
On the One-Dimensional Ginzburg-Landau BVPs�Man Kam KwongMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4844E-mail: kwong@mcs.anl.govAbstractWe study the one-dimensional system of Ginzburg-Landau equations thatmodels a thin �lm of superconductor subjected to a tangential magnetic �eld.We prove that the bifurcation curve for the symmetric problem is the graphof a continuous function of the supremum of the order parameter. We alsoprove the existence of a critical magnetic �eld. In general, there is morethan one positive solution to the symmetric boundary value problem. Ournumerical experiments have shown cases with three solutions. It is still anopen question whether only one of these corresponds to the physical solutionthat minimizes the Gibbs free energy. We establish uniqueness for a relatedboundary value problem.AMS(MOS) Subject Classi�cation. Primary 34B15. Secondary 82D55.Key Words and Phrases. Ginzburg-Landau systems, superconductivity,boundary value problem, uniqueness.�This work was supported by the O�ce of Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. 1



1 IntroductionThe name Ginzburg-Landau has been associated with more than one sys-tem of di�erential equations in more than one area of applied mathematics,including the theory of hydrodynamics, liquid crystals, superconductivity,and harmonic maps. Although the various systems have some similaritiesin appearance, the actual structure of the equations and their theory aresu�ciently di�erent to warrant independent studies. In this paper, we in-vestigate the Ginzburg-Landau system that models a superconducting thin�lm. Many good monographs exist on the theory of superconductivity [1],[2], [15], and several recent survey articles [4], [7], [8] have been written withmathematicians in mind; these should be consulted for further details onthe physics, experimental observations, alternative models, and additionalreferences. We describe here only those concepts that are necessary to makeour mathematical problem understandable.Superconductivity was discovered in 1911 by Kammerlingh Onnes, whoobserved that when certain material was cooled below some critical tem-perature Tc (characteristic of the material), the material abruptly lost itselectric resistivity and could conduct electric current without any loss ofenergy. Physicists have studied the behavior of a superconductor when it issubjected to a magnetic �eld (referred to as the external magnetic �eld todistinguish it from the internal �eld measured at a point inside the mate-rial). One of the early �ndings is that when the magnetic �eld is su�cientlyhigh, a superconductor will lose its superconductivity and revert back to anormal conductor. The least magnetic �eld for which this occurs dependson the temperature at which the experiment is conducted, and is called thecritical �eld Hc(T ). Measurements show that the graph of Hc(T ) is close toa parabola with vertex on T = 0 and horizontal intersect Tc.Physicists explain the loss of resistivity below Tc as a phase transition,conceptually similar to the change of a liquid into a solid upon cooling, al-though the transition is at a subatomic level and no alteration in outwardappearance is discernible. It was Ginzburg and Landau's ingenious idea toapply the theory of phase transition to explain the onset of superconduc-tivity. A crucial step is in postulating the form of the Gibbs free energy tobe minimized. For our purpose, it su�ces to say that the electro-magneticproperties of the superconductor are completely described by two quanti-ties, the order parameter �(x) and the vector potential A(x), de�ned in2



