closer together for aesthetic reasons.By convention, a wavelet plot is constructed by drawing a vertical line ateach integral point on the horizontal with height proportional to the appro-priate component of the wavelet vector. In essence, it is a bar graph in whicheach bar is a vertical line. MATLAB does not seem to have a command todraw such a plot, and we therefore write our own. Expecting it to be ofinterest in other contexts, we make the command lbar slightly more general.It can take two optional arguments, one to specify the range to be labeledon the horizontal axis, and another to specify the color of the graph.% lbar(y) plot y as line-bar graph% lbar(x,y) plot y VS x as line-bar graph% lbar(x,y,c) use color c1 function lbar(x,y,c)2 n = length(x);3 if nargin == 1, y = x(:); x = (1:n)'; c = 'y';4 elseif nargin == 2,5 if length(y) == 1, c = y; y = x(:); x = (1:n)';6 else x = x(:); y = y(:); c = 'y'; end7 end8 n = 3*n;9 xx = zeros(n,1); yy = xx;10 xx(1:3:n) = x; xx(2:3:n) = x; xx(3:3:n) = x;11 yy(2:3:n) = y;12 plot(xx,yy,c) 26



3.10 Compression Utilities largesta and quant% y = largesta(n,x) n > 1, largest (absolute value)% n components of x% [y, N] = largesta(r,x) r < 1, largest fraction r% N = number of components retained1 function [ y, N ] = largesta(n,x)2 if length(n) > 1, tmp = n; n = x(1); x = tmp; end3 ax = abs(x);4 M = max(max(ax));5 a = 0; b = M; n1 = prod(size(x(:))); n2 = nnz(ax == M);6 if n == 1, y = x; n = n1; return7 elseif n <= 0, y = 0*x; n = 0; return8 elseif n < 1, n = min(n1-1,round(n1*n));9 end10 while n1 ~= n & n2 ~= n & n1 ~= n2 & b-a > 0.000001*M11 c = (a+b)/2;12 nc = nnz(ax >= c);13 if nc > n, a = c; n1 = nc;14 else b = c; n2 = nc;15 end16 end17 if n1 == n18 small = find(ax < b);19 % y = x.*(ax > b);20 else21 small = find(ax < c);22 % y = x.*(ax > c);23 end24 y = x;25 y(small) = zeros(size(small));26 N = nnz(y);The command largesta retains the largest (in absolute values) n ele-ments of the matrix x and truncates the rest to 0. If n is larger than 1, itis used as the actual count of elements to be retained. If n is less than or27



equal to 1, it is interpreted as the fraction of the total number of elementsto be retained. The number of elements actually retained may di�er fromthe requested number. The algorithm uses a bisection procedure. A sistercommand largest retains the largest (in algebraic value) elements.The command quant(x,n) quantizes the components to take values inthe set f0;�n;�2n;�3n; � � �g. If n is a string containing a number, quantwill produce approximately n quantization levels. If n is not speci�ed, ap-proximately ten quantization levels will be used.% y = quant(x) quantize x (approximately 10 levels)% y = quant(x,q) use q as quantization interval% [y, Q] = quant(x,'n') use approximately n levels% Q = actual quantization interval1 function [y, q] = quant(x,q)2 if nargin == 13 q = '10';4 elseif length(x) == 1 | isstr(x)5 tmp = x; x = q; q = tmp;6 end7 if isstr(q)8 eval([ 'q = ' q ';' ])9 r = (max(max(x)) - min(min(x)))/q*1.5;10 p = floor(log(r)/log(10));11 q = floor(r/10^p)*10^p;12 end13 y = round(x/q)*q;In principle, neither largesta nor quant is the ultimate utility for au-tomating compression. The ideal utility can automatically determine thecuto� threshold, such as the article n or r to largesta and the article q toquant, based upon a speci�ed compression ratio or compression performance.28



