TENSOLVE: A Software Package for Solving
Systems of Nonlinear Equations and Nonlinear
Least Squares Problems Using Tensor Methods

Ali Bouaricha*
Argonne National Laboratory
and
Robert B. Schnabel f

University of Colorado

This paper describes a modular software package for solving systems of nonlinear equa-
tions and nonlinear least squares problems, using a new class of methods called tensor
methods. It is intended for small to medium—sized problems, say with up to 100 equa-
tions and unknowns, in cases where it is reasonable to calculate the Jacobian matrix or
approximate it by finite differences at each iteration. The software allows the user to select
between a tensor method and a standard method based upon a linear model. The tensor
method approximates F(z) by a quadratic model, where the second-order term is chosen
so that the model is hardly more expensive to form, store, or solve than the standard lin-
ear model. Moreover, the software provides two different global strategies, a line search
and a two-dimensional trust region approach. Test results indicate that, in general, tensor
methods are significantly more efficient and robust than standard methods on small and
medium—sized problems in iterations and function evaluations.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear
Equations—systems of equations; G.1.6 [Numerical Analysis]: Optimization—least squares
methods; G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: tensor methods, nonlinear equations, nonlinear least
squares, rank-deficient matrices

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439,
bouarich@mcs.anl.gov. Research supported in part by the Office of Scientific Computing, U.S. Department
of Energy, under Contract W-31-109-Eng-38.

'Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430,
bobby@cs.colorado.edu. Research supported by AFOSR Grants No. AFOSR-90-0109 and F49620-94-1-
0101, ARO Grants No. DAAL03-91-G-0151 and DAAHO04-94-G-0228, and NSF Grant No. CCR-9101795.

1. Introduction

This paper describes a modular software package for solving systems of nonlinear equations
of the form
F:R'"—=R", m > n, (1.1)

where F is assumed to be at least once continuously differentiable, using a new class of
methods called tensor methods. If m is equal to n, the package solves the nonlinear equations
problem, F(z) = 0, while if m is greater than n it solves the nonlinear least squares problem,
minsere || F() [

Tensor methods base each iteration on a quadratic model of the nonlinear function,

M(zo + d) = F(a.) + Fl(a)d + %Tcdd, (1.2)

where z. is the current iterate, and 7. is a three-dimensional object referred to as a tensor.
No second derivative information is used in forming the tensor term 7.. Instead, T, is formed
by asking the model to interpolate up to y/n past function values in a way that hardly
increases the storage requirements or arithmetic cost per iteration over standard linear
model based methods. The package also provides an option to use a method based on the
standard linear model ((1.2) without the tensor term); it then performs a standard Newton
method for nonlinear equations or Gauss-Newton method for nonlinear least squares. The
global strategy used in either case can be either a line search strategy or a two-dimensional
trust region method over the subspace spanned by the steepest descent direction and the
tensor (or Newton/Gauss-Newton) step.

Required input to the package includes the dimensions m and n of the problem, where
m is the number of nonlinear equations and n is the number of unknowns; a subroutine
to evaluate the function F(z); and an estimate xzg of the solution z.. The user may pro-
vide a code to calculate the Jacobian rather than having it computed by finite differences,
may choose the standard method rather than the tensor method, and may specify various
tolerances.

Upon completion, the program returns with an approximation z, to the solution .,
the value of the sum of squares of the function F(z,), the value of the gradient G(z,) =
F'(z,)TF(x,), and a flag specifying under which stopping condition the algorithm was
terminated.

The tensor methods upon which this software package is based were originally introduced
by Schnabel and Frank [11], for nonlinear equations. One main contribution of this paper is
the provision and extensive testing of a software package incorporating these methods. In
addition, the extension of these methods to nonlinear least squares, and the incorporation
of a trust region strategy with tensor methods, are new contributions.

The remainder of the paper is organized as follows. In Section 2 we give a brief overview
of tensor methods for nonlinear least squares problems (tensor methods for nonlinear equa-
tions can be regarded as a special case of these). In Section 3 we discuss the globally
convergent modifications for tensor methods for systems of nonlinear equations and non-
linear least squares problems. Section 4 gives an overview of the key features and options
provided by the software package. We then describe the user interface to the package in
Section 5, which includes both a simplified default calling sequence and a longer calling

sequence. In Section 6 we describe the meaning of the input, input-output, and output
parameters for the package. Section 7 presents the default values provided by the package.
A few implementation dependencies are described in Section 8. Section 9 gives an example
of the use of the package. Finally, in Section 10 we summarize and discuss our experimental
results using the package, with both line search and trust region strategies, on nonsingular
and singular test problems.

2. Brief Overview of Tensor Methods

Tensor methods are general-purpose methods intended especially for problems where the
Jacobian matrix at the solution is singular or ill-conditioned. The idea is to base each
iteration upon a model that has more information than the standard linear model but is
not appreciably more expensive to form, store, or solve. Specifically, each iteration is based
upon a quadratic model (1.2) of the nonlinear function F(z). The particular choice of the
tensor term 7, € R™*"*"™ causes the second-order term T.dd in (1.2) to have a simple and
useful form. The tensor term is chosen to allow the model M(z. + d) to interpolate values
of the function F(z) at past iterates x_g; that is, the model should satisfy

1
Fla_g) = F(z.) + F'(zo)sp + §Tcsk5k, E=1,---,p, (2.1)
where
Sk = T — T k = 17"'7])-
The past points z_y,---,2_, are selected so that the set of directions {s;} from z. to

the selected points is strongly linearly independent; each direction si is required to make
an angle of at least 45 degrees with the subspace spanned by the previously selected past
directions. The procedure of finding linearly independent directions is implemented easily
by using a modified Gram-Schmidt algorithm, and usually results in p = 1 or 2.

After selecting the linearly independent past directions sg, the tensor term is chosen by
the procedure of Schnabel and Frank [11], which generalizes in a straightforward way to
nonlinear least squares. T, is chosen to be the smallest matrix that satisfies the interpolation
conditions (2.1); that is,

minimize ||T% ||z (2.2)
T.€Rm*nxn
subject to Tosksy = 2 (F(o_r) — Flz.) — F'(z:)st),

where [|T,||F, the Frobenius norm of T¢, is defined by
ITellF = > (Teli, 5. k])*. (2.3)

=1 7

™=

1 k=1

The solution to (2.2) is the sum of p rank—one tensors whose horizontal faces are symmetric:

p
T. = Z ()SkSk, (2.4)
k=1

where ay, is the k—th column of A € R™*P A is defined by A = ZM~!, Z is an (m X p)
matrix whose columns are Z; = 2 (F(z_;) — F(az.) — F'(z.)s;), and M is a (p x p)
matrix defined by M;; = (s;7s;)%, 1 <14, 5 < p.

If we use the tensor term (2.4), the tensor model (1.2) becomes

Mz. + d) = F(z.) + Fla)d + % 3 o {dTs). (2.5)
k=1

The simple form of the quadratic term in (2.5) is the key to being able to efficiently form,
store, and solve the tensor model. The cost of forming the tensor term in the tensor model
is O(mnp) < O(mn'®) arithmetic operations, since p < \/n, which is small in comparison
with the O(mn?) cost per iteration of Gauss-Newton methods. The additional storage
required is 4p m-vectors, which is small in comparison with the storage for the Jacobian.

Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possible
that no root exists; in this case a least squares solution of the model is found instead. Thus,
in general, we solve the problem

minimize |M(z:. + d)]2. (2.6)

A generalization of the process in Schnabel and Frank [11] shows that the solution to (2.6)
can be reduced to the solution of a small number of quadratic equations, m —n+ ¢ quadratic
equations in p unknowns, plus the solution of n — ¢ linear equations in n — p unknowns.
Here ¢ is equal to p whenever F’(z.) is nonsingular and usually when rank(#"(z.)) > n— p;
otherwise, ¢ is greater than p. Thus the system of linear equations is square or underde-
termined, and the system of quadratic equations is equally determined or overdetermined.
The main steps of the algorithm are the following:

1. An orthogonal transformation of the variable space is used to cause the m equations
in n unknowns to be linear in » — p variables d; € R"™P_ and quadratic only in the
remaining p variables dy € RP.

