
TENSOLVE: A Software Package for SolvingSystems of Nonlinear Equations and NonlinearLeast Squares Problems Using Tensor MethodsAli Bouaricha�Argonne National LaboratoryandRobert B. Schnabel yUniversity of ColoradoThis paper describes a modular software package for solving systems of nonlinear equa-tions and nonlinear least squares problems, using a new class of methods called tensormethods. It is intended for small to medium{sized problems, say with up to 100 equa-tions and unknowns, in cases where it is reasonable to calculate the Jacobian matrix orapproximate it by �nite di�erences at each iteration. The software allows the user to selectbetween a tensor method and a standard method based upon a linear model. The tensormethod approximates F (x) by a quadratic model, where the second-order term is chosenso that the model is hardly more expensive to form, store, or solve than the standard lin-ear model. Moreover, the software provides two di�erent global strategies, a line searchand a two-dimensional trust region approach. Test results indicate that, in general, tensormethods are signi�cantly more e�cient and robust than standard methods on small andmedium{sized problems in iterations and function evaluations.Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of NonlinearEquations{systems of equations; G.1.6 [Numerical Analysis]: Optimization{least squaresmethods; G.4 [Mathematics of Computing]: Mathematical SoftwareGeneral Terms: AlgorithmsAdditional Key Words and Phrases: tensor methods, nonlinear equations, nonlinear leastsquares, rank-de�cient matrices�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439,bouarich@mcs.anl.gov. Research supported in part by the O�ce of Scienti�c Computing, U.S. Departmentof Energy, under Contract W-31-109-Eng-38.yDepartment of Computer Science, University of Colorado, Boulder, Colorado 80309-0430,bobby@cs.colorado.edu. Research supported by AFOSR Grants No. AFOSR-90-0109 and F49620-94-1-0101, ARO Grants No. DAAL03-91-G-0151 and DAAH04-94-G-0228, and NSF Grant No. CCR-9101795.1

1. IntroductionThis paper describes a modular software package for solving systems of nonlinear equationsof the form F : Rn ! Rm; m � n; (1:1)where F is assumed to be at least once continuously di�erentiable, using a new class ofmethods called tensor methods. Ifm is equal to n, the package solves the nonlinear equationsproblem, F (x) = 0, while ifm is greater than n it solves the nonlinear least squares problem,minx2Rn kF (x) k2Tensor methods base each iteration on a quadratic model of the nonlinear function,M(xc + d) = F (xc) + F 0(xc)d + 12 Tcdd; (1:2)where xc is the current iterate, and Tc is a three-dimensional object referred to as a tensor.No second derivative information is used in forming the tensor term Tc. Instead, Tc is formedby asking the model to interpolate up to pn past function values in a way that hardlyincreases the storage requirements or arithmetic cost per iteration over standard linearmodel based methods. The package also provides an option to use a method based on thestandard linear model ((1.2) without the tensor term); it then performs a standard Newtonmethod for nonlinear equations or Gauss-Newton method for nonlinear least squares. Theglobal strategy used in either case can be either a line search strategy or a two-dimensionaltrust region method over the subspace spanned by the steepest descent direction and thetensor (or Newton/Gauss-Newton) step.Required input to the package includes the dimensions m and n of the problem, wherem is the number of nonlinear equations and n is the number of unknowns; a subroutineto evaluate the function F (x); and an estimate x0 of the solution x�. The user may pro-vide a code to calculate the Jacobian rather than having it computed by �nite di�erences,may choose the standard method rather than the tensor method, and may specify varioustolerances.Upon completion, the program returns with an approximation xp to the solution x�,the value of the sum of squares of the function F (xp), the value of the gradient G(xp) =F 0(xp)TF (xp), and a
ag specifying under which stopping condition the algorithm wasterminated.The tensor methods upon which this software package is based were originally introducedby Schnabel and Frank [11], for nonlinear equations. One main contribution of this paper isthe provision and extensive testing of a software package incorporating these methods. Inaddition, the extension of these methods to nonlinear least squares, and the incorporationof a trust region strategy with tensor methods, are new contributions.The remainder of the paper is organized as follows. In Section 2 we give a brief overviewof tensor methods for nonlinear least squares problems (tensor methods for nonlinear equa-tions can be regarded as a special case of these). In Section 3 we discuss the globallyconvergent modi�cations for tensor methods for systems of nonlinear equations and non-linear least squares problems. Section 4 gives an overview of the key features and optionsprovided by the software package. We then describe the user interface to the package inSection 5, which includes both a simpli�ed default calling sequence and a longer calling2

sequence. In Section 6 we describe the meaning of the input, input-output, and outputparameters for the package. Section 7 presents the default values provided by the package.A few implementation dependencies are described in Section 8. Section 9 gives an exampleof the use of the package. Finally, in Section 10 we summarize and discuss our experimentalresults using the package, with both line search and trust region strategies, on nonsingularand singular test problems.2. Brief Overview of Tensor MethodsTensor methods are general-purpose methods intended especially for problems where theJacobian matrix at the solution is singular or ill-conditioned. The idea is to base eachiteration upon a model that has more information than the standard linear model but isnot appreciably more expensive to form, store, or solve. Speci�cally, each iteration is basedupon a quadratic model (1.2) of the nonlinear function F (x). The particular choice of thetensor term Tc 2 Rm�n�n causes the second-order term Tcdd in (1.2) to have a simple anduseful form. The tensor term is chosen to allow the model M(xc + d) to interpolate valuesof the function F (x) at past iterates x�k ; that is, the model should satisfyF (x�k) = F (xc) + F 0(xc)sk + 12Tcsksk ; k = 1; � � � ; p; (2:1)where sk = x�k � xc; k = 1; � � � ; p:The past points x�1; � � � ; x�p are selected so that the set of directions fskg from xc tothe selected points is strongly linearly independent; each direction sk is required to makean angle of at least 45 degrees with the subspace spanned by the previously selected pastdirections. The procedure of �nding linearly independent directions is implemented easilyby using a modi�ed Gram-Schmidt algorithm, and usually results in p = 1 or 2.After selecting the linearly independent past directions sk, the tensor term is chosen bythe procedure of Schnabel and Frank [11], which generalizes in a straightforward way tononlinear least squares. Tc is chosen to be the smallest matrix that satis�es the interpolationconditions (2.1); that is, minimizeTc2Rm�n�n kTc kF (2:2)subject to Tcsksk = 2 (F (x�k) � F (xc) � F 0(xc)sk);where kTc kF , the Frobenius norm of Tc, is de�ned bykTc k2F = mXi=1 nXj=1 nXk=1 (Tc[i; j; k])2: (2:3)The solution to (2.2) is the sum of p rank{one tensors whose horizontal faces are symmetric:Tc = pXk=1 aksksk; (2:4)3

where ak is the k�th column of A 2 Rm�p, A is de�ned by A = ZM�1, Z is an (m� p)matrix whose columns are Zj = 2 (F (x�j) � F (xc) � F 0(xc)sj), and M is a (p � p)matrix de�ned by Mij = (siT sj)2, 1 � i; j � p.If we use the tensor term (2.4), the tensor model (1.2) becomesM(xc + d) = F (xc) + F 0(xc)d + 12 pXk=1 ak fdTskg2: (2:5)The simple form of the quadratic term in (2.5) is the key to being able to e�ciently form,store, and solve the tensor model. The cost of forming the tensor term in the tensor modelis O(mnp) � O(mn1:5) arithmetic operations, since p � pn, which is small in comparisonwith the O(mn2) cost per iteration of Gauss-Newton methods. The additional storagerequired is 4p m-vectors, which is small in comparison with the storage for the Jacobian.Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possiblethat no root exists; in this case a least squares solution of the model is found instead. Thus,in general, we solve the problem minimized2Rn kM(xc + d) k2: (2:6)A generalization of the process in Schnabel and Frank [11] shows that the solution to (2.6)can be reduced to the solution of a small number of quadratic equations, m�n+q quadraticequations in p unknowns, plus the solution of n � q linear equations in n � p unknowns.Here q is equal to p whenever F 0(xc) is nonsingular and usually when rank(F 0(xc)) � n� p;otherwise, q is greater than p. Thus the system of linear equations is square or underde-termined, and the system of quadratic equations is equally determined or overdetermined.The main steps of the algorithm are the following:1. An orthogonal transformation of the variable space is used to cause the m equationsin n unknowns to be linear in n � p variables d̂1 2 Rn�p, and quadratic only in theremaining p variables d̂2 2 Rp.2. An orthogonal transformation of the equations is used to eliminate the n � p trans-formed linear variables from n�q of the equations. The result is a system of m�n+qquadratic equations in the p unknowns d̂2, plus a system of n� q equations in all thevariables that is linear in the n� p unknowns d̂1.3. A nonlinear unconstrained optimization software package, UNCMIN [12], is used tominimize the l2 norm of the m� n+ q quadratic equations in the p unknowns d̂2. (Ifp = 1, this procedure is done analytically instead.)4. The system of n� q linear equations that is linear in the remaining n � p unknownsis solved for d̂1.The arithmetic cost per iteration of the above process is the standard O(mn2) cost of aQR factorization of an m� n matrix, plus an additional O(mnp) � O(mn1:5) operations,plus the cost of using UNCMIN in Step 3 of the algorithm. The cost of using UNCMIN isexpected to be O(p4) � O(n2) operations, since each iteration requires O(p3) (O(p2q)4

