
PARALLEL ALGORITHMS FOR UNSTRUCTURED MESH COMPUTATION �LORI A. FREITAG, MARK T. JONES, AND PAUL E. PLASSMANNyAbstract. The e�cient solution of many large-scale scienti�c calculations depends on unstructured mesh strategies.For example, problemswhere the solution changes rapidly in small regions of the domain require an adaptivemesh strategy.In this paper we discuss the main algorithmic issues to be addressedwith an integrated approach to solving these problemson massively parallel architectures. We review new parallel algorithms to solve two signi�cant problems that arise in thiscontext: the generation of the adaptive mesh and the mesh partitioning. The gist of our re�nement algorithm is theidenti�cation of independent sets of elements that can be re�ned in parallel. The objective of our partitioning heuristicis to construct partitions with good aspect ratios.We present running time bounds and computational results obtained on the Intel DELTA for these algorithms used insolving an optimization problem to determine the vortex structure in a high-temperature superconductor. These resultsdemonstrate that the algorithms exhibit scalable performance and have runtimes small in comparison with other aspectsof the computation.1. Introduction. Unstructured mesh strategies have proven to be very successful in reducing thecomputation and storage requirements for many scienti�c and engineering calculations [14]. Massivelyparallel computers o�er a cost-e�ective tool for solving such problems. However, many di�cult algorith-mic and implementation issues must be addressed to make e�ective use of this resource. In this paper,we review the major aspects of an unstructured mesh strategy and present an integrated approach todeal with these aspects on distributed memory machines. We also present computational results froma preliminary implementation of this approach.It has often been observed that the dominant computational cost in unstructured mesh calculationsis the solution of the sparse linear systems derived from this mesh. For this reason, much e�ort hasbeen invested in developing the parallel algorithms and software for general, sparse linear systems. Forexample, the BlockSolve package has been developed for the iterative solution of symmetric systems[11], the CAPSS project has developed software for direct methods [10], and PETSc contains paralleliterative methods for nonsymmetric systems [9].However, the nonnumeric phases of generating, re�ning, and partitioning unstructured meshes mustbe addressed to use massively parallel machines in a coherent manner. We have identi�ed the followingbasic problems that are fundamental to computation on unstructured domains:� Mesh generation: constructing meshes that satisfy user-speci�ed properties over irregular do-mains;� Mesh re�nement: adaptive re�nement and de-re�nement of an initial mesh to accurately modelrapidly changing solutions;� Domain partitioning: partitioning graphs/geometries into equally sized, well-separated regions;and� Linear system solution: the assembly and solution of the linear systems generated by general,unstructured mesh problems.In the following sections we give an overview of the current state-of-the-art in these tasks. Weexamine the performance on the Intel DELTA of the new methods we have developed for adaptivemesh calculations. The problem we consider is the determination of the minimum energy con�gurationof vortices in a high-temperature superconductor model | a large, unconstrained optimization problem.2. Mesh generation. The �rst point given above, mesh generation, can be an extremely involvedand application dependent process. In spite of the fact that there is a tremendous amount of interest inthis area, very little work has been done in the development of parallel algorithms to solve this problem.Possible approaches to parallel unstructured mesh generation include conformalmappings of regularmeshes to more complicated domains [4] and the use of coarse background grids to partition the domainacross processors [13]. However, this work fails to address the manner by which many geometric models(upon which the �nite element mesh is de�ned) are speci�ed. Most geometric models are de�nedimplicitly by parametric descriptions, and only very preliminary work with parallel implementationshave been done in this area. The most promising general-purpose approach for parallel implementation� This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38.y The address of the �rst and third authors is Mathematics and Computer Science Division, Argonne National Labo-ratory, 9700 South Cass Avenue, Argonne, IL 60439. The address of the second author is Computer Science Department,University of Tennessee, Knoxville, TN 37996. 1