2. An orthogonal transformation of the equations is used to eliminate the n — p trans-
formed linear variables from n — ¢ of the equations. The result is a system of m—n+g¢
quadratic equations in the p unknowns dz, plus a system of n — ¢ equations in all the
variables that is linear in the n — p unknowns ds.

3. A nonlinear unconstrained optimization software package, UNCMIN [12], is used to
minimize the I3 norm of the m — n + ¢ quadratic equations in the p unknowns dy. (If
p = 1, this procedure is done analytically instead.)

4. The system of n — ¢ linear equations that is linear in the remaining n — p unknowns
is solved for dj.

The arithmetic cost per iteration of the above process is the standard O(mn?) cost of a
QR factorization of an m x n matrix, plus an additional O(mnp) < O(mn!®) operations,
plus the cost of using UNCMIN in Step 3 of the algorithm. The cost of using UNCMIN is
expected to be O(p*) < O(n?) operations, since each iteration requires O(p®) (O(p?q)

when ¢ > p) operations and a small multiple of p iterations generally suffice. Thus, the
total cost of the above algorithm is the O(mn?) cost of the standard method plus at most
an additional cost of O(mn!®) arithmetic operations. Note that in the case when p = 1
and ¢ > 1, the one-variable minimization problem is solved very inexpensively in closed
form; this turns out to be the most common case in practice.

The Newton or Gauss-Newton step is computed inexpensively (in O(mnp) operations)
as a by-product of the tensor step solution. Using the tensor step and the Newton or Gauss-
Newton step, a line search or a two-dimensional trust region global strategy determines the
next iterate, as described in the next section. The overall algorithm is summarized below.

Algorithm 2.1. An Iteration of the Tensor Method
Given m, n, ., F(x.)
Step 0 Calculate F'(z.), and decide whether to stop.

Step 1 Select the past points to use in the tensor model from among the y/n most recent
points.

Step 2 Calculate the second-order term of the tensor model, 7., so that the tensor model
interpolates F'(x) at all the points selected in Step 2.

Step 3 Find the root of the tensor model, or its minimizer (in the I3 norm) if it has no
real root.

Step 4 if m > n or the two-dimensional trust region is used then

Compute the standard step as a by-product of the tensor model solution.
Select the tensor or standard step using Algorithm 3.1.

Step 5 Select z using either aline search or a two-dimensional trust region global strategy.

if the line search is used then
if m > n then
perform Algorithm 3.3, where the search direction is the step selected in Step 4
else {m =n}
perform Algorithm 3.2.
elseif the two-dimensional trust region is used then
Perform Algorithm 3.4 using the model selected in Step 4

Step 6 Set z. — 24, F(z.) <« F(z4), go to Step 0.

The reader may refer to [1], [2], [6], and [11] for more details on tensor methods for
nonlinear equations and nonlinear least squares problems. These papers give preliminary
indications that tensor methods are more efficient and more robust computationally than
standard methods, and show that tensor methods have a superior rate of convergence to
Newton’s method on nonlinear equations problems where rank{F’(z.)} = n — 1.

3. Globally Convergent Modifications for Tensor Methods

This section describes the global strategies in the tensor algorithm given above. As with all
algorithms for nonlinear equations and optimization, purely local tensor methods may fail
to converge if the initial guess is far away from the solution. To address this problem, two
types of modification are used in general, line search methods and trust region methods, and
either may be best for a particular problem. For this reason, both of these global methods
are included in our software package.

This section first describes the overall framework that is used in both the line search and
trust region approaches for tensor methods. This framework involves a choice of whether to
use the tensor step or the Newton/Gauss-Newton step as the basis for the global strategy
at a given iteration. Next we briefly describe the line search that is used in the line search
methods. Finally, we describe a new model/trust region approach for tensor methods that
is used in the trust region methods.

3.1. Globally Convergent Framework for Nonlinear Least Squares

Our computational experience has shown that when one is far from the solution, it is
important to allow the global step to be based sometimes upon the Newton/Gauss-Newton
step rather than the tensor step, and we have constructed heuristics to make this choice.
Our experimentation has led to two different sets of heuristics, one that is used in both
the line search and trust region methods for nonlinear least squares as well as the trust
region method for nonlinear equations, and a second that is used in line search methods
for nonlinear equations. They differ primarily in how much they bias the choice toward the
tensor step. Both are constructed so that close to the solution, the tensor step is nearly
always selected. This section gives these heuristics and the overall global frameworks that
are based upon them.

Algorithm 3.1 gives the global framework that is used for nonlinear least squares and
for trust region methods for nonlinear equations. In this framework, the Gauss-Newton
step is chosen whenever the tensor step is not a descent direction, when the tensor step
is a minimizer of the tensor model and does not provide enough decrease in the tensor
model, or when the quadratic system of m — n + ¢ equations in p unknowns cannot be
solved by UNCMIN [12] within the iteration limit. Otherwise, the tensor step is chosen. In
the definitions of d; and Mr, the Newton step and model are used for nonlinear equations,
while the Gauss-Newton step and model are used for nonlinear least squares.

Algorithm 3.1. Global Framework for Nonlinear Least Squares and for Trust
Region Methods for Nonlinear Equations

Let z. = current iterate,
J(z.)= approximation to F'(z.),
g = J(2:)TF(x.), the gradient of 1 F(2)T F(x) at .,
d;= minimizer of the tensor model,
d,= Newton or Gauss-Newton step: —J(z.) " F(z.) or —(J(2.)TJ(2.)) " (z)T F(z.)
if J(z.) is sufficiently well-conditioned,
Levenberg-Marquardt step —(J(2.)T J(2.) + pI)~ J(z.)T F(z.) otherwise,

where p = \/ne[[J(2;) 1]/ (2¢) ||, € = machine precision,

My= tensor model,
Mp= Newton or Gauss-Newton model.
if (no root or minimizer of the tensor model was found) or

((minimizer of the tensor model that is not a root was found) and

CUMr(ee+ de) |12 > HUF(w0) 2 + [Moo + o) |2))) or

(g d > ~107"g [lfld: 12)
then

Ty — T+ Ady, A € (0,1] selected by line search, or

Ty — T+ ad, — Bg, a, 3 selected by trust region algorithm
else

Ty — &+ Ady, A € (0, 1] selected by line search, or

Ty — T+ ady — B9, a, 3 selected by trust region algorithm
endif

Algorithm 3.2 gives the global framework that is used in line search methods for nonlin-
ear equations. Its main difference from Algorithm 3.1 is that it always tries the tensor step
first, whether or not this step meets the descent or model decrease conditions of Algorithm
3.1. If . + d; provides enough decrease in || F(2) ||, then it is used as the next iterate. If
not, the strategy may tentatively compute global steps in both the Newton and the tensor
directions. That is, the global step 2} = 2. + Ad, produced by a line search in the
Newton direction d,, is calculated. In addition, if d; is a descent direction, the global step
acfl_ = x. + Ad; produced by a line search in the tensor direction also is calculated. Finally,
we select 27 or 2%, depending on whichever has the lower function value. Thus, this strategy
may involve one or more extra function evaluations when both line searches are performed.

Algorithm 3.2. Global Framework for Line Search Methods for Nonlinear Equa-
tions

Given z., d;, g as defined in Algorithm 3.1, and a = 107%.

slope := ¢7d,
fo= 5 F () 113
acfl_ = 2.+ d;
fi = LIP3
if f1 < f.+ a-min{slope,0} then
return z;, = 2%
else
Compute the Newton direction d,
Find an acceptable z} in the Newton direction d,,, using Algorithm 3.3
comment. Test if the tensor step is sufficiently descent
if gTd; > —107%||g|2||d:||2 then
return r, =z}
else

Find an acceptable 2% in the tensor direction dy, using Algorithm 3.3
if || F(o1)]| < || F(a,)]| then

return ¥ =z
else
—
return z, =z}
endif
endif
endif

3.2. Global Framework for Line Search Methods for Nonlinear Equations

The line search used in the global frameworks outlined above is a standard quadratic back-
tracking line search. It starts with A = 1 and then, if z. 4+ d is not acceptable, reduces

A until an acceptable . + Ad is found, based upon a one-dimensional quadratic model of
F(x)T F(x). Let us define

p 1
) = SIFG@ + 2d) 3

the one-dimensional restriction of f(z) = }||F(2)||3 to the line through z. in the direction
d. If we need to backtrack, we use the values of f(O), f’(O), and f(/\) to model f and
then take the value of A that minimizes this model as the next value of A in Algorithm 3.3
subject to restrictions on how much A can decrease at once (see, e.g., [4], pages 126-127 for

more details). This results in the following algorithm.

