
Mechanics of Blood VesselsThomas R. Can�eldArgonne National LaboratoryArgonne, IllinoisandPhilip B. DobrinHines VA Hospital and Loyola University Medical CenterHines, IllinoisIntroductionThis chapter is concerned with the mechanical behavior of blood vesselsunder static loading conditions and the methods required to analyze thisbehavior. The assumptions underlying this discussion are for ideal bloodvessels that are at least regionally homogeneous, incompressible, elastic,and cylindrically orthotropic. Although physiological systems are nonideal,much understanding of vascular mechanics has been gained through the useof methods based upon these ideal assumptions.Homogeneity of the vessel wall. On visual inspection, blood vessels ap-pear to be fairly homogeneous and distinct from surrounding connectivetissue. The inhomogeneity of the vascular wall is realized when one exam-ines the tissue under a lowpower microscope, where one can easily identifytwo distinct structures: the media and adventitia. For this reason the theassumption of vessel wall homogeneity is applied cautiously. Such an as-sumption may be valid only within distinct macroscopic structures. How-ever, few investigators have incorporated macroscopic inhomogeneity intostudies of vascular mechanics [17].Incompressibility of the vessel wall. Experimental measurement of wallcompressibility of 0.06% at 270 cm of H2O indicates that the vessel canbe considered incompressible when subjected to physiological pressure andload [2]. In terms of the mechanical behavior of blood vessels, this is smallrelative to the large magnitude of the distortional strains that occur whenblood vessels are deformed under the same conditions. Therefore, vascu-lar compressibility may be important to understanding other physiologicalprocesses related to blood vessels, such as the transport of interstitial 
uid.1



Inelasticity of the vessel wall. That blood vessel walls exhibit inelasticbehavior such as length{tension and pressure{diameter hysteresis, stress re-laxation, and creep has been reported extensively [1], [10]. However, bloodvessels are able to maintain stability and contain the pressure and 
ow ofblood under a variety of physiological conditions. These conditions are dy-namic, but slowly varying with a large static component.Residual stress and strain. Blood vessels are known to retract both lon-gitudinally and circumferentially after excision. This retraction is caused bythe relief of distending forces resulting from internal pressure and longitudi-nal tractions. The magnitude of retraction is in
uenced by several factors.Among these factors are growth, aging, and hypertension. Circumferentialretraction of medium{caliber blood vessels, such as the carotid, illiac, andbracheal arteries, can exceed 70% following reduction of internal blood pres-sure to zero. In the case of the carotid artery, the amount of longitudinalretraction tends to increase during growth and to decrease in subsequentaging [5]. It would seem reasonable to assume that blood vessels are in anearly stress{free state when they are fully retracted and free of externalloads. This con�guration also, seems to be a reasonable choice for the ref-erence con�guration. However, this ignores residual stress and strain e�ectsthat have been the subject of current research [4], [16], [11], [12], [13], [14].Blood vessels are formed in a dynamic environment which gives rise toimbalances between the forces that tend to extend the diameter and lengthand the internal forces that tend to resist this extension. This imbalance isthought to stimulate the growth of elastin and collagen and to e�ectivelyreduce the stresses in the underlying tissue. Under these conditions it is notsurprising that a residual stress state exists when the vessel is fully retractedand free of external tractions. This process has been called remodeling [11].Striking evidence of this remodeling is found when a cylindrical slice ofthe fully retracted blood vessel is cut longitudinally through the wall. Thecylinder springs open, releasing bending stresses kept in balance by thecylindrical geometry [16].Vascular AnatomyA blood vessel can be divided anatomically into three distinct cylidricalsections when viewed under the optical microscope. Starting at the insideof the vessel they are the intima, the media, and the adventitia. Thesestructures have distinct functions in terms of the blood vessel physiologyand mechanical properties. 2



