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Abstract: The majority of finite element models in structural engineering are
composed of unstructured meshes. These unstructured meshes are often very large
and require significant computational resources; hence they are excellent candidates
for massively parallel computation. Parallel solution of the sparse matrices that arise
from such meshes has been studied heavily, and many good algorithms have been
developed. Unfortunately, many of the other aspects of parallel unstructured mesh
computation have gone largely ignored.

We present a set of algorithms that allow the entire unstructured mesh compu-
tation process to execute in parallel—including adaptive mesh refinement, equation
reordering, mesh partitioning, and sparse linear system solution. We briefly describe
these algorithms and state results regarding their running-time and performance.

We then give results from the 512-processor Intel DELTA for a large-scale struc-
tural analysis problem. These results demonstrate that the new algorithms are scal-
able and efficient. The algorithms are able to achieve up to 2.2 gigaflops for this
unstructured mesh problem.
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1. Introduction. Unstructured finite element mesh strategies have proven enor-
mously successful in structural analysis as well as in many other disciplines. A struc-
tured mesh has regular interconnection patterns between elements of the mesh over
the entire mesh—examples of structured and unstructured meshes are given in Fig-
ure 1. An unstructured mesh allows much more flexibility in specifying a geometry
and refining select areas of the mesh for more accurate results. By selectively refining

Uniform mesh on a Initial nonuniform Adaptive refinement
regular domain mesh on irregular domain of initial mesh

Fic. 1. Examples of structured and unstructured meshes

portions of the mesh rather than the entire mesh, increased accuracy can be achieved
at a reduced cost for many computations [21].

Unstructured mesh strategies are particularly appropriate for large-scale struc-
tural analysis, where the geometries may be complex and the mesh elements can
number in the millions. Distributed-memory parallel computers such as the Intel
DELTA or a network of RISC workstations offer a cost-effective tool for solving such
problems. However, many difficult algorithmic and implementation issues must be
addressed to make effective use of this resource.

It has often been observed that the dominant computational cost in unstructured
mesh calculations is the solution of the sparse linear systems derived from this mesh.
For this reason, much effort has been invested in developing the parallel algorithms
and software for general, sparse linear systems. Software developed for distributed
memory computers includes the BlockSolve package for the iterative solution of
symmetric systems [10], the CAPSS project for direct methods [8], and PETSc, which
contains parallel iterative methods for nonsymmetric systems [7].

This paper describes parallel algorithms that work together to solve three basic
problems:

e Mesh refinement: adaptive refinement and de-refinement of an initial mesh
to provide accuracy at a reduced cost;
o Mesh partitioning: partitioning of meshes into equally sized, well-separated
regions for assignment to processors; and
e Sparse matrix solution: assembly and solution of the linear systems that arise
from unstructured mesh problems.
The algorithms described are scalable; that is, if the problem size on each processor
remains fixed and the number of processors increases, then the efficiency of the algo-
rithms will remain fixed. For example, if the algorithm is achieving an operation rate
of 50 megaflops on 10 processors on a mesh with 100 elements, then the algorithm
should achieve 100 megaflops on 20 processors on a mesh with 200 elements.
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The meshes described in this paper are all triangulations of surfaces in two or
three dimensions. The algorithms are not restricted to triangles or surfaces; however,
the software for mesh refinement is currently restricted to triangles.

The assumption is made that an initial triangulation, Ty, of the structure is
given. The parallel generation of conforming triangulations for complex geometries
is an important topic, but will not be addressed here.

Given Ty the following algorithm adapted from [21] is used to solve the problem.
This basic framework can be used for many types of structural analysis; in this paper
the problem chosen for demonstration is linear static displacement. An example of
the basic operation of this algorithm is given in Figure 2.

