MATLAB Implementation of W-Matrix
Multiresolution Analyses

Man Kam Kwong*

Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439-4844

E-mail: kwong@mcs.anl.gov

Abstract

We present a MATLAB toolbox on multiresolution analysis based
on the W-transform introduced by Kwong and Tang. The toolbox
contains basic commands to perform forward and inverse transforms
on finite 1D and 2D signals of arbitrary length, to perform multires-
olution analysis of given signals to a specified number of levels, to
visualize the wavelet decomposition, and to do compression. Exam-
ples of numerical experiments are also discussed.

1 Introduction

In [3], Kwong and Tang introduced the concept of W-matrices and used them
to construct nonorthogonal multiresolution analyses applicable to finite sig-
nals of arbitrary length. We refer the readers to Chui [1] and Daubechies [2]
and the bibliographies therein for the classical theory of wavelets. Multires-
olution analysis is popularized by Mallat [4].

*This work was supported by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

A W-matrix is generated by a pair of suitably chosen vectors. The fam-
ily of W-matrices of different sizes generated by the same pair of vectors
defines a W-matrix transform (or, more briefly, W-transform) on finite sig-
nals represented by vectors. It is simply the multiplication of the vector by
a matrix of the appropriate size in the family, followed by splitting up the
product vector into its odd-component and even-component vectors. A mul-
tiresolution analysis refers to repeated applications of the W-transform to
the odd-component output signal. See Section 3 and [3] for more details.

The most important property of a W-matrix, which is crucial to its prac-
tical value, is that both the matrix and its inverse have only a small number
of nonzero elements in each row and each column.

It was demonstrated in [3] that a particularly useful special case is the
quadratic spline (QS) matrix. It is of order 4: each row and column has
at most four nonzero elements. By varying six parameters, one can obtain
other W-transforms, including the well-known Daubechies Dy transform of
order 4. One may optimize to choose the best transform for a given particular
application. W-matrices of any order are possible, but only those of order 4
are covered in this paper.

In the rest of the paper, we present a MATLAB toolbox of the general W-
transform of order 4. Our goal is to write highly versatile and user-friendly
commands that are suitable for carrying out both interactive and batch ex-
periments. To this end, we design the commands to be able to provide default
values to as many input arguments as possible, and to take different actions
according to the form of the input arguments. See Section 3.1.

MATLAB toolboxes based on classical orthogonal wavelets are available
in the public domain. Examples are TeachWave (David L. Donoho), Wavelet-
Tools (Jeffrey C. Kantor), and WavBox (Carl Taswell). They, of course, do

not have our new transforms.

Section 2 is an overview of the available commands. It serves also as a
tutorial. Section 3 gives detail explanations of the coding of each command.
Section 4 presents examples of M-files used for experimentation. Section 5
contains information on how to obtain the toolbox.

2 Overview of Commands

We assume that the readers are familiar with MATLAB, both as an inter-
active package and as a programming language, and that the M-files of the
commands discussed in this paper have been properly installed (see Sec-
tion 5). The best way to proceed is to invoke a MATLAB session and try
the following hands-on tutorial.

First let us generate a sample signal to experiment with.

>> t
>> X

0:0.01:1;
t % sin(20%t);

The first line generates a linear vector t, useful as a shorthand in the
next line to construct x (or additional sample signals in the future). Another
interesting sample signal is x = t .* cos(10%t) .* sin(20%t).

The command to invoke a W-transform is kwt. In its simplest form
>> y = kut(x);

transforms x into a new vector y using the default QS transform. To see
what kwt does to x, we graph both the input and output vectors using

>> plot(x), plot(y)

L L L L L L L L L L
10 20 30 40 50 60 70 80 Q0 100

Figure 1. Plot of original signal x = t sin(20t)

Figure 2. Plot of the QS transform of x

One sees clearly that y is made up of two parts. Its first half resembles the
original signal x, while the second half consists of relatively small components.
Indeed, we can ask kwt to split the output signal into two parts using the
following form of the command:

>> [y1, y2] = kut(x);
The commands
>> length(x), length(y), length(yl), length(y2)

give the lengths of x, y, y1, and y2; they are 101, 101, 51, and 50, respectively.
It is a general rule that the input and output vectors are equal in length. The
split output vectors are each half the length of the input vector if it is even;
otherwise, y1 has one more component than y2.

The versatility of the command kwt lies in its ability to handle correctly
input signals of different formats: row or column vectors as well as matri-
ces. In the last case, a two-dimensional W-transform (once in the horizontal
direction and once in the vertical direction) is performed to produce four
submatrices. If one has a matrix L representing a grayscale image, such as
the popular Lena (intensity range: 0-255), one should try

>> image(kwt(L)/16), axis(’image’), colormap(gray(256))

4

The inverse W-transform is one of the following:

>> ikwt (y)
>> ikwt(y1,y2)

One should verify that each of these is practically (within the accuracy of
numerical error) identical to the original vector x.

Lossy compression of a signal is achieved by discarding small components
of y2, or by quantizing. The command

>> cy2 = largesta(10, y2);

produces a new vector that retains the largest (in absolute value) ten com-
ponents of y2 and truncates the rest to 0. The actual number of components
retained may be different from 10 if more than one component ties for the
tenth place. The vector cy = [y1, cy2] is now a (lossily) compressed rep-
resentation of the original signal x. It has only 61 nonzero components. It
takes, however, more than 61 data units to record cy, since both the location
and magnitude of the nonzero elements of y2 need to be stored. Further-
more, the magnitude of the components of y; is no longer within the range
assigned to the original signal and thus may require more bits to represent.
With more advanced techniques, the result can usually be stored by using
just a few extra units in addition to the 61 units. The compression ratio
achieved is thus approximately 100/65.

Alternatively, the command
>> cy2 = largesta(0.2,y2);

retains the largest (in absolute value) two-tenths of the components of y,.
The compression ratio can be raised by lowering the 0.2 threshold, the first
input argument to largesta.

Another tool for compression is the command
>> quant(y2,5)

which quantizes the components of y2 by using a quantization interval of

length 5.

A much higher compression ratio is achievable by repeating the com-
pression process on y1, once or several more times, leading naturally to the
method of multiresolution analysis. In theory, one can continue the process
to as many levels as possible until the most recently obtained y1 is of length
2. In practice, however, after a few levels, further compression produces ei-
ther intolerable errors or very little additional benefit. To obtain a three-level
multiresolution analysis on x is simple:

>> z = wma(x,3);

When x is a row vector, the structure of zis [y31 y32 y22 y12], where y31
denotes the third-level y1 and so on.

Since a multiresolution analysis produces a variable number of wavelets,
it 1s not feasible to ask wma to output the separate wavelets automatically.
We provide another function to carve out specified wavelets from the output
of wma. For 1D signals,

> w = maw(z,2);

gives the second-level multiresolution analysis wavelet from z, obtained above
by using wma. Similarly,

> v = maw(z,3,1);

gives the y1 vector at the top level of a three-level multiresolution analysis.