The intima consists of a thin monolayer of endothelial cells that line theinner surface of the blood vessel. The endothelial cells have little in
uenceon blood vessel mechanics, but do play an important role in hemodynamicsand transport phenomena. Because of their anatomical location, these cellsare subjected to large variations in stress and strain as a result of pulsatilechanges in blood pressure and 
ow.The media represents the major portion of the vessel wall and providesmost of the mechanical strength necessary to sustain structural integrity.The media is organized into alternating layers of interconnected smoothmuscle cells and elastic lamellae. There is evidence of collagen throughoutthe media. These small collagen �bers are found within the bands of smoothmuscle and may participate in the transfer of forces between the smoothmuscles cells and the elastic lamellae. The elastic lamellae are composedprincipally of the �berous protein elastin. The number of elastic lamellaedepends upon the wall thickness and the anatomical location [18]. In the caseof the canine carotid, the elastic lamellae account for a major componentof the static structural response of the blood vessel [6]. This response ismodulated by the smooth muscle cells, which have the ability to activelychange the mechanical characteristics of the wall [7].The adventitia consists of loose, more disorganized �berous connectivetissue, which may have less in
uence on mechanics.Axisymmetric DeformationIn the following discussion we will concern ourselves with deformation ofcylindrical tubes, see Fig. 1. Blood vessels tend to be nearly cylindricalin situ and tend to remain cylindrical when a cylindrical section is excisedand studied in vitro. Only when the vessel is dissected further does thegeometry begin to deviate from cylindrical. For this deformation there is aunique coordinate mapping;(R;�; Z) �! (r; �; z) ; (1)where the undeformed coodinates are given by (R;�; Z) and the deformedcoordinates are given by (r; �; z). The deformation is given by a set ofrestricted functions,r = r(R) ; (2)� = �� ; (3)3



z = �Z + c1 ; (4)(5)where the constants � and � have been introduced to account for a uniformlongitudinal strain and a symmetric residual strain that are both indepen-dent of the coordinate �.
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Figure 1: Cylindrical geometry of a blood vessel: top: stress{free' referencecon�guration; middle: fully retracted vessel free of external traction; bottom:vessel in situ under longitudinal tether and internal pressurizationIf � = 1, there is no residual strain. If � 6= 1, residual stresses andstrains are present. If � > 1, a longitudinal cut through the wall will causethe blood vessel to open up, and the new cross{section will form a c{shapedsection of an annulus with larger internal and external radii. If � < 1, thecylindrical shape is unstable, but a thin section will tend to overlap itself.4



In Choung and Fung's formulation, � = �=�0, where the angle �0 is halfthe angle spanned by the open annular section [4].For cylindrical blood vessels there are two assumed constraints. The �rstassumption is that the longitudinal strain is uniform through the wall andtherefore�z = � = a constant (6)for any cylindrical con�guration. Given this, the principal stretch ratios arecomputed from the above functions as�r = drdR ; (7)�� = � rR (8)�z = � : (9)The second assumption is wall incompressibility, which can be expressed by�r���z � 1 (10)or �� rR drdR = 1 (11)and thereforerdr = 1��RdR : (12)Integration of this expression yields the solutionr2 = 1��R2 + c2 ; (13)wherec2 = r2e � 1��R2e : (14)As a result, the principal stretch ratios can be expressed in terms of R asfollows:�r = Rq��(R2 + ��c2) ; (15)�� = s 1�� + c2R2 : (16)5



Experimental MeasurementsThe basic experimental setup required to measure the mechanical propertiesof blood vessels in vitro is described in [7]. It consists of a temperature reg-ulated bath of physiological saline solution to maintain immersed cylindricalblood vessel segments, devices to measure diameter, an apparatus to holdthe vessel at a constant longitudinal extension and to measure longitudinaldistending force, and a system to deliver and control the internal pressureof the vessel with 100% oxygen. Typical data obtained from this type ofexperiment are shown in Figs. 2 and 3.

Figure 2: Pressure{radius curves for the canine carotid artery at variousdegrees of longitudinal extension 6



Figure 3: Longitudinal distending force as a function of radius at variousdegrees of longitudinal extensionEquilibriumWhen blood vessels are excised, they retract both longitudinally and cir-cumferentially. Restoration to natural dimensions requires the applicationof internal pressure, pi, and a longitudinal tether force, FT . The internalpressure and longitudinal tether are balanced by the development of forceswithin the vessel wall. The internal pressure is balance in the circumferentialdirection by a wall tension, T . The longitudinal tether force and pressureare balance by the retractive force of the wall, FR,T = piri ; (17)FR = FT + pi�r2i : (18)7



