
Automatic Di�erentiation, Tangent Linear Models,and (Pseudo)Adjoints1Christian H. BischofMathematics and Computer Science DivisionArgonne National Laboratory9700 S. Cass Avenue, Argonne, IL 60439-4843bischof@mcs.anl.govAbstractThis paper provides a brief introduction to automatic di�erentiation and relates it to the tangentlinear model and adjoint approaches commonly used in meteorology. After a brief review of theforward and reverse mode of automatic di�erentiation, the ADIFOR automatic di�erentiation toolis introduced, and initial results of a sensitivity-enhanced version of the MM5 PSU/NCAR mesoscaleweather model are presented. We also present a novel approach to the computation of gradients thatuses a reverse mode approach at the time loop level and a forward mode approach at every timestep. The resulting \pseudoadjoint" shares the characteristic of an adjoint code that the ratio ofgradient to function evaluation does not depend on the number of independent variables. In contrastto a true adjoint approach, however, the nonlinearity of the model plays no role in the complexityof the derivative code.Keywords: Automatic Di�erentiation, Adjoint, Tangent Linear Model, MM5, ADIFOR, SparsLinC,Data Assimilation.1 IntroductionLet F (p) denote the (vector-valued) output of a model F produced by a particular (vector-valued) inputp. Employing the Taylor expansion of F around a reference state po, we haveF (po +4p) = F (po) + @ F (po)@ p 4p+ 12(4p)T @2F (po)@p2 4p+HO(po;4p); (1)where the higher-order terms HO(po;4p) satisfy jjHO(po;4p)jj = O(jj4pjj3). Hence, the value ofthe �rst- and second-order derivatives (we also interchangeably use the terms �rst- and second-ordersensitivities) allows us to derive a �rst- or second-order approximation of the change of F in responseto a perturbation of the input p from its base state po. In particular, the �rst-order Taylor seriesapproximation F (po) + @ F (po)@ p 4p (2)provides a linear approximation to the (usually nonlinear) behavior of F around the point po.1This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D, and by the National Science Foundation,through the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.1



Derivatives provide a way for computing a relatively simple approximation of F , thus allowing oneto inexpensively explore the behavior of f in the neighborhood of po. Hence, derivatives are ubiquitousin numerical computing.There are four main approaches to computing derivatives:By Hand: One can di�erentiate the code by hand and thus arrive at a code that also computes deriva-tives. However, handcoding of derivatives for a large code is a tedious and error-prone process,although it is likely to result in the most e�cient code.Divided Di�erences: We approximate the derivative of F with respect to the ith component of p ata particular point p0 by either one-sided di�erences@ F (p)@ pi ���p=p0 � F (p0 � h � ei)� F (p0)h (3)or central di�erences @ F (p)@ pi ���p=p0 � F (p0 + h � ei)� F (p0 � h � ei)2h : (4)Here ei is the ith Cartesian basis vector. From (1) it can be easily seen that this approach leads to a�rst- or second-order approximation of the desired derivatives. Divided di�erence approximationshave the advantage that we need only the function as a \black box." A disadvantage, however, isthat their accuracy is hard to assess (see, e.g., [13]).Symbolic Di�erentiation: Symbolic manipulators like Maple, Macsyma, or Reduce provide powerfulcapabilities for manipulating algebraic expressions but are, in general, unable to deal with con-structs such as branches, loops, or subroutines that are inherent in computer codes. Therefore,di�erentiation using a symbolic manipulator still requires considerable human e�ort to break downan existing computer code into pieces digestible by a symbolic manipulator and to reassemble theresulting pieces into a usable derivative code.Automatic Di�erentiation: Automatic di�erentiation techniques rely on the fact that every function,no matter how complicated, is executed on a computer as a (potentially very long) sequence ofelementary operations such as additions, multiplications, and elementary functions such as sin andcos (see, for example, [15, 28]). By applying the chain rule@@t f(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@t g(t)���t=t0� (5)over and over again to the composition of those elementary operations, one can compute, in acompletely mechanical fashion, derivatives of F that are correct up to machine precision [18]. Thetechniques of automatic di�erentiation are directly applicable to computer programs of arbitrarylength containing branches, loops, and subroutines. We also note that, unlike handcoding orsymbolically assisted approaches, automatic di�erentiation enables derivatives to be updated easilywhen the original code changes. 2



