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Abstract - In this paper a brief discussion of h-type
volume integra l formulat ions implemented in
GFUNET/CORAL code is given and solutions of TEAM
benchmark #13 are shown. GFUNET/CORAL is a general
purpose code for 2D and 3D magnetostatics. Solutions of
TEAM problem #13 are computed using both a sequential and
parallel version of GFUNET/CORAL.

NOTATION

e = {i,j} An edge connecting nodes i and j in that order.
we A basis function associated with edge e.
W1 Space spanned by ’edge elements’, i.e. Whitney

elements of degree p = 1.
he Line integral of magnetic field strength H along

edge e, i.e. the coefficient associated with edge e.
H1 Magnetic field strength approximated in space

W1, i.e H 1

e

he we .

Mw Approximation of magnetization M computed

with susceptibility and H1, .Mw χ ( H 1 )H 1

BACKGROUND

The integral formulation in GFUNET/CORAL is
based on a decomposition of H into the parts Hs and Hm

due to source currents and magnetization, respectively

Writing field Hm in terms of magnetic field strength

(1)H (r ) Hs (J,r ) Hm (M,r ) .

and susceptibility one can setup a system of integral
equations and solve for the coefficients describing the
magnetic field H [1].

We set up the system of equations in two different
ways. In the first case, we approximate Hm and Hs in W1

and solve

(2)⌡
⌠
V

Ne [H 1 H 1
m(χ ,H 1 ) ]dv ⌡

⌠
V

Ne H 1
s dv .

Functions Ne are basis functions of the edges 1,...,n
belonging to an independent set. This is discussed in more
detail in the next section.

In the other case, Hm due to Mw stands as it is and we
solve

Even though eqs. (2) and (3) look similar, there is a

(3)⌡
⌠
V

Ne [H 1 Hm(χ ,H 1 ) ]dv ⌡
⌠
V

Ne Hs dv .

significant difference in the results. The integral equation
matrix can also be symmetrized, if both sides of eqs. (2)
and (3) are multiplied with .χ

INDEPENDENT SET OF EQUATIONS

Combining edge elements (Whitney elements of order
p = 1 ) with integral equations in order to solve
magnetostatic problems leads to a question of how to define
an independent set of equations. The problem is related to
the fact that (in a simply-connected region) H is a gradient
field and it should be approximated in a subset of W1, i.e.
in ker(W1) for which all the closed line integrals vanish.

An independent set of equations is found by forming a
tree from the graph of all edges in the mesh. A tree
connects all the nodes in the mesh (in each distinct region)
without forming any loops. Hence, coefficients of the co-
tree edges can be uniquely defined once a tree is set,
because the sum of the coefficients must be zero around
any closed loop in the mesh. (The co-tree/tree separation
was introduced by Albanese and Rubinacci [2] in order to
define flux across surfaces co-tree edges enclose. )

Once a tree is chosen, one can define an incidence
matrix G, elements of which are all -1, 0, or 1 [3]. G is a
k x n rectangular matrix, where k is the number of edges in



the mesh and n is the number of edges in a tree. Basis
functions N, associated with the tree edges, are defined
with the incidence matrix

Hence Ne is a linear combination of the w’s. The sum of

(4)Ne

k

i 1
Gi ,e wi .

Ne’s is a gradient field and H expressed in terms of
independent edges is

Currently we choose a tree rather arbitrarily.

(5)H 1
n

e 1
Ne he .

However, the choice affects the condition number of the
integral equation matrix and it becomes meaningful when
using iterative solvers to solve the resulting linear systems.

GENERATION OF EQUATION MATRIX

The magnetic parts of a problem are split into
tetrahedra, and for practical reasons we set up a local tree
for each element [4], [5]. Local trees simplify the
integration of the Hm field due to Mw. It also causes a
significant decrease in the amount of work required to set
up the integral equation matrix. The tree structure causes
some complexity in the generation of the matrix, but it still
can be done in-place without allocating extra memory.