=10

partition T among the processors

assemble the stiffness matrix, Ky, and load vector, fy

solve Koug = fo

estimate the local error for each triangle in Tg

while the maximum error on any triangle is larger than the given tolerance do
based on error estimates, determine a set of triangles, S;, to refine
refine the triangles in S; and other triangles as needed to form 744
partition 7,4, among the processors
assemble a sparse matrix, K;;1, and load vector, f;y1
solve Kz’+1ui+1 = fi—l—l
estimate the local error for each triangle in T} 4
1=1+1

endwhile

Fia. 2. An ezample of the basic operation of the parallel unstructured mesh strategy. On the
left 1s T; for a processor and ils neighbors with triangles marked for refinement. On the right s Ty
for the same processor and its netghbors.

In Section 2, a provably fast parallel algorithm for mesh refinement is given. A
parallel algorithm that yields provably good partitions is given in Section 3. Paral-
lel matrix assembly and solution algorithms are given in Section 4. Computational
results for these algorithms for a large-scale structural analysis problem are given in
Section 5. These results demonstrate the algorithms are scalable, operating at rates
of more than 2 gigaflops.

2. Adaptive Mesh Refinement. Rather than using a structured mesh with
grid points evenly spaced on a domain, adaptive mesh refinement techniques place
2



more grid points in areas where the solution is changing rapidly. The mesh is adap-
tively refined and de-refined during the computation according to local error esti-
mates.

Many researchers have examined the adaptive construction of these nonuniform
meshes. Typically, one begins with an initial mesh and selectively refines that mesh
based on local error estimates until a final mesh is constructed that satisfies a given
error tolerance.

In this paper adaptive refinement of triangular meshes by simple bisection is
considered. Other possible approaches and more detail are given in [17]. Simple bi-
section has excellent properties; it generates conforming, graded meshes that preserve
the element quality of the initial mesh. For a mesh to be conforming, the intersection
of any two triangles in the mesh must be a single vertex, a line segment connecting
two vertices, or the empty set. In order to be considered a graded mesh, adjacent
triangles should not differ dramatically in area. Finally, all angles in the mesh must
be bounded away from 0 and w. The latter requirement is necessary because the
discretization error in a finite element approximation has been shown to grow as the
maximum angle approaches 7 [1]. Small angles are to be avoided because the condi-
tion number of the matrices arising from mesh elements has been shown to grow as

O(%), where 0, is the smallest angle in the mesh [5].

2.1. A Parallel Bisection Algorithm. The bisection algorithm bisects trian-
gles across the largest edge (dividing the largest angle), with selective divisions across
a smaller edge (termed simple bisection). This has been shown to yield triangulations
whose smallest angle is bounded by at worst one-half the smallest angle in the initial
mesh [23]. The algorithm is given in Figure 3.

jam)

7 =
(); = the set of triangles marked for refinement
R; =10
while (Q; U R;) # 0 do
bisect each triangle in (); across its longest edge
bisect each triangle in R; across a nonconforming edge
all nonconforming triangles embedded in ); are placed in R, 44
all other nonconforming triangles are placed in ()41
1=1+1
endwhile

Fia. 3. The bisection algorithm

Obviously, the refinement could propagate through many initially unmarked tri-
angles before finishing. Rivara, however, has shown that this loop will terminate in
a finite number of iterations, say Lp iterations [22]. Rivara also has shown that each
triangle in the resulting conforming mesh, Ty, embeds 1, 2, 3, or 4 triangles of 7.



During the execution of the algorithm, no side of a triangle will have more than one
nonconformity. We give an example of the propagation in Figure 4.

£ ) gl

Fic. 4. From left to right, the process of the bisection algorithm. In the initial mesh the shaded
triangles are refined; subsequently the shaded triangles are refined because they are not compatible.

The refinement algorithm is formulated mainly within the context of the dual
graph to the mesh, which we define as follows. Let V' = {v; | ¢ = 1...n} be the set of
vertices in the mesh and T'= {t, | « = 1...m} be the set of triangles. Let G = (V, F)
be the graph associated with the mesh, where £ = {e;; = (v;,v;) | vi,v; € t,}. Let
D = (T, F) be the dual graph associated with the mesh, where F' = {(t,,1) | €;; €
ta,ty).