For 2D signals, the third input argument specifies which of the four sub-
matrices is to be carved out. One can also call the interactive m-file wmai
(which is not a function) to do the multiresolution analysis. MATLAB then
prompts for the signal and the number of levels.

Enter signal to be analyzed: L
Enter number of levels 23

The results of the three-level analysis are stored in the signals WL11, WL12,
WL21, etc.

For visualization,
>> wplot(z,3)

plots the components y31, y32, y22, y12 of z to give the familiar third-
level wavelet coefficient diagram. Since the wavelet coefficients are usually
too small to show up significantly on the graph, we use the command

>> wplot(z,3,0.01)

to magnify the second-level wavelet coefficients 100 = 1/0.01 times, the third-
level coefficients 100% times, and so on.

Figure 3. Plot of multiresolution analysis wavelet components
Inverse multiresolution analysis is as expected:
>> X = iwma(z,3);

The multilevel wavelet representation of the signal must be assembled into a
single vector or matrix, such as z, before iwma is called.

The default W-transform used by kwt and wma is controlled by a global
variable kw set by the startup file startup.m. Typing >> kw reveals the
default value [1 3 3 1]/4, comprising the coefficients in the 2-scale dilation
equation for the wavelet associated with the QS transform. In [3], the QS
transform is defined using [1 3 3 1], but we discover that, in practice, it
is more convenient to use one-fourth of the vector. This only affects the
transform by a scaling. By setting kw to other values, such as

> kw = [1, 2, 2, 1]

one can choose a different W-transform. The particular choice kw = kwdau
(kwdau is another vector automatically set by the startup file startup.m)
gives the Daubechies transform of order 4. Our implementation of the
Daubechies transform differs from the conventional one in the way it treats
the endpoint components; see [3]. Unlike kwgs and kwi, the vector kwdau
has six components.

kwdau = [0.4830 0.8365 0.2241 -0.1294 0.2679 -3.7321]

A second method to call a specific W-transtorm, without altering the de-
fault value of kw, is to supply the parameter vector as an additional argument
to the function invoked. The commands

>>y
>>y

kwt (x,kwdu) ;
wma (x,kwdu,3) ;

use the Daubechies transform but retain the QS transform as the default for
future calls.

The decomposition effected by a W-transform is in general not orthogo-
nal. In [3], it is shown that for the QS transform this is not a real drawback in
practice. For most reasonable signals, the error incurred by discarding small
components of y, is on the same order of magnitude as the optimal compres-
sion obtainable by using orthogonal decomposition. For the perfectionist,
we provide an orthogonal compensation procedure that can further improve
the compression performance. Let e be the part of y2 to be discarded, for
instance,

>> e = y2 - cyi;
where cyl = largesta(0.1, y2) as defined before. Then
>> cyl = oc(yl,e);

produces a vector cyl to be used in place of y1, in such a way that the pair
(cyl, cy2) gives a better approximation to x than the pair (y1, cy2).

The commands mentioned above provide an adequate set of building
blocks for writing more complicated M-files for experimentation. Examples
given in Section 4 include M-files to compare two W-transforms, to compress
2D images, and to search for an optimal W-transform. Other commands
in the toolbox include sf, which constructs the scaling function; wf, which
constructs the wavelet function, and sdil, which solves a 2-scale dilation

equation.

3 The MATLAB Programs

In this section, we present the MATLAB codes of the commands given in
Section 2. The algorithms are explained in detail for the benefit of those
who need to adapt the codes to other languages.

Each command is contained in a separate MATLAB M-file. We assume
that the readers are familiar with the rudiments of MATLAB programming.
The commands have not been written in the most robust form; rigorous
checking for correct formats of input arguments is lacking in most cases.
Comments and feedback are appreciated.

When listing our M-files, we leave out the comments, except those per-
taining to the usage of the command. For reference, we have added line
numbers.

3.1 User-Friendliness

In this subsection, we discuss our goal and standard for writing user-friendly
MATLAB commands. Our objective is to help readers understand the design
of the programs presented below. Fortunately, the MATLAB language is
powerful enough to allow us to implement most of what we wanted.

The ability to allow some input arguments to be omitted and to assume
default values greatly simplifies the syntax of the commands when used in
common situations. This feature is especially helpful to beginners.

Two techniques are employed to assign default values. The global variable
kw is used to designate the default W-transform used by kwt, ikwt, wma, etc.
A user can interactively change the default by assigning new values to kw.
Since many global variables can be dangerous, however, we refrain from using
more. Instead, for other default arguments, such as the number of levels used
by wma and the quantization level used by quant, the default values are built
into the programs themselves. A user cannot conveniently change a default
value without modifying the M-file. We believe that such modification is not
difficult to do, and we have supplied easy-to-follow instructions in the M-files
using comments.

It possible, we make a command accept an argument in any reasonable

10

format. For instance, kwt does not fuss if the input signal x is a row or a
column vector and will produce a row or column output vector accordingly.

In a similar vein, we attempt to make a command more flexible in ac-
commodating the order of the input arguments. For instance, wma(4,x)
and wma(x,4) are both permitted and produce the same answer. Another
example is largesta(4,y) and largesta(y,4).

We also try to pack more functionality into a single command. The actual
action and output of a command can be different depending on the format
of the input or output arguments. Some examples follow.

o Most toolboxes have different commands for 1D and 2D transforms.
Our command kwt will perform a 1D or a 2D transform according
to whether the input signal is 1D or 2D. Also kwt will separate out
the wavelet vectors/matrices if there are two output arguments for 1D
signals or four output arguments for 2D signals.

e The command ikwt (y1,y2) or ikwt(y1,y2,y3,y4) first assembles the
input vector/matrices into a single vector/matrix before performing the
inverse W-transform.

o The command largesta(r,y) will extract the largest r components
of y if r is greater than 1 but the largest fraction r of the total number
of components if r is less than 1.

e The command quant (y, 10) quantizes the components of y to the near-
est 10, 20, etc., while quant(y,’10’) quantizes the components of y
into approximately 10 levels.

Error-checking is part of being user-friendly. We repeat our earlier re-
mark that we have not spent sufficient effort on perfecting this aspect of
our commands (we will do our best when time permits). We believe that the
commands are sufficiently easy to use that few users will really need extensive
error-checking.

11

3.2 The Startup File

%% startup.m

global kw

kwgs = [1 3 31 1/4;

kwi=[12211;

kw =kwqgs;

dr = sqrt(3);

dau = [1 dr 2*dr-3 dr-2];

ndau = dau/norm(dau);

wdau = ndau(4:-1:1).*[1 -1 1 -1];

kwdau = [ndau ndau(3)/wdau(3) ndau(1)/wdau(1)];
clear dr dau ndau wdau

O © 00 N O 0 WwN -

[y

The commands in this file are to be appended to those in one’s startup
file, which usually contains path setting and other routine startup commands.

