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Introduction

This chapter is concerned with the mechanical behavior of blood vessels
under static loading conditions and the methods required to analyze this
behavior. The assumptions underlying this discussion are for ideal blood
vessels that are at least regionally homogeneous, incompressible, elastic,
and cylindrically orthotropic. Although physiological systems are nonideal,
much understanding of vascular mechanics has been gained through the use
of methods based upon these ideal assumptions.

Homogeneity of the vessel wall. On visual inspection, blood vessels ap-
pear to be fairly homogeneous and distinct from surrounding connective
tissue. The inhomogeneity of the vascular wall is realized when one exam-
ines the tissue under a lowpower microscope, where one can easily identify
two distinct structures: the media and adventitia. For this reason the the
assumption of vessel wall homogeneity is applied cautiously. Such an as-
sumption may be valid only within distinct macroscopic structures. How-
ever, few investigators have incorporated macroscopic inhomogeneity into
studies of vascular mechanics [17].

Incompressibility of the vessel wall. Experimental measurement of wall
compressibility of 0.06% at 270 ¢cm of H20O indicates that the vessel can
be considered incompressible when subjected to physiological pressure and
load [2]. In terms of the mechanical behavior of blood vessels, this is small
relative to the large magnitude of the distortional strains that occur when
blood vessels are deformed under the same conditions. Therefore, vascu-
lar compressibility may be important to understanding other physiological
processes related to blood vessels, such as the transport of interstitial fluid.



Inelasticity of the vessel wall. That blood vessel walls exhibit inelastic
behavior such as length—tension and pressure—diameter hysteresis, stress re-
laxation, and creep has been reported extensively [1], [10]. However, blood
vessels are able to maintain stability and contain the pressure and flow of
blood under a variety of physiological conditions. These conditions are dy-
namic, but slowly varying with a large static component.

Residual stress and strain. Blood vessels are known to retract both lon-
gitudinally and circumferentially after excision. This retraction is caused by
the relief of distending forces resulting from internal pressure and longitudi-
nal tractions. The magnitude of retraction is influenced by several factors.
Among these factors are growth, aging, and hypertension. Circumferential
retraction of medium—caliber blood vessels, such as the carotid, illiac, and
bracheal arteries, can exceed 70% following reduction of internal blood pres-
sure to zero. In the case of the carotid artery, the amount of longitudinal
retraction tends to increase during growth and to decrease in subsequent
aging [5]. It would seem reasonable to assume that blood vessels are in a
nearly stress—free state when they are fully retracted and free of external
loads. This configuration also, seems to be a reasonable choice for the ref-
erence configuration. However, this ignores residual stress and strain effects
that have been the subject of current research [4], [16], [11], [12], [13], [14].

Blood vessels are formed in a dynamic environment which gives rise to
imbalances between the forces that tend to extend the diameter and length
and the internal forces that tend to resist this extension. This imbalance is
thought to stimulate the growth of elastin and collagen and to effectively
reduce the stresses in the underlying tissue. Under these conditions it is not
surprising that a residual stress state exists when the vessel is fully retracted
and free of external tractions. This process has been called remodeling [11].
Striking evidence of this remodeling is found when a cylindrical slice of
the fully retracted blood vessel is cut longitudinally through the wall. The
cylinder springs open, releasing bending stresses kept in balance by the
cylindrical geometry [16].

Vascular Anatomy

A blood vessel can be divided anatomically into three distinct cylidrical
sections when viewed under the optical microscope. Starting at the inside
of the vessel they are the intima, the media, and the adventitia. These
structures have distinct functions in terms of the blood vessel physiology
and mechanical properties.



The intima consists of a thin monolayer of endothelial cells that line the
inner surface of the blood vessel. The endothelial cells have little influence
on blood vessel mechanics, but do play an important role in hemodynamics
and transport phenomena. Because of their anatomical location, these cells
are subjected to large variations in stress and strain as a result of pulsatile
changes in blood pressure and flow.