For this discussion assume there are as many processors as triangles and that ¢, is
assigned to processor p,. Each processor, p,, must keep track of the neighbors of ¢, in
D. The algorithm must be synchronized so that this neighbor information is correct.
The management of the neighbor information in GG for the refinement algorithm is
straightforward and will not be discussed here. In order to keep the data structures
coherent, two different processors may not create vertices at the same location when
bisecting a triangle on their processor. For example, in Figure 5 note the two pro-
cessors creating two copies of the vertex V' at the same location. In the same figure,
a possibility is shown for outdated neighbor information to be propagated; triangle
U; may believe that triangle W is its neighbor rather than triangle Wy if triangles U
and W are simultaneously refined.

Fia. 5. On the left, two processors creating a verter at the same location; on the right, a possible
corruption of neighbor information

In order to avoid these synchronization problems, the new algorithm determines
a sequence of independent sets of triangles in the dual graph and refines the triangles
in these sets in parallel. The complete algorithm, given in [17], takes into account
additional triangles to be refined to obtain a conforming mesh. The crux of the algo-
rithm is the Monte Carlo rule used to determine the independent set. An independent
set, I, is chosen at step ¢ by the rule: ¢, € I if for each of its neighbors, 3, in D, if (a)
ty is not € Q; U R, or (b) p(t,) > p(t), where the p(t) are independent random num-
bers. This rule ensures that no two adjacent triangles are refined simultaneously on
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different processors, ensuring that the algorithm will execute correctly. The complete
parallel algorithm is shown in Figure 6.

In [17] it is shown that under the P-RAM execution model, this algorithm has
an expected runtime of EO(blgoﬁ)gﬁ) x Lp where (., = max; | ¢; | and Lp
is the number of levels of propagation. This bound implies that the running time
of the algorithm will increase very slowly as the size of the grid increases, thus the
algorithm has the potential to perform in a scalable fashion. However, because the
P-RAM model ignores many of the communication costs in real parallel computers,

the bound is not a guarantee of such behavior.

=10
Based on local error estimates, a set of triangles, (o, is marked for refinement.
Each triangle, £;, in Qg is assigned a random number, p(?;)

Ry =10
Qi1 =10
Riy1 =10

Choose an independent set in D, I, from the triangles in (Q); U R;)
Simultaneously bisect each of the triangles in [
embedded in (); across its longest edge
Simultaneously bisect each of the triangles in [
embedded in R; across a nonconforming edge
For each new triangle, ¢;, a new random number, p(t;), is chosen
Each processor containing two triangles now sends one of the
triangles with neighbor information to a new processor
Each processor containing a bisected triangle tells its
neighbors about the bisection
Riy1 = Riy1U Any triangles embedded in (); made nonconforming
Qiy1 = Qip1U All other triangles made nonconforming
Qi=Q;— (INQ)
Ri=R —(INR,)
Endwhile
1=1+1
Endwhile

Fia. 6. Parallel algorithm for refinement

The distributed-memory implementation is based on this algorithm, but allows
for many triangles and vertices to be stored on each processor. The same neighbor in-
formation is maintained; that is, each triangle knows the location of all of its neighbors
at any given time. In addition, in this implementation each processor stores copies
of all the triangles to which its triangles are adjacent. These copies yield a savings
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in communication at a cost of some space. More details of this distributed-memory
implementation are given in [17].

3. Mesh Partitioning. As grid points are adaptively added to and deleted from
the mesh, one must determine good partitionings of these points onto processors. A
good partition ensures that grid points are evenly distributed to the processors in a
way that minimizes interprocessor communication costs. The latency and transmis-
sion communication costs may be minimized by respectively minimizing the number
of partition neighbors and the number of links crossing the partition boundary. For
uniform meshes a good partitioning of grid points may be determined a priori by
simple constructions. For unstructured adaptive meshes, however, the partitioning
cannot be predetermined because it changes with each new refinement of the mesh.