when q > p) operations and a small multiple of p iterations generally su�ce. Thus, thetotal cost of the above algorithm is the O(mn2) cost of the standard method plus at mostan additional cost of O(mn1:5) arithmetic operations. Note that in the case when p = 1and q � 1, the one-variable minimization problem is solved very inexpensively in closedform; this turns out to be the most common case in practice.The Newton or Gauss-Newton step is computed inexpensively (in O(mnp) operations)as a by-product of the tensor step solution. Using the tensor step and the Newton or Gauss-Newton step, a line search or a two-dimensional trust region global strategy determines thenext iterate, as described in the next section. The overall algorithm is summarized below.Algorithm 2.1. An Iteration of the Tensor MethodGiven m, n, xc, F (xc)Step 0 Calculate F 0(xc), and decide whether to stop.Step 1 Select the past points to use in the tensor model from among the pn most recentpoints.Step 2 Calculate the second-order term of the tensor model, Tc, so that the tensor modelinterpolates F (x) at all the points selected in Step 2.Step 3 Find the root of the tensor model, or its minimizer (in the l2 norm) if it has noreal root.Step 4 if m > n or the two-dimensional trust region is used thenCompute the standard step as a by-product of the tensor model solution.Select the tensor or standard step using Algorithm 3.1.Step 5 Select x+ using either a line search or a two-dimensional trust region global strategy.if the line search is used thenif m > n thenperform Algorithm 3.3, where the search direction is the step selected in Step 4else fm = ngperform Algorithm 3.2.elseif the two-dimensional trust region is used thenPerform Algorithm 3.4 using the model selected in Step 4Step 6 Set xc x+, F (xc) F (x+), go to Step 0.The reader may refer to [1], [2], [6], and [11] for more details on tensor methods fornonlinear equations and nonlinear least squares problems. These papers give preliminaryindications that tensor methods are more e�cient and more robust computationally thanstandard methods, and show that tensor methods have a superior rate of convergence toNewton's method on nonlinear equations problems where rankfF 0(x�)g = n� 1.5

3. Globally Convergent Modi�cations for Tensor MethodsThis section describes the global strategies in the tensor algorithm given above. As with allalgorithms for nonlinear equations and optimization, purely local tensor methods may failto converge if the initial guess is far away from the solution. To address this problem, twotypes of modi�cation are used in general, line search methods and trust region methods, andeither may be best for a particular problem. For this reason, both of these global methodsare included in our software package.This section �rst describes the overall framework that is used in both the line search andtrust region approaches for tensor methods. This framework involves a choice of whether touse the tensor step or the Newton/Gauss-Newton step as the basis for the global strategyat a given iteration. Next we brie
y describe the line search that is used in the line searchmethods. Finally, we describe a new model/trust region approach for tensor methods thatis used in the trust region methods.3.1. Globally Convergent Framework for Nonlinear Least SquaresOur computational experience has shown that when one is far from the solution, it isimportant to allow the global step to be based sometimes upon the Newton/Gauss-Newtonstep rather than the tensor step, and we have constructed heuristics to make this choice.Our experimentation has led to two di�erent sets of heuristics, one that is used in boththe line search and trust region methods for nonlinear least squares as well as the trustregion method for nonlinear equations, and a second that is used in line search methodsfor nonlinear equations. They di�er primarily in how much they bias the choice toward thetensor step. Both are constructed so that close to the solution, the tensor step is nearlyalways selected. This section gives these heuristics and the overall global frameworks thatare based upon them.Algorithm 3.1 gives the global framework that is used for nonlinear least squares andfor trust region methods for nonlinear equations. In this framework, the Gauss-Newtonstep is chosen whenever the tensor step is not a descent direction, when the tensor stepis a minimizer of the tensor model and does not provide enough decrease in the tensormodel, or when the quadratic system of m � n + q equations in p unknowns cannot besolved by UNCMIN [12] within the iteration limit. Otherwise, the tensor step is chosen. Inthe de�nitions of dt and MT , the Newton step and model are used for nonlinear equations,while the Gauss-Newton step and model are used for nonlinear least squares.Algorithm 3.1. Global Framework for Nonlinear Least Squares and for TrustRegion Methods for Nonlinear EquationsLet xc = current iterate,J(xc)= approximation to F 0(xc),g = J(xc)TF (xc), the gradient of 12F (x)TF (x) at xc,dt= minimizer of the tensor model,dn= Newton or Gauss-Newton step: �J(xc)�1F (xc) or �(J(xc)TJ(xc))�1J(xc)TF (xc)if J(xc) is su�ciently well-conditioned,Levenberg-Marquardt step �(J(xc)TJ(xc) + �I)�1J(xc)TF (xc) otherwise,6

where � = pn�kJ(xc) k1kJ(xc) k1, � = machine precision,MT= tensor model,MN= Newton or Gauss-Newton model.if (no root or minimizer of the tensor model was found) or((minimizer of the tensor model that is not a root was found) and(kMT (xc + dt) k2 > 12(kF (xc) k2+ kMN(xc + dn) k2))) or(gTdt > �10�4kg k2kdt k2))thenx+ xc + �dn, � 2 (0; 1] selected by line search, orx+ xc + �dn � �g, �, � selected by trust region algorithmelsex+ xc + �dt, � 2 (0; 1] selected by line search, orx+ xc + �dt � �g, �, � selected by trust region algorithmendifAlgorithm 3.2 gives the global framework that is used in line search methods for nonlin-ear equations. Its main di�erence from Algorithm 3.1 is that it always tries the tensor step�rst, whether or not this step meets the descent or model decrease conditions of Algorithm3.1. If xc + dt provides enough decrease in kF (x) k, then it is used as the next iterate. Ifnot, the strategy may tentatively compute global steps in both the Newton and the tensordirections. That is, the global step xn+ = xc + �dn produced by a line search in theNewton direction dn is calculated. In addition, if dt is a descent direction, the global stepxt+ = xc + �dt produced by a line search in the tensor direction also is calculated. Finally,we select xn+ or xt+ depending on whichever has the lower function value. Thus, this strategymay involve one or more extra function evaluations when both line searches are performed.Algorithm 3.2. Global Framework for Line Search Methods for Nonlinear Equa-tionsGiven xc, dt, g as de�ned in Algorithm 3.1, and � = 10�4.slope := gTdtfc := 12kF (xc) k22xt+ := xc + dtf+ := 12kF (xt+) k22if f+ < fc + � �minfslope; 0g thenreturn x+ = xt+elseCompute the Newton direction dnFind an acceptable xn+ in the Newton direction dn, using Algorithm 3.3comment. Test if the tensor step is su�ciently descentif gTdt � �10�4jjgjj2jjdtjj2 thenreturn x+ = xn+elseFind an acceptable xt+ in the tensor direction dt, using Algorithm 3.3if jjF (xn+)jj < jjF (xt+)jj then 7