In order to avoid recomputing some of the geometric
data during nonlinear iterations we store in a scratch file
either the magnetic scalar potential at the nodes, or Hm(Mw)
at the Gaussian integration points of the tetrahedra
depending on the approximation of Hm. The size of these
files often becomes the limiting factor preventing us from
running very large problems on a sequential computer [5].
(So far we have used double precision variables and have
not tried to take the advantage of single precision data
where possible.) On a parallel machine, or in a cluster of
workstations, the size of the scratch files is not as big
problem because there is a larger amount of disk space
available overall.

In the parallel version the integral equation matrix is
decomposed rowwise among the processors and as a result
no data broadcast is required during matrix generation. The
parallel version of the matrix generation routine, when run
on one processor, is about 2-4% slower than the sequential
version.

SOLVER

Currently, we solve a system of linear equations using
LU decomposition (Crout’s algorithm) and backsubstitution
in the sequential version or , alternatively, Generalized

Minimal Residual (GMRES) iterative solver and block
diagonal preconditioning in the parallel version [6].

Nonlinear problems are iterated with simple updating
of susceptibility. The GMRES solver allows us to pick the
solution of the previous nonlinear cycle as an initial guess
to the new one.

PARALLEL IMPLEMENTATION

GFUNET/CORAL is implemented such that the
sequential and parallel versions share much of the same
source code. The Chameleon Parallel Programming Tools
[7] we use provides a low overhead interface to many
vendors message-passing libraries. Chameleon also
provides a uniform interface for program startup, and
simplifies the use of clusters of workstations or massively
parallel computers.

Currently, the parallel version of GFUNET/CORAL
runs on an IBM SP-1 parallel computer, and on a cluster of
SUN4/SPARC 2 or IBM RS/6000 workstations connected
via Ethernet.

RESULTS

TEAM problem #13 [8] (with the new BH-curve
released in the Claremont TEAM workshop) has been
solved with several meshes varying the element size, but
keeping the refinement ratio the same. Smaller tetrahedra
were used close to the air gap and near the bend of the
steel plates, Fig. 1. In practice it was found that in all
cases the approach in eq. (2) gives more accurate results
with a less dense mesh than the system of eq. (3).

Results for six different meshes computed with a DEC
Alpha 3000-400 AXP workstation are shown in Table 2 and
Figs 2. and 3.

TEAM problem #13 was also solved on 1-4
SUN4/SPARC 2, model 4c/50 workstations, and on an IBM
SP-1 parallel computer using 1-8 processors in order to test
the parallel version and the iterative GMRES solver (Table
1). However, we would like to emphasize that the timing
results of the parallel version are preliminary. The iteration
tolerance for the GMRES was set to 10-9, and the SUN
version was compiled without any optimization.

CONCLUSION

Using integral equations and a very coarse mesh
reasonable results for TEAM problem #13 are available
quickly. However, precise results require powerful
computing resources.
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TABLE 1
TIMING OF THE PARALLEL VERSION

Processors SPARC2a IBM SP1a DEC Alphab

1674 elements, 581 nodes, 579 equations
1 7515 sec. 951 sec. 2180 sec.
2 3704 sec. 507 sec. -
4 2180 sec. 279 sec. -
6 - 235 sec. -

7854 elements, 2280 nodes, 2278 equations
1 - - 90700 sec.
8 - 3416 sec. -

aGMRES iterative solver
bLU-decomposition with backsubstitution

Fig. 1. Tetrahedral mesh for TEAM problem #13, case 3.
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Fig. 2. Average flux density within the steel plates.

TABLE 2
RESULTS COMPUTED WITH DEC ALPHA 3000-400 AXP

USING LU-DECOMPOSITION WITH BACKSUBSTITUTION

Case Elements Nodes Eqs. CPU-time

1 393 164 162 62 sec.
2 1422 496 494 1285 sec.
3 6213 1722 1720 39197 sec.
4 10577 2742 2740 179200 sec.
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Fig. 3. Magnetic field strenght under the steel plate.
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