The orthogonal recursive bisection (ORB) algorithm, sometimes called recursive
coordinate bisection (RCB), is a simple yet effective graph partitioning algorithm for
certain types of graphs for which geometric coordinates are known for the vertices.
The authors” unbalanced recursive bisection (URB) algorithm is an improvement on
the ORB algorithm that behaves better in practice and for which results on partition
quality can be proved. Often, the vertices, V', of the mesh are partitioned into p
subsets, V;, where each V] is assigned to a processor of a p-processor parallel computer.
This is the approach taken here.

Both the URB and ORB algorithms give partitions with no load imbalance; this
is simply the nature of the algorithms. However, only for the URB algorithm can
bounds be found on the maximum number of neighbors of any partition independent
of the number of processors. The maximum number of neighbors of a partition is an
indication of the maximum number of messages that any one processor must send.
If this number is not bounded independently of the number of processors, then as
the number of processors increases, some processors may be sending more and more
messages. This is clearly not scalable behavior. Other important bounds on URB
can also be proved but are given elsewhere [16].

The ORB algorithm as described in [2], given in Figure 7 with an illustration of
execution in Figure 8, partitions the vertices according to their physical coordinates
while ignoring the edges between vertices. The ORB algorithm has many practical
virtues [2] [18] [25] including ease of implementation, inexpensive execution cost, and
ease of parallelization. In order to simplify the presentation, the ORB algorithm
is given here for the two-dimensional case, but it is easily generalizable to three
dimensions.

The URB algorithm is a generalization of the ORB algorithm. The generalization
is based on evaluating the aspect ratio (a.r.) of the rectangles in the partition,

h w)

w’ h’’

where h is the height of the rectangle and w is the width of the rectangle. Rather than
strictly alternating cut directions and forcing the number of vertices to be divided

(1) a.r. = max(

into two equal sets, the cut is chosen that yields the smallest maximum aspect ratio
6



initial call: ORB(V ,p,0)

Procedure ORB(V,p,dir)
if (p == 1) then
V' is marked as a final partition
return
endif
if (dir == 0) then
Partition V' into (Vi, V2) such that | V4 |=| V3 | and the
maximum z coordinate of the vertices in V7 is less
than the minimum =z coordinate of the vertices in V5
dir =1
else
Partition V' into (Vi, V2) such that | V4 |=| V3 | and the
maximum y coordinate of the vertices in Vp is less
than the minimum ¥y coordinate of the vertices in V;
dir =0
endif
call ORB(Vy,p/2,dir)
call ORB(V3,p/2,dir)
End Procedure

Fia. 7. The ORB algorithm wn the z-y plane

of the two resulting rectangles. The URB algorithm is given in Figure 9, with an
illustration of the execution in Figure 10.

3.1. Dynamic Repartitioning. One can take advantage of the gradual changes
to the mesh that occur during mesh refinement. After each mesh refinement step,
the mesh need not be partitioned from scratch; the old partitioning can be used to
generate a new partitioning that is only slightly different. This approach has two ad-
vantages: (1) the time for partitioning may be reduced, and (2) rather than moving
all of the vertices to new processors, only a small percentage of the vertices may need
to be moved if the partitioning is updated rather than generated from scratch.

| n n ! n ||
| I S ' n ————8——J——r§———lglg
1 i 88
n N | | Lo
2 L2 n 1 n . n
| 4 8 8 0
| LN | ‘nin
| L4 | 1818
Level 0: One vertica cut Level 1: Two horizontal cuts Level 2: Four vertical cuts

Fia. 8. Possible sequence of cuts for the ORB algorithm
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initial call: URB(V ,p)

Procedure URB(V,p)

if (p == 1) then
V' is marked as a final partition
return

endif

Partition V' into (aVq, 2V3) such that | 2V; |= k%, where k is an integer,
the maximum 2 coordinate of the vertices in xV; is less
than the minimum 2z coordinate of the vertices in zV53, and
the cut yields the best a.r. over 1 <k <p—1