The �rst equation is the familiar law of Laplace for a cylindrical tubewith internal radius ri. It indicates that the force due to internal pressure,pi, must be balanced by a tensile force (per unit length), T , within the wall.This tension is the integral of the circumferentially directed force intensity(or stress, ��) across the wall:T = Z reri ��dr = ��� h ; (19)where ��� is the mean value of the circumferential stress and h is the wallthickness. Similarly, the longitudinal tether force, FT , and extending forcedue to internal pressure are balanced by a retractive internal force, FR, dueto axial stress, �z , in the blood vessel wall:FR = 2� Z reri �zrdr = ��z �h(re + ri) ; (20)where ��z is the mean value of this longitudinal stress. The mean stressesare calculated from the above equations as��� = pi rih ; (21)��z = FT�h(re + ri) + pi2 rih : (22)The mean stresses are a fairly good approximation for thin walled tubeswhere the variations through the wall are small. However, the range ofapplicability of the thin{wall assumption is dependent upon the materialproperties and geometry. In a linear elastic material, the variation in �� isless than 5% for r=h > 20. When the material is nonlinear or the deforma-tion is large, the variations in stress can be more severe (see Fig. 10).The stress distribution is determined by solving the equilibrium equation,1r ddr (r�r)� ��r = 0 : (23)This equation governs how the two stresses are related and must change inthe cylindrical geometry. For uniform extension and internal pressurizationthe stresses must be functions of a single radial coordinate, r, subject to thetwo boundary conditions for the radial stress:�r(ri; �) = �pi ; (24)�r(re; �) = 0 : (25)8



Strain Energy Density FunctionsBlood vessels are able to maintain their structural stability and containsteady oscillating internal pressures. This property suggest a strong elasticcomponent, which has been called the pseudoelasticity [10]. This elasticresponse can be characterized by a single potential function called the strainenergy density. It is a scalar function of the strains that determines theamount of stored elastic energy per unit volume. In the case of a cylindricallyorthotropic tube of incompressible material, the strain energy density canbe written in the following functional form:W = W �(�r; ��; �z) + �r���zp ; (26)where p is a scalar function of position, R. The stresses are computed fromthe strain energy by the following:�i = �i@W �@�i + p : (27)We make the following transformation [3]� = �rq��(r2 � c2) ; (28)which upon di�erentiation givesrd�dr = ��1(��� ��3) : (29)After these expressions and the stresses in terms of the strain energy densityfunction are introduced into the equilibrium equation we obtain an ordinarydi�erential equation for p:dpd� = �W �;�� �W �;�r��� ��3 � dW �;�rd� (30)subject to the boundary conditionsp(Ri) = pi ; (31)p(Re) = 0 : (32)Isotropic blood vesselsA blood vessel generally exhibit anisotropic behav-ior when subjected to large variations in internal pressure and distendingforce. When the degree of anisotropy is small, the blood vessel may be9



treated as isotropic. For isotropic materials it is convenient to introduce thestrain invariants:I1 = �2r + �2� + �2z ; (33)I2 = �2r�2� + �2��2z + �2z�2r ; (34)I3 = �2r�2��2z : (35)These are measures of strain that are independent of the choice of coordi-nates. If the material is incompressible,I3 = j2 � 1 ; (36)and the strain energy density is a function of the �rst two invariants,W = W (I1; I2) : (37)The least complex form for an incompressible material is the �rst{orderpolynomial, which was �rst proposed by Mooney to characterize rubber,W � = G2 [(I1 � 3) + k(I2 � 3)] : (38)It involves only two elastic constants. A special case, where k = 0, is theneo{Hookean material, which can be derived from thermodynamics princi-ples for a simple solid. Exact solutions can be obtained for the cylindricaldeformation of a thick{walled tube. In the case where there is no residualstrain, we have the following:p = �G(1 + k�2) � log �� + 12�2�2�+ c0 ; (39)�r = G � 1�2�2 + k� 1�2 + 1�2��+ p ; (40)�� = G ��2 + k� 1�2 + �2�2��+ p ; (41)�z = G ��2 + k��2�2 + 1�2��+ p : (42)(43)10



However, these above equations predict stress softening for a vessel subjectedto internal pressurization at �xed lengths, rather than the stress sti�eningobserved in experimental studies on arteries and veins (see Figs. 4 and 5).