In this paper, we explore di�erent ways of computing �rst-order derivatives employing automaticdi�erentiation tools. The paper is structured as follows. In the next section we explore the relationshipbetween the tangent linear model and the adjoint approach for computing a gradient from a derivativepoint of view. In Section 3, we brie
y review the forward and reverse mode of automatic di�erentiationwhen viewing the automatic di�erentiation as a code rewriting problem. We then brie
y describe theADIFOR tool for the automatic di�erentiation of Fortran 77 programs, and present some preliminaryresults from a sensitivity-enhanced version of MM5 developed with ADIFOR. We then suggest a novelapproach to computing large gradients which we call the \pseudoadjoint" approach. It combines whatwe consider to be the good features of the forward and reverse modes while trying to avoid some of theirshortcomings. Lastly, we summarize our results.2 The Tangent Linear Model and the AdjointTwo approaches are typically employed in the computation of the linearized model (2)|the tangent linearmodel (TLM) and the adjoint. They form the basis of the following commonly employed techniques.Sensitivity analysis techniques | here one tries to asses the sensitivity of the responses of a com-putational model with respect to perturbations in its parameters or initial conditions (see, forexample, [27, 25, 26, 36]).Data assimilation techniques |here one tries to adjust the initial state of a model to best reproducesome observed behavior (see, for example, [34, 33, 35]).A collection of papers on this subject can be found in [24].To illustrate the tangent linear model and the adjoint, we assume that the state X of the system attime t satis�es the simple equationX(t) = H(X(t � 1)); t = 0; : : :T (6)and that prognostic and diagnostic variables are the same. Further, letJ(i) := @ H@ X ����X=X(i) (7)be the n � n Jacobian of H with respect to the state at time step i. The tangent linear model (TLM)describes the linearized evolution of errors about the trajectory of a particular nonlinear solution. De-noting by �X(t) the sensitivity of the state at time t with respect to perturbations in the initial stateX(0), we have �X(1) = J(0) � �X(0)�X(2) = J(1) � �X(1) = J(1) � J(0) � �X(0)...�X(t) = J(t� 1) � �X(t � 1) = J(t � 1) � � � � � J(0) � �X(0): (8)Here �X(t) should be interpreted as a column vector. The tangent linear model is de�ned asX(T ) + �X(T ): (9)3



Comparing this with (2), we see that the TLM and the �rst-order Taylor approximationwith4p = �X(0)are identical. We also point out that by initializing �Xi(0) = 1, �Xj(0) = 0 for j 6= i, �X(T ) can beinterpreted as the sensitivity of all output variables X(T ) with respect to a unit change in the ithcomponent Xi(0) of the initial state. In the literature the expression \development of the TLM" is usedsomewhat loosely to denote either a code for �X(T ) or X(T ) + �X(T ) as the computation of �X(i) andX(i) is usually intertwined.In contrast, the adjoint integrates the model back in time. Denote the sensitivity of the �nal statewith respect to a change in an intermediate state by �X(t). Then�X(T � 1) = �X(T ) � J(T � 1)�X(T � 2) = �X(T � 1) � J(T � 2) = �X(T ) � J(T � 1) � J(T � 2)...�X(t) = �X(T ) � J(T � 1) � � � � � J(t) (10)Here �X(t) should be interpreted as a row vector. In particular, initializing �Xi(T ) = 1, �Xj(0) = 0 forj 6= i, �X(0) can be interpreted as the sensitivity of the ith component of the �nal state with respect toa unit change in all components of the initial state. That is, �X(0) is the gradient�X(0) = @ Xj(T )@ X(0)and hence can be viewed as another approach for computing the derivatives required for the �rst-orderlinear approximation (2).Let ei be the ith canonical unit vector, namely, ei(i) = 1, and ei(j) = 0 for j 6= i. Then�X(0) = ej and �X(T )T = eiimplies 8 1 � t � T : �X(t)T � �X(t) = eTi @ X(T )@X(0) ej = @ Xi(T )@ Xj(0) :Hence, combining TLM and adjoint codes, we have many possibilities for computing the same derivativevalues [8].To summarize, if we discount numerical instabilities arising from the complementary stability behav-ior of forward- and backward-integration of dynamical systems (see, for example, [32]), when properlyinitialized, the tangent linear model and the adjoint will compute the same sensitivities and provide amechanism for developing a linear approximation of the model. The computational complexity of thesetwo approaches is quite di�erent, though, as we will see in the next section.3 Automatic Di�erentiationTraditionally, two approaches to automatic di�erentiation (AD) have been developed: the so-called for-ward and reverse modes. These modes are distinguished by how the chain rule is used to propagatederivatives through the computation. The forward mode accumulates the derivatives of intermediate4