3.11 Orthogonal Compensation ocThe W -transform associated with a W -matrix W can be summarized in theequations y =Wx; x =W�1y: (7)The odd and even components of y form the pair of vectorsy1 = [y11; y12; � � �]0; y2 = [y21; y22; � � �]0: (8)Let us denote the columns of the matrixW�1 ash v1 w1 v2 w2 � � � i : (9)Then the second equation in (7) has the equivalent formx = (y11v1 + y12v2 + � � �) + (y21w1 + y22w2 + � � �): (10)This equation suggests that the W -transform can be interpreted as the de-composition of x along the subspaces G and H, spanned by v and w, respec-tively.In the analogous interpretation of the Haar and Daubechies D4 trans-forms, the linear subspaces G and H are orthogonal to each other. In ad-dition, the one-dimensional subspaces generated by all the vi and wi aremutually orthogonal. When some of the components in y2 are discarded,the compressed vector is then the unique signal, in the space spanned by theremaining base vectors, that best approximates the original signal.For a generalW -transform, G and H are not necessarily orthogonal. Thisfact seems to argue against the use of general W -transforms. In practice, areasonable signal (one that is not wildly oscillating or badly degraded bynoise) usually has such small coe�cients in the H subspace decompositionthat even if we do not take additional steps to optimize the approximation,the error incurred in simply discarding them is negligible. This is true, inparticular, for the QS transform.We give below the method of orthogonal compensation to enhance theapproximation when discarding some of the components of y2. Let d be thevector to be discarded. It is likely to be a partial sum of the expression in thesecond pair of parentheses in (10). We decompose d into a linear combinationof the vectors vi and an error vector that is orthogonal to G:29



d = (a1v1 + a2v2 + � � �) + e: (11)After determining ai, they are added to the corresponding y1i, so that theactual part that is discarded is e, which is orthogonal to G. To this end, wetake inner products of d with each of vi. One can easily verify that ai is thesolution to the tridiagonal system of linear equations0BBBBBBB@ �11 �12�21 �22 �23�32 �33 �34. . . . . . 1CCCCCCCA0BBBBBBB@ a1a2a3...... 1CCCCCCCA = 0BBBBBBB@ < d;v1 >< d;v2 >< d;v3 >...... 1CCCCCCCA ; (12)where �ij =< vi;vj >. The matrix in the equation is square, with widthequal to the length of y1.% y = oc(y1,ye) orthogonal compensation, default W-tranf.% y = oc(y1,ye,k) general W-transform1 function y = oc(y1,ye,k)2 if nargin == 23 global kw4 if exist('kw') ~= 1, k = [1 3 3 1]/4; else k = kw; end5 end6 if length(k) == 4, c=1; d=-1;7 elseif length(k) == 5, c=k(5); d=-1;8 elseif length(k) == 6, c=k(5); d = k(6);9 else k = [1 3 3 1]/4; c=1; d=-1;10 end11 k1=k(1); k2=k(2); k3=k(3); k4=k(4);12 h1=-k1/d; h2=-k2/d; h3=-k3/c; h4=-k4/c;30



13 s1 = size(y1); se = size(ye);14 y1 = y1(:); ye = ye(:);15 m = length(y1); n = length(ye);16 A = k1*k3+k2*k4;17 B = k1^2+k2^2+k3^2+k4^2;18 C = k3*k1+k4*k2;19 B1 = (k2*k3-k1*k4)^2/(k2-k1)^2 +k3^2+k4^2;20 Bn = k1^2+k2^2+(k2*k3-k1*k4)^2/(k4-k3)^2;21 D = k1*h3+k2*h4;22 E = k1*h1+k2*h2+k3*h3+k4*h4;23 F = k3*h1+k4*h2;24 E1 = -((k2*k3-k1*k4)/(k2-k1)/c)^2*d+k3*h3+k4*h4;25 if m == n26 En = k1*h1+k2*h2-((k2*k3-k1*k4)/(k4-k3)/d)^2*c;27 z = ([ 0;D*ye(1:n-1) ] ...28 + [ E1*ye(1);E*ye(2:n-1);En*ye(n) ] ...29 + [ F*ye(2:n);0 ]);30 GH = toeplitz([ B A zeros(1,n-2) ],...31 [ B C zeros(1,n-2) ]);32 GH(1,1) = B1; GH(n,n) = Bn;33 else34 r = -h2*h3+h1*h4;35 r = (r/(r-h1*h2+h2^2))^2;36 Dn = (c-d)*r*( (h1-h2+h3)*h1 - h2*k4 );37 En = k1*h1+k2*h2-r*c*( (h1-h2+h3)^2 + (k4)^2 );38 z = ([ 0;D*ye(1:n-1);Dn*ye(n) ] ...39 + [ E1*ye(1);E*ye(2:n-1);En*ye(n);0 ] ...40 + [ F*ye(2:n);0;0 ]);41 GH = toeplitz([ B A zeros(1,n-1) ],...42 [ B C zeros(1,n-1) ]);43 GH(1,1) = B1;44 GH(n,n) = k1^2+k2^2+r*c^2*( (h1-h2+h3)^2 + (k4)^2 );45 GH(n+1,n+1) = r*(d-c)^2*(h1^2+h2^2);46 GH(n,n+1) = -c*Dn;47 GH(n+1,n) = GH(n,n+1);48 end49 y = y1+GH\z;50 if s1(1) ==1, y = y'; end 31