return x+ = xn+elsereturn x+ = xt+endifendifendif3.2. Global Framework for Line Search Methods for Nonlinear EquationsThe line search used in the global frameworks outlined above is a standard quadratic back-tracking line search. It starts with � = 1 and then, if xc + d is not acceptable, reduces� until an acceptable xc + �d is found, based upon a one-dimensional quadratic model ofF (x)TF (x). Let us de�ne f̂(�) = 12kF (xc + �d) k22;the one-dimensional restriction of f(x) = 12kF (x) k22 to the line through xc in the directiond. If we need to backtrack, we use the values of f̂(0); f̂ 0(0), and f̂(�) to model f̂ andthen take the value of � that minimizes this model as the next value of � in Algorithm 3.3subject to restrictions on how much � can decrease at once (see, e.g., [4], pages 126{127 formore details). This results in the following algorithm.Algorithm 3.3. Standard Quadratic Backtracking Line SearchGiven xc, d, g = J(xc)TF (xc), and � = 10�4.slope := gTdfc := 12kF (xc) k22� := 1:0xp := xc + �dfp := 12kF (xp) k22while fp > fc + � � �� slope do�temp := ��2� slope /(2[fp � fc � �� slope])� := maxf�temp; �=10gxp := xc + �dfp := 12kF (xp) k22endwhile3.3. Trust Region Tensor Methods for Nonlinear Equations and Nonlinear LeastSquaresTwo computational methods|the locally constrained optimal (or \hook") method and thedogleg method|are generally used for approximately solving the trust region problem basedon the standard model 8

minimized kF (xc) + J(xc)d k22 (3:1)subject to jjdjj2 � �c;where �c is the current trust region radius. When �c is shorter than the standard step,the locally constrained optimal method [8] �nds a �c such that jjd(�c)jj2 � �c, whered(�c) = �(J(xc)TJ(xc) + �I)�1J(xc)TF (xc). Then it takes x+ = xc + d(�c). The doglegmethod is a modi�cation of the trust region algorithm introduced by Powell [10]. Ratherthan �nding a point x+ = xc + d(�c) on the curve d(�c) such that jjx+ � xcjj � �c, itapproximates this curve by a piecewise linear function in the subspace spanned by theNewton direction and the steepest descent direction �J(xc)TF (xc), and takes x+ as thepoint on this piecewise curve for which jjx+ � xcjj = �c. (See, e.g., [4] for more details.)Unfortunately, these two methods are di�cult to extend to the tensor model, becausecertain key properties do not generalize to this model. Trust region algorithms based on(3.1) are well de�ned because there is always a unique point x+ on the hookstep or doglegcurve such that jjd(�c)jj = �c. Additionally, the value of kF (xc) + J(xc)d k22 along thesecurves decreases monotonically from xc to xn+, where xn+ = xc + dn, which makes theprocess reasonable. These properties do not extend to the fourth{order sum of squares ofthe tensor model, which may not be convex. Furthermore, the analogous curve to d(�c) ismore expensive to compute. For these reasons, we consider a di�erent trust region approachfor our tensor methods.The approach is to solve a two-dimensional trust region problem over the subspacespanned by the steepest descent direction and the tensor (or standard) step. The mainreasons that led us to adopt this approach are that it is easy to construct and is closelyrelated to dogleg-type algorithms over the same subspace. In addition, the resultant stepmay be close to the optimal trust region step in practice. Byrd, Schnabel, and Shultz[3] have shown that for unconstrained optimization using a standard quadratic model, theanalogous two-dimensional minimization approach produces nearly as much decrease in thequadratic model as the optimal trust region step in almost all cases.The two-dimensional trust region approach for the tensor model computes an approxi-mate solution to the exact trust region problemminimized kF (xc) + J(xc)d + 12 pXk=1 ak fdTskg2 k22 (3:2)subject to jjdjj2 � �c;by performing a minimizationminimized kF (xc) + J(xc)d + 12 pXk=1 ak fdTskg2 k22 (3:3)subject to jjdjj2 � �c; d 2 Rangefdt; gsg;where dt and gs are the tensor step and the steepest descent direction, respectively, and �cis the trust region radius. This approach always produces a step that reduces the quadraticmodel by at least as much as a dogleg-type algorithm, which minimizes the model over apiecewise linear curve in the same subspace. When Algorithm 3.1 chooses the Newton or9

Gauss-Newton step, we instead solve the variant of (3.3) where dt is replaced by dn and thequadratic term in the model is omitted.Before we give the complete two-dimensional trust region algorithm for tensor methods,we show how to convert the problem (3.3) into an unconstrained minimization problem inone variable. This transformation is the key to solving (3.3) e�ciently. First, we form anorthonormal basis for the two-dimensional subspace by performing the projectionĝs = gs � dtgTs dtdTt dt (3:4)and normalizing ĝs and dt to obtain~dt = dtjjdtjj2 ; ~gs = ĝsjjĝsjj2 : (3:5)Since d is in the subspace spanned by ~dt and ~gs, it can be written asd = � ~dt + �~gs; �; � 2 <: (3:6)If we square the l2 norm of this expression for d and set it to �2c , we obtain the followingequation for � as a function of �: � = q�2c � �2:Substituting this expression for � into (3.6) and then the resulting d into (3.3) yields theglobal minimization problem in the one variable �:minimize� kF (xc) + �J(xc) ~dt +q�2c � �2J(xc) ~gs + 12 pXk=1 ak(�sTk ~dt +q�2c � �2sTk ~gs)2) k22;(3:7)where ��c < � < �c. Problems (3.7) and (3.3) are equivalent.We use the same procedure to convert the problemminimized kF (xc) + J(xc)d k22 (3:8)subject to jjdjj2 � �c; d 2 Rangefdn; ggto the equivalent global minimization problem in the one variable �:minimize� kF (xc) + �J(xc) ~dn + q�2c � �2 J(xc) ~gs k22; (3:9)where ��c < � < �c.The two-dimensional trust region method for tensor methods is given in the followingalgorithm. 10

Algorithm 3.4. Two-Dimensional Trust Region for Tensor MethodsGiven xc, dn, dt as de�ned in Algorithm 3.1.Let gs = �J(xc)TF (xc), the steepest descent direction;�c the current trust region radius;~dt and ~gs given by (3.5);~dn obtained in an analogous way to ~dt by applying transformations (3.4) and (3.5) to dn.Step 0 Compute the global stepif tensor model selected thenSolve problem (3.7)d = �� ~dt + ~gsp�2c � �2�where �� is the global minimizer of (3.7)else fstandard model selected gSolve problem (3.9)d = �� ~dn + ~gsp�2c � �2�where �� is the global minimizer of (3.9)endifStep 1 Check the new iterate and update the trust region radiusx+ = xc + dif tensor model selected thenratio = 12kF (x+) k22 � 12kF (xc) k2212kF (xc) + J(xc)d+ 12Ppk=1 akfdTskg2 k22 � 12kF (xc) k22elseratio = 12kF (x+) k22 � 12kF (xc) k2212kF (xc) + J(xc)d k22� 12kF (xc) k22endifif ratio � 10�4 thenthe global step d is successfulelsedecrease trust regiongo to Step 0endifThe methods used for adjusting the trust radius during and between steps are given inAlgorithm A6.4.5 [9, p. 338]. The initial trust radius can be supplied by the user; if not, itis set to the length of the initial Cauchy step. Our software solves the one-variable globaloptimization problem by a straightforward partitioning scheme described in [2].4. Overview of the Software PackageThis section summarizes the key features of the software package.The user has the option to solve systems of nonlinear equations or nonlinear least squaresproblems. In either case, the required input for the software is the number of equations M,11

the number of variables N, the function FVEC that computes F (x), and an initial guess X0.If M = N, the problem is nonlinear equations; if M > N it is nonlinear least squares. The userdoes not have to set a
ag di�erentiating between the two problems.Two methods of calling the package are provided. In the short version, the user suppliesonly the above information, and default values of all other options and parameters areused. (These include the use of the tensor rather than the standard method, the use ofthe line search global strategy, and the calculation of the Jacobian by �nite di�erences). Inthe other method for calling the package, the user may override any default values of thepackage options and parameters.The package allows the user to use the tensor method or the standard Newton or Gauss-Newton method. METHOD = 1 speci�es the tensor method and is the default value. If METHODis set to 0, the package will use the standard method.Two global strategies are implemented in the software package: a line search method,and a two-dimensional trust region method over the subspace spanned by the steepestdescent direction and the tensor (or Newton/Gauss-Newton) step. The global strategy maybe speci�ed using the parameter GLOBAL. GLOBAL = 0 is the default and speci�es the linesearch. GLOBAL = 1 speci�es the trust region.The user may supply an analytic routine to evaluate the Jacobian matrix. If it is notsupplied, the package computes the Jacobian by �nite di�erences. The �nite di�erenceroutine is described in detail by Dennis and Schnabel [4]. The parameter JACFLG speci�eswhether an analytic Jacobian has been provided. The default value, which speci�es �nitedi�erences, is JACFLG = 0. When the analytic Jacobian is supplied, the user has the optionof checking the supplied analytic routine against the package's �nite di�erence routine; ifMSG is set to 2 modulo 4, the package will not check the analytic Jacobian against the �nitedi�erence one; otherwise it will.Scaling information for the variables and/or the functions may be supplied by the user.The software package is coded so that if the user inputs the typical magnitude typxi ofeach component of x and/or the typical magnitude typfi of each component of the functionF, the performance of the package is equivalent to what would result from rede�ning theindependent variable x in the user's function and the components of the function F withDx = 26666666666664 1=typx1 : : : 1=typxn 37777777777775 � x (4:1)
12