Partition V' into (yVi, yVa) such that | yVi |= mZ, where m is an integer,
the maximum y coordinate of the vertices in yV; is less
than the minimum y coordinate of the vertices in yV3, and
the cut yields the best a.r. over 1 <m <p-1

if (X -cut yields better a.r.) then
call URB(zV4,k)
call URB(zV2,p — k)

else
call URB(yV1,m)
call URB(yVa,p — m)

endif

End Procedure

Fia. 9. The URB algorithm in the z-y plane

The ORB and URB algorithms are particularly amenable to such updating [2].
One can simply move the cuts of the old partitioning to reflect the refined mesh.
If this does not result in an acceptable partition, then the mesh can be partitioned
from scratch. For example, assume that the mesh was originally partitioned into two
sets of 50 grid points and then 10 grid points were added to the left partition during
refinement. During partition updating, the original cut would be moved to the left
until the mesh was partitioned into two sets of 55 grid points. This strategy can
be recursively carried out to compute an updated partitioning. To determine the
acceptability of this updated partitioning for the URB algorithm, one can check the
aspect ratio of the partitions generated; if they are unacceptably high, then a new
partition can be generated from scratch.

4. Assembly and Solution of Sparse Linear Systems. The sparse matrix
assembly algorithm is designed to cooperate with the refinement algorithm. At the
end of a refinement step, each processor has the vertices that it is responsible for as
well as copies of every triangle connected to these vertices. This information is all that
the processor needs to construct all of the columns of the sparse matrix associated
with its vertices: no communication needs to take place during the assembly process.
This savings in communication expense and code simplicity is achieved at the cost of
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Fia. 10. Possible sequence of cuts for the URB algorithm

duplicating finite element evaluations because copies of some triangles may exist on
more than one processor. We do not investigate this tradeoff here.

The assembly routine comprises two phases: (1) determining the nonzero struc-
ture of the matrix and (2) evaluating the finite elements and inserting them into the
allocated structure. Because the mesh changes only in select locations, the entire
structure of the matrix does not change at every step. The assembly algorithm up-
dates the structure of matrix to reflect changes made by the refinement algorithm;
the entire matrix is not determined from scratch at each step. The evaluation of all
the finite elements, however, is done at every step because for many problems (e.g.,
nonlinear problems) the values in the matrix may change even though the sparsity
structure may not.

The BlockSolve package, a collection of parallel iterative methods, is employed
to solve the sparse linear systems [10]. The iterative solver chosen from BlockSolveis
an incomplete matrix factorization used as a preconditioner for the conjugate gradient
algorithm [20]. This general-purpose preconditioner performs well for many structural
analysis problems. For 2-D structural analysis problems such as the one in Section 5,
the number of iterations required for convergence to a solution is expected to be
proportional to \/n, where n is the number of unknowns — similar to the results in
[3].

The scalable implementation of this preconditioned conjugate gradient algorithm
is straightforward with two exceptions that we discuss below. FEach processor is
responsible for columns of the matrix and the unknowns that correspond to the grid
points on that processor.

This implementation comprises three components: the conjugate gradient algo-
rithm, the matrix by vector multiplication, and the incomplete matrix factorization
and triangular matrix solution required for the preconditioner. The parallel imple-
mentation of the first two operations is relatively simple. The only communication
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required by the conjugate gradient algorithm is a global sum for the inner product
computation.! In the matrix by vector multiplication, a single communication step is
required to communicate the nonlocal elements of the vector to those processors that
need them. Aside from these minor communication steps, both these operations are
perfectly parallel.

However, two main obstacles impede the efficient parallel implementation of an
iterative solver based on this preconditioning. First, the triangular linear system
solutions do not exhibit a high degree of parallelism for standard matrix orderings
[19]. Second, it is not sufficient to achieve scalable performance; one must also achieve
good computation rates on each processor. In high-performance RISC chips (such as
the Intel i860) the best performance is obtained by algorithms that exhibit good data
locality and minimize indirect addressing. The following two subsections, 4.1 and 4.2,
describe the methods used to overcome each of these obstacles and to obtain scalable,
efficient performance on parallel computers such as the Intel DELTA.

