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1. Introduction. Unstructured �nite elementmesh strategies have proven enor-mously successful in structural analysis as well as in many other disciplines. A struc-tured mesh has regular interconnection patterns between elements of the mesh overthe entire mesh|examples of structured and unstructured meshes are given in Fig-ure 1. An unstructured mesh allows much more exibility in specifying a geometryand re�ning select areas of the mesh for more accurate results. By selectively re�ning
of initial mesh
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mesh on irregular domainFig. 1. Examples of structured and unstructured meshesportions of the mesh rather than the entire mesh, increased accuracy can be achievedat a reduced cost for many computations [21].Unstructured mesh strategies are particularly appropriate for large-scale struc-tural analysis, where the geometries may be complex and the mesh elements cannumber in the millions. Distributed-memory parallel computers such as the IntelDELTA or a network of RISC workstations o�er a cost-e�ective tool for solving suchproblems. However, many di�cult algorithmic and implementation issues must beaddressed to make e�ective use of this resource.It has often been observed that the dominant computational cost in unstructuredmesh calculations is the solution of the sparse linear systems derived from this mesh.For this reason, much e�ort has been invested in developing the parallel algorithmsand software for general, sparse linear systems. Software developed for distributedmemory computers includes the BlockSolve package for the iterative solution ofsymmetric systems [10], the CAPSS project for direct methods [8], and PETSc, whichcontains parallel iterative methods for nonsymmetric systems [7].This paper describes parallel algorithms that work together to solve three basicproblems:� Mesh re�nement: adaptive re�nement and de-re�nement of an initial meshto provide accuracy at a reduced cost;� Mesh partitioning: partitioning of meshes into equally sized, well-separatedregions for assignment to processors; and� Sparse matrix solution: assembly and solution of the linear systems that arisefrom unstructured mesh problems.The algorithms described are scalable; that is, if the problem size on each processorremains �xed and the number of processors increases, then the e�ciency of the algo-rithms will remain �xed. For example, if the algorithm is achieving an operation rateof 50 megaops on 10 processors on a mesh with 100 elements, then the algorithmshould achieve 100 megaops on 20 processors on a mesh with 200 elements.1



The meshes described in this paper are all triangulations of surfaces in two orthree dimensions. The algorithms are not restricted to triangles or surfaces; however,the software for mesh re�nement is currently restricted to triangles.The assumption is made that an initial triangulation, T0, of the structure isgiven. The parallel generation of conforming triangulations for complex geometriesis an important topic, but will not be addressed here.Given T0 the following algorithm adapted from [21] is used to solve the problem.This basic framework can be used for many types of structural analysis; in this paperthe problem chosen for demonstration is linear static displacement. An example ofthe basic operation of this algorithm is given in Figure 2.i = 0partition T0 among the processorsassemble the sti�ness matrix, K0, and load vector, f0solve K0u0 = f0estimate the local error for each triangle in T0while the maximum error on any triangle is larger than the given tolerance dobased on error estimates, determine a set of triangles, Si, to re�nere�ne the triangles in Si and other triangles as needed to form Ti+1partition Ti+1 among the processorsassemble a sparse matrix, Ki+1, and load vector, fi+1solve Ki+1ui+1 = fi+1estimate the local error for each triangle in Ti+1i = i+ 1endwhile
Fig. 2. An example of the basic operation of the parallel unstructured mesh strategy. On theleft is Ti for a processor and its neighbors with triangles marked for re�nement. On the right is Ti+1for the same processor and its neighbors.In Section 2, a provably fast parallel algorithm for mesh re�nement is given. Aparallel algorithm that yields provably good partitions is given in Section 3. Paral-lel matrix assembly and solution algorithms are given in Section 4. Computationalresults for these algorithms for a large-scale structural analysis problem are given inSection 5. These results demonstrate the algorithms are scalable, operating at ratesof more than 2 gigaops.2. Adaptive Mesh Re�nement. Rather than using a structured mesh withgrid points evenly spaced on a domain, adaptive mesh re�nement techniques place2