and/or DF = 26666666666664 1=typf1 : : : 1=typfm 37777777777775 � F (4:2)respectively, and running the package without scaling. The default value of each typxi andtypfi is 1 (i.e., no scaling). Scaling is often important for problems in which there is greatvariation in the magnitudes of individual variables and/or function components.The package includes a module TSCHKI that examines the input parameters for illegalentries and consistency. Certain illegal or inconsistent entries are reset to default values bythis module, while other illegal entries cause the package to terminate. Details are given inthe parameter listing in Section 6.The standard (default) output from this package consists of printing the input parame-ters, the �nal results, and the stopping condition. The printed input parameters are thoseused by the algorithm and hence include any corrections made by the module TSCHKI. Theprogram will provide an error message if it terminates as a result of input errors. Theprinted results include a message indicating the reason for termination, an approximationxp to the solution x�, the value of the sum of squares of the function F (xp), and the gra-dient vector G(xp) = F 0(xp)TF (xp) of the function 12kF (x) k22 at xp. The package providesan additional means for controlling the output by means of the variable MSG, described inSection 6. The user may suppress all output or may print the intermediate iterations resultsin addition to the standard output.A general
owchart of the TENSOLVE package is shown in Figure 4.1.5. Interfaces and UsageTwo interfaces are provided with the system. TSNESI requires the user to provide only thedimensions M and N of the problem, a subroutine to evaluate the function F, and a startingvector X0 (as well as three work arrays and their dimensions). TSNECI requires the userto supply all parameters. However, the user may specify selected parameters only by �rstinvoking the subroutine TSDFLT, which sets all parameters to their default values, and thenoverriding only the desired values. This is the normal usage of TSNECI. An example callingprogram follows.C TSNESI INTERFACECALL TSNESI(MAXM, MAXN, PMAX, X0, M, N, WRKUNC, LUNC, WRKNEM, LNEM,WRKNEN, LNEN, IWRKN, LIN, FVEC, MSG, XP, FP, GP, TERMCD)13

Tensor method

Newton method

Form tensor

model

and nonlinear least

Nonlinear equations

squares driver

Analytic Jacobian

or finite difference

Jacobian

or standard step

or Gauss-Newton

method

Compute standard

step

Check stopping

or two-dimensional

Apply line search

trust region to find

next iterate

criteria

If nonlinear

equations compute

tensor step only

If nonlinear least

squares compute

tensor and Gauss-

Newton steps

If two-dimensional

trust region used

If line search used

apply Algorithm 3.3

to find next iteratecompute standard

step

Select tensor

Figure 4.1: Structure of the TENSOLVE package14

C TSNECI INTERFACECALL TSDFLT(M, N, ITNLIM, JACFLG, GRADTL, STEPTL, FTOL, METHOD,GLOBAL, STEPMX, DLT, TYPX, TYPF, IPR, MSG)C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAMETERS, E.G.GRADTL = 1.0D-6STEPTL = 1.0D-7FTOL = 1.0D-10JACFLG = 1CALL TSNECI(MAXM, MAXN, PMAX, X0, M, N, TYPX, TYPF, ITNLIM, JACFLG,GRADTL, STEPTL, FTOL, METHOD, GLOBAL, STEPMX, DLT, IPR,WRKUNC, LUNC, WRKNEM, LNEM, WRKNEN, LNEN, IWRKN, LIN,ANJA, FVEC, MSG, XP, FP, GP, TERMCD)6. Parameters and Default ValuesThe parameters employed with the calling sequences of Section 5 are fully described here.TSNESI uses only those parameters that are preceded by an asterisk. When it is noted thatmodule TSDFLT returns a given value, this is the value employed by interface TSNESI. Theuser may override the default value by utilizing TSNECI as shown above.Following each variable name in the list below appears a one- or two-headed arrowsymbol of the form !, , and !. These symbols signify that the variable is for input,output, and input-output, respectively.The symbol � in some parts of this section designates the machine precision (see Section8).*MAXM!: A positive integer specifying the row dimension of the work array WRKNEM inthe user's calling program. It must satisfy MAXM � M + N + 2. The provision of MAXM,MAXN, and PMAX (below) allows the user the
exibility of solving several problems with dif-ferent values of M and N one after the other, with the same work arrays.*MAXN!: A positive integer specifying the row dimension of the work array WRKNEN inthe user's calling program. It must satisfy MAXN � N + 2.*PMAX!: A positive integer specifying the row dimension of the work array WRKUNC inthe user's calling program. It must satisfy PMAX � NINT(pN), where NINT is a function thatrounds to the nearest integer.*X0!: An array of length N that contains an initial estimate of the solution x*.*M!: A positive integer specifying the number of nonlinear equations.15

*N!: A positive integer specifying the number of variables in the problem.TYPX!: An array of length N in which the typical size of the components of X is speci-�ed. The typical component sizes should be positive real scalars. If a negative value isspeci�ed, its absolute value will be used. If 0.0 is speci�ed, 1.0 will be used. This vector isused to determine the scaling matrix, Dx. Although the package may work reasonably wellin a large number of instances without scaling, it may fail when the components of x� are ofradically di�erent magnitude and scaling is not invoked. If the sizes of the parameters areknown to di�er by many orders of magnitude, then the scale vector TYPX should de�nitelybe used. For example, if it is anticipated that the range of values for the iterates xk wouldbe x1 2 [�1010; 1010]x2 2 [�102; 104]x3 2 [�6� 10�6; 9� 10�6]then an appropriate choice would be TYPX = (1.0D10,1.0D3,7.0D-6). Module TSDFLT re-turns TYPX = (1.0D0,� � �,1.0D0).TYPF!: An array of length M in which the typical size of the components of F is speci-�ed. The typical component sizes should be positive real scalars. If a negative value isspeci�ed, its absolute value will be used. If 0.0 is speci�ed, 1.0 will be used. This vectoris used to determine the scaling matrix DF . TYPF should be chosen so that all the compo-nents of DF (x) have similar typical magnitudes at points not too near a root, and shouldbe chosen in conjunction with FTOL. It is important to supply values of TYPF when themagnitudes of the components of F (x) are expected to be very di�erent. If the magnitudesof the components of F (x) are similar, the choice DF = I su�ces. Module TSDFLT returnsTYPF = (1.0D0,� � �,1.0D0).ITNLIM!: Positive integer specifying the maximum number of iterations to be performedbefore the program is terminated. Module TSDFLT returns ITNLIM = 150. If the user spec-i�es ITNLIM � 0, the module TSCHKI will supply the value 150.JACFLG!: Integer designating whether or not an analytic Jacobian has been supplied bythe user.� JACFLG = 0 : No analytic Jacobian supplied. The Jacobian is obtained by �nitedi�erences.� JACFLG = 1 : Analytic Jacobian supplied.The module TSDFLT returns the value 0. If the user speci�es an illegal value, the moduleTSCHKI will supply the value 0.GRADTL!: Positive scalar giving the tolerance at which the scaled gradient of f(x) =12F (x)TF (x) is considered close enough to zero to terminate the algorithm. The scaledgradient is a measure of the relative change in F in each direction xj divided by the relative16