The media represents the major portion of the vessel wall and provides
most of the mechanical strength necessary to sustain structural integrity.
The media is organized into alternating layers of interconnected smooth
muscle cells and elastic lamellae. There is evidence of collagen throughout
the media. These small collagen fibers are found within the bands of smooth
muscle and may participate in the transfer of forces between the smooth
muscles cells and the elastic lamellae. The elastic lamellae are composed
principally of the fiberous protein elastin. The number of elastic lamellae
depends upon the wall thickness and the anatomical location [18]. In the case
of the canine carotid, the elastic lamellae account for a major component
of the static structural response of the blood vessel [6]. This response is
modulated by the smooth muscle cells, which have the ability to actively
change the mechanical characteristics of the wall [7].

The adventitia consists of loose, more disorganized fiberous connective
tissue, which may have less influence on mechanics.

Axisymmetric Deformation

In the following discussion we will concern ourselves with deformation of
cylindrical tubes, see Fig. 1. Blood vessels tend to be nearly cylindrical
in situ and tend to remain cylindrical when a cylindrical section is excised
and studied in vitro. Only when the vessel is dissected further does the
geometry begin to deviate from cylindrical. For this deformation there is a
unique coordinate mapping;

(R,0,7) — (r,0,2), (1)

where the undeformed coodinates are given by (R, 0, 7) and the deformed
coordinates are given by (r,6,z). The deformation is given by a set of
restricted functions,

ro= r(R), (2)
9 = 530, (3)



2= wta, (1)

(5)

where the constants g and 3 have been introduced to account for a uniform
longitudinal strain and a symmetric residual strain that are both indepen-

dent of the coordinate ©.
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Figure 1: Cylindrical geometry of a blood vessel: top: stress—free’ reference
configuration; middle: fully retracted vessel free of external traction; bottom:
vessel in situ under longitudinal tether and internal pressurization

If 3 = 1, there is no residual strain. If g # 1, residual stresses and
strains are present. If 3 > 1, a longitudinal cut through the wall will cause
the blood vessel to open up, and the new cross—section will form a c—shaped
section of an annulus with larger internal and external radii. If g < 1, the
cylindrical shape is unstable, but a thin section will tend to overlap itself.



In Choung and Fung’s formulation, § = 7/0@¢, where the angle @q is half
the angle spanned by the open annular section [4].

For cylindrical blood vessels there are two assumed constraints. The first
assumption is that the longitudinal strain is uniform through the wall and
therefore

A, = 1t = a constant (6)

for any cylindrical configuration. Given this, the principal stretch ratios are
computed from the above functions as

dr
A’/’ = T35
iR (7)
r
Ao = By (8)
A = [ (9)
The second assumption is wall incompressibility, which can be expressed by
Ardgh, =1 (10)
or
r dr
-1 11
Prp s (11)
and therefore
1
rdr = —RdR . 12
Bu (12)
Integration of this expression yields the solution
1
= —R’+¢y, 13
Bu ’ (13)
where
1
co =712 - —R?. 14
’ By (1)

As a result, the principal stretch ratios can be expressed in terms of R as
follows:

o R , (15)

Bu(R* + Bpucs)

1
Ao = ,/@Jr%. (16)




Experimental Measurements

The basic experimental setup required to measure the mechanical properties
of blood vessels in vitro is described in [7]. It consists of a temperature reg-
ulated bath of physiological saline solution to maintain immersed cylindrical
blood vessel segments, devices to measure diameter, an apparatus to hold
the vessel at a constant longitudinal extension and to measure longitudinal
distending force, and a system to deliver and control the internal pressure
of the vessel with 100% oxygen. Typical data obtained from this type of
experiment are shown in Figs. 2 and 3.
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Figure 2: Pressure-radius curves for the canine carotid artery at various
degrees of longitudinal extension
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Figure 3: Longitudinal distending force as a function of radius at various
degrees of longitudinal extension

Equilibrium

When blood vessels are excised, they retract both longitudinally and cir-
cumferentially. Restoration to natural dimensions requires the application
of internal pressure, p;, and a longitudinal tether force, Frr. The internal
pressure and longitudinal tether are balanced by the development of forces
within the vessel wall. The internal pressure is balance in the circumferential
direction by a wall tension, 7. The longitudinal tether force and pressure
are balance by the retractive force of the wall, Fg,