more grid points in areas where the solution is changing rapidly. The mesh is adap-tively re�ned and de-re�ned during the computation according to local error esti-mates.Many researchers have examined the adaptive construction of these nonuniformmeshes. Typically, one begins with an initial mesh and selectively re�nes that meshbased on local error estimates until a �nal mesh is constructed that satis�es a givenerror tolerance.In this paper adaptive re�nement of triangular meshes by simple bisection isconsidered. Other possible approaches and more detail are given in [17]. Simple bi-section has excellent properties; it generates conforming, graded meshes that preservethe element quality of the initial mesh. For a mesh to be conforming, the intersectionof any two triangles in the mesh must be a single vertex, a line segment connectingtwo vertices, or the empty set. In order to be considered a graded mesh, adjacenttriangles should not di�er dramatically in area. Finally, all angles in the mesh mustbe bounded away from 0 and �. The latter requirement is necessary because thediscretization error in a �nite element approximation has been shown to grow as themaximum angle approaches � [1]. Small angles are to be avoided because the condi-tion number of the matrices arising from mesh elements has been shown to grow asO( 1�min ), where �min is the smallest angle in the mesh [5].2.1. A Parallel Bisection Algorithm. The bisection algorithm bisects trian-gles across the largest edge (dividing the largest angle), with selective divisions acrossa smaller edge (termed simple bisection). This has been shown to yield triangulationswhose smallest angle is bounded by at worst one-half the smallest angle in the initialmesh [23]. The algorithm is given in Figure 3.i = 0Qi = the set of triangles marked for re�nementRi = ;while (Qi [Ri) 6= ; dobisect each triangle in Qi across its longest edgebisect each triangle in Ri across a nonconforming edgeall nonconforming triangles embedded in Qi are placed in Ri+1all other nonconforming triangles are placed in Qi+1i = i+ 1endwhile Fig. 3. The bisection algorithmObviously, the re�nement could propagate through many initially unmarked tri-angles before �nishing. Rivara, however, has shown that this loop will terminate ina �nite number of iterations, say LP iterations [22]. Rivara also has shown that eachtriangle in the resulting conforming mesh, Ti+1, embeds 1, 2, 3, or 4 triangles of Ti.3



During the execution of the algorithm, no side of a triangle will have more than onenonconformity. We give an example of the propagation in Figure 4.Fig. 4. From left to right, the process of the bisection algorithm. In the initial mesh the shadedtriangles are re�ned; subsequently the shaded triangles are re�ned because they are not compatible.The re�nement algorithm is formulated mainly within the context of the dualgraph to the mesh, which we de�ne as follows. Let V = fvi j i = 1 : : : ng be the set ofvertices in the mesh and T = fta j a = 1 : : :mg be the set of triangles. Let G = (V;E)be the graph associated with the mesh, where E = fei;j = (vi; vj) j vi; vj 2 tag. LetD = (T;F ) be the dual graph associated with the mesh, where F = f(ta; tb) j ei;j 2ta; tbg.For this discussion assume there are as many processors as triangles and that ta isassigned to processor pa. Each processor, pa, must keep track of the neighbors of ta inD. The algorithm must be synchronized so that this neighbor information is correct.The management of the neighbor information in G for the re�nement algorithm isstraightforward and will not be discussed here. In order to keep the data structurescoherent, two di�erent processors may not create vertices at the same location whenbisecting a triangle on their processor. For example, in Figure 5 note the two pro-cessors creating two copies of the vertex V at the same location. In the same �gure,a possibility is shown for outdated neighbor information to be propagated; triangleU1 may believe that triangle W is its neighbor rather than triangle W1 if triangles Uand W are simultaneously re�ned.
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2Fig. 5. On the left, two processors creating a vertex at the same location; on the right, a possiblecorruption of neighbor informationIn order to avoid these synchronization problems, the new algorithm determinesa sequence of independent sets of triangles in the dual graph and re�nes the trianglesin these sets in parallel. The complete algorithm, given in [17], takes into accountadditional triangles to be re�ned to obtain a conforming mesh. The crux of the algo-rithm is the Monte Carlo rule used to determine the independent set. An independentset, I, is chosen at step i by the rule: ta 2 I if for each of its neighbors, tb, in D, if (a)tb is not 2 Qi [Ri or (b) �(ta) > �(tb), where the �(t) are independent random num-bers. This rule ensures that no two adjacent triangles are re�ned simultaneously on4