change in xj . More precisely, the test used ismaxj � j rf(x) jj maxfj xj j; TYPXjgmaxfFnorm; n=2g � � GRADTL;where rf(x) = J(x)TDF 2F (x), Fnorm = 12kDFF (x) k22, and DF = diag(1=TYPFi). Themodule TSDFLT returns the value �1=3. If the user speci�es a negative value, the moduleTSCHKI will supply the value �1=3.STEPTL!: A positive scalar providing the minimum allowable relative step length. STEPTLshould be at least as small as 10�d, where d is the number of accurate digits the user desiresin the solution x�. The actual test used ismaxj (jxjk � xjk�1jmaxfjxjk; TYPXj jg) � STEPTL:The program may terminate prematurely if STEPTL is too large. Module TSDFLT returnsthe value �2=3. If the user speci�es a negative value, the module TSCHKI will supply thevalue �2=3.FTOL!: A positive scalar giving the tolerance at which the scaled function DFF (x) isconsidered close enough to zero to terminate the algorithm. The program is halted ifjjDFF (x)jj1 is � FTOL. This is the primary stopping condition for nonlinear equations; thevalues of TYPF and FTOL should be chosen so that this test re
ects the user's idea of whatconstitutes a solution to the problem. The module TSDFLT returns the value �2=3. If theuser speci�es a negative value, the module TSCHKI will supply the value �2=3.METHOD!: An integer designating which method to use.� METHOD = 0 : Newton or Gauss-Newton algorithm is used.� METHOD = 1 : Tensor algorithm is used.Module TSDFLT returns value 1. If the user speci�es an illegal value, module TSCHKI willreset METHOD to 1.GLOBAL!: An integer designating which global strategy to use.� GLOBAL = 0 : Line search is used.� GLOBAL = 1 : Two-dimensional trust region is used.Module TSDFLT returns value of 0. If the user speci�es an illegal value, module TSCHKI willreset GLOBAL to 0.STEPMX!: A positive scalar providing the maximum allowable scaled step length jjDx(x+�xc)jj2, where Dx = diag(1=TYPXj). STEPMX is used to prevent steps that would cause thenonlinear equations problem to over
ow, and to prevent the algorithm from leaving thearea of interest in parameter space. STEPMX should be chosen small enough to prevent these17

occurrences but should be larger than any anticipated \reasonable" step. Module TSDFLTreturns the value STEPMX = 103. If the user speci�es a nonpositive value, module TSCHKIsets STEPMX to 103.DLT!: A positive scalar giving the initial trust region radius. When the line search strategyis used, this parameter is ignored. For the trust region algorithm, if DLT is supplied, itsvalue should re
ect what the user considers a maximum reasonable scaled step length atthe �rst iteration. If DLT = -1.0, the routine uses the length of the Cauchy step at theinitial iterate instead. The module TSDFLT returns the value -1.0. If the user speci�es anonpositive value, module TSCHKI sets DLT = -1.0.IPR!: The unit on which the package outputs information. TSDFLT returns the value6.*WRKUNC!: Workspace used by UNCMIN. The user must declare this array to have dimen-sions PMAX�LUNC in the calling routine.*LUNC!: A positive integer specifying the column dimension of the work array WRKUNCin the user's calling program. It must satisfy LUNC � 2�NINT(pN)+4.*WRKNEM!: Workspace used to store the Jacobian matrix, the function values matrix FV,the tensor matrix ANLS, and working vectors. The user must declare this array to havedimensions MAXM�LNEM in the calling routine.*LNEM!: A positive integer specifying the column dimension of the work array WRKNEMin the user's calling program. It must satisfy LNEM � N+2�NINT(pN)+11.*WRKNEN!: Workspace used to store the matrix S of previous directions, the matrix SHATof linearly independent directions, and working vectors. The user must declare this arrayto have dimensions MAXN�LNEN in the calling routine.*LNEN!: A positive integer specifying the column dimension of the work array WRKNENin the user's calling program. It must satisfy LNEN � 2�NINT(pN)+9.*IWRKN!: Workspace used to store the integer working vectors. The user must declarethis array to have dimensions at least MAXN�LIN in the calling routine.*LIN!: A positive integer specifying the column dimension of the work array IWRKN inthe user's calling program. It must satisfy LIN � 3.ANJA!: The name of a user{supplied subroutine that evaluates the �rst derivative (Ja-cobian) of the function F (x). The subroutine must be declared EXTERNAL in the user'sprogram and must conform to the usageCALL ANJA(JAC, X, MAXM, M, N),18

where X is a vector of length N and the 2-dimensional array JAC of row dimension MAXM andcolumn dimension N is the analytic Jacobian of F at X. When using the interface TSNECI, ifno analytic Jacobian is supplied (JACFLG = 0), the user must use the dummy name TSDUMJas the value of this parameter.*FVEC!: The name of a user{supplied subroutine that evaluates the function F at anarbitrary vector X. The subroutine must be declared EXTERNAL in the user's calling programand must conform to the usage CALL FVEC(X, F, M, N),where X is a vector of length N and F is a vector of length M. The subroutine must not alterthe values of X.*MSG !: An integer variable that the user may set on input to inhibit certain auto-matic checks or to override certain default characteristics of the package. (For the shortcall it should be set to 0.) There are four \message" features that can be used individuallyor in combination as discussed below.� MSG = 0 : Values of input parameters, �nal results, and termination code are printed.� MSG = 2 : Do not check user's analytic Jacobian routine against its �nite di�erenceestimate. This may be necessary if the user knows the Jacobian is properly coded,but the program aborts because the comparative tolerance is too tight. Do not useMSG = 2 if the analytic Jacobian is not supplied.� MSG = 8 : Suppress printing of the input state, the �nal results, and the stoppingcondition.� MSG = 16 : Print the intermediate results; that is, the input state, each iterationincluding the current iterate xk, 12kDFF (xk) k22, and rf(x) = J(x)TDF 2F (x), andthe �nal results including the stopping conditions.The user may specify a combination of features by setting MSG to the sum of the individ-ual components. The module TSDFLT returns a value of 0. On exit, if the program hasterminated because of erroneous input, MSG contains an error code indicating the reason.� MSG = 0 : No error.� MSG = -1 : Illegal dimension, M � 0.� MSG = -2 : Illegal dimension, N � 0.� MSG = -3 : Illegal dimension, MAXM < M+N+2.� MSG = -4 : Illegal dimension, MAXN < N+2.� MSG = -5 : Illegal dimension, PMAX < NINT(pN).� MSG = -6 : Illegal dimension, LUNC < 2�NINT(pN)+4.� MSG = -7 : Illegal dimension, LNEM < N+2�NINT(pN)+11.� MSG = -8 : Illegal dimension, LNEN < 2�NINT(pN)+9.� MSG =-9 : Illegal dimension, LIN < 3.� MSG = -10 : Program asked to override check of analytic Jacobian against �nitedi�erence estimate, but routine ANJA not supplied (incompatible input).19

� MSG = -11 : Probable coding error in the user's analytic Jacobian routine ANJA.Analytic and �nite di�erence Jacobian do not agree within the assigned tolerance.*XP : An array of length N containing the best approximation to the solution x�. (If thealgorithm has not converged, the �nal iterate is returned).*FP : An array of length M containing the function value F(XP).*GP : An array of length N containing the gradient of the function 12kF (x) k22 at XP.*TERMCD : An integer specifying the reason for termination.� TERMCD = 0 : No termination criterion satis�ed (occurs if package terminates becauseof illegal input).� TERMCD = 1 : function tolerance reached. The current iteration is probably a solution.� TERMCD = 2 : gradient tolerance reached. For nonlinear least squares, the currentiteration is probably a solution; for nonlinear equations, it could be a solution or alocal minimizer.� TERMCD = 3 : Successive iterates within step tolerance. The current iterate may be asolution, or the algorithm is making very slow progress and is not near a solution.� TERMCD = 4 : Last global step failed to locate a point lower than XP. It is likely thateither XP is an approximate solution of the problem or STEPTL is too large.� TERMCD = 5 : Iteration limit exceeded.� TERMCD = 6 : Five consecutive steps of length STEPMX have been taken.7. Summary of Default ValuesThe following parameters are returned by the module TSDFLT:ITNLIM = 150JACFLG = 0IPR = 6GRADTL = �1=3FTOL = �2=3STEPTL = �2=3METHOD = 1GLOBAL = 0STEPMX = 10.0D+3DLT = -1.0D0TYPX = (1.0D0,� � �,1.0D0)TYPF = (1.0D0,� � �,1.0D0)MSG = 0 20