4 Examples of Numerical ExperimentsAn example not covered in this section is in the program obtainable by ftpas described in Section 5. The M-�le ldemo.m gives the data and explanationof a 10-fold compression of Lena. With such a high compression ratio, dis-tortion is inevitable. But the restored image contains fewer o�ensive visualartifacts such as blocking e�ects. This suggests that W -transforms may bean alternative to DCT in achieving high ratio compression.4.1 compareOur �rst experiment compares the performance of twoW -transforms in com-pressing a sample signal x. The signal x is transformed into two vectors y1and y2. An approximate signal is restore by retaining only some of the com-ponents of y2. The discrepancies between the original and the approximatesignals are then computed using the L2 norm. To prepare for the experiment,one chooses a signal x and the W -transforms and then invokes compare.>> x = DEFINITION OF SIGNAL>> kw = [ 1 3 3 1 ]/4; kww = kwdau; compareA sample output is as follows.W1OC W1 W2# Coef errors2 0.001031 0.001107 0.0154135 0.000928 0.001014 0.0133587 0.000818 0.000882 0.012025.. ........ ........ ........35 0.000185 0.000207 0.00188137 0.000171 0.000191 0.00153340 0.000131 0.000148 0.000991.. ........ ........ ........The �rst column gives the number of components of y2 retained (thesenumbers can be controlled by changing the variable RR). The second column32



gives the errors when the signal is compressed using the �rst W -transformwith orthogonal compensation. The third and fourth columns give the errorswhen the signal is compressed using the two W -transforms without orthogo-nal compensation. The sample signal is the same signal x used in Section 2,and the W -transforms compared are the QS and D4 transforms. As seen inthe above example, retaining just 2 components of y2 in the QS transformis better than retaining 37 components in the D4 transform.The listing of the m-�le follows.%%% compare.m1 if ~exist('RR'), RR = 0.05:0.05:0.5; end2 normx = norm(x);3 [y1 y2] = kwt(x);4 [d1 d2] = kwt(x,kww);5 disp(' ')6 disp(' W1OC W1 W2')7 disp(' ')8 disp(' # Coef errors')9 disp(' ')10 for r=RR11 cy2 = largesta(r,y2); cx = ikwt(y1,cy2); cE=cx-x;12 oy1 = oc(y1,y2-cy2); ox = ikwt(oy1,cy2); oE=ox-x;13 cd2 = largesta(r,d2); dx = ikwt(d1,cd2,kww); dE=dx-x;14 fprintf(' %3d %f %f %f\n',...15 nnz(cy2),norm(oE)/normx,norm(cE)/normx,norm(dE)/normx)16 end
33