di�erent processors, ensuring that the algorithm will execute correctly. The completeparallel algorithm is shown in Figure 6.In [17] it is shown that under the P-RAM execution model, this algorithm hasan expected runtime of EO( logQmaxlog logQmax ) � LP where Qmax = max i j Qi j and LPis the number of levels of propagation. This bound implies that the running timeof the algorithm will increase very slowly as the size of the grid increases, thus thealgorithm has the potential to perform in a scalable fashion. However, because theP-RAM model ignores many of the communication costs in real parallel computers,the bound is not a guarantee of such behavior.i = 0Based on local error estimates, a set of triangles, Q0, is marked for re�nement.Each triangle, tj, in Q0 is assigned a random number, �(tj)R0 = ;While (Qi [Ri) 6= ; doQi+1 = ;Ri+1 = ;While (Qi [ Ri) 6= ; doChoose an independent set in D, I, from the triangles in (Qi [Ri)Simultaneously bisect each of the triangles in Iembedded in Qi across its longest edgeSimultaneously bisect each of the triangles in Iembedded in Ri across a nonconforming edgeFor each new triangle, tj, a new random number, �(tj), is chosenEach processor containing two triangles now sends one of thetriangles with neighbor information to a new processorEach processor containing a bisected triangle tells itsneighbors about the bisectionRi+1 = Ri+1[ Any triangles embedded in Qi made nonconformingQi+1 = Qi+1[ All other triangles made nonconformingQi = Qi � (I \ Qi)Ri = Ri � (I \ Ri)Endwhilei = i+ 1Endwhile Fig. 6. Parallel algorithm for re�nementThe distributed-memory implementation is based on this algorithm, but allowsfor many triangles and vertices to be stored on each processor. The same neighbor in-formation is maintained; that is, each triangle knows the location of all of its neighborsat any given time. In addition, in this implementation each processor stores copiesof all the triangles to which its triangles are adjacent. These copies yield a savings5



in communication at a cost of some space. More details of this distributed-memoryimplementation are given in [17].3. Mesh Partitioning. As grid points are adaptively added to and deleted fromthe mesh, one must determine good partitionings of these points onto processors. Agood partition ensures that grid points are evenly distributed to the processors in away that minimizes interprocessor communication costs. The latency and transmis-sion communication costs may be minimized by respectively minimizing the numberof partition neighbors and the number of links crossing the partition boundary. Foruniform meshes a good partitioning of grid points may be determined a priori bysimple constructions. For unstructured adaptive meshes, however, the partitioningcannot be predetermined because it changes with each new re�nement of the mesh.The orthogonal recursive bisection (ORB) algorithm, sometimes called recursivecoordinate bisection (RCB), is a simple yet e�ective graph partitioning algorithm forcertain types of graphs for which geometric coordinates are known for the vertices.The authors' unbalanced recursive bisection (URB) algorithm is an improvement onthe ORB algorithm that behaves better in practice and for which results on partitionquality can be proved. Often, the vertices, V , of the mesh are partitioned into psubsets, Vi, where each Vi is assigned to a processor of a p-processor parallel computer.This is the approach taken here.Both the URB and ORB algorithms give partitions with no load imbalance; thisis simply the nature of the algorithms. However, only for the URB algorithm canbounds be found on the maximum number of neighbors of any partition independentof the number of processors. The maximum number of neighbors of a partition is anindication of the maximum number of messages that any one processor must send.If this number is not bounded independently of the number of processors, then asthe number of processors increases, some processors may be sending more and moremessages. This is clearly not scalable behavior. Other important bounds on URBcan also be proved but are given elsewhere [16].The ORB algorithm as described in [2], given in Figure 7 with an illustration ofexecution in Figure 8, partitions the vertices according to their physical coordinateswhile ignoring the edges between vertices. The ORB algorithm has many practicalvirtues [2] [18] [25] including ease of implementation, inexpensive execution cost, andease of parallelization. In order to simplify the presentation, the ORB algorithmis given here for the two-dimensional case, but it is easily generalizable to threedimensions.The URB algorithm is a generalization of the ORB algorithm. The generalizationis based on evaluating the aspect ratio (a.r.) of the rectangles in the partition,a:r: = max( hw; wh ) ;(1)where h is the height of the rectangle and w is the width of the rectangle. Rather thanstrictly alternating cut directions and forcing the number of vertices to be dividedinto two equal sets, the cut is chosen that yields the smallest maximum aspect ratio6