seems to be quadtree/octree mesh generation methods [18], but this topic remains an open area forfuture research.3. Adaptive mesh re�nement. Rather than using a structured mesh with grid points evenlyspaced on a domain, adaptive mesh re�nement techniques place more grid points in areas where thesolution is changing rapidly. The mesh is adaptively re�ned and de-re�ned during the computationaccording to local error estimates. This technique is much more e�cient than the use of structuredmeshes when the solution is changing much more rapidly in some areas than in others.Many researchers have examined the adaptive construction of these nonuniform meshes. Typically,one begins with an initial mesh and selectively re�nes that mesh based on local error estimates untila �nal mesh is constructed that satis�es an error tolerance. Most research has focused on simplicialmeshes: meshes composed of line segments in one dimension, triangles in two dimensions, or tetrahedrain three dimensions. We consider two-dimensional simplicial meshes; however, the algorithms andanalyses we present are applicable to other dimensions and to nonsimplicial meshes.In this paper we consider adaptive re�nement of triangular meshes by simple bisection. Otherpossible approaches, and more detail of the following algorithms, are given in [6]. Simple bisection hasexcellent properties; it generates conforming, graded meshes that preserve the element quality of theinitial mesh.For a mesh to be conforming, we require that the intersection of any two triangles in the mesh is asingle vertex, a line segment connecting two vertices, or the empty set. In addition, we require the meshto be graded, that is, adjacent triangles should not di�er dramatically in area. Finally, we require thatall angles in the mesh be bounded away from 0 and �. The latter requirement is necessary because thediscretization error in a �nite element approximation has been shown to grow as the maximum angleapproaches � [1]. We would like to avoid small angles because the condition number of the matricesarising from mesh elements has been shown to grow as O(1�min), where �min is the smallest angle in themesh [7].3.1. A parallel bisection algorithm. The bisection algorithmbisects triangles across the largestedge (dividing the largest angle) with selective divisions across a smaller edge (termed simple bisection).This has been shown to yield triangulations whose smallest angle is bounded by at worst one half thesmallest angle in the inital mesh [17]. The algorithm is given in Figure 1.i = 0Qi = the set of triangles marked for re�nementRi = ;while (Qi [Ri) 6= ; dobisect each triangle in Qi across its longest edgebisect each triangle in Ri across a nonconforming edgeall incompatible triangles embedded in Qi are placed in Ri+1all other incompatible triangles are placed in Qi+1i = i+ 1endwhile Fig. 1. The bisection algorithmObviously, the re�nement could propagate through many initially unmarked triangles before �n-ishing. Rivara, however, has shown that this loop will terminate in a �nite number of iterations, sayLP iterations [16]. Rivara also shows that each triangle in the resulting compatible mesh, Ti+1, embeds1, 2, 3, or 4 triangles of Ti. We show the possible 2, 3, or 4 triangle results in Figure 2. During theexecution of the algorithm, no side of a triangle will have more than one nonconformity. We give anexample of the propagation in Figure 3.The re�nement algorithm is formulated mainly within the context of the dual graph to the mesh,which we de�ne as follows. Let V = fvi j i = 1 : : :ng be the set of vertices in the mesh and T = fta ja = 1 : : :mg be the set of triangles. Let G = (V;E) be the graph associated with the mesh whereE = fei;j = (vi; vj) j vi; vj 2 tag. Let D = (T; F) be the dual graph associated with the mesh whereF = f(ta; tb) j ei;j 2 ta; tbg.For our initial discussion assume that we have as many processors as we have triangles, and that2

Fig. 2. The possible divisions of a single triangle in the bisection algorithmFig. 3. From left to right, the process of the bisection algorithm. In the initial mesh the shaded triangles are re�ned;subsequently the shaded triangles are re�ned because they are not compatible.ta is assigned to processor pa. Each processor, pa, must keep track of the neighbors of ta in D.Synchronization in the algorithm must be managed so that this neighbor information is correct. Themanagement of the neighbor information in G for the re�nement algorithm is straightforward and willnot be discussed here. To keep our data structures coherent, we require that two di�erent processorsnot create vertices at the same location when bisecting a triangle on their processor. For example, inFigure 4 we see two processors creating two copies of the vertex V at the same location. In the same�gure, we see a possibility for outdated neighbor information to be propagated; triangle U1 may believethat triangleW is its neighbor rather than triangleW1 if triangles U andW are simultaneously re�ned.
V