These commands declare a global variable kw; define three variables kwqs,
kwdau, and kwl; and set kw initially to kwgs. The global variable kw contains
the parameter vector that determines the default W-transform used by the
commands kwt, wma, and their families. The variables kwqs, kwdau, and kw1
are parameter vectors for the QS, Daubechies, and a third sample transform,
respectively. A general parameter vector has six components, as explained in
Section 3.3. The fourth and fifth components, when omitted, take the default
values 1 and -1, respectively. When one has developed her own favorite W-
transforms, their corresponding parameter vectors can be added to the list,
simply following the format of line 2 or 3 to define more variables. Line 10
clears the temporary variables used only to construct kwdau.

If these variable names conflict with ones normally used in one’s own
workspace, the reader can change his own notations or modify all the M-files
in this paper accordingly.

12

3.3 The W-transform kvt

According to the general theory outlined in [3], an arbitrary vector h =
[h1, ha, k3, hy] and two constants ¢ and d are first chosen. The vector

9= [91,92,93,94] = [h1] ¢, ha/c, hz/d, ha/d] (1)

together with h then form a basic pair of vectors that are used to construct
the W-matrices (of even and odd sizes, respectively):

g1+92 g3 9a

hi+hy hy hy
91 92 93 94
hi ho hs hy
W = g1 92 93 94 (2)

hi1 hg hy hy

g1 92 g3+ g4
hi hy hz+ hy

and
g1+92 93 9a
hi+hy hy hy
g1 92 93 Ya
hi he hs hy
g1 92 g3 g4
W = hl h2 h3 h4 . (3)
g1 92 g3 g4
hi hy hs hy

hi ha+hs+ hy

The corresponding W-transform kwt (x) of a column vector x is computed
by choosing a W of the appropriate size, forming the matrix product Wx,
and then separating out the odd and even components of the resulting vector.

y1 = odd components of Wx (4)
y2 = even components of Wx (5)

13

We define kwt (x) to be either the pair y1 and y2 or the vector obtained by
appending y2 to y1.

For a row vector x, kwt (x) is defined as the transpose of the transform
of the transpose of x. For a matrix x, its 2D W-transform is obtained by
first applying the 1D W-transform to each column of x and then applying
the same W-transform to each row of the resulting matrix.

Most researchers in the wavelet community are, however, more familiar
with another vector, which comprises the coefficients of the dilation equation
and is related to h by

G = [ha, —h3, ha, —hq]. (6)

We program kwt to use an input argument k, obtained by appending the
constants ¢ and d (if they are different from the default values of 1 and -
1, respectively) to g, to designate the choice of the W-transform. When
k is omitted, its value is taken from the global variable kw. Initially, the
default parameter vectoriskw = [1 3 3 1 1/4, set by the startup.mfile.
Although any choice of k will lead to a workable transform, only a carefully
chosen one will result in a transform appropriate for compression.

% y = kwt(x) default W-transform
% [y1, y2]1 = kuwt(x) 1D row/column x
% [yl, y2, y3, y4] = kwt(x) 2D matrix x
% y = kwt(x,k) general W-transform
% determined by k
1 function [y, yw, y3, y4] = kuwt(x,k)
2 if nargin == 1
3 global kw
4 if exist(’kw’) "= 1, k = [1 3 3 1]1/4; else k = kw; end
5 end
8 ss=size(x);
7 if ss(1) == 1, x = x(:);
8 elseif ss(2) > 1

9 if nargout == 4, [y, yw, y3, y4] = kwt2(x,k);
10 else y = kwt2(x,k); end

11 return

12 end

14

13 if length(k) == 4, c=1; d=-1;

14 elseif length(k) == 5, c=k(5); d=-1;

16 elseif length(k) == 6, c=k(5); d = k(6);
16 else k = [1 3 3 11/4; c=1; d=-1;

17 end

18 C=-k(4)/c; D=k(3)/c; A=-k(2)/d; B=k(1)/d;

19 s=size(x);

20 n=floor(s(1)/2);
21 x1=x(1:2:s5(1),:);
22 x2=x(2:2:s5(1),:);

23 if s(1) == 2*n
24 y=[(C+D)#*x1(1,:)+A*x2(1,:)+B*x1(2,:)

25 C*x2(1:n-2,:)+D*x1(2:n-1,:)+A*x2(2:n-1,:)+B*x1(3:n,:)
26 C*x2(n-1,:)+D*x1(n,:)+(A+B)*x2(n,:) 1;

27 yw=[c*x(C+D)*x1(1,:)+d*(A*x2(1,:)+B*x1(2,:))

28 c*(C*x2(1:n-2,:)+D*x1(2:n-1,:)) +d*x(A*x2(2:n-1,:) ...
29 +B*x1(3:n,:))

30 c*(C*x2(n-1, :)+D*x1(n, :))+d*(A+B)*x2(n,:) 1;

31 else

32 y=[(C+D)#*x1(1,:)+A*x2(1,:)+B*x1(2,:)

33 C*x2(1:n-1,:)+D*x1(2:n,:)+A*x2(2:n,:)+B*x1(3:n+1,:)
34 C*x2(n, :)+(A+B+D)*x1(n+1,:) 1;

35 yw=[c*x(C+D)*x1(1,:)+d*(A*x2(1,:)+B*x1(2,:))

368 c*(C*x2(1:n-1,:)+D*x1(2:n,:))+d*(A*x2(2:n,:)

37 +B*x1(3:n+1,:)) 1;

38 end

39 nargout <= 1
40 if ss(1) == 1, y = [y’ yw’];
41 else y = [y; ywl; end

42 elseif ss(1) == 1,
43 y=y', yw = yw’;
44 end

Line 1 declares kwt to be a function that has at most two input argu-
ments and at most four output arguments. The case of having four output
arguments occurs when x is a matrix and the user wants the 2D transform
to be separated out into four submatrices.

15

Lines 2-5 check whether the argument k is present. If not, its value is
then taken from the global variable kw. To take care of the case in which the
global variable kw may have been inadvertently erased, line 4 sets kw to the
default QS transform.

Lines 6-12 examine the format of x and choose the various paths. Line
7 changes x to a column vector if it is input as a row vector. (Lines 42 and
45 convert the output back into a row vector to match the input format.)
Line 8 checks whether x is a 2D matrix. If it is, the work is delegated to the
M-file kwt2.m. A user has no need to use kwt2 directly; it is provided merely
to make the coding easier to understand. We omit the listing of kwt2.m.

Lines 13-17 check the format of the parameter vector k, supplying the
default values for ¢ and d if necessary.

Line 18 computes the components of g = [C, D, A, B]. The names
used to denote the components have been retained from previous versions of
the program.

Lines 21 and 22 extract the odd and even components of x. These are
used to simplify the computation of the W-transform.

Line 23 checks whether the length of x is even. If so, lines 24-30 compute
the transform. Note that in the implementation of the W-transform, we
do not use matrix multiplication. Lines 32-37 compute the transform for

odd-length x.