initial call: ORB(V ,p,0)Procedure ORB(V,p,dir)if (p == 1) thenV is marked as a �nal partitionreturnendifif (dir == 0) thenPartition V into (V1; V2) such that j V1 j=j V2 j and themaximum x coordinate of the vertices in V1 is lessthan the minimum x coordinate of the vertices in V2dir = 1elsePartition V into (V1; V2) such that j V1 j=j V2 j and themaximum y coordinate of the vertices in V1 is lessthan the minimum y coordinate of the vertices in V2dir = 0endifcall ORB(V1,p=2,dir)call ORB(V2,p=2,dir)End ProcedureFig. 7. The ORB algorithm in the x-y planeof the two resulting rectangles. The URB algorithm is given in Figure 9, with anillustration of the execution in Figure 10.3.1. Dynamic Repartitioning. One can take advantage of the gradual changesto the mesh that occur during mesh re�nement. After each mesh re�nement step,the mesh need not be partitioned from scratch; the old partitioning can be used togenerate a new partitioning that is only slightly di�erent. This approach has two ad-vantages: (1) the time for partitioning may be reduced, and (2) rather than movingall of the vertices to new processors, only a small percentage of the vertices may needto be moved if the partitioning is updated rather than generated from scratch.
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Level 0: One vertical cut Level 1: Two horizontal cuts Level 2: Four vertical cutsFig. 8. Possible sequence of cuts for the ORB algorithm7



initial call: URB(V ,p)Procedure URB(V,p)if (p == 1) thenV is marked as a �nal partitionreturnendifPartition V into (xV1; xV2) such that j xV1 j= knp , where k is an integer,the maximum x coordinate of the vertices in xV1 is lessthan the minimum x coordinate of the vertices in xV2, andthe cut yields the best a.r. over 1 � k � p� 1Partition V into (yV1; yV2) such that j yV1 j= mnp , where m is an integer,the maximum y coordinate of the vertices in yV1 is lessthan the minimum y coordinate of the vertices in yV2, andthe cut yields the best a.r. over 1 � m � p� 1if (X-cut yields better a.r.) thencall URB(xV1,k)call URB(xV2,p� k)elsecall URB(yV1,m)call URB(yV2,p�m)endifEnd ProcedureFig. 9. The URB algorithm in the x-y planeThe ORB and URB algorithms are particularly amenable to such updating [2].One can simply move the cuts of the old partitioning to reect the re�ned mesh.If this does not result in an acceptable partition, then the mesh can be partitionedfrom scratch. For example, assume that the mesh was originally partitioned into twosets of 50 grid points and then 10 grid points were added to the left partition duringre�nement. During partition updating, the original cut would be moved to the leftuntil the mesh was partitioned into two sets of 55 grid points. This strategy canbe recursively carried out to compute an updated partitioning. To determine theacceptability of this updated partitioning for the URB algorithm, one can check theaspect ratio of the partitions generated; if they are unacceptably high, then a newpartition can be generated from scratch.4. Assembly and Solution of Sparse Linear Systems. The sparse matrixassembly algorithm is designed to cooperate with the re�nement algorithm. At theend of a re�nement step, each processor has the vertices that it is responsible for aswell as copies of every triangle connected to these vertices. This information is all thatthe processor needs to construct all of the columns of the sparse matrix associatedwith its vertices: no communication needs to take place during the assembly process.This savings in communication expense and code simplicity is achieved at the cost of8
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Level  5: One vertical cutFig. 10. Possible sequence of cuts for the URB algorithmduplicating �nite element evaluations because copies of some triangles may exist onmore than one processor. We do not investigate this tradeo� here.The assembly routine comprises two phases: (1) determining the nonzero struc-ture of the matrix and (2) evaluating the �nite elements and inserting them into theallocated structure. Because the mesh changes only in select locations, the entirestructure of the matrix does not change at every step. The assembly algorithm up-dates the structure of matrix to reect changes made by the re�nement algorithm;the entire matrix is not determined from scratch at each step. The evaluation of allthe �nite elements, however, is done at every step because for many problems (e.g.,nonlinear problems) the values in the matrix may change even though the sparsitystructure may not.The BlockSolve package, a collection of parallel iterative methods, is employedto solve the sparse linear systems [10]. The iterative solver chosen from BlockSolve isan incompletematrix factorization used as a preconditioner for the conjugate gradientalgorithm [20]. This general-purpose preconditioner performs well for many structuralanalysis problems. For 2-D structural analysis problems such as the one in Section 5,the number of iterations required for convergence to a solution is expected to beproportional to pn, where n is the number of unknowns | similar to the results in[3]. The scalable implementation of this preconditioned conjugate gradient algorithmis straightforward with two exceptions that we discuss below. Each processor isresponsible for columns of the matrix and the unknowns that correspond to the gridpoints on that processor.This implementation comprises three components: the conjugate gradient algo-rithm, the matrix by vector multiplication, and the incomplete matrix factorizationand triangular matrix solution required for the preconditioner. The parallel imple-mentation of the �rst two operations is relatively simple. The only communication9