the three-dimensional region 
 occupied by the material. The former is acomplex-valued scalar function � : 
 ! C (analogous to the wave functionin quantum theory), and the latter is a real-valued three-dimensional vec-tor A : 
 ! R3. The Ginzburg-Landau theory hypothesizes that the pair(�;A) seeks to minimize the Gibbs energy functionalG = Z
  �j�j2 + 12 j�j4 + �����r�2 � iA������2 + jr�A�Hj2! d
; (1:1)where � is a characteristic constant of the material called its Ginzburg-Landau parameter, i = p�1, and H is the external magnetic �eld. Itappears as if the temperature T does not play a role in the energy functional.This is not true. The formula for the Gibbs free energy in terms of knownphysical quantities is rather complicated. It is only after some suitablescaling (with scaling constants depending on T ) of the quantities � and Athat the formula reduces to the simpler form (1.1). Thus, after the � and Aare solved by minimizing (1.1), they should be scaled back to give the actualphysical values representing the system. The �nal answers will then containthe temperature T . We also point out that the Ginzburg-Landau equationsare believed to be valid only for ideal superconductors and at temperaturesnear Tc.No measurable quantities actually correspond directly to � andA; rather,physical quantities are given by values derived from � and A. For instance,the density of superelectrons is j�j2 and the superconducting current isr � r � A. It can happen that two distinct pairs (�1;A1) and (�2;A1)give identical answers when used to compute these measurable quantities.More precisely, (�1;A1) and (�2;A1) are said to be gauge equivalent if thereexists a scalar function �(x) such that�1 = �2ei�(x); (1:2)A1 = A2 +r�(x): (1:3)The correspondence that gives (�1;A1) from (�2;A2) is called a gauge trans-form. All gauge equivalent pairs represent the same physical state. In par-ticular, they all give the same Gibbs free energy when substituted into (1.1).Two- and three-dimensional Ginzburg-Landau systems have very richstructures. The existence of vortex solutions, �rst shown by Abrikosov, ledto the discovery of Type II superconductors (we refer the reader to any ofthe books and articles cited above). 3



The special case of a superconducting thin �lm is idealized by taking 
to be an unbounded slab of thickness 2l, 
 = f(x; y; z) : �l < x < lg. Whenthe external magnetic �eld H is parallel (also said to be tangential) to the�lm, one assumes that only the component of A parallel to H is signi�cantand that both � and A are uniform in the y and z directions. In reality, fora given external magnetic �eld H and Ginzburg-Landau constant �, theseassumptions are approximately valid only when the thickness is su�cientlysmall. The ensuing mathematics problem, however, is well de�ned for allpositive values of the parameters. In addition, a suitable gauge can be chosento reduce � to a real-valued function. To summarize, in the one-dimensionalcase, the electromagnetic state of the superconducting �lm is described bya pair of scalar functions (�(x); �(x)) that minimizes the energy functionalG = Z l�l  a2�22 � �2 + 12�4 + �02�2 + (a0 �H)2! dx: (1:4)In the di�erential equation approach, the minimizer of the energy func-tional satis�es the following Ginzburg-Landau system of equations,( �(x)00 = �2 ��(x)2 + a(x)2 � 1��(x); x 2 (�l; l)a00(x) = �2(x)a(x); (1:5)with the natural boundary conditions�0(�l) = 0; a0(�l) = H: (1:6)A solution of the Ginzburg-Landau system, on the other hand, need notbe a minimizer of the energy functional. A symmetric solution of (1.5) isone that satis�es �(�x) = �(x) and a(�x) = �a(x) or, alternatively, theboundary conditions�0(0) = �0(l) = a(0) = 0; a0(l) = H: (1:7)The one-dimensional problem has been studied by the authors [13], [14],[5], [16], [17], [19]. Odeh [14] gave an existence proof of the minimizer basedon a variational approach. More recently, Yang [18] gave proofs of the exis-tence and regularity of the solutions. For certain ranges of the parameters,the minimizer is the trivial solution �(x) = 0, which corresponds to thenormal (nonsuperconducting) state of the material. The more interesting4