Finally, lines 39-44 put the output in the correct format according to the
number of output arguments requested and the format of the input signal.

16

3.4 The Inverse W-transform ikwt

% y = ikwt(x) default inverse W-transform
% y = ikwt(x1,x2) 1D x1, x2

% y = ikwt(x1,x2,x3,x4) 2D matrices

% y = ikwt(x,k) general inverse W-transform

1 function y=ikwt(x1,x2,x3,x4,k)

2 ss=size(x1);

3 if nargin ==

4 if ss(1) == 1, x = x1(:);

5 elseif ss(2) > 1 & nargin == 1, y = ikwt2(x1); return
6 else x = x1;

7 end

8 elseif nargin ==

9 if min(ss) > 1

10 y = ikwt2(x1,x2); return

11 elseif size(x2,1) == 1 & size(x2,2) < 7 & size(x2,2) > 3
12 x = x1(:); k = x2;

13 else x = [x1(:); x2(:)1;

14 end

15 elseif nargin ==

16 x = [x1(:); x2(:)]1; k = x3;

17 elseif nargin ==

18 y = ikwt2([x1 x2; x3 x4]); return
19 elseif nargin ==

20 y = ikwt2([x1 x2; x3 x4],k); return
21 end

22 if exist(’k’) ~=1

23 global kw

24 if exist(’kw’) "= 1, k = [1 3 3 1]1/4; else k = kw; end
25 end

26 if length(k) == 4, c=1; d=-1;

27 elseif length(k) == 5, c=k(5); d=-1;

28 elseif length(k) == 6, c=k(5); d = k(6);
29 else k = [13 3 1]1/4; c=1; d=-1;

30 end

17

31
32

33

34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
b7
58
59

60

C=-k(4)/c; D=k(3)/c; A=-k(2)/d4; B=k(1)/d;
DD = (A*D-Bx*C);

s=size(x); n=floor(s(1)/2);

if s(1) == n*2

x1=x(1:n,:);

x2=x(n+1:s5(1),:);

yi=[(d*x1(1,:)-x2(1,:))/(C+D)
(Ck(c*x1(1:n-1,:)-x2(1:n-1,:))...
+A*(d*x1(2:n,:)-x2(2:n,:)))/DD 1/(d-¢);

y2=[(D*#(-c*x1(1:n-1,:)+x2(1:n-1,:))...
+B*(-d*x1(2:n,:)+x2(2:n,:)))/DD
(-c*x1(n,:)+x2(n,:))/(4+B) 1/(d-c);

y=zeros(s);

y(1:2:2*n,:)=y1; y(2:2:5(1),:)=y2;

else
x1=x(1:n+1,:);
x2=x(n+2:s5(1),:);
yi=[(d*x1(1,:)-x2(1,:))/(C+D)
(Ck(c*x1(1:n-1,:)-x2(1:n-1,:))...
+A*(d*x1(2:n,:)-x2(2:n,:)))/DD 1/(d-¢);
DDD = A*D+A"2+A*B-B*C;
yi=[y1; (C*(c*x1(mn,:)-x2(n,:))/(d-c)+A*+x1(n+1,
y2=(D*(-c*x1(1:n-1,:)+x2(1:n-1,:))...
+B*(-d*x1(2:n,:)+x2(2:n,:)))/DD/(d-c);
y2=[y2; (-(D+A+B)*(c*x1(n,:)-x2(n,:))/(d-¢c)...
-B*x1(n+1,:))/DDD];
y=zeros(s);
y(1:2:5(1),:)=y1; y(2:2:5(1),:)=y2;
end

if ss(1) == 1, y = y’; end

:))/DDD];

A remarkable and useful property of a W-matrix is that its inverse is also
generated by a pair of vectors of length 4. Furthermore, all W-matrices of
even, or odd, sizes have the same structure; they differ only in the number

of pairs of basic vectors used.

Using MAPLE, we are able to obtain the formula for the inverse matrix
of a general W-matrix. The algorithm for computing inverse W-transform

18

consists of merging y1 and y2 by interlacing their components and then
multiply by the inverse W-matrix.

To make ikwt more user-friendly, we allow the input of 1D signals ei-
ther as two separate vectors y1 and y2 or as one single vector obtained by
appending y2 to y1, and the input of 2D images either as four separates
matrices or as one single matrix. The parameter vector k may be supplied
as an argument or omitted (kw is used as default). Ambiguity arises and
CAUTION must be exercised when there are two input arguments each of
length between 4 and 6, since the second argument can be interpreted either
as y2 or as k. In such a case, the latter interpretation prevails.

Lines 3-21 examine the number of input arguments and choose the appro-
priate path, in particular, delegating the work to ikwt2 if there is indication
that the input signal is a matrix. The listing of ikwt2 is omitted.

Lines 22-32 check the existence and format of k and extract from it the
coeflicients used in the inverse transform.

Lines 34-44 perform the inverse transform on even-lengthed signals and
lines 46-58 on odd-lengthed signals. The formulas used are slightly more
complicated than the corresponding ones for the forward transform. This is
because the inverse matrix has a factor the reciprocal of the determinant of
the W-matrix and components in both the first two rows and the last two
rows have rather involved expressions. Other than that, the formulas are
straightforward. Line 60 puts the output in a row vector if the input signal
is a row vector.

19

3.5 The W-Multiresolution Analysis wma

The command wma carries out a multiresolution analysis on a signal x up to
n levels using the parameter vector k. As usual, the default k is taken from
kw. The default n is 3. The arguments n and k can be input in either order.

% y = wma(x) default W-multiresol. anal., n = 3
% y = wma(x,n) n-level analysis
% y = wma(x,n,k) general W-multiresol. anal.

%
% L[y, ind] = wma(x) ind can be used to separate out the
% wavelet vectors

1 function [y, ind] = wma(x,n,k)

2 if nargin == 1, n = 3;

3 elseif nargin ==2, if length(n) > 1, k = n; n = 3; end

4 else if length(k)==1, tmp = n; n = k; k = tmp; end

5 end

6 if exist(’k’) ~=1

7 global kw,

8 if exist(’kw’) "= 1, k = [1 3 3 1]1/4; else k = kw; end
9 end

10 ss = size(x); ind = ss;

11 for ii = 1:n

12 y(1:ss(1),1:88(2)) = kut(x,k);

13 ss = ceil(ss/2); ind = [ss; ind];
14 x = y(1:8s8(1),1:88(2));

15 end

Line 1 indicates that the function has an optional output ind, which gives
the indices marking the ends of the various segments of the transformed signal
at all the levels. For instance, if ind is the matrix

[113; 126; 151; 1 101],

then the first-level y2 is made up of the 52-nd to the 101-st components, the
second-level y2 is of the 27-th to the 51-st components, the third-level y2 of

20

the 14-th to the 26-th components, and finally the third-level y1 of the 1-st
to the 13-th components. That the first column of ind are all 1 indicates
that the signal is one dimensional. If x 1s a matrix, the first column of ind
will give the corresponding indices in the vertical direction.