4.2 Decompression decpThe decompression function �rst compresses the W -transformed output ma-trices Y1, Y2, Y3, and Y4 (obtained from an earlier W -transform), either bydiscarding small components or by quantizing the detail submatrices (ac-cording to whether the input argument r is less than or greater than 1), andthen reconstructs an approximate image. The optional output arguments crand nz give the compression ratio and number of nonzero elements retained.These terms do not have the precise meaning as commonly used and areprovided for reference only.1 function [X, cr, nz]= decp(Y1,Y2,Y3,Y4,r)2 s = size(Y1);3 if nargin == 1, Y2 = zeros(s); Y3 = Y2; Y4 = Y2;4 elseif nargin ==5 & r <= 1 ,5 Y = [ 0*Y1 Y2; Y3 Y4 ];6 Y = largesta(r,Y);7 Y(s) = Y1;8 elseif nargin == 5, Y2 = quant(Y2,r);9 Y3 = quant(Y3,r);10 Y4 = quant(Y4,4*r);11 nz = prod(size(Y1))+nnz(Y2)+nnz(Y3)+nnz(Y4);12 Y = [Y1 Y2;Y3 Y4];13 end14 X = ikwt2(Y);15 cr = 4*s(1)*s(2)/nz;
34



4.3 Image Compression imcomp%%% imcomp.m1 if exist('IMCOMPR') ~= 12 if ~exist('r3'), r3 = [ .01 .05 .1 ]; end3 fprintf('current r3 = ')4 fprintf(' %f ',r3)5 tr3 = input('Enter new r3: ','s');6 if length(tr3) > 07 eval([ 'tr3 = [' tr3 '];']);8 if length(tr3) == 29 eval([ 'r3(round(' num2str(tr3(1)) ')) = '...10 num2str(tr3(2)) ';'])11 else r3 = tr3;12 end13 end14 else15 r3 = IMCOMPR;16 end17 kwold = kw;18 kw = kwqs;19 LEVELS = length(r3);20 if LEVELS == 421 [cWL31 cr4 nz4] = decp(WL41,WL42,WL43,WL44,r3(4));22 nz4 = nz4 - prod(size(WL41));23 disp([ 'Level 4 decompression done nz = ' int2str(nz4) ])24 else25 cWL31 = WL31;26 end27 [cWL21 cr3 nz3] = decp(cWL31,WL32,WL33,WL34,r3(3));28 N3 = prod(size(WL31)); nz3 = nz3 - N3;29 disp([ 'Level 3 decompression done nz = ' int2str(nz3) ])30 [cWL11 cr2 nz2] = decp(cWL21,WL22,WL23,WL24,r3(2));31 nz2 = nz2 - prod(size(cWL21));32 disp([ 'Level 2 decompression done nz = ' int2str(nz2) ])35



33 [cL cr1 nz1] = decp(cWL11,WL12,WL13,WL14,r3(1));34 NN = prod(size(cWL11)); nz1 = nz1 - NN;35 disp([ 'Level 1 decompression done nz = ' int2str(nz1) ])36 if r3(1) < 137 if LEVELS == 438 nz = nz4+nz3+nz2+nz1+prod(size(WL41));39 else40 nz = nz3+nz2+nz1+prod(size(WL31));41 end42 cr = prod(size(L))/nz;43 fprintf('\nCompression Ratio: %d/%d = %f\n',prod(size(L)),nz,cr)44 TITLE = [ 'Compressed Image, CR = ' num2str(cr) '(' ...45 num2str(r3(1)) ', ' num2str(r3(2)) ', ' num2str(r3(3)) ];46 XLABEL = [ int2str(nz1) ' ' int2str(nz2) ' ' ...47 int2str(nz3) ];48 if LEVELS == 349 TITLE = [ TITLE ')' ];50 else51 TITLE = [ TITLE ', ' num2str(r3(4)) ')' ];52 XLABEL = [ XLABEL ' ' int2str(nz4) ];53 end54 else55 cr = 8*NN/(N3*10 + nz3*(22-log(r3(3))/log(2)) +...56 nz2*(18-log(r3(2))/log(2)) + nz1*(14-log(r3(1))/log(2)));57 fprintf('\ncr = %f\n',cr)58 TITLE = [ 'Quantized Image, cr = ' num2str(cr) ' (' ...59 int2str(r3(1)) ', ' int2str(r3(2)) ', ' int2str(r3(3)) ')' ];60 XLABEL = [ int2str(nz1) ' ' int2str(nz2) ' ' int2str(nz3) ];61 end62 image(cL), colormap(gray(256))63 axis image64 title(TITLE)65 xlabel(XLABEL) 36