case is, of course, when the minimizer is nontrivial. Wang and Yang [16]showed the existence of a minimizer in the class of symmetric solutions andderived some useful properties of a nontrivial symmetric minimizer, amongthem the fact that � is positive and monotonically decreasing in [0; 1] anda is positive and monotonically increasing in [0; 1].The question of uniqueness remains open. One approach to tackle theproblem is to study the bifurcation curve. One or more of the three param-eters H; l, and � are varied and the corresponding boundary value problem(BVP) is solved. Some characteristic value of the solution, usually max�,is then plotted against the parameter(s) to obtain the bifurcation curve. InSection 2, we show that the bifurcation curve for the symmetric solution,relating �(0) to H , is the graph of a continuous function.If the Ginzburg-Landau system has a unique solution, then the energyfunctional has a unique minimizer, which must then also be symmetric. Un-fortunately, numerical experiments indicate that, in general, a solution tothe system is not unique and not even necessarily symmetric. A study ofthe asymptotic behavior and bifurcation of the solutions of the Ginzburg-Landau system can be found in [3]. We have discovered through numericalexperiments examples in which there can be three nontrivial symmetric so-lutions. There is strong evidence, but still unproven, that for any given �,uniqueness prevails when l is su�ciently small.Another interesting problem is the existence of the upper critical �eld.In Section 4 of [16], Wang and Yang mentioned that \it seems impossible toachieve a sharp veri�cation of : : : [the existence of] a �nite critical [magnetic�eld]." They managed to show the weaker result that as H ! 1, thecorresponding � ! 0 uniformly. We give a rigorous proof of the existenceof the critical �eld in Section 3.We return to the uniqueness question in Section 4. Even for a scalar�eld equation, uniqueness can be di�cult to show. A method �rst used byCo�man has recently been applied to resolve some long-standing conjecturesinvolving semilinear elliptic equations; see [10], [11], [12]. In the case ofsystems of equations, very few uniqueness results are known, except whenthe energy functionals are convex, leading to equations of sublinear type.In Section 4 we use the Kolodner-Co�man method to obtain a uniquenessresult for a boundary value problem of the Ginzburg-Landau system with�xed-end boundary conditions for � that is decreasing.5



2 The Symmetric BVP: Monotonic Shooting andthe Bifurcation CurveWe scale the symmetric Ginzburg-Landau equations (1.5) to �t into the unitinterval [0; 1] instead of [0; l], and we use the new constantsK = �2l2; L = l2; h = lH; (2:1)to obtain the system( �(x)00 = K ��(x)2 + a(x)2 � 1��(x); x 2 (0; 1)a00(x) = L�2(x)a(x); ` (2:2)with boundary conditions�0(0) = �0(1) = a(0) = 0; a0(1) = h: (2:3)The system always has a trivial solution, �(x) = 0 and a(x) = hx. Asshown in [16], the physically interesting solutions (namely, the minimizerof the energy functional), if nontrivial, must be positive and monotonic in[0; 1]. The maximum value of � is �(0).We assume that K and L are given, and we solve the boundary valueproblem for varying h. The set of pairs (�(0); h) forms the bifurcationcurve of the system. We present a monotone shooting method to solve theboundary value problem.Let � < 1 and � be given positive numbers. We solve (2.2) as an initialvalue problem with the initial values�(0) = �; �0(0) = a(0) = 0; a0(0) = �; (2:4)and denote the solution as�(x;�; �) and a(x;�; �) (2:5)to emphasize the dependence on the initial values. We can no longer guar-antee that �(x;�; �) remains positive in [0; 1], nor can we guarantee that �and a remain �nite for all x 2 [0; 1].The fact that the right-hand sides of the equations in (2.2) have co-e�cients that are increasing functions of � and a (when both are positive)6



yields a useful comparison result. We need the following form of the classicalSturm comparison theorem in the proof.Sturm Comparison Theorem. Suppose that y and Y are solutions ofthe second order di�erential equationsy00 = q(x)y; Y 00 = Q(x)Y; x 2 (c; d); (2:6)respectively, and that the following comparison conditions hold:q(x) � Q(x); q(x) 6� Q(x); y0(c)y0(c) � Y 0(c)Y (c) : (2:7)Then y0(d)y0(d) < Y 0(d)Y (d) : (2:8)As a consequence, y oscillates strictly more (so y bends downward faster)than Y in (c; d). If, furthermore,y(c) � Y (c); (2:9)then y(d) < Y (d) and y0(d) < Y 0(d): (2:10)Lemma 1 For �xed x, the values �(x;�; �), �0(x;�; �), a(x;�; �), anda0(x;�; �) are strictly increasing in � and �, as long as the values remainpositive and �nite.Proof. Suppose that � < � and � < �. For simplicity, we write �(x) =�(x;�; �) and �(x) = �(x;�; �), with similar notations for a(x). Then�(x) < �(x) and a(x) < a(x) (2:11)for x > 0 and x su�ciently near 0. If the inequalities remain true for allx, then we are basically done. Let us suppose the contrary, namely, thatthere is some d < 1, such that (2.11) holds for all x 2 (0; d) but that either�(d) = �(d) or a(d) = a(d). In (0; d), the right-hand sides of (2.2) for � anda have smaller coe�cients than those for � and a. By the Sturm comparisontheorem, � and a oscillate strictly more than � and a, respectively. Then7