Lines 2-5 check the number and format of the input arguments, figuring
out which argument is n and which is k and supplying the default value for
n if needed. Lines 6-9 supply the default value for k if needed.

Lines 11-16 form the main loop that calls kwt to perform the transform
and then find the size and signal to be transformed at the next level.

21

3.6 The Inverse W-Multiresolution Analysis iwma

The inverse W-multiresolution analysis is similar to the forward analysis
except that ikwt is invoked instead of kwt, and the highest level is dealt
with first. The arguments n and k can be input in either order.

The various wavelet vectors/submatrices must be first assembled into one
single signal x before input into the function.

% y = iwma(x) default inverse W-multiresol. transf.
% n=3

% y = iwma(x,n) n-level default inverse W-ma

% y = iwma(x,n,k) general inverse W-ma

1 function y = iwma(x,n,k)

2 if nargin == 1, n = 3;

3 elseif nargin == 2, if length(n) > 1, k = n; n = 3; end
4 else if length(k)==1, tmp = n; n = k; k = tmp; end

5 end

6 if exist(’k’) ~=1

7 global kw,

8 if exist(’kw’) "= 1, k = [1 3 3 1]1/4; else k = kw; end
9 end

10 ss(n,:) = size(x);

11 for ii = n-1:-1:1

12 ss(ii,:) = ceil(ss(ii+l,:)/2);
13 end

14 for ii = 1:n

15 x(1:ss(ii,1),1:ss(ii,2)) = ...

16 ikwt(x(1:ss(ii,1),1:8s8(ii,2)),k);
17 end

18 y = x;

22

3.7 Extracting Multiresolution Analysis Wavelets maw

% z = maw(y,j) j-th level wavelet vector for 1D y

% z = maw(y,j,1) (top) j-th level yl vector for 1D y

0

%

% z = maw(y,j,h) h-th submatrix (out of 4) at j-th level
% for 2D y

1 function z = maw(y,j,h)

2 ind = size(y);

3 if min(ind) ==

4 ind = length(y);

5 for i = 1:j-1, ind = ceil(ind/2); end

8 if nargin == 2, z = y(ceil(ind/2)+1:ind);
7 else z = y(1:ceil(ind/2)); end

8 else

9 for i = 1:j-1, ind = ceil(ind/2); end
10 ind0 = ceil(ind/2);
11 if “exist(’h’), h = 1; end

12 if h == z = y(1:ind0(1),1:ind0(2));

13 elseif h = y(1:ind0(1),ind0(2)+1:ind(2));
14 elseif h == 3, z = y(ind0(1)+1:ind(1),1:ind0(2));
15 else z = y(ind0(1)+1:ind(1),ind0(2)+1:ind(2));

16 end

17 end

[T
1]
N
N
|

For one-dimensional signals, we need only one index to specify the level
at which to extract the wavelet. Thus maw(y,3) gives the level 3 wavelet.
Supply a second index if one requires the top-level y1 vector.

For two-dimensional signals, we need one index to specify the level and
another index to specify which of the four submatrices is needed.

Lines 3-7 handle the 1D case and lines 817 the 2D case.

23

3.8 Interactive Multiresolution Analysis wmali

%%% wmai.m

SIGNAL = input(’Enter signal to be analyzed: ’,’s’);
LEVELS = input(’Enter the number of levels : ’);
if length(LEVELS) == 0, LEVELS = 3; end
SIZES = 0; eval([’SIZES = size(’ SIGNAL ’);’ 1)
if min(SIZES) == 1,
eval([’[W’> SIGNAL ’11, W’ SIGNAL °12] = ...
kut (> SIGNAL ’);’])
else
eval([’[W’> SIGNAL ’11, W’ SIGNAL ’12, W’ SIGNAL °13,
W’ SIGNAL ’14] = kwt(’ SIGNAL ’);’ 1)

©O© 0 ~N O 0 WN -

[
= O

end
for ii = 2:LEVELS
II = int2str(ii);
if min(SIZES) == 1,
eval([’[W’ SIGNAL II ’1, W’ SIGNAL II ’2] = ...
kwt (W’ SIGNAL int2str(ii-1) ’1);’ 1)

[e S =
~N O O WwN

else
eval([’[W’> SIGNAL II °1, W’ SIGNAL II °’2,
W’ SIGNAL II ’3, W’ SIGNAL II ’4] =
kwt (W’ SIGNAL int2str(ii-1) ’1);’ 1)

NN = =
= O ©O

end
end

N
N

The MATLAB command eval is used to concatenate strings to construct
variable names for the wavelet vector/matrix.

A disadvantage of using a script, such as wmai, instead of a function is
that a few variables, such as SIGNAL and LEVELS, will be left dangling in the
workspace.

Beware of conflicting variable names.

24

3.9 Visualization wplot and 1lbar

Using wplot, one can visualize the top-level y1 and the y2 of all levels in
the traditional plot (Figure 3) used by many wavelet researchers. Built into
wplot is the same procedure used by maw to carve out the various segments
from the input signal (lines 13-16). Each segment is then plotted in a subplot
using the subroutine 1bar.

% wplot(x) plot 3-level multiresol. anal.
% wplot(x,n) plot n-level multiresol. anal.
% wplot(x,n,r) use r < 1 as magnification factor

% wplot(x,n,r,c) use color ¢

1 function wplot(x,n,r,c)

2 if exist(’n’) "= 1, n =3; r = 1;

3 elseif exist(’r’) “=1, if n > 1, n = ceil(n); r = 1;
4 elser = n; n = 3; end

5 else if n > 1, n = ceil(n);

8 else tmp = r; r = n; n = max(2,tmp); end

7 end

8 1if exist(’c’) "= 1, ¢ = ’y’; end

9 ind = length(x);
10 mx = min(min(x),0); Mx = max(max(x),0);
11 figure(gcet)

12 for ii = n+1:-1:1

13 if ii > 2, xx = x(ceil(ind/2)+1:ind)/r"(ii-2);
14 elseif ii > 1, xx = x(ceil(ind/2)+1:ind);

15 else xx = x(1:ind); end

16 ind = ceil(ind/2);

17 h = subplot(n+1,1,ii);

18 lbar(xx,c)

19 axis([1 length(xx) mx Mx 1)

20 axis off

21 rect = get(h,’pos’);

22 set(h,’pos’,[rect(l) rect(2)-(n+i-ii)*rect(4)/10 ...
23 rect(3) rect(4) 1)

24 end

25

Lines 2-8 check the input arguments. The argument n specifies the num-
ber of levels (defaults to 3) and argument r is a magnification factor used for
lower level wavelets; n and r can be input in either order. The argument ¢
specifies the color (defaults to yellow) of the plot and can be input only after
n and r.

Line 10 determines the lower and upper limits on the vertical axis used
by each subplot. Line 11 raises the current figure to the foreground.

Lines 17-20 do the plotting and adjust the axis limits. Lines 21-23 move
the subplots closer together for aesthetic reasons.