4.1. The Scalable Inversion of Triangular Systems. The triangular linear
system solution is the central problem in the parallelization of the standard iterative
methods. For example, it is involved in the application of an SOR or SSOR itera-
tion, in addition to preconditioners derived from an incomplete factorization.? The
traditional serial approach to solving a triangular linear system employs a “natural”
ordering of the variables. Unfortunately, a scalable parallel implementation of this
approach is impossible because the dependencies in the solution of triangular systems
make this computation inherently sequential.

However, a reordering of the preconditioning matrix based on a coloring of the
graph associated with the matrix does allow for its scalable solution. The reordered
triangular system solution is scalable because the number of sequential communication
steps is proportional to the chromatic number of the graph [24], which is essentially
a function of the local graph structure, and independent of the size of the graph.
In Figure 11 an example of a multicoloring ordering is given for a regular grid that
requires four colors.

For less regular problems for which one does not have a priori knowledge of an
optimal graph coloring, a graph coloring heuristic must be used. The authors have
developed and implemented a parallel graph coloring heuristic based on finding a
sequence of independent sets that generates colorings similar those found by sequential
graph coloring heuristics [15].

This combination of graph coloring heuristics and incomplete matrix factorization
is effective for a range of structured and unstructured finite element and finite differ-
ence problems [19]. In addition, recent theoretical results have shown that one does
not see the dramatic increase of the number of iterations required for convergence
with “many-color” orderings that one sees with the red/black ordering for model

! For a discussion of the conjugate gradient algorithm see [6].
2 The scalable computation of the incomplete factors can be accomplished in the same fashion as
the triangular linear system solution.
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9-pt Stencil
4 Colors

Matrix Reordered by Color

Ficg. 11. The adjacency graph corresponding to a nine-point stencil requires four colors. An
ordering of the vartables of the corresponding linear system allows for the solution of a triangular
system of the same structure to be solved in four major parallel steps: one step for the unknowns
corresponding to each color, followed by interprocessor communication to update the right-hand side.

problems [11].

4.2. Graph Reductions. As discussed previously, it is not sufficient to achieve
scalable performance; one must also use each processor efficiently. For example,
a standard implementation of a sparse matrix-vector multiplication does not exhibit
good data locality and uses a large amount of indirect addressing. To improve locality
and minimize indirect addressing, one can take advantage of the special local structure
inherent to many finite element problems. For example, large, dense cliques exist in
these graphs and can be easily recognized. Operations involving these cliques can
utilize dense Level 2 and 3 BLAS. In addition, many rows of the sparse matrix have
identical structure, but differing nonzero values. This structure can be exploited to
significantly reduce the amount of indirect addressing. Note that these ideas have
been used with dramatic effect in direct sparse factorization for several years.

It is often observed that the sparse systems arising in many applications have a
great deal of special local structure, even if the systems are described as “unstruc-
tured.” Illustrations of some of this local structure, and how it can be identified, are
given in the following sequence of figures.

In Figure 12a is a depiction of a subsection of a graph that arises from a two-
dimensional, linear, finite-element model with three degrees of freedom per vertex.
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The three degrees of freedom are denoted by the three dots at each vertex; the linear
elements imply that the twelve degrees of freedom sharing the four vertices of each
face are completely connected. In the figure only edges between the vertices are
shown; these edges represent the complete interconnection of all the vertices on each
element, or face.

\/\/ \/\/ Q\/

FiGc. 12. (a) The top figure is a subgraph generated by a two-dimensional, linear finite element
model with three degrees of freedom per vertex. The partitioning shown by the dotted lines yields an
assignment of the vertices in the enclosed subregion to one processor. (b) The left figure is a partition
of the vertices into cliques. (c¢) The right figure is a quotient graph given the clique partition in the

left figure.