required by the conjugate gradient algorithm is a global sum for the inner productcomputation.1 In the matrix by vector multiplication, a single communication step isrequired to communicate the nonlocal elements of the vector to those processors thatneed them. Aside from these minor communication steps, both these operations areperfectly parallel.However, two main obstacles impede the e�cient parallel implementation of aniterative solver based on this preconditioning. First, the triangular linear systemsolutions do not exhibit a high degree of parallelism for standard matrix orderings[19]. Second, it is not su�cient to achieve scalable performance; one must also achievegood computation rates on each processor. In high-performance RISC chips (such asthe Intel i860) the best performance is obtained by algorithms that exhibit good datalocality and minimize indirect addressing. The following two subsections, 4.1 and 4.2,describe the methods used to overcome each of these obstacles and to obtain scalable,e�cient performance on parallel computers such as the Intel DELTA.4.1. The Scalable Inversion of Triangular Systems. The triangular linearsystem solution is the central problem in the parallelization of the standard iterativemethods. For example, it is involved in the application of an SOR or SSOR itera-tion, in addition to preconditioners derived from an incomplete factorization.2 Thetraditional serial approach to solving a triangular linear system employs a \natural"ordering of the variables. Unfortunately, a scalable parallel implementation of thisapproach is impossible because the dependencies in the solution of triangular systemsmake this computation inherently sequential.However, a reordering of the preconditioning matrix based on a coloring of thegraph associated with the matrix does allow for its scalable solution. The reorderedtriangular system solution is scalable because the number of sequential communicationsteps is proportional to the chromatic number of the graph [24], which is essentiallya function of the local graph structure, and independent of the size of the graph.In Figure 11 an example of a multicoloring ordering is given for a regular grid thatrequires four colors.For less regular problems for which one does not have a priori knowledge of anoptimal graph coloring, a graph coloring heuristic must be used. The authors havedeveloped and implemented a parallel graph coloring heuristic based on �nding asequence of independent sets that generates colorings similar those found by sequentialgraph coloring heuristics [15].This combination of graph coloring heuristics and incompletematrix factorizationis e�ective for a range of structured and unstructured �nite element and �nite di�er-ence problems [19]. In addition, recent theoretical results have shown that one doesnot see the dramatic increase of the number of iterations required for convergencewith \many-color" orderings that one sees with the red/black ordering for model1 For a discussion of the conjugate gradient algorithm see [6].2 The scalable computation of the incomplete factors can be accomplished in the same fashion asthe triangular linear system solution. 10
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Fig. 11. The adjacency graph corresponding to a nine-point stencil requires four colors. Anordering of the variables of the corresponding linear system allows for the solution of a triangularsystem of the same structure to be solved in four major parallel steps: one step for the unknownscorresponding to each color, followed by interprocessor communication to update the right-hand side.problems [11].4.2. Graph Reductions. As discussed previously, it is not su�cient to achievescalable performance; one must also use each processor e�ciently. For example,a standard implementation of a sparse matrix-vector multiplication does not exhibitgood data locality and uses a large amount of indirect addressing. To improve localityand minimize indirect addressing, one can take advantage of the special local structureinherent to many �nite element problems. For example, large, dense cliques exist inthese graphs and can be easily recognized. Operations involving these cliques canutilize dense Level 2 and 3 BLAS. In addition, many rows of the sparse matrix haveidentical structure, but di�ering nonzero values. This structure can be exploited tosigni�cantly reduce the amount of indirect addressing. Note that these ideas havebeen used with dramatic e�ect in direct sparse factorization for several years.It is often observed that the sparse systems arising in many applications have agreat deal of special local structure, even if the systems are described as \unstruc-tured." Illustrations of some of this local structure, and how it can be identi�ed, aregiven in the following sequence of �gures.In Figure 12a is a depiction of a subsection of a graph that arises from a two-dimensional, linear, �nite-element model with three degrees of freedom per vertex.11