8. Implementation DetailsThis program package has been coded in Fortran 77 using double precision. A single pre-cision version of the package can be obtained by substituting every occurrence of DOUBLEPRECISION by REAL in the declaration section of the subroutines, and double precision con-stants by single precision constants. The program package consists of approximately 9060lines of code, of which 2540 lines are subroutines from the software package UNCMIN [12]for unconstrained nonlinear optimization, 900 lines are blas subroutines, and about 25%are comments. The total data storage required is about M� (N+ 2pN) + N� (N+ 4pN)double{precision
oating points. The program was developed and tested on a Sun SPARC-station 2 computer in the Computer Science Department at the University of Colorado atBoulder.There is one machine dependency. The machine precision is calculated by the packageand used in several places, including �nite di�erences stepsizes and stopping criteria. Onsome computers, the returned value may be incorrect because of compiler optimizations.The user may wish to check the computer value of the machine precision and, if it isincorrect, replace the code in the function DPMEPS with the following statement.DPMEPS = correct value of machine precision9. Example of UseIn the example code in Figures 9.1{9.2, we call TSDFLT to set default parameter values,then override the values of GRADTL, FTOL, and STEPTL. Then we call the interface TSNECI tosolve the system of nonlinear equations coded in subroutine FVEC. We arbitrarily base ourstorage upon MAXM = 100 and MAXN = 30 to allow for larger problems than those shown.program tensolvec tensolve finds roots of systems of n nonlinear equations in nc unknowns, or minimizers of the sum of squares of m > n nonlinearc equations in n unknowns, using tensor methods.integer maxm,maxn,pmax,m,n,itnlim,jacflg,methodinteger global,ipr,lunc,lnem,lnen,lin,msg,termcd,idouble precision gradtl,steptl,ftol,stepmx,dltparameter (maxm = 100, maxn = 30, pmax = 5)parameter (lin = 3, lunc = 14, lnem = 51, lnen = 19)integer iwrkn(maxn,lin)double precision x0(maxn),wrkunc(pmax,lunc),wrknem(maxm,lnem)double precision wrknen(maxn,lnen),typx(maxn),typf(maxm)double precision xp(maxn),fp(maxm),gp(maxn)external tsdumj,fvecread(5,*) m,nread(5,*) (x0(i),i=1,n) 21

gradtl = 1.0d-5ftol = 1.0d-9steptl = 1.0d-9call tsneci(maxm,maxn,pmax,x0,m,n,typx,typf,itnlim,jacflg,+ gradtl,steptl,ftol,method,global,stepmx,dlt,ipr,+ wrkunc,lunc,wrknem,lnem,wrknen,lnen,iwrkn,lin,+ tsdumj,fvec,msg,xp,fp,gp,termcd)endFigure 9.1: Driver to solve a system of nonlinear equations or a nonlinear least squaresproblem subroutine fvec(x,f,m,n)integer n,mdouble precision x(n),f(m)f(1) = 10.0d0*(x(2)-x(1)**2)f(2) = 1.0d0-x(1)returnend Figure 9.2: A subroutine for the Rosenbrock functioncall tsdflt(m,n,itnlim,jacflg,gradtl,steptl,ftol,method,+ global,stepmx,dlt,typx,typf,ipr,msg)If we run the above example with the input2 2 (m, n)-1.2d0 1.0d0 (x0)the output will be as follows:TSNESV TYPICAL XTSNESV 0.1000000000000D+01 0.1000000000000D+01TSNESV DIAGONAL SCALING MATRIX FOR XTSNESV 0.1000000000000D+01 0.1000000000000D+01TSNESV TYPICAL FTSNESV 0.1000000000000D+01 0.1000000000000D+0122

TSNESV DIAGONAL SCALING MATRIX FOR FTSNESV 0.1000000000000D+01 0.1000000000000D+01TSNESV JACOBIAN FLAG = 0TSNESV METHOD USED = 1TSNESV GLOBAL STRATEGY = 0TSNESV ITERATION LIMIT = 150TSNESV MACHINE EPSILON = 0.2220446049250D-15TSNESV STEP TOLERANCE = 0.1000000000000D-08TSNESV GRADIENT TOLERANCE = 0.1000000000000D-04TSNESV FUNCTION TOLERANCE = 0.1000000000000D-08TSNESV MAXIMUM STEP SIZE = 0.1000000000000D+04TSNESV TRUST REG RADIUS =-0.1000000000000D+01TSRSLT ITERATION K = 0TSRSLT X(K)TSRSLT -0.1200000000000D+01 0.1000000000000D+01TSRSLT FUNCTION AT X(K)TSRSLT 0.1210000000000D+02TSRSLT GRADIENT AT X(K)TSRSLT -0.1077999998579D+03 -0.4400000000000D+02TSNSTP FUNCTION VALUE CLOSE TO ZEROTSRSLT ITERATION K = 7TSRSLT X(K)TSRSLT 0.1000000000071D+01 0.1000000000145D+01TSRSLT FUNCTION AT X(K)TSRSLT 0.3108554513225D-20TSRSLT GRADIENT AT X(K)TSRSLT -0.6194900199413D-09 0.3451905427663D-09If we now wish to solve the nonlinear least squares problem given by the subroutine inFigure 9.3, with the following input:6 4 (m, n)-30.0d0 -10.0d0 -30.0d0 -10.0d0 (x0)and with GLOBAL = 1 set after the call to TSDFLT in the driver program, the output will beas follows:TSNESV TYPICAL XTSNESV 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSNESV 0.1000000000000D+01TSNESV DIAGONAL SCALING MATRIX FOR XTSNESV 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSNESV 0.1000000000000D+01TSNESV TYPICAL F 23

subroutine fvec(x,f,m,n)integer m,ndouble precision x(n),f(m)f(1) = 10.0d0*(x(2)-x(1)**2)f(2) = 1.0d0-x(1)f(3) = sqrt(90.0d0)*(x(4)-x(3)**2)f(4) = 1.0d0-x(3)f(5) = sqrt(10.0d0)*(x(2)+x(4)-2.0d0)f(6) = (1.0d0/sqrt(10.0d0))*(x(2)-x(4))returnend Figure 9.3: A subroutine for the Wood functionTSNESV 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSNESV 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSNESVTSNESV DIAGONAL SCALING MATRIX FOR FTSNESV 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSNESV 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSNESVTSNESV JACOBIAN FLAG = 0TSNESV METHOD USED = 1TSNESV GLOBAL STRATEGY = 1TSNESV ITERATION LIMIT = 150TSNESV MACHINE EPSILON = 0.2220446049250D-15TSNESV STEP TOLERANCE = 0.1000000000000D-08TSNESV GRADIENT TOLERANCE = 0.1000000000000D-04TSNESV FUNCTION TOLERANCE = 0.1000000000000D-08TSNESV MAXIMUM STEP SIZE = 0.1000000000000D+04TSNESV TRUST REG RADIUS =-0.1000000000000D+01TSRSLT ITERATION K = 0TSRSLT X(K)TSRSLT -0.3000000000000D+02 -0.1000000000000D+02 -0.3000000000000D+02TSRSLT -0.1000000000000D+02TSRSLT FUNCTION AT X(K)TSRSLT 0.7867288100000D+08TSRSLT GRADIENT AT X(K)TSRSLT -0.5460030962972D+07 -0.9122000000267D+05 -0.4914030950915D+07TSRSLT -0.8211996230035D+05 24