T = pri, (17)
Fr = Fr+pmr?. (18)



The first equation is the familiar law of Laplace for a cylindrical tube
with internal radius r;. It indicates that the force due to internal pressure,
pi, must be balanced by a tensile force (per unit length), 7', within the wall.
This tension is the integral of the circumferentially directed force intensity
(or stress, og) across the wall:

T = /eagdr = ogh, (19)

where oy is the mean value of the circumferential stress and h is the wall
thickness. Similarly, the longitudinal tether force, Fr, and extending force
due to internal pressure are balanced by a retractive internal force, Fr, due
to axial stress, o,, in the blood vessel wall:

Fr = 27T/60'Z7‘d7‘ = O-zﬂ-h(re—l_ri)v (20)

where o, is the mean value of this longitudinal stress. The mean stresses
are calculated from the above equations as
— ’[‘Z'

Gy = pzﬁ 5 (21)

— Fr PiTi
7 = Th(re 4+ ;) T (22)
The mean stresses are a fairly good approximation for thin walled tubes
where the variations through the wall are small. However, the range of
applicability of the thin—wall assumption is dependent upon the material
properties and geometry. In a linear elastic material, the variation in oy is
less than 5% for r/h > 20. When the material is nonlinear or the deforma-
tion is large, the variations in stress can be more severe (see Fig. 10).
The stress distribution is determined by solving the equilibrium equation,

li(7‘076) _Z_y. (23)

rdr r

This equation governs how the two stresses are related and must change in
the cylindrical geometry. For uniform extension and internal pressurization
the stresses must be functions of a single radial coordinate, r, subject to the
two boundary conditions for the radial stress:

op(ri, ) = —pi, (24)
UT(Tewu) = 0. (25)



Strain Energy Density Functions

Blood vessels are able to maintain their structural stability and contain
steady oscillating internal pressures. This property suggest a strong elastic
component, which has been called the pseudoelasticity [10]. This elastic
response can be characterized by a single potential function called the strain
energy density. It is a scalar function of the strains that determines the
amount of stored elastic energy per unit volume. In the case of a cylindrically
orthotropic tube of incompressible material, the strain energy density can
be written in the following functional form:

W = W*(Arv A@v Az) + ATAHAZP ) (26)

where p is a scalar function of position, K. The stresses are computed from
the strain energy by the following;:
ow=

o= N

We make the following transformation [3]

Or

A= —— — (28)
\VBu(r? = c2)
which upon differentiation gives
dA _
P = 7NN - A (29)

After these expressions and the stresses in terms of the strain energy density
function are introduced into the equilibrium equation we obtain an ordinary
differential equation for p:

_p — ﬁ 7A9 ;?)AT _ yAT (30)
dA BA — pA dA

subject to the boundary conditions
p(Ri) = pi, (31)
p(R.) = 0. (32)

Isotropic blood vessels A blood vessel generally exhibit anisotropic behav-
ior when subjected to large variations in internal pressure and distending
force. When the degree of anisotropy is small, the blood vessel may be



treated as isotropic. For isotropic materials it is convenient to introduce the
strain invariants:

I = M4 X242, (33)
I, = MAZ+ A2 402002 (34)
I; = M2A2\%. (35)

These are measures of strain that are independent of the choice of coordi-
nates. If the material is incompressible,

L=j"=1, (36)
and the strain energy density is a function of the first two invariants,
W =W(l,lz) . (37)

The least complex form for an incompressible material is the first—order
polynomial, which was first proposed by Mooney to characterize rubber,

G

w 5 (L1 —3)+ k(I —3)] . (38)

It involves only two elastic constants. A special case, where k = 0, is the
neo—Hookean material, which can be derived from thermodynamics princi-
ples for a simple solid. Exact solutions can be obtained for the cylindrical
deformation of a thick—walled tube. In the case where there is no residual
strain, we have the following:

log A 1

~ _an w[ —] , 39

P (—I_ Iu) 1 +2H2A2 +CO ( )
M1 1 1

o, = G —+k<—+—)]‘|‘Pa (40)
_AQMZ H2 A2
[\ 2 1 2 2

cg = GIN+Ek ?—I—A,u +p, (41)
2 22, 1

0. = Gu+k<Au +F)]+p (42)