By convention, a wavelet plot is constructed by drawing a vertical line at
each integral point on the horizontal with height proportional to the appro-
priate component of the wavelet vector. In essence, it is a bar graph in which
each bar is a vertical line. MATLAB does not seem to have a command to
draw such a plot, and we therefore write our own. Expecting it to be of
interest in other contexts, we make the command 1bar slightly more general.
It can take two optional arguments, one to specify the range to be labeled
on the horizontal axis, and another to specify the color of the graph.

% 1bar(y) plot y as line-bar graph
% 1lbar(x,y) plot y VS x as line-bar graph
% 1lbar(x,y,c) use color ¢

1 function lbar(x,y,c)

2 n = length(x);

3 if nargin == 1, y = x(:); x = (1:n)’; ¢ = ’y’;

4 elseif nargin == 2,

5 if length(y) == 1, ¢ = y; y = x(:); x = (1:n)’;
6 else x = x(:); y = y(:); ¢ = ’y’; end

7 end

8 n = 3%n;

9 xx = zeros(n,1); yy = xx;

10 xx(1:3:n) = x; xx(2:3:n) = x; xx(3:3:n) = x;

11 yy(2:3:n) = y;
12 plot(xx,yy,c)

26

3.10 Compression Utilities largesta and quant

h oy largesta(n,x) n > 1, largest (absolute value)

% n components of x

% [y, N] = largesta(r,x) r < 1, largest fraction r

% N = number of components retained

1 function [y, N] = largesta(n,x)

2 if length(n) > 1, tmp = n; n = x(1); x = tmp; end

3 ax = abs(x);

4 M = max(max(ax));

5 a=0; b=M; nl = prod(size(x(:))); n2 = nnz(ax == M);
6 if n ==1, y = x; n = nl; return

7 elseif n <= 0, y = 0%x; n = 0; return

8 elseif n < 1, n = min(nl-1,round(ni*n));

9 end

10 while nl "= n & n2 "= n & nl "= n2 & b-a > 0.000001*%M
11 c = (at+b)/2;

12 nc = nnz(ax >= c);

13 if nc > n, a = ¢; nl = nc;
14 else b = c¢; n2 = nc;
15 end

16 end

17 if n1l == n

18 small = find(ax < b);
19 %y =x.x(ax > b);

20 else

21 small = find(ax < c);
22 %y =x.x(ax > c);

23 end

24 y = x5
25 y(small) = zeros(size(small));
26 N = nnz(y);

The command largesta retains the largest (in absolute values) n ele-
ments of the matrix x and truncates the rest to 0. If n is larger than 1, it
is used as the actual count of elements to be retained. If n is less than or

27

equal to 1, it is interpreted as the fraction of the total number of elements
to be retained. The number of elements actually retained may differ from
the requested number. The algorithm uses a bisection procedure. A sister
command largest retains the largest (in algebraic value) elements.

The command quant (x,n) quantizes the components to take values in
the set {0, +n,£2n,£3n,---}. If n is a string containing a number, quant
will produce approximately n quantization levels. If n is not specified, ap-
proximately ten quantization levels will be used.

% y = quant(x) quantize x (approximately 10 levels)
% y = quant(x,q) use g as quantization interval

% [y, Q] = quant(x,’n’) use approximately n levels

% Q = actual quantization interval

1 function [y, q] = quant(x,q)

2 if nargin == 1

3 q = ’107;

4 elseif length(x) == 1 | isstr(x)
5 tmp = x; x = q; q = tmp;

6 end

7 if isstr(q)

8 eval([’q = q ’;° 1)

9 r = (max(max(x)) - min(min(x)))/q*1.5;

10 p = floor(log(r)/log(10));
11 q = floor(r/10"p)*10°p;
12 end

13y = round(x/q)*q;

In principle, neither largesta nor quant is the ultimate utility for au-
tomating compression. The ideal utility can automatically determine the
cutoff threshold, such as the article n or r to largesta and the article q to
quant, based upon a specified compression ratio or compression performance.

28

3.11 Orthogonal Compensation oc

The W-transform associated with a W-matrix W can be summarized in the
equations

y=Wx, x=W'y (7)

The odd and even components of y form the pair of vectors

yi= [y, Y1z, -]y ¥2= [y, Y22, -]’ (8)

Let us denote the columns of the matrix W' as
[Vl W1 Vo Wy] (9)
Then the second equation in (7) has the equivalent form

X = (y11V1 + Y12v2 + -) + (?J21W1 + Y22 Wo + -) (10)

This equation suggests that the W-transform can be interpreted as the de-
composition of x along the subspaces G and H, spanned by v and w, respec-
tively.

In the analogous interpretation of the Haar and Daubechies D4 trans-
forms, the linear subspaces G and H are orthogonal to each other. In ad-
dition, the one-dimensional subspaces generated by all the v; and w; are
mutually orthogonal. When some of the components in y2 are discarded,
the compressed vector is then the unique signal, in the space spanned by the
remaining base vectors, that best approximates the original signal.

For a general W-transform, GG and H are not necessarily orthogonal. This
fact seems to argue against the use of general W-transforms. In practice, a
reasonable signal (one that is not wildly oscillating or badly degraded by
noise) usually has such small coefficients in the H subspace decomposition
that even if we do not take additional steps to optimize the approximation,
the error incurred in simply discarding them is negligible. This is true, in
particular, for the QS transform.

We give below the method of orthogonal compensation to enhance the
approximation when discarding some of the components of y2. Let d be the
vector to be discarded. It is likely to be a partial sum of the expression in the
second pair of parentheses in (10). We decompose d into a linear combination
of the vectors v; and an error vector that is orthogonal to G-

29

d= (G1V1+G2V2+"')—|—e. (11)

After determining a;, they are added to the corresponding yy;, so that the
actual part that is discarded is e, which is orthogonal to . To this end, we
take inner products of d with each of v;. One can easily verify that a; is the
solution to the tridiagonal system of linear equations

a1 Q2 aq < d,Vl >
Qg1 Qigg Qg3 g <d,vy >
Q32 Q33 Qi3q az | _ | <d,v3> (12)
2

where «;; =< v;,v; >. The matrix in the equation is square, with width
equal to the length of y1.

oc(yl,ye) orthogonal compensation, default W-tranf.
oc(yl,ye,k) general W-transform

hoy
hoy

1 function y = oc(yl,ye,k)

2 if nargin ==

3 global kw

4 if exist(’kw’) "= 1, k = [1 3 3 1]1/4; else k = kw; end
5 end

6 if length(k) == 4, c=1; d=-1;

7 elseif length(k) == 5, c=k(5); d=-1;

8 elseif length(k) == 6, c=k(5); d = k(6);

9 else k= 1[133 1]/4; c=1; d=-1;

10 end

11 ki1=k(1); k2=k(2); k3=k(3); k4=k(4);
12 hi=-k1/d; h2=-k2/d; h3=-k3/c; h4=-k4/c;