Our third experiment uses a 256-level grayscale image stored in a ma-trix L. The command wmai should be used �rst to produce a three- or four-level multiresolution analysis of L. One then invokes incomp. One will beprompted to input r, comprising three or four values to be used as thefractions of components of the detail matrices to be retained in each of thelevels. Experience shows that the �rst-level details are less important, how-ever, hence, only a relatively small fraction of the components need be kept togive a satisfactory approximate image. The suggested default is r = 0.01,0.05, 0.1 using three levels.The compression ratio displayed by the program is actually based onthe ratio of the size of the original image to the number of nonzero elementsretained in the compressed representation, adjusted by the qunatization level.The QS transform, for one, leads to transformed matrices with elementsmuch larger than the original matrix. Hence, a precise bit rate count of thecompressed data has to be performed to give an accurate compression ratio.On the other hand, we have not used entropy compression, such as Hu�mancoding or arithmetic coding, that can further increase the compression ratio.

37



4.4 Finding the Optimal W -transform optOur fourth experiment compresses a signal x by taking the W -transformspeci�ed by kww = [ 1 r r 1 ] and then discarding all except the largest(in absolute value) 4 components of the resulting y2. The value of r is varied(as speci�ed by the vector RRopt) and the corresponding errors printed.1 normx = norm(x);2 if ~exist('RRopt'), RRopt = 2.5:0.05:3.5; end3 disp(' ')4 disp(' k vector used is [ 1 r r 1 ]')5 disp(' ')6 disp(' r WOC W')7 disp(' ')8 for r=RRopt9 kww = [1 r r 1];10 [y1 y2] = kwt(x,kww);11 cy2 = largesta(4,y2);12 cx = ikwt(y1,cy2,kww);13 cE=cx-x;14 oy1 = oc(y1,y2-cy2,kww);15 ox = ikwt(oy1,cy2,kww);16 oE=ox-x;17 fprintf('%f %f %f\n',r,norm(oE)/normx,norm(cE)/normx)18 endThe following output shows that the optimal r is about 2:95.r WOC W........ ........ ........2.850000 0.002690 0.0029262.900000 0.001450 0.0015712.950000 0.000277 0.0002943.000000 0.000984 0.0010603.050000 0.002113 0.002270........ ........ ........To determine a more accurate result, change RRopt to 2.90:0.01:3.0.and invoke opt again. 38



5 ftp InformationAs more experiments are performed, new commands and M-�les will certainlybe created, and we will add these to our repertoire in future. The toolboxalso contains several general purpose graphics/image utilities not coveredin this paper, such as mag (and shk) which magni�es (shrinks) the current�gure window. The most up-to-date toolbox can be obtained by ftp atinfo.mcs.anl.gov. After logging in, change directory to pub/W-transfromand get the �les wtransf1.ps, wtransf2.ps, and wtransf.tar.Z.The �rst �le is [3], the second �le is this paper, and the third �le containsthe toolbox. On a Unix machine, use the commands% uncompress wtransf.tar.Z% tar xvf wtransf.tarto install the toolbox.Please send comments and suggestions to kwong@mcs.anl.gov.References[1] Chui, C. K., An Introduction to Wavelets, Academic Press, 1992.[2] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Series Appl.Math., SIAM, 1991.[3] Kwong, Man Kam, and Tang, Peter P. T., W -matrices and Nonorthog-onal Multiresolution Analysis of Finite Signalsof Arbitrary Length, Ar-gonne National Laboratory Preprint Series MCS-P449-0794, 1994.[4] Mallat, S. G., A theory for multiresolution signal decomposition: Thewavelet representation, IEEE Trans. on Pattern Analysis and MachineIntelligence 11 (1989), 674{693.[5] Taswell, C., and McGill, K. C., Wavelet transform algorithms for �nite-duration discrete-time signals, Numerical Analysis Project ManuscriptNA-91-07, Department of Computer Science, Stanford University, 1991.39