�(d) < �(d) and a(d) < a(d), contradicting our assumption. Hence (2.11)must hold for all x. That the same inequalities hold between the derivative ofthe solutions is the last assertion in the conclusion of the Sturm comparisontheorem.Lemma 2 For any 0 < � < 1, there exists one and only one � = �(�)such that (�(x;�(�); �); a(x;�(�); �)) is a solution to the Ginzburg-Landauboundary value problem (2.2){(2.3).Proof. Uniqueness is a consequence of Lemma 1. Existence can be provedby a shooting argument. If we choose � = 0, then �(x; 0; �) is decreasingin x, so either � crosses the x axis before reaching 1 or �(1; 0; �) < 0. Ifwe choose � su�ciently large, then �(x;�; �) will increase very rapidly afteran initial dip; � will either blow up at a �nite point or �0(1;�; �) will begreater than 0. A continuity argument then gives an intermediate � suchthat �0(1;�; �) = 0; and we have a solution to the boundary value problem.Lemma 3 The correspondence �(�) : � 7! � asserted in Lemma 2 is acontinuous decreasing function.Proof. Monotonicity is a consequence of Lemma 1. Continuity follows ifwe can show that the range of the function is onto an interval. To thisend, let �1 = �(�1) < �2 = �(�2) be two given images in the range, and let�1 < �0 < �2. We have to show that there exists a �0 such that �(�0) = �0.By Lemma 1, �0(1; �1; �0) > �0(1; �1; �1) = 0 (2:12)and �0(1; �2; �0) < �0(1; �2; �1) = 0: (2:13)By continuity, some intermediate �0 exists such that �0(1; �0; �0) = 0.Theorem 1 The bifurcation curve of our boundary value problem is theunion of the positive h axis (which represents the trivial solution) and thegraph of the continuous composite function� 7�! �(�) 7�! h(�) = a0(1;�(�); �): (2:14)8



All curves start from the h axis with zero slope and end at � = 1 on the �axis. The initial height of the curve at the h axis is the value � for whichthe boundary value problemu00 = K(h2x2 � 1)u; u0(0) = u0(1) = 0 (2:15)has a positive solution.Proof. The behavior of the bifurcation curve near � = 0 can be examinedusing classical asymptotic analysis; we omit the details. We merely pointout the heuristic arguments that as � ! 0, the second equation in (2.2)degenerates to a00 = 0. The limiting solution a is thus a linear functionof x, and the �rst equation in (2.2) degenerates to (2.15). The boundaryconditions in (2.15) are derived from the boundary conditions on �.h
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L = 1, K = 1 �Figire 1. Typical bifurcation curvesEven though �(�) is monotone, h(�) need not be so. Indeed, the bound-ary value problem has a unique solution if and only if h(�) is a strictlydecreasing function of �. We implemented the monotone shooting methodin MATLAB. In our program we use � as the shooting parameter and ad-just � to satisfy the boundary conditions. Two typical bifurcation curves areshown in Figure 1. The di�erential equations are solved by using a fourth-�fth order Runge-Kutta method with error bound estimation. We used the9