30

13 s1 = size(yl); se = size(ye);

14 y1 = y1(:); ye = ye(:);

16 m = length(yl); n = length(ye);

16 A = k1xk3+k2*k4;

17 B = k172+k272+k372+k4"2;

18 C = k3*k1+k4*k2;

19 B1 = (k2*k3-k1*k4)"2/(k2-k1)"2 +k3"2+k4"2;
20 Bn = k1°2+k2°2+(k2*k3-ki*k4)"2/(k4-k3)"2;
21 D = ki1x*h3+k2*h4;

22 E = k1*h1+k2*h2+k3*h3+k4*h4;

23 F = k3*h1+k4*h2;

24 E1 = -((k2%k3-kixk4)/(k2-k1)/c) 2*d+k3*h3+k4*h4;

26 if m==n
26 En = kil*hi1+k2*h2-((k2*k3-ki1*k4)/(k4-k3)/d) ~2%c;
27 z = ([0;D*ye(1:n-1)]

28 + [El#ye(1);E*ye(2:n-1);En*ye(n)]
29 + [F*ye(2:n);0 1);

30 GH = toeplitz([B A zeros(i,n-2) J,...
31 [B C zeros(1,n-2) 1);

32 GH(1,1) = B1; GH(n,n) = Bn;

33 else

34 r = -h2*h3+h1#*h4;

35 r = (r/(r-hi1*h2+h2°2))"2;

36 Dn = (c-d)*r*((hi1-h2+h3)*hil - h2%k4);

37 En = ki1*hi1+k2*h2-r*c*((h1-h2+h3)"2 + (k4)"2);
38 z = ([0;D*ye(1:n-1);Dn*ye(n)]

39 + [El#ye(1);E*ye(2:n-1);En*ye(n);0]
40 + [F*ye(2:n);0;0 1);

41 GH = toeplitz([B A zeros(i,n-1) J,...

42 [B C zeros(1,n-1) 1);

43 GH(1,1) = Bi;

44 GH(n,n) = k1°2+k2"2+r*c"2%((h1-h2+h3)"2 + (k4)"2);
45 GH(n+1,n+1) = r*(d-c) 2*(h1~2+h272);

46 GH(n,n+1) = -c*Dn;

47 GH(n+1,n) = GH(n,n+1);

48 end

49 y = yi1+GH\z;
50 if s1(1) ==1, y = y’; end

31

4 Examples of Numerical Experiments

An example not covered in this section is in the program obtainable by ftp
as described in Section 5. The M-file 1demo .m gives the data and explanation
of a 10-fold compression of Lena. With such a high compression ratio, dis-
tortion is inevitable. But the restored image contains fewer offensive visual
artifacts such as blocking effects. This suggests that W-transforms may be
an alternative to DCT in achieving high ratio compression.

4.1 compare

Our first experiment compares the performance of two W-transforms in com-
pressing a sample signal x. The signal x is transformed into two vectors y1
and y2. An approximate signal is restore by retaining only some of the com-
ponents of y2. The discrepancies between the original and the approximate
signals are then computed using the L? norm. To prepare for the experiment,
one chooses a signal x and the W-transforms and then invokes compare.

>> x = DEFINITION OF SIGNAL
> kw = [1 331]/4; kuw = kwdau; compare

A sample output is as follows.

W10C Wi W2

Coef errors

2 0.001031 0.001107 0.015413

.000928 0.001014 0.013358
7 0.000818 0.000882 0.012025

ol
(@]

35 0.000185 0.000207 0.001881
37 0.000171 0.000191 0.001533
40 0.000131 0.000148 0.000991

The first column gives the number of components of y2 retained (these
numbers can be controlled by changing the variable RR). The second column

32

gives the errors when the signal is compressed using the first W-transform
with orthogonal compensation. The third and fourth columns give the errors
when the signal is compressed using the two W-transforms without orthogo-
nal compensation. The sample signal is the same signal x used in Section 2,
and the W-transforms compared are the QS and D, transforms. As seen in
the above example, retaining just 2 components of y2 in the QS transform
is better than retaining 37 components in the D4 transform.

The listing of the m-file follows.

%h% compare.m
1 if “exist(’RR’), RR = 0.05:0.05:0.5; end

2 normx = norm(x);

3 [yl y2] = kwt(x);

4 [d1 d2] = kwt(x,kww);

5 disp(’)

6 disp(’ W10C Wi w2?)
7 disp(’)

8 disp(’ # Coef errors’)

9 disp(’)

10 for r=RR

11 cy2 = largesta(r,y2); cx
12 oyl = oc(yl,y2-cy2); ox
13 cd2 = largesta(r,d2); dx

ikwt(yl,cy2); cE=cx-x;
ikwt(oyl,cy2); oE=ox-x;
ikwt(d1,cd2,kww); dE=dx-x;

14 fprintf(® %3d %f 4f Yf\n’,...
15 nnz(cy2) ,norm(oE)/normx,norm(cE) /normx ,norm(dE) /normx)
16 end

33

4.2 Decompression decp

The decompression function first compresses the W-transformed output ma-
trices Y1, Y2, Y3, and Y4 (obtained from an earlier W-transform), either by
discarding small components or by quantizing the detail submatrices (ac-
cording to whether the input argument r is less than or greater than 1), and
then reconstructs an approximate image. The optional output arguments cr
and nz give the compression ratio and number of nonzero elements retained.
These terms do not have the precise meaning as commonly used and are
provided for reference only.

1 function [X, cr, nzl= decp(¥1,Y2,Y3,Y4,r)

2 s = size(Y1);

3 if nargin == 1, Y2 = zeros(s); Y3 = Y2; Y4 = Y2;
4 elseif nargin ==6 & r <= 1 ,

5 Y = [0%Y1 ¥2; V3 Y4 1;

8 Y = largesta(r,Y);

7 Y(s) = Y1;

8 elseif nargin == 5, Y2 = quant(Y¥Y2,r);

9 Y3 = quant(Y¥3,r);

10 Y4 = quant(Y4,4#r);

11 nz = prod(size(Y1))+nnz(¥Y2)+nnz(Y3)+nnz(Y4);
12 Y = [Y1 Y2;Y3 Y4];
13 end

14 X = ikwt2(Y);
15 cr = 4*s(1)#*s(2)/nz;

34

4.3 Image Compression imcomp

%%% imcomp.m

1 if exist(’IMCOMPR’) "= 1

2 if “exist(’r3’), r3 =[.01 .05 .1]; end
3 fprintf(’current r3 = ’)

4 fprintf(’> %f ’,r3)

5 tr3 = input(’Enter new r3: ’,’s’);

6 if length(tr3) > 0

7 eval([’tr3 = [’ tr3 ’1;°1);

8 if length(tr3) ==

9 eval([’r3(round(’ num2str(tr3(1)) ’)) = ’...
10 num2str(tr3(2)) ’;°’1)

11 else r3 = tr3;

