
SOFTWARE FOR THE GENERALIZED EIGENPROBLEM ONDISTRIBUTED MEMORY ARCHITECTURES �MARK T. JONES AND PAUL E. PLASSMANNyAbstract. The generalized eigenproblem is of signi�cant importance in several �elds. Generalizedeigenproblems can be very large with matrices of order greater than one million for problems arisingfrom three-dimensional �nite element models. To solve such problems we are proposing a exible softwaresystem for parallel distributed memory architectures. This software is based on the Lanczos algorithm witha shift-and-invert transformation. In this paper we briey describe the prototype version of the software,present computational results, and indicate the status of the project.1. Introduction. The solution of the symmetric generalized eigenvalue problem,Kx = �Mx;(1)where K andM are real, symmetric matrices, and either K orM is positive semi-de�nite,is of signi�cant practical importance, especially in structural engineering as the vibrationproblem and the buckling problem [1]. The matrices K andM are either banded or sparse.Usually m << n of the smallest eigenvalues of Equation 1 are sought, where n is the orderof the system. The method of Lanczos [9], suitably altered for the generalized eigenvalueproblem, has been shown to be useful for the e�cient solution of Equation 1 [10].The Lanczos algorithm for the generalized eigenproblem [10] has been shown to bee�ective on vector supercomputers and shared-memory parallel computers [5]. An e�ectivesoftware package, LANZ [4], for shared-memory parallel computers has been developedand is available from netlib. However, the LANZ software is not suitable for distributed-memory architectures such as the Intel DELTA, the Thinking Machines CM-5, and theIBM SP-1. The LANZ software uses a shared-memory model of computation that is notsuitable for such architectures. Also, the linear system solution methods in LANZ areonly appropriate for a small number of tightly-coupled processors (� 20) [5] [6].In this paper we will discuss our plans for scalable software, provide brief prototyperesults, and give the current status of the software.2. Distributed-Memory Software. The basic algorithm in the software is theblock Lanczos algorithm with a spectral transformation as described in [3]. The reader isreferred to [3] for a complete description of the algorithm. The majority of the parallelcomputation/communication in this algorithm occurs in the solution of a linear system,(K � �M)x = b;(2)and a matrix multiplication, Mx = b:(3)The block variant of the Lanczos algorithm is chosen because it not only allows easy compu-tation of eigenvalues of multiplicity up to the blocksize, but also improves the communica-tion to computation ratio of a parallel implementation. The ratio is improved because the� This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38.y The address of the �rst author is: Computer Science Department, University of Tennessee, Knoxville,TN 37996. The address of the second author is: Mathematics and Computer Science Division, ArgonneNational Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.1



block algorithm allows the inner products to take place as matrix-matrix operations and,more importantly, the operations in Equations 2 and 3 to be implemented using multipleright-hand sides. This core Lanczos algorithm is implemented in a reverse-communicationstyle; this allows exibility in implementing di�erent approaches for Equations 2 and 3.The class of architectures targeted for the software has from 20 to 1000 RISC proces-sors. Each processor has its own memory and processors communicate via message passing.The communication rate is expected to be slow relative to the computation rate. Littleconsideration will be given to the topology; for example, the software will not be tailoredto a hypercube architecture. The goal is to have a scalable algorithm/implementation,where for a �xed problem size per processor, the computation rate per node is constantand the memory requirements per node are constant.The eigensolution will take place as part of a larger computation occurring on theparallel computer. In particular, the software is written under the assumption that thematrix has been partitioned and mapped in a \good" fashion onto the processors and thatthis partitioning and mapping will not be changed by the eigensolver. For example, if theunderlying domain from which the matrix was generated was a spatial discretization of aPDE being solved with the �nite element method, it is expected that a good partitioningand mapping already exists to allow e�cient evaluation and assembly of the sti�nessmatrix. If such a partitioning has not been done, many algorithms and some softwarecurrently exist for this problem (see, for example, [11] [13]).The most di�cult part of the eigensolution to parallelize, as well as the most com-putationally expensive, is the solution of Equation 2. For this computation at least twooptions are planned. First, a preliminary interface to the iterative methods in the Block-Solve package [7] has been constructed. This package provides portable, parallel softwarefor the conjugate gradient method preconditioned by incomplete factorization; the par-allelism is obtained by employing a parallel graph coloring heuristic [8]. The interfaceto this package is relatively straightforward, but poor convergence can result when � inEquation 2 is large relative to the smallest eigenvalue in Equation 1. This di�culty mustbe addressed.Also planned is an interface to the parallel direct sparse factorization methods in theCAPSS package [12]. This package provides a parallel implementation of sparse Choleskyfactorization. When � is larger than the smallest eigenvalue in Equation 1, one could, atthe risk of a loss of stability, use the LDLT decomposition. To the best of the authors'knowledge, no general, numerically stable software for distributed memory architecturesexists for sparse inde�nite factorization. The interface to the CAPSS package is moredi�cult than to BlockSolve as one must address issues related to the suitability of theexisting partitioning/mapping for sparse direct factorization.3. Some Experimental Results. Using a prototype version of the core, reversecommunication software combined with BlockSolve, the following results were obtainedon the Intel DELTA for a practical vibration problem arising from a �nite element model[2]: p n nnz Mops/ TotalProc. Mops64 7:7� 104 1:6� 107 4.88 312128 1:6� 105 3:4� 107 5.00 640256 3:2� 105 6:8� 107 4.87 1247512 6:4� 105 1:4� 108 4.97 25452
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