Algorithm 3.3. Standard Quadratic Backtracking Line Search

Given 2., d, g = J(z.)T F(z.), and a = 1074

slope := g7d

fo = HIF @) |3
A=1.0

Tp =+ Ad

fo = 3l1F () |13

while f, > f. + a- A slope do
Memp i= —A%- slope /(2[f, — f. — A- slope])
A i= max{ Atemp, A/10}

Tp =+ Ad
fo = 3I1F () 13
endwhile

3.3. Trust Region Tensor Methods for Nonlinear Equations and Nonlinear Least
Squares

Two computational methods—the locally constrained optimal (or “hook”) method and the
dogleg method—are generally used for approximately solving the trust region problem based
on the standard model

minijnize | F(z.) + J(z.)d |3 (3.1)
subject to [|d|]s < b,

where 6. is the current trust region radius. When 6. is shorter than the standard step,
the locally constrained optimal method [8] finds a pu. such that ||d(u.)||2 =~ 6., where
d(p.) = —(J(z) I (o) + pl)~ (2)T F(2.). Then it takes 24 = 2. + d(p.). The dogleg
method is a modification of the trust region algorithm introduced by Powell [10]. Rather
than finding a point 24 = x. + d(p.) on the curve d(u.) such that |[zy — x.|| = 6., it
approximates this curve by a piecewise linear function in the subspace spanned by the
Newton direction and the steepest descent direction —J(z.)T F(z.), and takes , as the
point on this piecewise curve for which ||z — .|| = é.. (See, e.g., [4] for more details.)

Unfortunately, these two methods are difficult to extend to the tensor model, because
certain key properties do not generalize to this model. Trust region algorithms based on
(3.1) are well defined because there is always a unique point z; on the hookstep or dogleg
curve such that ||d(u.)|| = 6.. Additionally, the value of ||F(z.) + J(z.)d|]3 along these
curves decreases monotonically from z. to z’}, where 2} = z. + d,, which makes the
process reasonable. These properties do not extend to the fourth—order sum of squares of
the tensor model, which may not be convex. Furthermore, the analogous curve to d(u.) is
more expensive to compute. For these reasons, we consider a different trust region approach
for our tensor methods.

The approach is to solve a two-dimensional trust region problem over the subspace
spanned by the steepest descent direction and the tensor (or standard) step. The main
reasons that led us to adopt this approach are that it is easy to construct and is closely
related to dogleg-type algorithms over the same subspace. In addition, the resultant step
may be close to the optimal trust region step in practice. Byrd, Schnabel, and Shultz
[3] have shown that for unconstrained optimization using a standard quadratic model, the
analogous two-dimensional minimization approach produces nearly as much decrease in the
quadratic model as the optimal trust region step in almost all cases.

The two-dimensional trust region approach for the tensor model computes an approxi-
mate solution to the exact trust region problem

L 1 ¢ T, 22
mml;mzeHF(xc) + J(z.)d + 3]; ap {d" s} |3 (3.2)
subject to [|d|]s < b,
by performing a minimization
minimize | F(z.) + J(e)d + & 3 a {dTse)? |2 (3.3)
d C C 2 Pt 2 *

subject to ||d|]s < b., d € Range{dy,gs},

where d; and ¢, are the tensor step and the steepest descent direction, respectively, and é.
is the trust region radius. This approach always produces a step that reduces the quadratic
model by at least as much as a dogleg-type algorithm, which minimizes the model over a
piecewise linear curve in the same subspace. When Algorithm 3.1 chooses the Newton or

Gauss-Newton step, we instead solve the variant of (3.3) where d; is replaced by d,, and the
quadratic term in the model is omitted.

Before we give the complete two-dimensional trust region algorithm for tensor methods,
we show how to convert the problem (3.3) into an unconstrained minimization problem in
one variable. This transformation is the key to solving (3.3) efficiently. First, we form an
orthonormal basis for the two-dimensional subspace by performing the projection

T
~ gs dt
s =g, —d 3.4
g g tdg“dt ()
and normalizing §s and d; to obtain
7 dt ~ !js
dy = , s = T——. 3.5
el " g (35)
Since d is in the subspace spanned by d; and §,, it can be written as
d = ady + Bj,, a,B€R. (3.6)

2

2, we obtain the following

If we square the [, norm of this expression for d and set it to ¢
equation for § as a function of a:

g = /62 — a2

Substituting this expression for 4 into (3.6) and then the resulting d into (3.3) yields the
global minimization problem in the one variable a:

. 1& .
minic{nize | F(x.) + aJ(x:)de + /62 — a?J(z.)gs + 3 Z ak(as;‘fdt +4/62 — a25;€g~5)2) H%,

k=1
(3.7)
where —é. < a < é.. Problems (3.7) and (3.3) are equivalent.
We use the same procedure to convert the problem
minignize |F(z.) + J(z.)d |3 (3.8)

subject to ||d||z < 6., d € Range{d,,q}

to the equivalent global minimization problem in the one variable a:

minimize |F(z.) + at(ze)d, + /62 — a2 J(z.)ds |3, (3.9)
where —6. < a < 6.

The two-dimensional trust region method for tensor methods is given in the following
algorithm.

10

Algorithm 3.4. Two-Dimensional Trust Region for Tensor Methods
Given z., d,,, d; as defined in Algorithm 3.1.

Let gs = —J(z.)T F(2.), the steepest descent direction;
0. the current trust region radius;
d; and g, given by (3.5);
d,, obtained in an analogous way to d; by applying transformations (3.4) and (3.5) to d,,.

Step 0 Compute the global step
if tensor model selected then
Solve problem (3.7)
d = ad; + g, 02 —a?
where a, is the global minimizer of (3.7)
else {standard model selected }
Solve problem (3.9)
d = audy + §o\/82 — a2
where a, is the global minimizer of (3.9)
endif
Step 1 Check the new iterate and update the trust region radius
ry=2.+d
if tensor model selected then
HF(es) 13 - HIF () I3

ratio =
s F(xe) + J(ze)d + 5 0o ar{d s 32 |13 — 11 F(ze) |13
else
e AIFE) B S 1B
sIF () + J(eo)d |3 - 3l1F(2e) |3
endif

if ratio > 10~* then

the global step d is successful
else

decrease trust region

go to Step 0
endif

The methods used for adjusting the trust radius during and between steps are given in
Algorithm A6.4.5 [9, p. 338]. The initial trust radius can be supplied by the user; if not, it
is set to the length of the initial Cauchy step. Our software solves the one-variable global
optimization problem by a straightforward partitioning scheme described in [2].

4. Overview of the Software Package

This section summarizes the key features of the software package.
The user has the option to solve systems of nonlinear equations or nonlinear least squares
problems. In either case, the required input for the software is the number of equations M,

11

the number of variables N, the function FVEC that computes F(z), and an initial guess Xq.
If M = N, the problem is nonlinear equations; if M > N it is nonlinear least squares. The user
does not have to set a flag differentiating between the two problems.

Two methods of calling the package are provided. In the short version, the user supplies
only the above information, and default values of all other options and parameters are
used. (These include the use of the tensor rather than the standard method, the use of
the line search global strategy, and the calculation of the Jacobian by finite differences). In
the other method for calling the package, the user may override any default values of the
package options and parameters.

The package allows the user to use the tensor method or the standard Newton or Gauss-
Newton method. METHOD = 1 specifies the tensor method and is the default value. If METHOD
is set to 0, the package will use the standard method.

Two global strategies are implemented in the software package: a line search method,
and a two-dimensional trust region method over the subspace spanned by the steepest
descent direction and the tensor (or Newton/Gauss-Newton) step. The global strategy may
be specified using the parameter GLOBAL. GLOBAL = O is the default and specifies the line
search. GLOBAL = 1 specifies the trust region.

The user may supply an analytic routine to evaluate the Jacobian matrix. If it is not
supplied, the package computes the Jacobian by finite differences. The finite difference
routine is described in detail by Dennis and Schnabel [4]. The parameter JACFLG specifies
whether an analytic Jacobian has been provided. The default value, which specifies finite
differences, is JACFLG = 0. When the analytic Jacobian is supplied, the user has the option
of checking the supplied analytic routine against the package’s finite difference routine; if
MSG is set to 2 modulo 4, the package will not check the analytic Jacobian against the finite
difference one; otherwise it will.