Figure 4: Pressure{radius curves for a Mooney{Rivlin tube with the ap-proximate dimensions of the carotidAn alternative isotropic strain energy density function which can predictthe appropriate type of stress sti�ening for blood vessels is an exponentialwhere the argument is a polynomial of the strain invariants. The �rst{orderform is given byW � = G02k1 exp [k1(I1 � 3) + k2(I2 � 3)] : (44)This requires the determination of only two independent elastic constants.The third, G0, is introduced to facilitate scaling of the argument of the ex-ponent (see Figs. 6 and 7). This exponential form is attractive for several11



Figure 5: Longitudinal distending force as a function of radius for theMooney{Rivlin tubereasons. It is a natural extension of the observation that biological tissuessti�ness is proportional to the load in simple elongation. This stress sti�en-ing has been attributed to a statistical recruitment and alignment of tangledand disorganized long chains of proteins. The exponential forms resemblestatistical distrubutions derived from these same arguments.Anisotropic blood vessels. Studies of the orthotropic behavior of bloodvessels may employ polynomial or exponential strain energy density func-tions that include all strain terms or extension ratios. In particular, thestrain energy density function can be of the formW � = qn(�r; ��; �z) (45)or W � = eqn(�r;��;�z) ; (46)12



Figure 6: Pressure{radius curves for tube with the approximate dimensionsof the carotid calculated using an isotropic exponential strain energy densityfunctionwhere qn is a polynomial of order n. Since the material is incompressible,the explicit dependence upon �r can be eliminated either by substituting�r = ��1� ��1z or by assumping that the wall is thin and hence that thecontribution of these terms is small.Care must be taken to formulate expressions that will lead to stressesthat behave properly. For this reason it is convenient to formulate the strainenergy density in terms of the Lagrangian strains,ei = 12(�2i � 1) ; (47)and in this case we can consider polynomials of the lagrangian strains,qn(er; e�; ez). 13



Figure 7: Longitudinal distending force as a function of radius for theisotropic tubeVaishnav et al. [15] proposed using a polynomial of the formW � = nXi=2 iXj=0 ai j�iei�j� ejz (48)to approximate the behavior of the canine aorta. They found better corre-lation with order{three polynomials over order{two, but order{four polyno-mials did not warrant the addition work.Later, Fung et al. [10] found very good correlation with an expressionof the formW = C2 exp ha1(e2� � e�2z ) + a2(e2z � e�2z ) + 2a4(e�ez � e��e�z)i (49)for the canine carotid artery, where e�� and e�z are the strains in a referencecon�guration at in situ length and pressure. Why should this work? One14



Figure 8: Pressure{radius curves for a fully orthotropic vessel calculatedwith an exponential strain energy density functionanswer appears to be related to residual stresses and strains.When residual stresses are ignored, large{deformation analysis of thick{walled blood vessels predicts steep distributions in �� and �z through thevessel walli, with the highest stresses at the interior. This prediction isconsidered signi�cant because high tensions in the inner wall could inhibitvascularization and oxygen transport to vascular tissue.When residual stresses are considered, the stress distributions 
attenconsiderably and become almost uniform at in situ length and pressure.Figure 10 shows the radial stress distributions computed for a vessel with� = 1 and � = 1:11. Takamizawa and Hayashi have even considered thecase where the strain distribution is uniform in situ [13]. The physiologicalimplications are that vascular tissue is in a constant state of 
ux. New tissueis synthesized in a state of stress that allows it to redistribute the internal15



Figure 9: Longitudinal distending force as a function of radius for the or-thotropic vesselloads more uniformly. There probably is no stress{free reference state [8],[11], and [12]. Continuous dissection of the tissue into smaller and smallerpieces would continue to relieve residual stresses and strains [14].�Work sponsored by the U.S. Department of Energy under ContractW-31-109-Eng-38.References[1] Bergel, D. H., `The static elastic properties of the arterial wall', J.Physiol., London, 156: 445{457, 1961.[2] Carew, T. E., Vaishnav, R. N., and Patel, D. J., `Compressibility of thearterial walls', Circ. Res., 23: 61{68, 1968.16



Figure 10: Stress distributions through the wall at various pressures for theorthotropic vessel[3] Chu, B. M., and Oka., S., `In
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