error bound of 10�10 for most of our experiments and even smaller boundsif there is a need for higher precision.The vertical axis is h, and the horizontal axis is �. The lower curve istypical for L small. It is monotone, and uniqueness for the boundary valueproblem prevails. The upper curve is representative for L large. Whenevera horizontal line intersects the curve at more than one point, the boundaryvalue problem has multiple solutions. For a while, we conjectured thatall cases of nonuniqueness occur with a unimodal bifurcation curve. Moreextensive experiments turned up the example L = 4; K = 3:6, in which thebifurcation curve �rst decreases and then increases to a global maximumbefore it decreases again to the point � = 1; h = 0. Table 1 lists the resultsof our numerical computation. The �rst column gives � and the secondcolumn the corresponding h. Similar behavior was observed by varying Kin the range 3:4 to 4:1, while keeping L = 4.Table 1. Results with L = 4, K = 3:4 { 4:1� h0:86920073040461 2:028923785335880:83936182769457 2:068034273044920:80640879787522 2:088839389281380:77018919995251 2:097000473418070:73046894383778 2:097214116265070:68689914935239 2:093221434831590:63895895150244 2:087886027694350:58585181632874 2:083305449614890:52630220502554 2:080934453445340:45810552909473 2:081707065929650:37692312413923 2:086149989054500:27174054997177 2:094483139068680:07322708691641 2:106705296255343 Existence of a Critical Magnetic FieldThe critical magnetic �eld of (2.2) is de�ned to be the smallest value hc suchthat the only solution of the boundary value problem is the trivial solution.10



In the case of the symmetric boundary value problem, the existence of thecritical �eld is a simple consequence of the continuity of h as a function of �.In fact, hc is the supremum of h(�) over [0; 1], since for h > hc, the only pointon the bifurcation curve with height h lies on the h axis and corresponds tothe trivial solution. This proof, however, is not applicable to the full-rangeGinzburg-Landau boundary value problem, since the continuity of h on �has not yet been proved. We give below a di�erent proof of the existenceof hc that is applicable in general. The idea of the proof is to show thatwhen h is su�ciently large, then a must be su�ciently large outside of aneighborhood of x = 0. Thus the coe�cient of the right-hand side of the �rstequation must be very large, outside of a neighborhood of x = 0. The Sturmcomparison theorem can then be used to conclude that � cannot oscillatefast enough to satisfy the endpoint conditions at x = 1.Theorem 2 For given K and L, there exists a critical magnetic �led hcsuch that for all h > hc, the Ginzburg-Landau boundary value problem hasonly the trivial solution.Proof. We give the proof only for the symmetric problem. It can easily begeneralized to the full-range problem. Since �(x) � 1, the second equationin (2.2) gives the di�erential inequalitya00(x) � La(x): (3:1)Solving this inequality with the given boundary conditions on a givesa(x) � h sinh(pLx)sinh(pL) : (3:2)When h is su�ciently large, the above lower bound of a(x) can be madearbitrarily large in [1=2; 1]. We thus havea(x) � ( 0; in [0; 1=2]k; in [1=2; 1] ; (3:3)with k ! 1 as h ! 1. The coe�cient on the right-hand side of the �rstequation in (2.2) satis�es the inequality(a2 + �2 � 1) � q(x) = ( �1; in [0; 1=2]k2 � 1; in [1=2; 1] : (3:4)11



Using the Sturm comparison theorem, we conclude that � oscillates less thanthe solution of the di�erential equationu00(x) = q(x)u(x); u(0) = �(0); u0(0) = 0: (3:5)In particular, if � is nontrivial, �0(1) > u0(1). Direct computation showsthat u0(1) > 0 for k su�ciently large. Hence, � cannot satisfy the boundarycondition �0(1) = 0. We have thus proved that � cannot be nontrivial.4 Uniqueness of a Related BVPThe uniqueness of the minimizer of the Gibbs energy functional for both thefull-range and symmetric Ginzburg-Landau system proves to be an elusiveconjecture. The uniqueness of the positive solution of the correspondingGinzburg-Landau equations is not even true in general. It is thus surprisingto be able to obtain uniqueness for a related problem. As far as we know, ourresult is the �rst application of the Kolodner-Co�man method to a systemof equations.We consider the Ginzburg-Landau equations (2.2) subject to the bound-ary conditions�(0) = �0; �(1) = �1 are given; a(0) = 0; a0(1) = h (4:1)and the condition (we con�ne ourselves to positive decreasing �)�(x) > 0; �0(x) < 0: (4:2)Theorem 3 The Ginzburg-Landau boundary value problem (2.2) subject to(4.1) and (4.2) has at most one solution.One can solve this boundary value problem with a monotone shootingmethod similar to the one described in Section 2 for the symmetric problem.Instead of using the initial height of � as the shooting parameter, we use theinitial slope �0(0) = . One can easily prove a comparison result similar toLemma 1, using � and  instead of � and �. To solve the boundary valueproblem, one shoots out a solution � with initial height �0 and some choseninitial slope . The initial slope � of a is then adjusted so that �(1) hits12