Scaling information for the variables and/or the functions may be supplied by the user.
The software package is coded so that if the user inputs the typical magnitude typz; of
each component of z and/or the typical magnitude typf; of each component of the function
F, the performance of the package is equivalent to what would result from redefining the
independent variable z in the user’s function and the components of the function F with

[1/typay

1/typa, |

12

and/or
1/typfi

L/typfo |

respectively, and running the package without scaling. The default value of each typz; and
typf; is 1 (i.e., no scaling). Scaling is often important for problems in which there is great
variation in the magnitudes of individual variables and/or function components.

The package includes a module TSCHKI that examines the input parameters for illegal
entries and consistency. Certain illegal or inconsistent entries are reset to default values by
this module, while other illegal entries cause the package to terminate. Details are given in
the parameter listing in Section 6.

The standard (default) output from this package consists of printing the input parame-
ters, the final results, and the stopping condition. The printed input parameters are those
used by the algorithm and hence include any corrections made by the module TSCHKI. The
program will provide an error message if it terminates as a result of input errors. The
printed results include a message indicating the reason for termination, an approximation
z, to the solution z., the value of the sum of squares of the function F(z,), and the gra-
dient vector G(z,) = F'(2,)T F(,) of the function 1||F(2)||3 at z,. The package provides
an additional means for controlling the output by means of the variable MSG, described in
Section 6. The user may suppress all output or may print the intermediate iterations results
in addition to the standard output.

A general flowchart of the TENSOLVE package is shown in Figure 4.1.

5. Interfaces and Usage

Two interfaces are provided with the system. TSNESI requires the user to provide only the
dimensions M and N of the problem, a subroutine to evaluate the function F, and a starting
vector Xo (as well as three work arrays and their dimensions). TSNECI requires the user
to supply all parameters. However, the user may specify selected parameters only by first
invoking the subroutine TSDFLT, which sets all parameters to their default values, and then
overriding only the desired values. This is the normal usage of TSNECI. An example calling
program follows.

C TSNESI INTERFACE

CALL TSNESI(MAXM, MAXN, PMAX, XO, M, N, WRKUNC, LUNC, WRKNEM, LNEM,
WRKNEN, LNEN, IWRKN, LIN, FVEC, MSG, XP, FP, GP, TERMCD)

13

Nonlinear equations
and nonlinear least
squares driver

Newton method
or Gauss-Newton
method

Compute standard

step

Tensor method

Analytic Jacobian
or finite difference
Jacobian

Form tensor

model

If nonlinear least

squares compute

tensor and Gauss-
Newton steps

If nonlinear

equations compute

tensor step only

Select tensor
or standard step

Apply line search

or two-dimensional
trust region to find
next iterate

Check stopping
criteria

step

If two-dimensional
trust region used
compute standard

If line search used
apply Algorithm 3.3
to find next iterate

14

Figure 4.1: Structure of the TENSOLVE package

C TSNECI INTERFACE

CALL TSDFLT(M, N, ITNLIM, JACFLG, GRADTL, STEPTL, FTOL, METHOD,
GLOBAL, STEPMX, DLT, TYPX, TYPF, IPR, MSG)

C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAMETERS, E.G.

GRADTL = 1.0D-6
STEPTL = 1.0D-7
FTOL = 1.0D-10
JACFLG =1

CALL TSNECI(MAXM, MAXN, PMAX, X0, M, N, TYPX, TYPF, ITNLIM, JACFLG,
GRADTL, STEPTL, FTOL, METHOD, GLOBAL, STEPMX, DLT, IPR,
WRKUNC, LUNC, WRKNEM, LNEM, WRKNEN, LNEN, IWRKN, LIN,
ANJA, FVEC, MSG, XP, FP, GP, TERMCD)

6. Parameters and Default Values

The parameters employed with the calling sequences of Section 5 are fully described here.
TSNESTI uses only those parameters that are preceded by an asterisk. When it is noted that
module TSDFLT returns a given value, this is the value employed by interface TSNESI. The
user may override the default value by utilizing TSNECI as shown above.

Following each variable name in the list below appears a one- or two-headed arrow
symbol of the form —, <, and «——. These symbols signify that the variable is for input,
output, and input-output, respectively.

The symbol € in some parts of this section designates the machine precision (see Section
8).

*MAXM—: A positive integer specifying the row dimension of the work array WRKNEM in
the user’s calling program. It must satisfy MAXM > M + N + 2. The provision of MAXM,
MAXN, and PMAX (below) allows the user the flexibility of solving several problems with dif-

ferent values of M and N one after the other, with the same work arrays.

*MAXN—: A positive integer specifying the row dimension of the work array WRKNEN in
the user’s calling program. It must satisfy MAXN > N + 2.

*PMAX—: A positive integer specifying the row dimension of the work array WRKUNC in
the user’s calling program. It must satisfy PMAX > NINT(y/N), where NINT is a function that
rounds to the nearest integer.

X0—: An array of length N that contains an initial estimate of the solution x.

*M—: A positive integer specifying the number of nonlinear equations.

15

*N—: A positive integer specifying the number of variables in the problem.

TYPX—: An array of length N in which the typical size of the components of X is speci-
fied. The typical component sizes should be positive real scalars. If a negative value is
specified, its absolute value will be used. If 0.0 is specified, 1.0 will be used. This vector is
used to determine the scaling matrix, D,. Although the package may work reasonably well
in a large number of instances without scaling, it may fail when the components of z, are of
radically different magnitude and scaling is not invoked. If the sizes of the parameters are
known to differ by many orders of magnitude, then the scale vector TYPX should definitely
be used. For example, if it is anticipated that the range of values for the iterates z; would

be

z; € [-10'0,10'9]
ry € [-10% 109
z3 € [-6x107%,9x 1079]

then an appropriate choice would be TYPX = (1.0D10,1.0D3,7.0D-6). Module TSDFLT re-
turns TYPX = (1 .0D0,---,1 .ODO).

TYPF—: An array of length M in which the typical size of the components of F is speci-
fied. The typical component sizes should be positive real scalars. If a negative value is
specified, its absolute value will be used. If 0.0 is specified, 1.0 will be used. This vector
is used to determine the scaling matrix Dp. TYPF should be chosen so that all the compo-
nents of Dp(2) have similar typical magnitudes at points not too near a root, and should
be chosen in conjunction with FTOL. It is important to supply values of TYPF when the
magnitudes of the components of F(z) are expected to be very different. If the magnitudes
of the components of F(z) are similar, the choice Dp = I suffices. Module TSDFLT returns
TYPF = (1.0D0,---,1.0D0).

ITNLIM—: Positive integer specifying the maximum number of iterations to be performed
before the program is terminated. Module TSDFLT returns ITNLIM = 150. If the user spec-
ifies ITNLIM < O, the module TSCHKI will supply the value 150.

JACFLG—: Integer designating whether or not an analytic Jacobian has been supplied by
the user.

e JACFLG = 0 : No analytic Jacobian supplied. The Jacobian is obtained by finite
differences.
e JACFLG = 1 : Analytic Jacobian supplied.

The module TSDFLT returns the value 0. If the user specifies an illegal value, the module
TSCHKI will supply the value 0.

GRADTL—: Positive scalar giving the tolerance at which the scaled gradient of f(z) =

LP(2)TF(z) is considered close enough to zero to terminate the algorithm. The scaled
gradient is a measure of the relative change in F in each direction z; divided by the relative

16

change in x;. More precisely, the test used is

max
J

{ | Vf(x) |; max{]|x; [, TYPX;} }S GRADTL.

max{ Fnorm,n/2}
where Vf(2) = J(2)' DF*F(z), Fnorm = Y|DpF(2)|j3, and D = diag(1/TYPF;). The
module TSDFLT returns the value !/

TSCHKI will supply the value /3.