TSNSTP FUNCTION VALUE CLOSE TO ZEROTSRSLT ITERATION K = 5TSRSLT X(K)TSRSLT 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01TSRSLT 0.1000000000000D+01TSRSLT FUNCTION AT X(K)TSRSLT 0.2085035793399D-26TSRSLT GRADIENT AT X(K)TSRSLT 0.1045163963158D-11 -0.5508038512959D-12 0.7009948229596D-12TSRSLT -0.3784528276690D-1210. Test ResultsWe have tested the TENSOLVE software package using the algorithms described above on avariety of nonsingular and singular problems. This section summarizes and discusses thetest results.In our tests, the package terminates successfully if the relative size of (x+ � xc) is lessthan � 12 , or jj F (x+) jj1 is less than � 23 . It terminates unsuccessfully if the iteration limit of150 is exceeded. If the last global step fails to locate a point lower than xc in the line searchor trust region global strategies, or the relative size of J(x+)TF (x+) is less than � 13 , themethod stops and reports this condition; this may indicate either success or failure. All ourcomputations were performed on a Sun SPARCstation 2 computer in the Computer ScienceDepartment at the University of Colorado at Boulder, using double{precision arithmetic.First we tested the software package on the set of nonlinear equations and nonlinear leastsquares problems in Mor�e, Garbow, and Hillstrom [9]. These problems all have nonsingularJacobians at the solution with the exception of Powell's singular function. Then we createdsingular test problems as proposed in Schnabel and Frank [11] by modifying the nonsingulartest problems of Mor�e, Garbow, and Hillstrom to the formF̂ (x) = F (x)� F 0(x�)A(ATA)�1AT (x� x�); (10:1)where F (x) is the standard nonsingular test function, x� is its root or minimizer, andA 2 Rm�k has full column rank with 1 � k � n. Note that x� is a root or critical point ofthe modi�ed problem, and rank F̂ 0(x�) = n � rank(A). We used (10.1) to create two setsof singular problems, with F̂ 0(x) having rank n � 1 and n � 2, respectively, by usingA 2 Rm�1; AT = (1; 1; � � � ; 1);and A 2 Rm�2; AT = " 1 1 1 1 � � � 11 �1 1 �1 � � � �1 # ; (10:2)respectively. 25

Table 10.1: Summary for Nonlinear Equations Test Problems using Line SearchRank Tensor Average Ratio Only OnlyF 0(x�) Better Worse Tie Tensor/Newton Newton TensorItn Feval Solved Solvedn 25 2 13 0.60 0.69 1 5n� 1 24 0 8 0.48 0.53 0 5n� 2 27 1 5 0.46 0.56 0 8We tested our tensor algorithm on 17 test functions for systems of nonlinear equations(also including 4 functions from [7] whose Jacobian at the solution x� is singular and aredesignated as Griewank functions) and 11 test functions for nonlinear least squares. Someof the test problems were run at various dimensions. All of these problems were also runwith the standard method. The list of test problems is given in Appendix A; the detailedtest results are given in [2].Our computational results for the test problems whose Jacobians at the solution haveranks n, n � 1, and n � 2 are summarized in Tables 10.1 to 10.4. In each of these tables,columns \Better" and \Worse" represent the number of times the tensor method was betterand worse, respectively, than the standard method by more than one iteration. The \Tie"column represents the number of times the tensor and standard methods required within oneiteration of each other. For each set of problems, we summarize the comparative costs of thetensor and standard methods using average ratios of two measures: iterations, and functionevaluations. The average iteration ratio is the total number of iterations required by thetensor method over all the problems included, divided by the total number of iterationsrequired by the standard method on the same problems. The same measure is used for theaverage function evaluation ratio. These average ratios include only problems that weresuccessfully solved by both methods. We have excluded from the summary of statistics allcases where the tensor and standard methods converge to a di�erent root, or to the sameroot as each other but not the singular root x� in the case of singular problems. However,the statistics for the \Better," \Worse," and \Tie" columns include the cases where only oneof the two methods converges, and exclude the cases where both methods do not converge.The total number of problems that were solved by one method but not the other are givenin the last two columns of each table.In the test results obtained for both nonsingular and singular nonlinear equations prob-lems, the tensor method is virtually never less e�cient than the standard method andusually is more e�cient. The improvement by the tensor method over the standard methodwith the same global strategy is substantial, averaging about 49% in iterations and 41% infunction evaluations when the line search is used, and about 42% in iterations and 31% infunction evaluations when the trust region is used, on the problems that are successfullysolved by both methods. The improvement by the tensor method over the standard methodis more dramatic on problems with small rank de�ciency than on nonsingular problems, butis substantial in all cases. On rank n�1 problems, this is due in part to the tensor methodsachieving 3 step Q-order 32 convergence, whereas Newton's method is linearly convergent26

Table 10.2: Summary for Nonlinear Equations Test Problems Using Two-Dimensional TrustRegion Rank Tensor Average Ratio Only OnlyF 0(x�) Better Worse Tie Tensor/Newton Newton TensorItn Feval Solved Solvedn 26 3 13 0.61 0.72 1 6n� 1 24 1 9 0.49 0.63 0 4n� 2 26 1 5 0.64 0.73 0 4Table 10.3: Summary for Nonlinear Least Squares Test Problems Using Line SearchRank Tensor Average Ratio Only OnlyF 0(x�) Better Worse Tie Tensor/Gauss-Newton Gauss-Newton TensorItn Feval Solved Solvedn 20 1 8 0.52 0.51 0 4n� 1 18 0 8 0.45 0.41 0 2n� 2 28 0 5 0.48 0.48 0 4Table 10.4: Summary for Nonlinear Least Squares Test Problems Using Two-DimensionalTrust RegionRank Tensor Average Ratio Only OnlyF 0(x�) Better Worse Tie Tensor/Gauss-Newton Gauss-Newton TensorItn Feval Solved Solvedn 26 1 5 0.66 0.76 0 3n� 1 19 2 5 0.66 0.71 0 1n� 2 28 1 4 0.63 0.69 0 127

Table 10.5: Average Ratios of the Tensor Method versus the Gauss-Newton Method onZero Residual Problems for Line Search and Trust RegionRank Line Search Trust RegionF 0(x�) Itn Feval Itn Fevaln 0.43 0.44 0.43 0.56n � 1 0.41 0.37 0.64 0.62n � 2 0.48 0.48 0.51 0.57with constant 12 [6].The tensor method is also signi�cantly more robust than the standard Newton-basedmethod for the nonlinear equations test set. Over all the nonlinear equations test problems,5 rank n problems, 5 rank n � 1 problems, and 8 rank n � 2 problems were solved by thetensor method and not by the standard method when the line search was used, and 6 rankn problems, 4 rank n � 1 problems, and 4 rank n � 2 problems were solved by the tensormethod and not by the standard method when the trust region was used. On the otherhand, only 1 rank n problem was solved by the standard method and not by the tensormethod when the line search was used, and similarly when the trust region was used.For the entire set of nonsingular and singular nonlinear least squares problems, theaverage improvement of the tensor method over the standard Gauss-Newton method alsois substantial. Over the problems solved successfully by both methods, the improvementaverages about 52% in iterations and 53% in function evaluations when the line search isused, and about 35% in iterations and 28% in function evaluations when the trust region isused.The tensor method is also considerably more robust than the Gauss-Newton method forthe nonlinear least squares test set, especially in the line search comparison. The tensormethod solves several problems that the standard Gauss-Newton method does not, and thereverse never occurs. Over all the nonlinear least squares test problems, 4 rank n problems,2 rank n � 1 problems, and 4 rank n � 2 problems were solved by the tensor method andnot by the standard Gauss-Newton method when the line search was used, and 3 rank nproblems, 1 rank n � 1 problems, and 1 rank n � 2 problems were solved by the tensormethod and not by the standard Gauss-Newton method when the trust region was used.On the other hand, there were no problems solved by the standard Gauss-Newton methodand not by the tensor method when either the line search or the trust region was used.A closer examination of the nonlinear least squares test results shows that the improve-ments by the tensor method are considerably larger for zero residual problems than fornonzero residual problems. The di�erence is most dramatic in the nonsingular case. Tables10.5 and 10.6 show the average iteration and function evaluation ratios of the tensor methodversus the Gauss-Newton method for zero and nonzero residual problems, respectively. Theperformance di�erences may be attributable to the fact that both the standard and ten-sor methods are linearly convergent on nonzero residual problems, but are more quicklyconvergent on zero residual problems.The comparison between the line search methods and the trust region methods is very28