12 end

13 end

14 else

15 r3 = IMCOMPR;

16 end

17 kwold = kw;
18 kw = kugs;

19 LEVELS = length(r3);

20 if LEVELS ==

21 [cWL31 cr4 nz4] = decp(WL41,WL42,WL43,WL44,r3(4));
22 nz4 = nz4 - prod(size(WL41));

23 disp([’Level 4 decompression done nz = ’ int2str(nz4) 1)
24 else

25 cWL31 = WL31;

26 end

27 [cWL21 cr3 nz3] = decp(cWL31,WL32,WL33,WL34,r3(3));
28 N3 = prod(size(WL31)); nz3 = nz3 - N3;
29 disp([’Level 3 decompression done nz = ’ int2str(nz3) 1)

30 [cWL11 cr2 nz2] = decp(cWL21,WL22,WL23,WL24,r3(2));
31 nz2 = nz2 - prod(size(cWL21));
32 disp([’Level 2 decompression done nz = ’ int2str(nz2)])

35

33
34
35

36
37
38
39
40
41

42
43

44
45
46
47

48
49
50
51
52
53

54
55
56
b7

58
59
60
61

62
63
64
65

[cL crl nzi1] = decp(cWL11,WL12,WL13,WL14,r3(1));
NN = prod(size(cWL11)); nzl = nzl - NN;
disp([’Level 1 decompression done nz = ’ int2str(nzl)])

if r3(1) < 1

if LEVELS ==

nz = nz4+nz3+nz2+nzl+prod(size(WL41));
else

nz = nz3+nz2+nzl+prod(size(WL31));
end

cr = prod(size(L))/nz;
fprintf(’\nCompression Ratio: %d/%d = %f\n’,prod(size(L)),nz,cr)

TITLE = [’Compressed Image, CR = ’ num2str(cr) *(’ ...
num2str(r3(1)) ’, ’ num2str(r3(2)) ’, ’ num2str(r3(3)) 1;
XLABEL = [int2str(nz1) > int2str(nz2) ° ’

int2str(nz3) 1;

if LEVELS ==
TITLE = [TITLE ’)’ 1;
else
TITLE = [TITLE °’, ’ num2str(r3(4)) ’)’ 1;
XLABEL = [XLABEL ° > int2str(nz4) 1;
end
else

cr = 8NN/ (N3%10 + nz3*(22-log(r3(3))/log(2)) +...
nz2+*(18-1og(r3(2))/1log(2)) + nzi*(14-log(r3(1))/log(2)));
fprintf(’\ncr = %f\n’,cr)

TITLE = [’Quantized Image, cr = ’ num2str(cr) ’° (°
int2str(r3(1)) ’, ’ int2str(r3(2)) ’, ’ int2str(r3(3)) ’)’ 1;
XLABEL = [int2str(azl) > int2str(nz2) > int2str(nz3) 1;

end

image(cL), colormap(gray(256))
axis image

title(TITLE)

xlabel (XLABEL)

36

Our third experiment uses a 256-level grayscale image stored in a ma-
trix L. The command wmai should be used first to produce a three- or four-
level multiresolution analysis of L. One then invokes incomp. One will be
prompted to input r, comprising three or four values to be used as the
fractions of components of the detail matrices to be retained in each of the
levels. Experience shows that the first-level details are less important, how-
ever, hence, only a relatively small fraction of the components need be kept to
give a satisfactory approximate image. The suggested default is r = 0.01,
0.05, 0.1 using three levels.

The compression ratio displayed by the program is actually based on
the ratio of the size of the original image to the number of nonzero elements
retained in the compressed representation, adjusted by the qunatization level.
The QS transform, for one, leads to transformed matrices with elements
much larger than the original matrix. Hence, a precise bit rate count of the
compressed data has to be performed to give an accurate compression ratio.
On the other hand, we have not used entropy compression, such as Huffman
coding or arithmetic coding, that can further increase the compression ratio.

37

4.4 Finding the Optimal W-transform

opt

Our fourth experiment compresses a signal x by taking the W-transform

specified by kww =

[1 r r 1] and then discarding all except the largest

(in absolute value) 4 components of the resulting y2. The value of r is varied
(as specified by the vector RRopt) and the corresponding errors printed.

%f\n’,r,norm(oE) /normx,norm(cE) /normx)

1 normx = norm(x);

2 if “exist(’RRopt’), RRopt = 2.5:0.05:3.5;
3 disp(’ *)

4 disp(’ k vector used is [1 r r 1 1°)
5 disp(’)

6 disp(’ r wocC W)

7 disp(’ *)

8 for r=RRopt

9 kww = [1 rr 11;

10 [yl y2] = kwt(x,kww);

11 cy2 = largesta(4,y2);

12 cx = ikwt(yl,cy2,kww);

13 cE=cx-x;

14 oyl = oc(yl,y2-cy2,kww);

15 ox = ikwt(oyl,cy2,kww);

16 oE=o0x-Xx;

17 fprintf (°%E U4f

18 end

end

The following output shows that the optimal r is about 2.95.

2.850000
2.900000
2.950000
3.000000
3.050000

WoC W
0.002690 0.002926
0.001450 0.001571
0.000277 0.000294
0.000984 0.001060
0.002113 0.002270

To determine a more accurate result, change RRopt to 2.90:0.01:3.0.
and invoke opt again.

38

5 ftp Information

As more experiments are performed, new commands and M-files will certainly
be created, and we will add these to our repertoire in future. The toolbox
also contains several general purpose graphics/image utilities not covered
in this paper, such as mag (and shk) which magnifies (shrinks) the current
figure window. The most up-to-date toolbox can be obtained by ftp at
info.mcs.anl.gov. After logging in, change directory to pub/W-transfrom
and get the files wtransfl.ps, wtransf2.ps, and wtransf.tar.Z.

The first file is [3], the second file is this paper, and the third file contains
the toolbox. On a Unix machine, use the commands

/i uncompress wtransf.tar.Z
% tar xvf wtransf.tar

to install the toolbox.

Please send comments and suggestions to kwong@mcs.anl.gov.

References

[1] Chui, C. K., An Introduction to Wavelets, Academic Press, 1992.

[2] Daubechies, 1., Ten Lectures on Wavelets, CBMS-NSF Series Appl.
Math., STAM, 1991.

[3] Kwong, Man Kam, and Tang, Peter P. T., W-matrices and Nonorthog-
onal Multiresolution Analysis of Finite Signalsof Arbitrary Length, Ar-
gonne National Laboratory Preprint Series MCS-P449-0794, 1994.

[4] Mallat, S. G., A theory for multiresolution signal decomposition: The
wavelet representation, IEEE Trans. on Pattern Analysis and Machine

Intelligence 11 (1989), 674-693.
[5] Taswell, C., and McGill, K. C., Wavelet transform algorithms for finite-

duration discrete-time signals, Numerical Analysis Project Manuscript
NA-91-07, Department of Computer Science, Stanford University, 1991.

39