P

P
1

2

U

W

U

U

1

W

P2

1
P

W
1

2

2Fig. 4. On the left, two processors creating a vertex at the same location; on the right, a possible corruption ofneighbor informationTo avoid these synchronization problems, we determine a sequence of independent sets of trianglesin the dual graph and re�ne the triangles in these sets in parallel. The complete algorithm, given in[6], takes into account additional triangles to be re�ned to obtain a compatible mesh. The crux of thealgorithm is the Monte Carlo rule used to determine the independent set. An independent set, I, ischosen at step i by the rule: ta 2 I if for each of its neighbors, tb, in D, if (a) tb not 2 Qi [Ri or (b)�(ta) > �(tb), where the �(t) are independent random numbers. The following bound can be obtainedfor the expected running time of this algorithm on a P-RAM. Our implementation is based on extensionof this algorithm to distributed memory computers and is fully described in [6].Theorem 3.1. This algorithm terminates in a �nite number of steps and has an expected runtimeon a P-RAM of EO(logQmaxlog logQmax) � LP where Qmax = max i j Qi j and LP is the number of levels ofpropagation.Proof: The complete proof is given in [6]. 24. Mesh partitioning. As grid points are adaptively added to and deleted from the mesh, wemust determine good partitionings of these points onto processors. For our purposes a good partitionensures that grid points are evenly distributed to the processors in way that minimizes interprocessorcommunication costs. We may minimize the latency and transmission communication costs by respec-tively minimizing the number of partition neighbors and the number of links crossing the partitionboundary. For uniform meshes a good partitioning of grid points may be determined a priori by simpleconstructions. However, for unstructured, adaptive meshes the partitioning cannot be predeterminedbecause it changes with each new re�nement of the mesh.3

Several interesting techniques have been proposed to determine partitionings of unstructured meshes.Spectral methods [15] have the advantage of global access to information about the graph to �nd goodseparators at the cost of eigenvalue/eigenvector computations. Although the eigenvectors generally donot need to be found to great accuracy, spectral methods fail to utilize the geometric information in-herent to the mesh, which may be used to signi�cant advantage. This geometric information is used inbisection partitioning algorithms such as the orthogonal recursive bisection (ORB) algorithm [2]. Thisalgorithm makes an initial geometric cut to divide the grid points in half. Orthogonal cuts are thenmade recursively in the new subdomains until the grid points are evenly distributed among the proces-sors. Although this algorithm obtains good load balancing, it ignores the communication minimizationproblem. As a result, long, thin partitions may be created that have a high ratio of links crossing thepartition boundaries to the total number of links in the partition. These large ratios lead to a highratio of communication to computation.To address this problem, we have developed a modi�cation of ORB that we call the unbalancedrecursive bisection (URB) algorithm. Instead of dividing the unknowns in half, we choose the cutthat minimizes partition's geometric aspect ratio and divides the unknowns into nkp and n(p�k)p sizegroups, where n is the total number of unknowns, p is the number of processors, and k 2 f1; 2; :::; p�1g. Again, this algorithm is applied recursively. This algorithm leads to an even distribution of gridpoints with more balanced geometric aspect ratios for the resulting partitions. This fact minimizesthe communication costs in two ways. First, partitions with good aspect ratios (close to one) tend tohave fewer partition neighbors and hence fewer total messages to send. Second, the percentage of meshlinks crossing the partition boundary to the total number of links in the nearly square partitions issmall compared with the long, thin partitions generated by the ORB algorithm. Thus, the ratios ofcomputation to communication are increased compared with the ORB algorithm. Finally, the executiontime for this approach is signi�cantly less than for the spectral techniques.5. Computational results. In this section we use the approach described above to solve anunconstrained optimization problem based on an unstructured mesh. The problem is to determinethe minimum energy con�guration of the Ginzburg-Landau free energy functional, a phenomenologicalmodel for high-temperature superconductivity. The problem and methods used are described in [12].A complete description of the �nite-element formulation used and the re�nement criteria are given in[5]. We note that this problem is complicated by the invariance of the free-energy functional undergauge transformations; thus a local minimizer is not unique. This degeneracy (the singularity of theHessian at a solution) signi�cantly complicates the computation of such a minimizer. We have foundthat an e�ective approach to computing a minimizer of the free-energy functional is a damped Newton'smethod [8]. Each iteration of the nonlinear method requires computation of the gradient vector andHessian matrix. We have used the automated di�erentiation package ADIFOR [3] to compute thesederivatives for the element function. The contributions from the elements are assembled to obtain thetotal gradient and Hessian.The computational kernel of this technique is the solution of the damped Newton system | a large,sparse linear system of equations. We do not explicitly invert this system but use the iterative solverfrom the BlockSolve package [11] to obtain an approximate (inexact) solution.To demonstrate the e�ciency and scalability of the re�nement and partitioning algorithms forthe superconductivity problem, we have increased the problem sizes in proportion to the number ofprocessors used. The results of four typical runs are shown in Table 1, where P gives the number ofprocessors and E indicates the number of triangular elements in the �nal solution mesh. The numberof vortices in each sample are 32, 48, 64, and 72 for 16, 32, 64, and 128 processors, respectively. Weindicate the amount of time required for re�nement and partitioning as a percentage of total solutiontime. We see that these operations require less than one percent of the execution time in all cases.Statistics on the partitions generated by the new geometric partitioning algorithm, URB, are givenin Table 2. The average aspect ratio for the partitions is less than two in all cases, and the maximumaspect ratio is less than 3.6. These result in a partition quotient graph whose average degree is between�ve and six, which corresponds to an average of �ve to six messages sent per processor to transfernearest neighbor information. Finally, to estimate the amount of data that must be transferred betweenprocessors, we consider the percentage of edges that cross partition boundaries to the total number ofedges in the partition. This number is less than 15 percent in all cases.4