The dashed lines in the figure represent a partitioning of the grid; assume that the
vertices in the central region are all assigned to one processor. Several observations
follow on the local structure of this subgraph. First, note that the adjacency structure
of the vertices at the same geometric location (i.e., the nonzero structure of the
associated variables) is identical; denote such vertices identical vertices. Schreiber
and Tang [24] noted that a coloring of the graph corresponding to the vertices results
in a system with small dense blocks, of order the number of degrees of freedom per
vertex, along the diagonal. This observation can also be used to decrease the storage
required for indexing the matrix rows because the structures are identical.

Consider a further graph reduction based on the local clique structure of the
graph. In Figure 12b the dotted lines show one possible way the vertices assigned
to the partition and its neighbors can be partitioned into cliques.®> Denote such a
partition by (). If one associates a super-vertex with each clique, then the quotient

3 Of course , the quotient graph reduction is not limited to the choice of a maximal clique partition;
any local partition of the subgraph assigned to a processor can be used to generate the reduced graph.
Several alternatives are discussed in [14].
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graph G//() can be constructed based on the rule that there exists an edge between
two super-vertices v and w if and only if there exists an edge between two vertices
of their respective partitions in (G. The quotient graph constructed by the clique
partition shown in Figure 12b is shown in Figure 12c.

When the matrix is reordered according to such a clique decomposition, the
matrix has large, dense blocks along the diagonal that allow for the use of the higher-
level dense BLAS. In addition, by coloring the quotient graph rather than the original
graph, the number of colors needed is greatly reduced. Thus, rather than simulta-
neously solving the diagonal submatrices associated with each color, the processors
now simultaneously solve block diagonal submatrices associated with each color.

Finally, note that the efficient determination of identical nodes, and a local max-
imal clique decomposition, is straightforward. Because the adjacency structure of the
vertices assigned to a processor is known locally, no interprocessor communication is
required, and a greedy heuristic can be used to determine a clique partition.

5. Computational Results. The computational experiments given in this sec-

tion demonstrate that

o the refinement algorithm is scalable,

o the partitioning algorithm yields scalable partitions,

o the refinement and partitioning algorithms are relatively inexpensive, and

o the matrix assembly and solution algorithms are scalable and efficient.
The experiments were run on the 512-processor Intel DELTA. The DELTA is a 16 x 32
mesh of Intel 1860 microprocessors in which interprocessor communication takes place
using message-passing. The algorithms were implemented in the C language with
extensions for message passing.

A single large-scale structural analysis problem was chosen to demonstrate the
behavior of the algorithms in as simple a manner as possible. The algorithms have
been executed individually on other, very different problems for which similar results
have been achieved [4] [12] [13] [14] [18].

The structure of interest is a thin, hollow sphere with four triangular holes equally
spaced over each hemisphere. An initial triangular mesh representing this geometry
is given in Figure 13.

The sphere is constrained around the south pole, and a force is applied around
the north pole toward the south pole; the displacement of the structure at equilibrium
is then solved for at every mesh point. The finite element used is a triangular shell
element [9] with quartic basis functions. The local error estimator for each triangle is
the norm of the strain vector integrated over the triangle. The initial mesh is refined
until every triangle satisfies a specified error tolerance. Such a refined mesh is given
in Figure 14. The partitioning of this mesh is given in Figure 15.

To demonstrate the scalability of the algorithms, we generated a sequence of
problems by choosing the error tolerance such that the final mesh in each problem was
roughly twice as large as the final mesh in the preceding problem. If in this sequence,
twice as many processors are assigned to a problem as the preceding problem, then
the number of vertices/triangles per processor will remain constant over the entire
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Fia. 13. The initeal geometry of the test problem

problem sequence. Note that each of the problems, shown in Table 1, begins with an
initial triangulation and that the numbers given in the table are for the final mesh in

each problem.

TABLE 1
The sequence of test problems

Problem Number of | Number of | Number of | Number of | Number of
Name Processors Vertices | Triangles | Equations | Nonzeros
SPHERE16 16 6,570 1,280 32,850 | 1,741,550
SPHERE32 32 13,938 2,728 69,690 | 3,706,270
SPHERE64 64 24,626 4,840 123,130 | 6,567,390
SPHERE128 128 53,802 10,648 269,010 | 14,418,730
SPHERE256 256 111,058 26,516 555,290 | 29,820,870
SPHERES512 512 209,922 41,776 | 1,049,610 | 56,478,730
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Fic. 14. The refined, deformed geometry of the test problem. High strain is indicated by red,
moderate strain by green, and low strain by blue.