. If the user specifies a negative value, the module

STEPTL—: A positive scalar providing the minimum allowable relative step length. STEPTL
should be at least as small as 1077, where d is the number of accurate digits the user desires
in the solution z.. The actual test used is

2" — "
max < STEPTL.
J max{|z;*, TYPX,|}

The program may terminate prematurely if STEPTL is too large. Module TSDFLT returns
the value ¢2/3. If the user specifies a negative value, the module TSCHKI will supply the
value €2/3,

FTOL—: A positive scalar giving the tolerance at which the scaled function DpF(z) is
considered close enough to zero to terminate the algorithm. The program is halted if
||DpF(2)||oo is < FTOL. This is the primary stopping condition for nonlinear equations; the
values of TYPF and FTOL should be chosen so that this test reflects the user’s idea of what
constitutes a solution to the problem. The module TSDFLT returns the value €2/3. If the
user specifies a negative value, the module TSCHKI will supply the value €2/3,

METHOD—: An integer designating which method to use.

e METHOD = O : Newton or Gauss-Newton algorithm is used.
e METHOD = 1 : Tensor algorithm is used.

Module TSDFLT returns value 1. If the user specifies an illegal value, module TSCHKI will
reset METHOD to 1.

GLOBAL—: An integer designating which global strategy to use.

e GLOBAL = O : Line search is used.
e GLOBAL = 1 : Two-dimensional trust region is used.

Module TSDFLT returns value of 0. If the user specifies an illegal value, module TSCHKI will
reset GLOBAL to 0.

STEPMX—: A positive scalar providing the maximum allowable scaled step length || D,(z4 —
z¢)||2, where D, = diag(1/TYPX;). STEPMX is used to prevent steps that would cause the
nonlinear equations problem to overflow, and to prevent the algorithm from leaving the
area of interest in parameter space. STEPMX should be chosen small enough to prevent these

17

occurrences but should be larger than any anticipated “reasonable” step. Module TSDFLT
returns the value STEPMX = 10°. If the user specifies a nonpositive value, module TSCHKI
sets STEPMX to 10°.

DLT—: A positive scalar giving the initial trust region radius. When the line search strategy
is used, this parameter is ignored. For the trust region algorithm, if DLT is supplied, its
value should reflect what the user considers a maximum reasonable scaled step length at
the first iteration. If DLT = -1.0, the routine uses the length of the Cauchy step at the
initial iterate instead. The module TSDFLT returns the value -1.0. If the user specifies a
nonpositive value, module TSCHKI sets DLT = -1.0.

IPR—: The unit on which the package outputs information. TSDFLT returns the value
6.

*WRKUNC—: Workspace used by UNCMIN. The user must declare this array to have dimen-
sions PMAXXLUNC in the calling routine.

*LUNC—: A positive integer specifying the column dimension of the work array WRKUNC
in the user’s calling program. It must satisfy LUNC > 2+NINT(/N)+4.

*WRKNEM—: Workspace used to store the Jacobian matrix, the function values matrix FV,
the tensor matrix ANLS, and working vectors. The user must declare this array to have
dimensions MAXMXLNEM in the calling routine.

*LNEM—: A positive integer specifying the column dimension of the work array WRKNEM
in the user’s calling program. It must satisfy LNEM > N+2+NINT(y/N)+11.

*WRKNEN—: Workspace used to store the matrix S of previous directions, the matrix SHAT
of linearly independent directions, and working vectors. The user must declare this array
to have dimensions MAXNXLNEN in the calling routine.

*LNEN—: A positive integer specifying the column dimension of the work array WRKNEN
in the user’s calling program. It must satisfy LNEN > 2+NINT(/N)+9.

*IWRKN—: Workspace used to store the integer working vectors. The user must declare
this array to have dimensions at least MAXNXLIN in the calling routine.

*LIN—: A positive integer specifying the column dimension of the work array IWRKN in
the user’s calling program. It must satisfy LIN > 3.

ANJA—: The name of a user-supplied subroutine that evaluates the first derivative (Ja-
cobian) of the function F(z). The subroutine must be declared EXTERNAL in the user’s
program and must conform to the usage

CALL ANJA(JAC, X, MAXM, M,),

18

where X is a vector of length N and the 2-dimensional array JAC of row dimension MAXM and
column dimension N is the analytic Jacobian of F at X. When using the interface TSNECT, if
no analytic Jacobian is supplied (JACFLG = 0), the user must use the dummy name TSDUMJ
as the value of this parameter.

*FVEC—: The name of a user—supplied subroutine that evaluates the function F at an
arbitrary vector X. The subroutine must be declared EXTERNAL in the user’s calling program
and must conform to the usage

CALL FVEC(X, F, M, N),

where X is a vector of length N and F is a vector of length M. The subroutine must not alter
the values of X.

*MSG+——: An integer variable that the user may set on input to inhibit certain auto-
matic checks or to override certain default characteristics of the package. (For the short
call it should be set to 0.) There are four “message” features that can be used individually
or in combination as discussed below.

e MSG = 0 : Values of input parameters, final results, and termination code are printed.

e MSG = 2 : Do not check user’s analytic Jacobian routine against its finite difference
estimate. This may be necessary if the user knows the Jacobian is properly coded,
but the program aborts because the comparative tolerance is too tight. Do not use
MSG = 2 if the analytic Jacobian is not supplied.

e MSG = 8 : Suppress printing of the input state, the final results, and the stopping
condition.

e MSG = 16 : Print the intermediate results; that is, the input state, each iteration
including the current iterate ay, 1| DpF(ax) |3, and Vf(z) = J(2)T DF*F(z), and
the final results including the stopping conditions.

The user may specify a combination of features by setting MSG to the sum of the individ-
ual components. The module TSDFLT returns a value of 0. On exit, if the program has
terminated because of erroneous input, MSG contains an error code indicating the reason.

e M3G = 0 : No error.

e M3SG = -1 : Illegal dimension, M < 0.

MSG = -2 : Illegal dimension, N < 0.

MSG = -3 : lllegal dimension, MAXM < M+N+2.

MSG = -4 : lllegal dimension, MAXN < N+2.

MSG = -5 : Illegal dimension, PMAX < NINT(v/N).

MSG = -6 : Illegal dimension, LUNC < 2+NINT(y/N)+4.

MSG = -7 : Illegal dimension, LNEM < N+2*NINT(y/N)+11.

MSG = -8 : Illegal dimension, LNEN < 2+NINT(y/N)+9.

MSG =-9 : Illegal dimension, LIN < 3.

MSG = -10 : Program asked to override check of analytic Jacobian against finite
difference estimate, but routine ANJA not supplied (incompatible input).

19

MSG = -11 : Probable coding error in the user’s analytic Jacobian routine ANJA.
Analytic and finite difference Jacobian do not agree within the assigned tolerance.

*XP—: An array of length N containing the best approximation to the solution z.. (If the
algorithm has not converged, the final iterate is returned).

*FP«—: An array of length M containing the function value F(XP).

*GP—: An array of length N containing the gradient of the function || F(z)||3 at XP.

*TERMCD«—: An integer specifying the reason for termination.

7.

TERMCD = 0 : No termination criterion satisfied (occurs if package terminates because
of illegal input).

TERMCD = 1 : function tolerance reached. The current iteration is probably a solution.
TERMCD = 2 : gradient tolerance reached. For nonlinear least squares, the current
iteration is probably a solution; for nonlinear equations, it could be a solution or a
local minimizer.

TERMCD = 3 : Successive iterates within step tolerance. The current iterate may be a
solution, or the algorithm is making very slow progress and is not near a solution.
TERMCD = 4 : Last global step failed to locate a point lower than XP. It is likely that
either XP is an approximate solution of the problem or STEPTL is too large.

TERMCD = 5 : Iteration limit exceeded.

TERMCD = 6 : Five consecutive steps of length STEPMX have been taken.

Summary of Default Values

The following parameters are returned by the module TSDFLT:

ITNLIM = 150
JACFLG = 0

IPR = 6

GRADTL = /3
FTOL = ¢2/3
STEPTL = €2/3
METHOD = 1
GLOBAL = 0
STEPMX = 10.0D+3
DLT = -1.0DO

TYPX = (1.0D0,---,1.0D0)
TYPF = (1.0D0,---,1.0D0)
MSG = O

20

8. Implementation Details

This program package has been coded in Fortran 77 using double precision. A single pre-
cision version of the package can be obtained by substituting every occurrence of DOUBLE
PRECISION by REAL in the declaration section of the subroutines, and double precision con-
stants by single precision constants. The program package consists of approximately 9060
lines of code, of which 2540 lines are subroutines from the software package UNCMIN [12]
for unconstrained nonlinear optimization, 900 lines are blas subroutines, and about 25%
are comments. The total data storage required is about M x (N + 2v/N) + N x (N + 4y/N)
double—precision floating points. The program was developed and tested on a Sun SPARC-
station 2 computer in the Computer Science Department at the University of Colorado at
Boulder.