The three degrees of freedom are denoted by the three dots at each vertex; the linearelements imply that the twelve degrees of freedom sharing the four vertices of eachface are completely connected. In the �gure only edges between the vertices areshown; these edges represent the complete interconnection of all the vertices on eachelement, or face.
Fig. 12. (a) The top �gure is a subgraph generated by a two-dimensional, linear �nite elementmodel with three degrees of freedom per vertex. The partitioning shown by the dotted lines yields anassignment of the vertices in the enclosed subregion to one processor. (b) The left �gure is a partitionof the vertices into cliques. (c) The right �gure is a quotient graph given the clique partition in theleft �gure.The dashed lines in the �gure represent a partitioning of the grid; assume that thevertices in the central region are all assigned to one processor. Several observationsfollow on the local structure of this subgraph. First, note that the adjacency structureof the vertices at the same geometric location (i.e., the nonzero structure of theassociated variables) is identical; denote such vertices identical vertices. Schreiberand Tang [24] noted that a coloring of the graph corresponding to the vertices resultsin a system with small dense blocks, of order the number of degrees of freedom pervertex, along the diagonal. This observation can also be used to decrease the storagerequired for indexing the matrix rows because the structures are identical.Consider a further graph reduction based on the local clique structure of thegraph. In Figure 12b the dotted lines show one possible way the vertices assignedto the partition and its neighbors can be partitioned into cliques.3 Denote such apartition by Q. If one associates a super-vertex with each clique, then the quotient3 Of course , the quotient graph reduction is not limited to the choice of a maximal clique partition;any local partition of the subgraph assigned to a processor can be used to generate the reduced graph.Several alternatives are discussed in [14]. 12