Table 1Timing results for the superconductivity problem on 16{128 processors of the Intel DELTAPercent Percent Percent PercentP E Re�ne Partition Setup SolutionTime Time Time Time16 30484 .229 .193 30.0 69.532 48416 .091 .117 13.5 86.364 111660 .087 .167 10.8 88.8128 196494 .181 .452 13.3 86.0Table 2Partition statistics for the superconductivity problem on 16{128 processors of the Intel DELTAAvg. Max. Avg. Max. PercentP Graph Graph Aspect Aspect CrossDegree Degree Ratio Ratio Edges16 5.31 7.00 1.47 2.88 6.7232 5.40 8.00 1.89 3.55 8.3264 5.64 8.00 1.34 2.49 10.0128 5.71 9.00 1.81 3.55 13.7REFERENCES[1] I. Babu�ska and A. K. Aziz, On the angle condition in the �nite element method, SIAM Journal of NumericalAnalysis, 13 (1976), pp. 214{226.[2] M. Berger and S. Bokhari, A partitioning strategy for nonuniform problems on multiprocessors, IEEE Transac-tions on Computers, C-36 (1987).[3] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR: Generating derivative codes fromFortran programs, Scienti�c Programming, 11 (1992), pp. 11{29.[4] J. E. Castillo,Mathematical Aspects of Grid Generation, Society for Industrial andAppliedMathematics,Philadel-phia, 1991.[5] L. A. Freitag, M. T. Jones, and P. E. Plassmann, New advances in the modeling of high-temperature supercon-ductors, in 1994 International Simulation Conference { Grand Challenges in Computer Simulation, La Jolla,California, April 11-15, 1994.[6] , Parallel algorithms for adaptive mesh re�nement, Preprint MCS-P421-0394, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Ill., 1994.[7] I. Fried, Condition of �nite element matrices generated from nonuniform meshes, AIAA Journal, 10 (1972),pp. 219{221.[8] J. Garner, M. Spanbauer, R. Benedek, K. Strandburg, S. Wright, and P. Plassmann, Critical �elds ofJosephson-coupled superconducting multilayers, Physical Review B, 45 (1992), pp. 7973{7983.[9] W. D. Gropp and B. F. Smith, Simpli�ed Linear Equation Solvers Users Manual, Tech. Rep. ANL-93/8, ArgonneNational Laboratory, Mar. 1993.[10] M. T. Heath and P. Raghavan, Distributed solution of sparse linear systems, Tech. Rep. UIUCDCS-R-93-1793,University of Illinois, Feb. 1993.[11] M. T. Jones and P. E. Plassmann, BlockSolve v1.0: Scalable library software for the parallel solution of sparselinear systems, ANL Report ANL-92/46, Mathematics and Computer Science Division, Argonne National Lab-oratory, Argonne, Ill., 1992.[12] , Computation of equilibrium vortex structures for type-II superconductors, The International Journal ofSupercomputer Applications, 7 (1993), pp. 129{143.[13] R. L�ohner, J. Camberos, and M. Merriam, Parallel unstructured grid generation, Computer Methods in AppliedMechanics and Engineering, 95 (1992), pp. 343{357.[14] W. F. Mitchell, A comparison of adaptive re�nement techniques for elliptic problems, ACM Transactions onMathematical Software, 15 (1989), pp. 326{347.[15] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM Journalon Matrix Analysis, 11 (1990), pp. 430{452.[16] M.-C. Rivara,Mesh re�nement processes based on the generalized bisection of simplices, SIAM Journal of NumericalAnalysis, 21 (1984), pp. 604{613.[17] I. G. Rosenberg and F. Stenger, A lower bound on the agnles of triangles constructed by bisecting the longestside, Mathematics of Computation, 29 (1975), pp. 390{395.[18] M. S. Shephard and M. K. Gorges, Automatic three-dimensional mesh generation by �nite octree technique, Tech.Rep. SCOREC #1-1991, Scienti�c Computation Research Center, Rensselaer Polytechnic Institute, 1991.5