Table 10.6: Average Ratios of the Tensor Method versus the Gauss-Newton Method onNonzero Residual Problems for Line Search and Trust RegionRank Line Search Trust RegionF 0(x�) Itn Feval Itn Fevaln 0.64 0.64 0.78 0.88n � 1 0.48 0.45 0.67 0.79n � 2 0.49 0.48 0.68 0.76Table 10.7: Average Ratios of Iterations and Function Evaluations of Newton with TrustRegion versus Newton with Line Search and Tensor with Trust Region versus Tensor withLine Search for Nonlinear EquationsRank Newton TR/LS Tensor TR/LSF 0(x�) Itn Feval Itn Fevaln 0.80 0.84 0.70 0.57n � 1 0.78 0.89 0.96 0.93n � 2 0.86 0.93 0.92 0.94interesting, for both the standard and tensor methods. This is summarized in Tables 10.7and 10.8. These tables show that on the average, the two-dimensional trust region approachis often more e�cient than the line search method, especially on nonsingular problems. Itis important to note, however, that the line search method is simpler to implement and tounderstand than the the two-dimensional trust region approach, and is appreciably fasterin terms of CPU time on small, inexpensive problems where the complexity of the codebecomes the dominant cost. It should also be noted that there is considerable variationin the comparative e�ciency of the line search and trust region methods on individualproblems and that either may be more e�cient for a particular problem class.Perhaps a more important consideration in the general comparison of the line searchand trust region methods, however, is that the two-dimensional trust region method solvesTable 10.8: Average Ratios of Iterations and Function Evaluations of Gauss-Newton withTrust Region versus Gauss-Newton with Line Search and Tensor with Trust Region versusTensor with Line Search for Nonlinear Least Squares ProblemsRank Gauss-Newton TR/LS Tensor TR/LSF 0(x�) Itn Feval Itn Fevaln 0.70 0.65 0.75 0.76n� 1 0.72 0.71 1.05 1.09n� 2 1.01 0.97 0.74 0.8029

considerably more of the test problems than the line search method. The advantage inrobustness is particularly large in comparing line search and trust region versions of thestandard methods; it is smaller but still signi�cant in comparing tensor methods for nonlin-ear least squares, and insigni�cant in our tests of tensor methods for nonlinear equations.Over all the nonlinear equations problems, 20 problems were solved by the trust region andnot by the line search, whereas only a total of 5 problems was solved by the line searchand not by the trust region. Over all the nonlinear least squares problems, 27 problemswere solved by the trust region and not by the line search, whereas only 6 problems weresolved by the line search and not by the trust region. The above statistics include the testresults for both the tensor and standard methods. Thus, the trust region version seemsto have a considerable advantage over the line search version in its robustness, althoughmore when using the standard method than the tensor method. We note that the smalleraverage improvement of the tensor method over the standard method in the trust regioncases (Tables 10.2 and 10.4) than the line search cases (Tables 10.1 and 10.3) is related tothe di�erence in problem sets that are included in these statistics, because of the di�eringrobustness of the line search and trust region methods.Finally, we compared our tensor method with the NL2SOL package [5] on the set ofnonlinear least squares problems used in [5] that is listed in Appendix B. The reason we wereinterested in making this comparison is that theoretically the NL2SOLmethod is superlinearlyconvergent on nonzero residual problems ([5]), whereas the tensor method of this paper, likeGauss-Newton methods, is only linearly convergent on nonzero residual problems. (Thisdi�erence is related to NL2SOL using a quadratic model of F (x)TF (x) whereas the tensorand Gauss-Newton methods use models of F (x).) The problems include a mixture of zero,small, and large residual problems.Table 10.9 reports the comparative test results of the tensor method versus NL2SOL onthis test set. The �rst row of Table 10.9 compares the tensor method using a line searchwith NL2SOL, whereas the second row compares the tensor method using a two-dimensionaltrust region with NL2SOL. (NL2SOL uses a trust region global strategy.) The table showsthat on these test problems, the tensor method on the average is somewhat more e�cientthan NL2SOL, with an average improvement of about 58% in iterations and 29% in functionevaluations when the line search is used, and about 24% in iterations and 7% in functionevaluations when the trust region is used. (Note that the tensor method with line searchis more e�cient than the tensor method with trust region on this test set.) There is nodi�erence in the robustness of the two packages of this test set; only 1 problem in the testset was solved by NL2SOL and not by the tensor method using either a line search or a trustregion method, and only 1 problem was solved by the tensor method and not by NL2SOL.These limited results indicate that the tensor method appears to be quite competitive withNL2SOL for solving least squares problems.References[1] A. Bouaricha, A Software Package for Solving Systems of Nonlinear Equations andNonlinear Least Squares Problems Using Tensor Methods, M.S. thesis, Department ofComputer Science, University of Colorado at Boulder, 1986.30

Table 10.9: Comparison of Tensor Method with NL2SOL on the Nonlinear Equations andNonlinear Least Squares Problems Listed in Table B-1Global strategy Tensor versus NL2SOL Average Ratio{Tensor/NL2SOLBetter Worse Tie Itn FevalTensor w/ LS 25 8 2 0.42 0.71Tensor w/ TR 24 9 2 0.76 0.93[2] A. Bouaricha, Solving Large Sparse Systems of Nonlinear Equations and NonlinearLeast Squares Problems Using Tensor Methods on Sequential and Parallel Computers,Ph.D. thesis, Department of Computer Science, University of Colorado at Boulder,1992.[3] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approximation Solution of the TrustRegion Problem by Minimization over Two-Dimensional Subspaces, Mathematical Pro-gramming, 40 (1988), 247{263.[4] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimizationand Nonlinear Equations, Prentice-Hall, Englewood Cli�s, N.J., 1983.[5] J. E. Dennis, D. M. Gay, and R. E. Welsch, An Adaptive Nonlinear Least SquaresAlgorithm, ACM Trans. Math. Softw., 7 (1981), 348{368.[6] D. Feng, P. Frank, R. B. Schnabel, An Analysis of Tensor Methods for Nonlinear Equa-tions, Technical Report CS-CS-729-94, Department of Computer Science, Universityof Colorado at Boulder, 1992.[7] A. O. Griewank, Analysis and Modi�cation of Newton's Method at Singularities, Ph.D.thesis, Australian National University, Canberra, 1980.[8] J. J. Mor�e, The Levenberg-Marquardt Algorithm: Implementation and Theory, in Nu-merical Analysis, G. A. Watson, ed., Lecture Notes in Mathematics, vol. 630, Springer{Verlag, Berlin, 1977, 105{116.[9] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom, Testing Unconstrained OptimizationSoftware, ACM Trans. Math. Softw., 7 (1981), 17{41.[10] M. J. D. Powell, A New Algorithm for Unconstrained Optimization, in Nonlinear Pro-gramming, J. B. Rosen, O.L. Mangasarian, and K. Ritter, eds., Academic Press, NewYork, 1970, 33{65.[11] R. B. Schnabel and P. D. Frank, Tensor Methods for Nonlinear Equations, SIAM. J.Num. Anal., 21 (1984), 815{843.[12] R. B. Schnabel, J. E. Koontz, and B. E. Weiss, A Modular System of Algorithms ofUnconstrained Minimization, ACM Trans. Math. Softw., 11 (1985), 419{440.31

Appendix AThe columns in Tables A-1 and B-1 have the following meanings:{ Problem: name of the problem.{ m: number of equations.{ n: number of variables.{ NS: dimension of null space for Griewank's singular functions.{ OS: order of singularity for Griewank's singular functions.Table A-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Usedin the Comparison of Tensor Method versus Standard MethodProblem Dimensionm nBrown almost linear 10 10Broyden banded 30 30Broyden tridiagonal 30 30Chebyquad 7 7Discrete boundary 30 30Discrete integral 10 10Helical valley 3 3Powell singular 4 4Rosenbrock 2 2Trigonometric 30 30Variable dimension 10 10Watson 31 31Wood gradient 4 4NS = 1 OS = 1 3 3NS = 2 OS = 1 3 3NS = 1 OS = 2 3 3NS = 2 OS = 2 3 3
32

Table A-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Usedin the Comparison of Tensor Method versus Standard Method (continued)Problem Dimensionm nWood 6 4Variable dimension 12 10Bard 15 3Beale 3 2Kowalik 11 4Penalty1 11 10Penalty2 10 5Brown badly scaled 3 2Gauss function 15 3Brown and Dennis 10 4Chebyquad 8 4Chebyquad 12 4Chebyquad 16 4Appendix BTable B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Usedin the Comparison of Tensor Method versus NL2SOLProblem Dimensionm nRosenbrock 2 2Helical Valley 3 3Powell Singular 4 4Wood 6 4Beale 3 2Box three-dimensional 10 3Freudenstein and Roth 2 2
33

Table B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Usedin the Comparison of Tensor Method versus NL2SOL (continued)Problem Dimensionm nWatson 31 6Watson 31 9Watson 31 12Watson 31 20Chebyquad 8 8Bard 15 3Jennrich and Sampson 10 2Kowalik 11 4Osborne 1 33 5Osborne 2 65 11
34