graph G=Q can be constructed based on the rule that there exists an edge betweentwo super-vertices v and w if and only if there exists an edge between two verticesof their respective partitions in G. The quotient graph constructed by the cliquepartition shown in Figure 12b is shown in Figure 12c.When the matrix is reordered according to such a clique decomposition, thematrix has large, dense blocks along the diagonal that allow for the use of the higher-level dense BLAS. In addition, by coloring the quotient graph rather than the originalgraph, the number of colors needed is greatly reduced. Thus, rather than simulta-neously solving the diagonal submatrices associated with each color, the processorsnow simultaneously solve block diagonal submatrices associated with each color.Finally, note that the e�cient determination of identical nodes, and a local max-imal clique decomposition, is straightforward. Because the adjacency structure of thevertices assigned to a processor is known locally, no interprocessor communication isrequired, and a greedy heuristic can be used to determine a clique partition.5. Computational Results. The computational experiments given in this sec-tion demonstrate that� the re�nement algorithm is scalable,� the partitioning algorithm yields scalable partitions,� the re�nement and partitioning algorithms are relatively inexpensive, and� the matrix assembly and solution algorithms are scalable and e�cient.The experiments were run on the 512-processor Intel DELTA. The DELTA is a 16�32mesh of Intel i860 microprocessors in which interprocessor communication takes placeusing message-passing. The algorithms were implemented in the C language withextensions for message passing.A single large-scale structural analysis problem was chosen to demonstrate thebehavior of the algorithms in as simple a manner as possible. The algorithms havebeen executed individually on other, very di�erent problems for which similar resultshave been achieved [4] [12] [13] [14] [18].The structure of interest is a thin, hollow sphere with four triangular holes equallyspaced over each hemisphere. An initial triangular mesh representing this geometryis given in Figure 13.The sphere is constrained around the south pole, and a force is applied aroundthe north pole toward the south pole; the displacement of the structure at equilibriumis then solved for at every mesh point. The �nite element used is a triangular shellelement [9] with quartic basis functions. The local error estimator for each triangle isthe norm of the strain vector integrated over the triangle. The initial mesh is re�neduntil every triangle satis�es a speci�ed error tolerance. Such a re�ned mesh is givenin Figure 14. The partitioning of this mesh is given in Figure 15.To demonstrate the scalability of the algorithms, we generated a sequence ofproblems by choosing the error tolerance such that the �nal mesh in each problem wasroughly twice as large as the �nal mesh in the preceding problem. If in this sequence,twice as many processors are assigned to a problem as the preceding problem, thenthe number of vertices/triangles per processor will remain constant over the entire13



Fig. 13. The initial geometry of the test problemproblem sequence. Note that each of the problems, shown in Table 1, begins with aninitial triangulation and that the numbers given in the table are for the �nal mesh ineach problem. Table 1The sequence of test problemsProblem Number of Number of Number of Number of Number ofName Processors Vertices Triangles Equations NonzerosSPHERE16 16 6,570 1,280 32,850 1,741,550SPHERE32 32 13,938 2,728 69,690 3,706,270SPHERE64 64 24,626 4,840 123,130 6,567,390SPHERE128 128 53,802 10,648 269,010 14,418,730SPHERE256 256 111,058 26,516 555,290 29,820,870SPHERE512 512 209,922 41,776 1,049,610 56,478,73014



Fig. 14. The re�ned, deformed geometry of the test problem. High strain is indicated by red,moderate strain by green, and low strain by blue.

Fig. 15. The partitioning of the vertices among 64 processors for the re�ned test problem. Eachpartition is indicated by a di�erent color. 15
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Fig. 18. The average time for matrix assembly and equation reordering for each problemthis is indeed the case.4 Moreover, we note that on 512 processors, the matrix as-sembly routine achieves a useful oating point operation rate of approximately 2.1gigaops; operations that are duplicated on other processors are not counted.The parallel iterative algorithm for matrix solution performs in a scalable, e�cientfashion as well. As is seen in Figure 19, the total gigaop rate scales as the numberof processors increases up to a total of 2.2 gigaops for 512 processors. Note that notonly is the performance scalable, but it is e�cient as well: each processor is executingat a rate of over 4 megaops, a very good rate for sparse operations on the Intel i860microprocessor. Also note that the growth in the number of iterations required as afunction of the number of equations scales as expected: the number of iterations is4 Note that the time for equation reordering includes the time to scale the matrix by the diagonaland predetermine the communication pattern of the linear system solution routines.17
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Square Root of Number of EquationsFig. 20. The number of iterations as a function of the square root of problem sizeproportional to the square root of the number of equations (see Figure 20) [3].6. Summary and Future Work. A parallel algorithm for the re�nement ofunstructured meshes was given and computational results were described that demon-strated the scalability and e�ciency of this algorithm. A partitioning algorithm forsuch meshes was given and shown to generate partitions of high quality for large num-bers of processors. Finally, sparse matrix assembly and solution algorithms were giventhat cooperate with the re�nement and partitioning algorithms. These sparse matrixalgorithms were shown to be scalable and operate at a rate of up to 2.2 gigaops onthe Intel DELTA parallel computer. The combination of the algorithms was shownto be an e�ective scalable method for a large-scale structural analysis problem.Future work includes integrating a parallel generalized eigensolver based on theblock Lanczos algorithm into the code, as well as incorporating other software pack-18
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