Fia. 15. The partitioning of the vertices among 64 processors for the refined test problem. Fach
partition is indicated by a different color.
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Fia. 16. The percentage of execution time required by certain operations on 512 processors for

SPHERE512

5.1. Refinement and Partitioning Results. Relative to the time required for
matrix assembly and solution, the cost for the refinement and partitioning algorithms
is small. In fact, one observes in Figure 16 that the percentage of execution time
required for these algorithms is approximately 7.5%. Further, the time for refinement
alone is less than 0.2% of the total execution time.

The efficiency of the refinement algorithm is only slightly decreased as the number
of processors increases. Both the maximum and average number of triangles refined
per processor per second are given in Figure 17. Because some processors typically
refine more triangles than other processors, the refinement rate most indicative of the
performance of the algorithm is the maximum number of triangles refined per second
per processor. At 512 processors, the refinement algorithm is still operating at 63%
of the 16-processor rate, for a total speedup of 20 out of a possible 32.

As noted above, the total time for partitioning the graph after each refinement
step was less than 7.5%, indicating that the overhead for parallel processing is quite
small. Moreover, the partitioning algorithm generated scalable partitions. Each par-
tition was connected to an average of between 6 and 7 other processors regardless of
the total number of processors. As will be shown in the next subsection, these good
partitionings result in scalable performance for the matrix assembly and solution
algorithms.

5.2. Matrix Assembly and Solution Results. If the matrix assembly and
equation reordering algorithms are scalable, then their execution costs will remain
roughly constant as the number of processors increases. As we observe in Figure 18,
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Fia. 17. The mazimum and average number of triangles refined per second per processor as a
function of the number of processors
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Fia. 18. The average time for matriz assembly and equation reordering for each problem

this is indeed the case.?

Moreover, we note that on 512 processors, the matrix as-
sembly routine achieves a useful floating point operation rate of approximately 2.1
gigaflops; operations that are duplicated on other processors are not counted.

The parallel iterative algorithm for matrix solution performs in a scalable, efficient
fashion as well. As is seen in Figure 19, the total gigaflop rate scales as the number
of processors increases up to a total of 2.2 gigaflops for 512 processors. Note that not
only is the performance scalable, but it is efficient as well: each processor is executing
at a rate of over 4 megaflops, a very good rate for sparse operations on the Intel i860
microprocessor. Also note that the growth in the number of iterations required as a

function of the number of equations scales as expected: the number of iterations is

4 Note that the time for equation reordering includes the time to scale the matrix by the diagonal
and predetermine the communication pattern of the linear system solution routines.
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Fia. 19. The number of gigaflops as a function of the number of processors
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Fia. 20. The number of iterations as a function of the square root of problem size

proportional to the square root of the number of equations (see Figure 20) [3].

6. Summary and Future Work. A parallel algorithm for the refinement of
unstructured meshes was given and computational results were described that demon-
strated the scalability and efficiency of this algorithm. A partitioning algorithm for
such meshes was given and shown to generate partitions of high quality for large num-
bers of processors. Finally, sparse matrix assembly and solution algorithms were given
that cooperate with the refinement and partitioning algorithms. These sparse matrix
algorithms were shown to be scalable and operate at a rate of up to 2.2 gigaflops on
the Intel DELTA parallel computer. The combination of the algorithms was shown
to be an effective scalable method for a large-scale structural analysis problem.

Future work includes integrating a parallel generalized eigensolver based on the
block Lanczos algorithm into the code, as well as incorporating other software pack-
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ages for solving linear systems and partitioning meshes. In addition, the refinement
software will be enhanced to allow for tetrahedral meshes. The performance and uti-
lization of this code on a high-speed network of RISC workstations are also of great
interest to the authors.
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