There is one machine dependency. The machine precision is calculated by the package
and used in several places, including finite differences stepsizes and stopping criteria. On
some computers, the returned value may be incorrect because of compiler optimizations.
The user may wish to check the computer value of the machine precision and, if it is
incorrect, replace the code in the function DPMEPS with the following statement.

DPMEPS = correct value of machine precision

9. Example of Use

In the example code in Figures 9.1-9.2, we call TSDFLT to set default parameter values,
then override the values of GRADTL, FTOL, and STEPTL. Then we call the interface TSNECI to
solve the system of nonlinear equations coded in subroutine FVEC. We arbitrarily base our
storage upon MAXM = 100 and MAXN = 30 to allow for larger problems than those shown.

program tensolve

c tensolve finds roots of systems of n nonlinear equations in n
c unknowns, or minimizers of the sum of squares of m > n nonlinear
c equations in n unknowns, using tensor methods.

integer maxm,maxn,pmax,m,n,itnlim,jacflg,method

integer global,ipr,lunc,lnem,lnen,lin,msg,termcd,i

double precision gradtl,steptl,ftol,stepmx,dlt

parameter (maxm = 100, maxn = 30, pmax = 5)

parameter (lin = 3, lunc = 14, lnem = 51, lnen = 19)

integer iwrkn(maxn,lin)

double precision x0(maxn),wrkunc(pmax,lunc) ,wrknem(maxm,lnem)
double precision wrknen(maxn,lnen),typx(maxn),typf (maxm)
double precision xp(maxn),fp(maxm),gp(maxn)

external tsdumj,fvec

read(5,*) m,n
read(5,*) (x0(i),i=1,n)

21

gradtl 1.0d-5
ftol = 1.04-9
steptl 1.04-9

call tsneci(maxm,maxn,pmax,x0,m,n,typx,typf,itnlim,jacflg,
gradtl,steptl,ftol,method,global,stepmx,dlt,ipr,
wrkunc,lunc,wrknem,lnem,wrknen,lnen,iwrkn,lin,
+ tsdumj,fvec,msg,xp,fp,gp,termcd)

end

Figure 9.1: Driver to solve a system of nonlinear equations or a nonlinear least squares
problem

subroutine fvec(x,f,m,n)
integer n,m
double precision x(n),f(m)

f(1) = 10.0d0*(x(2)-x(1)*%x2)
£(2) = 1.0d40-x(1)

return

end

Figure 9.2: A subroutine for the Rosenbrock function

call tsdflt(m,n,itnlim, jacflg,gradtl,steptl,ftol,method,
+ global,stepmx,dlt,typx,typf,ipr,msg)

If we run the above example with the input
2 2 (m, n)

-1.2d0 1.0d0 (x0)

the output will be as follows:

TSNESV TYPICAL X

TSNESV 0.1000000000000D+01 0.1000000000000D+01
TSNESV DIAGONAL SCALING MATRIX FOR X

TSNESV 0.1000000000000D+01 0.1000000000000D+01
TSNESV TYPICAL F

TSNESV 0.1000000000000D+01 0.1000000000000D+01

22

TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV

TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT

TSNSTP

TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT

DIAGONAL SCALING MATRIX FOR F
0.1000000000000D+01 0.1000000000000D+01
JACOBIAN FLAG
METHOD USED

1

GLOBAL STRATEGY =0
ITERATION LIMIT = 150
MACHINE EPSILON = 0.2220446049250D-15
STEP TOLERANCE = 0.1000000000000D-08
GRADIENT TOLERANCE = 0.1000000000000D-04
FUNCTION TOLERANCE = 0.1000000000000D-08
MAXIMUM STEP SIZE = 0.1000000000000D+04
TRUST REG RADIUS =-0.1000000000000D+01

ITERATION K = 0

X(K)

-0.1200000000000D+01 0.1000000000000D+01
FUNCTION AT X(K)
0.1210000000000D+02
GRADIENT AT X(K)
-0.1077999998579D+03 -0.4400000000000D+02

FUNCTION VALUE CLOSE TO ZERO

ITERATION K = 7
X(K)
0.1000000000071D+01 0.1000000000145D+01
FUNCTION AT X(K)
0.3108554513225D-20
GRADIENT AT X(K)
-0.6194900199413D-09 0.3451905427663D-09

If we now wish to solve the nonlinear least squares problem given by the subroutine in
Figure 9.3, with the following input:

6 4 (m, n)

-30.0d0 -10.0d0 -30.0d0 -10.0d0 (x0)
and with GLOBAL = 1 set after the call to TSDFLT in the driver program, the output will be

as follows:

TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV

TYPICAL X

0.1000000000000D+01 0.1000000000000D+01
0.1000000000000D+01

DIAGONAL SCALING MATRIX FOR X
0.1000000000000D+01 0.1000000000000D+01
0.1000000000000D+01

TYPICAL F

23

0.1000000000000D+01

0.1000000000000D+01

TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV
TSNESV

TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT
TSRSLT

subroutine fvec(x,f,m,n)
integer m,n

double precision x(n),f(m)
£(1) = 10.0d0*(x(2)-x(1)*%*2)
£(2) = 1.0d0-x(1)
£(3) = sqrt(90.0d0)*(x(4)-x(3)**2)
£(4) = 1.0d40-x(3)
£(5) = sqrt(10.0d0)*(x(2)+x(4)-2.0d0)
£(6) = (1.0d0/sqrt(10.0d0))*(x(2)-x(4))
return
end
Figure 9.3: A subroutine for the Wood function
0.1000000000000D+01 0.1000000000000D+01

0.1000000000000D+01 0.1000000000000D+01
DIAGONAL SCALING MATRIX FOR F

0.1000000000000D+01 0.1000000000000D+01
0.1000000000000D+01 0.1000000000000D+01

JACOBIAN FLAG =0
METHOD USED =
GLOBAL STRATEGY =
ITERATION LIMIT =

= e

150

MACHINE EPSILON = 0.2220446049250D-15
STEP TOLERANCE = 0.1000000000000D-08
GRADIENT TOLERANCE = 0.1000000000000D-04
FUNCTION TOLERANCE = 0.1000000000000D-08
MAXIMUM STEP SIZE = 0.1000000000000D+04
TRUST REG RADIUS =-0.1000000000000D+01

ITERATION K = 0

X(K)

-0.3000000000000D+02
-0.1000000000000D+02
FUNCTION AT X(K)
0.7867288100000D+08
GRADIENT AT X(K)
-0.5460030962972D+07
-0.8211996230035D+05

-0.1000000000000D+02

-0.9122000000267D+05

24

0.1000000000000D+01
0.1000000000000D+01

0.1000000000000D+01
0.1000000000000D+01

-0.3000000000000D+02

-0.4914030950915D+07

TSNSTP FUNCTION VALUE CLOSE TO ZERO

TSRSLT ITERATION K = 5

TSRSLT X(K)

TSRSLT 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01
TSRSLT 0.1000000000000D+01

TSRSLT FUNCTION AT X(K)

TSRSLT 0.2085035793399D-26

TSRSLT GRADIENT AT X(K)

TSRSLT 0.1045163963158D-11 -0.5508038512959D-12 0.7009948229596D-12
TSRSLT -0.3784528276690D-12

10. Test Results

We have tested the TENSOLVE software package using the algorithms described above on a
variety of nonsingular and singular problems. This section summarizes and discusses the
test results.

In our tests, the package terminates successfully if the relative size of (24 — =.) is less

than €2, or || F(24) ||co is less than €. Tt terminates unsuccessfully if the iteration limit of
150 is exceeded. If the last global step fails to locate a point lower than . in the line search
or trust region global strategies, or the relative size of J(zy) F(zy) is less than €7, the
method stops and reports this condition; this may indicate either success or failure. All our
computations were performed on a Sun SPARCstation 2 computer in the Computer Science
Department at the University of Colorado at Boulder, using double—precision arithmetic.