the target height �1. This de�nes a function that maps  to � and then toh() = a0(1;�; ). Uniqueness will hold if the correspondence  7! h is amonotonic function.Suppose we already have a solution to our boundary value problem.Following the Kolodner-Co�man method, we de�nev(x) = @�(x)@ ; w(x) = @a(x)@ : (4:3)Uniqueness follows if we can show thatw0(1) < 0: (4:4)To this end, we investigate the di�erential equations satis�ed by v and w,obtained by di�erentiating (2.2) with respect to :( v00 = K �a2 + 3�2 � 1� v + 2Ka�ww00 = 2La�v + L�2w; (4:5)v(0) = v(1) = 0; v0(0) = 1; w(0) = 0: (4:6)The condition v0(0) = 1 implies that v(x) is positive in some neighborhoodof x = 0.We regard � and a as known functions; then (4.5) is a system of linearequations in v and w. The system (4.5), in fact, has another solution. It iseasy to verify that v(x) = �0(x); w(x) = a0(x) (4:7)satisfy (4.5). Note the following properties of v and w.Lemma 4 v(x) < 0; w(x) > 0; x 2 [0; 1]; (4:8)w0(1) > 0: (4:9)For any positive constant c, the functions v̂ = v + cv and v̂ = w + cw aresolutions of (4.5).Now suppose that (4.4) is not true.13



Lemma 5 If w0(1) � 0, then there exists a c greater than 0 such thatv̂(x) � 0; ŵ(x) � 0; x 2 [0; 1]; (4:10)and one of the two functions v̂ and ŵ touches the x axis tangentially at aninterior point in (0; 1).Proof. Since v and v have opposite signs for x near 0, v̂ cannot remainnegative for all positive c. Let c1 be the critical value after which v is nolonger always negative. If ŵ(x) = w(x) + c1w(x) � 0 for all x, then c1 isthe choice of c required in the lemma. Otherwise, let c2 be the critical valueafter which w is no longer always positive. Then c2 is the choice of c if wecan show that ŵ(x) = w(x) + c2w(x) does not cross the x axis at x = 1.This follows from the fact that ŵ0(1) = w0(1) + c2w0(1) > 0.We can now derive a contradiction, to complete the proof of Theorem 3.First we see that v̂ and ŵ cannot be tangential to the x axis at the samepoint, because, by the uniqueness theorem for linear systems of equations,the only solution for which both functions are tangential to the x axis at thesame point is the trivial solution. Suppose v̂ is tangential to the x axis atx = �. Then ŵ(�) > 0. The point � is a local maximum of v̂, so v̂00(�) � 0.However, the �rst equation in (4.5) gives v̂00(�) = 2Ka(�)�(�)ŵ(�) > 0, acontradiction. A similar contradiction can be obtained for the case when ŵtouches the x axis at a point �, by using the second equation in (4.5) andthe fact that ŵ has a local minimum at �.References[1] Abrikosov, A., On the magnetic properties of superconductors of thesecond type, Zh. Eksperim. i Teor. Fiz., 32 (1957), 1442{1452. [Englishtranslation: Soviet Phys. { JETP, 5 (1957), 1174{1182.][2] Bardeen, J., Cooper, L., and Schrie�er, J., Theory of superconductivity,Phys. Rev., 108 (1957), 1175{1204.[3] Bolley, C., and Hel�er, B., Rigorous results on Ginzburg-Landau mod-els in a �lm submitted to an exterior parallel magnetic �led, preprint,1993. 14
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