(43)
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However, these above equations predict stress softening for a vessel subjected
to internal pressurization at fixed lengths, rather than the stress stiffening
observed in experimental studies on arteries and veins (see Figs. 4 and 5).
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Figure 4: Pressure-radius curves for a Mooney—Rivlin tube with the ap-
proximate dimensions of the carotid

An alternative isotropic strain energy density function which can predict
the appropriate type of stress stiffening for blood vessels is an exponential
where the argument is a polynomial of the strain invariants. The first—order
form is given by

* GO
— ﬁ exp [kl(ll - 3) + kQ(IQ - 3)] . (44)

1
This requires the determination of only two independent elastic constants.
The third, Gy, is introduced to facilitate scaling of the argument of the ex-
ponent (see Figs. 6 and 7). This exponential form is attractive for several
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Figure 5: Longitudinal distending force as a function of radius for the
Mooney—Rivlin tube

reasons. It is a natural extension of the observation that biological tissues
stiffness is proportional to the load in simple elongation. This stress stiffen-
ing has been attributed to a statistical recruitment and alignment of tangled
and disorganized long chains of proteins. The exponential forms resemble
statistical distrubutions derived from these same arguments.

Anisotropic blood vessels. Studies of the orthotropic behavior of blood
vessels may employ polynomial or exponential strain energy density func-
tions that include all strain terms or extension ratios. In particular, the
strain energy density function can be of the form

W = Qn(ATv A@v AZ) (45)
or

W* — eqn(AmAQyAz) , (46)

12
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Figure 6: Pressure-radius curves for tube with the approximate dimensions
of the carotid calculated using an isotropic exponential strain energy density
function

where ¢, is a polynomial of order n. Since the material is incompressible,
the explicit dependence upon A, can be eliminated either by substituting
A = /\671/\;1 or by assumping that the wall is thin and hence that the
contribution of these terms is small.

Care must be taken to formulate expressions that will lead to stresses
that behave properly. For this reason it is convenient to formulate the strain
energy density in terms of the Lagrangian strains,

(= (- 1), (47)

and in this case we can consider polynomials of the lagrangian strains,
Qn(erveé’vez)-

13
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Figure 7: Longitudinal distending force as a function of radius for the
isotropic tube

Vaishnav et al. [15] proposed using a polynomial of the form
W*=3">"a; j_ieg '€l (48)
i=2 ;=0

to approximate the behavior of the canine aorta. They found better corre-
lation with order—three polynomials over order—two, but order—four polyno-
mials did not warrant the addition work.

Later, Fung et al. [10] found very good correlation with an expression
of the form

C
W= < exp |a1(ed — e22) + aale? — €22) + 2au(ege. — €je7)] (49)

for the canine carotid artery, where e} and e} are the strains in a reference
configuration at in situ length and pressure. Why should this work? One

14
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Figure 8: Pressure-radius curves for a fully orthotropic vessel calculated
with an exponential strain energy density function

answer appears to be related to residual stresses and strains.

When residual stresses are ignored, large—deformation analysis of thick—
walled blood vessels predicts steep distributions in ¢4 and o, through the
vessel walli, with the highest stresses at the interior. This prediction is
considered significant because high tensions in the inner wall could inhibit
vascularization and oxygen transport to vascular tissue.

When residual stresses are considered, the stress distributions flatten
considerably and become almost uniform at in situ length and pressure.
Figure 10 shows the radial stress distributions computed for a vessel with
08 =1 and g = 1.11. Takamizawa and Hayashi have even considered the
case where the strain distribution is uniform in situ [13]. The physiological
implications are that vascular tissue is in a constant state of flux. New tissue
is synthesized in a state of stress that allows it to redistribute the internal

15
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Figure 9: Longitudinal distending force as a function of radius for the or-
thotropic vessel

loads more uniformly. There probably is no stress—free reference state [8],
[11], and [12]. Continuous dissection of the tissue into smaller and smaller
pieces would continue to relieve residual stresses and strains [14].

*Work sponsored by the U.S. Department of Energy under Contract
W-31-109-Eng-38.
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