First we tested the software package on the set of nonlinear equations and nonlinear least
squares problems in Moré, Garbow, and Hillstrom [9]. These problems all have nonsingular
Jacobians at the solution with the exception of Powell’s singular function. Then we created
singular test problems as proposed in Schnabel and Frank [11] by modifying the nonsingular
test problems of Moré, Garbow, and Hillstrom to the form

F(z)= F(z) — Fl(z.) A(ATA) AT (2 — 2.), (10.1)

where F(z) is the standard nonsingular test function, . is its root or minimizer, and
A € R™*F has full column rank with 1 < k < n. Note that z, is a root or critical point of
the modified problem, and rank F’(z.) = n — rank(A). We used (10.1) to create two sets
of singular problems, with F’(x) having rank n — 1 and n — 2, respectively, by using

Ae Rt AT =(1,1,--4,1),

and
11 1 1 - 1

mX2 T _
AeR™ AT =10 q|

(10.2)

respectively.

25

Table 10.1: Summary for Nonlinear Equations Test Problems using Line Search
Rank Tensor Average Ratio Only Only
F'(z.) | Better | Worse | Tie | Tensor/Newton | Newton | Tensor

Itn Feval Solved | Solved
n 25 2 13 | 0.60 0.69 1 5
n—1 24 0 8 10.48 0.53 0 5
n—2 27 1 5 10.46 0.56 0 8

We tested our tensor algorithm on 17 test functions for systems of nonlinear equations
(also including 4 functions from [7] whose Jacobian at the solution z, is singular and are
designated as Griewank functions) and 11 test functions for nonlinear least squares. Some
of the test problems were run at various dimensions. All of these problems were also run
with the standard method. The list of test problems is given in Appendix A; the detailed
test results are given in [2].

Our computational results for the test problems whose Jacobians at the solution have
ranks n, n — 1, and n — 2 are summarized in Tables 10.1 to 10.4. In each of these tables,
columns “Better” and “Worse” represent the number of times the tensor method was better
and worse, respectively, than the standard method by more than one iteration. The “Tie”
column represents the number of times the tensor and standard methods required within one
iteration of each other. For each set of problems, we summarize the comparative costs of the
tensor and standard methods using average ratios of two measures: iterations, and function
evaluations. The average iteration ratio is the total number of iterations required by the
tensor method over all the problems included, divided by the total number of iterations
required by the standard method on the same problems. The same measure is used for the
average function evaluation ratio. These average ratios include only problems that were
successfully solved by both methods. We have excluded from the summary of statistics all
cases where the tensor and standard methods converge to a different root, or to the same
root as each other but not the singular root x, in the case of singular problems. However,
the statistics for the “Better,” “Worse,” and “Tie” columns include the cases where only one
of the two methods converges, and exclude the cases where both methods do not converge.
The total number of problems that were solved by one method but not the other are given
in the last two columns of each table.

In the test results obtained for both nonsingular and singular nonlinear equations prob-
lems, the tensor method is virtually never less efficient than the standard method and
usually is more efficient. The improvement by the tensor method over the standard method
with the same global strategy is substantial, averaging about 49% in iterations and 41% in
function evaluations when the line search is used, and about 42% in iterations and 31% in
function evaluations when the trust region is used, on the problems that are successfully
solved by both methods. The improvement by the tensor method over the standard method
is more dramatic on problems with small rank deficiency than on nonsingular problems, but
is substantial in all cases. On rank n — 1 problems, this is due in part to the tensor methods
achieving 3 step Q-order % convergence, whereas Newton’s method is linearly convergent

26

Table 10.2: Summary for Nonlinear Equations Test Problems Using Two-Dimensional Trust
Region

Rank Tensor Average Ratio Only Only
F'(2.) | Better | Worse | Tie | Tensor/Newton | Newton | Tensor

Itn Feval Solved | Solved
n 26 3 13 | 0.61 0.72 1 6
n—1 24 1 9 1| 0.49 0.63 0 4
n—2 26 1 5 10.64 0.73 0 4

Table 10.3: Summary for Nonlinear Least Squares Test Problems Using Line Search

Rank Tensor Average Ratio Only Only
F'(z,) | Better | Worse | Tie | Tensor/Gauss-Newton | Gauss-Newton | Tensor
Itn Feval Solved Solved
n 20 1 8 1 0.52 0.51 0 4
n—1 18 0 8 | 0.45 0.41 0 2
n—2 28 0 5 048 0.48 0 4

Table 10.4: Summary for Nonlinear Least Squares Test Problems Using Two-Dimensional
Trust Region

Rank Tensor Average Ratio Only Only
F'(z,) | Better | Worse | Tie | Tensor/Gauss-Newton | Gauss-Newton | Tensor
Itn Feval Solved Solved
n 26 1 5 | 0.66 0.76 0 3
n—1 19 5 | 0.66 0.71 0 1
n—2 28 1 4 10.63 0.69 0 1

27

Table 10.5: Average Ratios of the Tensor Method versus the Gauss-Newton Method on
Zero Residual Problems for Line Search and Trust Region
Rank | Line Search | Trust Region
F'(z.) | Itn | Feval | Itn | Feval
n 0.43] 0.44 | 0.43 | 0.56
n—110411] 037 | 0.64 | 0.62
n—2 |048 | 0.48 | 0.51 | 0.57

with constant £ [6].

The tensor method is also significantly more robust than the standard Newton-based
method for the nonlinear equations test set. Over all the nonlinear equations test problems,
5 rank n problems, 5 rank n — 1 problems, and 8 rank n — 2 problems were solved by the
tensor method and not by the standard method when the line search was used, and 6 rank
n problems, 4 rank n — 1 problems, and 4 rank n — 2 problems were solved by the tensor
method and not by the standard method when the trust region was used. On the other
hand, only 1 rank n problem was solved by the standard method and not by the tensor
method when the line search was used, and similarly when the trust region was used.

For the entire set of nonsingular and singular nonlinear least squares problems, the
average improvement of the tensor method over the standard Gauss-Newton method also
is substantial. Over the problems solved successfully by both methods, the improvement
averages about 52% in iterations and 53% in function evaluations when the line search is
used, and about 35% in iterations and 28% in function evaluations when the trust region is
used.

The tensor method is also considerably more robust than the Gauss-Newton method for
the nonlinear least squares test set, especially in the line search comparison. The tensor
method solves several problems that the standard Gauss-Newton method does not, and the
reverse never occurs. Over all the nonlinear least squares test problems, 4 rank n problems,
2 rank » — 1 problems, and 4 rank n — 2 problems were solved by the tensor method and
not by the standard Gauss-Newton method when the line search was used, and 3 rank n
problems, 1 rank n — 1 problems, and 1 rank n — 2 problems were solved by the tensor
method and not by the standard Gauss-Newton method when the trust region was used.
On the other hand, there were no problems solved by the standard Gauss-Newton method
and not by the tensor method when either the line search or the trust region was used.

A closer examination of the nonlinear least squares test results shows that the improve-
ments by the tensor method are considerably larger for zero residual problems than for
nonzero residual problems. The difference is most dramatic in the nonsingular case. Tables
10.5 and 10.6 show the average iteration and function evaluation ratios of the tensor method
versus the Gauss-Newton method for zero and nonzero residual problems, respectively. The
performance differences may be attributable to the fact that both the standard and ten-
sor methods are linearly convergent on nonzero residual problems, but are more quickly
convergent on zero residual problems.

The comparison between the line search methods and the trust region methods is very

28

Table 10.6: Average Ratios of the Tensor Method versus the Gauss-Newton Method on
Nonzero Residual Problems for Line Search and Trust Region

Rank | Line Search | Trust Region
F'(z.) | Itn | Feval | Itn | Feval
n 0.64 | 0.64 | 0.78 | 0.88
n—1 (048] 0.45 | 0.67| 0.79
n—2 049 | 0.48 | 0.68 | 0.76

Table 10.7: Average Ratios of Iterations and Function Evaluations of Newton with Trust
Region versus Newton with Line Search and Tensor with Trust Region versus Tensor with
Line Search for Nonlinear Equations

Rank | Newton TR/LS | Tensor TR/LS
F'(z,) | Itn Feval Itn | Feval
n 0.80 0.84 0.70 0.57
n—1 |0.78 0.89 0.96 0.93
n—2 |0.86 0.93 0.92 0.94

interesting, for both the standard and tensor methods. This is summarized in Tables 10.7
and 10.8. These tables show that on the average, the two-dimensional trust region approach
is often more efficient than the line search method, especially on nonsingular problems. It
is important to note, however, that the line search method is simpler to implement and to
understand than the the two-dimensional trust region approach, and is appreciably faster
in terms of CPU time on small, inexpensive problems where the complexity of the code
becomes the dominant cost. It should also be noted that there is considerable variation
in the comparative efficiency of the line search and trust region methods on individual
problems and that either may be more efficient for a particular problem class.

Perhaps a more important consideration in the general comparison of the line search
and trust region methods, however, is that the two-dimensional trust region method solves

Table 10.8: Average Ratios of Iterations and Function Evaluations of Gauss-Newton with
Trust Region versus Gauss-Newton with Line Search and Tensor with Trust Region versus
Tensor with Line Search for Nonlinear Least Squares Problems

Rank | Gauss-Newton TR/LS | Tensor TR/LS
Fl(z,) | Itn Feval Itn Feval
n 0.70 0.65 0.75 0.76
n—1 |0.72 0.71 1.05 1.09
n—2 |1.01 0.97 0.74 0.80

29

considerably more of the test problems than the line search method. The advantage in
robustness is particularly large in comparing line search and trust region versions of the
standard methods; it is smaller but still significant in comparing tensor methods for nonlin-
ear least squares, and insignificant in our tests of tensor methods for nonlinear equations.
Over all the nonlinear equations problems, 20 problems were solved by the trust region and
not by the line search, whereas only a total of 5 problems was solved by the line search
and not by the trust region. Over all the nonlinear least squares problems, 27 problems
were solved by the trust region and not by the line search, whereas only 6 problems were
solved by the line search and not by the trust region. The above statistics include the test
results for both the tensor and standard methods. Thus, the trust region version seems
to have a considerable advantage over the line search version in its robustness, although
more when using the standard method than the tensor method. We note that the smaller
average improvement of the tensor method over the standard method in the trust region
cases (Tables 10.2 and 10.4) than the line search cases (Tables 10.1 and 10.3) is related to
the difference in problem sets that are included in these statistics, because of the differing
robustness of the line search and trust region methods.

Finally, we compared our tensor method with the NL2SOL package [5] on the set of
nonlinear least squares problems used in [5] that is listed in Appendix B. The reason we were
interested in making this comparison is that theoretically the NL2S0L method is superlinearly
convergent on nonzero residual problems ([5]), whereas the tensor method of this paper, like
Gauss-Newton methods, is only linearly convergent on nonzero residual problems. (This
difference is related to NL2SOL using a quadratic model of F(x)? F(x) whereas the tensor
and Gauss-Newton methods use models of F'(z).) The problems include a mixture of zero,
small, and large residual problems.

Table 10.9 reports the comparative test results of the tensor method versus NL2SOL on
this test set. The first row of Table 10.9 compares the tensor method using a line search
with NL2S0L, whereas the second row compares the tensor method using a two-dimensional
trust region with NL2SOL. (NL2SOL uses a trust region global strategy.) The table shows
that on these test problems, the tensor method on the average is somewhat more efficient
than NL2SOL, with an average improvement of about 58% in iterations and 29% in function
evaluations when the line search is used, and about 24% in iterations and 7% in function
evaluations when the trust region is used. (Note that the tensor method with line search
is more efficient than the tensor method with trust region on this test set.) There is no
difference in the robustness of the two packages of this test set; only 1 problem in the test
set was solved by NL2SOL and not by the tensor method using either a line search or a trust
region method, and only 1 problem was solved by the tensor method and not by NL2SOL.
These limited results indicate that the tensor method appears to be quite competitive with
NL2SO0L for solving least squares problems.

References

[1] A. Bouaricha, A Software Package for Solving Systems of Nonlinear Fquations and
Nonlinear Least Squares Problems Using Tensor Methods, M.S. thesis, Department of
Computer Science, University of Colorado at Boulder, 1986.

30

Table 10.9: Comparison of Tensor Method with NL2SOL on the Nonlinear Equations and
Nonlinear Least Squares Problems Listed in Table B-1

[2]

[7]

[8]

[11]

[12]

Global strategy | Tensor versus NL2SOL | Average Ratio—Tensor/NL2SOL
Better | Worse | Tie | Itn Feval

Tensor w/ LS 25 8 2 042 0.71

Tensor w/ TR 24 9 2 10.76 0.93

A. Bouaricha, Solving Large Sparse Systems of Nonlinear Fquations and Nonlinear
Least Squares Problems Using Tensor Methods on Sequential and Parallel Computers,
Ph.D. thesis, Department of Computer Science, University of Colorado at Boulder,
1992.

R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approxzimation Solution of the Trust
Region Problem by Minimization over Two-Dimensional Subspaces, Mathematical Pro-
gramming, 40 (1988), 247-263.

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Fquations, Prentice-Hall, Englewood Cliffs, N.J., 1983.

J. E. Dennis, D. M. Gay, and R. E. Welsch, An Adaptive Nonlinear Least Squares
Algorithm, ACM Trans. Math. Softw., 7 (1981), 348-368.

D. Feng, P. Frank, R. B. Schnabel, An Analysis of Tensor Methods for Nonlinear Equa-
tions, Technical Report CS-CS-729-94, Department of Computer Science, University
of Colorado at Boulder, 1992.

A. O. Griewank, Analysis and Modification of Newton’s Method at Singularities, Ph.D.
thesis, Australian National University, Canberra, 1980.

J. J. Moré, The Levenberg-Marquardt Algorithm: Implementation and Theory, in Nu-
merical Analysis, G. A. Watson, ed., Lecture Notes in Mathematics, vol. 630, Springer—
Verlag, Berlin, 1977, 105-116.

J. J. Moré, B. 5. Garbow, and K. E. Hillstrom, Testing Unconstrained Optimization
Software, ACM Trans. Math. Softw., 7 (1981), 17-41.

M. J. D. Powell, A New Algorithm for Unconstrained Optimization, in Nonlinear Pro-
gramming, J. B. Rosen, O.L. Mangasarian, and K. Ritter, eds., Academic Press, New
York, 1970, 33-65.

R. B. Schnabel and P. D. Frank, Tensor Methods for Nonlinear Fquations, STAM. J.
Num. Anal., 21 (1984), 815-843.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss, A Modular System of Algorithms of
Unconstrained Minimization, ACM Trans. Math. Softw., 11 (1985), 419-440.

31

Appendix A

The columns in Tables A-1 and B-1 have the following meanings:

Problem: name of the problem.
— m: number of equations.

— n: number of variables.

NS: dimension of null space for Griewank’s singular functions.

— OS: order of singularity for Griewank’s singular functions.

Table A-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used
in the Comparison of Tensor Method versus Standard Method

Problem Dimension
m n
Brown almost linear | 10 10

Broyden banded 30 30
Broyden tridiagonal | 30 30
Chebyquad 7 7
Discrete boundary | 30 30
Discrete integral 10 10

Helical valley 3 3
Powell singular 4 4
Rosenbrock 2 2

Trigonometric 30 30
Variable dimension | 10 10

Watson 31 31
Wood gradient 4 4
NS=105=1 3 3
NS=205=1 3 3
NS=10S=2 3 3
NS=20S=2 3 3

32

Table A-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used
in the Comparison of Tensor Method versus Standard Method (continued)

Problem Dimension
m n
Wood 6 4
Variable dimension | 12 10
Bard 15 3
Beale 3 2
Kowalik 11 4
Penaltyl 11 10
Penalty?2 10 5
Brown badly scaled | 3 2
Gauss function 15 3
Brown and Dennis | 10 4
Chebyquad 8 4
Chebyquad 12 4
Chebyquad 16 4

Appendix B

Table B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used
in the Comparison of Tensor Method versus NL2SOL
Problem Dimension

n

Rosenbrock
Helical Valley
Powell Singular
Wood
Beale
Box three-dimensional
Freudenstein and Roth

—
NS W O w3
[CRUCI R N O

33

Table B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used
in the Comparison of Tensor Method versus NL2SOL (continued)

Problem Dimension
m n
Watson 31 6
Watson 31 9
Watson 31 12
Watson 31 20
Chebyquad 8 8
Bard 15 3
Jennrich and Sampson | 10 2
Kowalik 11 4
Osborne 1 33)
Osborne 2 65 11

34