y(1) = 1.0y(2) = 1.0do i = 1,nif (x(i) > 0.0) theny(1) = y(1) 3 x(i)elsey(2) = y(2) 3 x(i)endifenddoFigure 1: Sample Code Fragmentvariables with respect to the independent variables, corresponding to the forward sensitivity formal-ism [11, 12], whereas the reverse mode propagates the derivatives of the �nal values with respect tointermediate variables corresponding to the adjoint sensitivity formalism [11, 12]. In either case, auto-matic di�erentiation produces code that computes the values of the analytical derivatives accurate tomachine precision.We illustrate the di�erence between these two approaches by deriving code for computing @ y@ x(1:n)from the code fragment shown in Figure 1, considering the cases where \3" is either \�" or \+."3.1 The Forward ModeThe forward mode of automatic di�erentiation computes derivatives as shown in Figure 2, much in theway that the chain rule of di�erential calculus is usually taught. We use the notation rs to denotethe derivative object associated with the program variable s. We can easily convince ourselves that byinitializing rx(i) to the ith canonical unit vector of length n, on exit ry(i) contains the gradient@ y(i)@ x(1:n) . In this case, each statement involving a derivative object is really a vector instruction involvingn-vectors. On the other hand, if we are interested only in sensitivities with respect to x(3), say, weinitialize rx(i) = 0.0 for i 6= 3 and rx(3) = 1.0. In this case, then, each statement involving aderivative object is a scalar instruction, and we emerge with ry(i) = d y(i)d x(3) . In general, if we view thederivative vectors r as row vectors, the linearity of di�erentiation implies that the forward mode allowsus to compute arbitrary linear combinations of columns of the Jacobiand yd x = 0@ @ y(1)@ x(1) � � � @ y(1)@ x(n)@ y(2)@ x(1) � � � @ y(2)@ x(n) 1A (11)in that � ry(1)ry(2) � = d yd x �0B@ rx(1)...rx(n) 1CA : (12)5



ry(1) = 0y(1) = 1.0ry(2) = 0y(2) = 1.0do i = 1,nif (x(i) > 0.0) thenry(1) = ry(1) + rx(i)y(1) = y(1) + x(i)elsery(2) = ry(2) + rx(i)y(2) = y(2) + x(i)endifenddoForward Mode for 3 = +
ry(1) = 0y(1) = 1.0ry(2) = 0y(2) = 1.0do i = 1,nif (x(i) > 0.0) thenry(1) = x(i)*ry(1) + y(1)*rx(i)y(1) = y(1) * x(i)elsery(2) = x(i)*ry(2) + y(2)*rx(i)y(2) = y(2) * x(i)endifenddoForward Mode for 3 = �Figure 2: Forward Mode Code for Code Fragment of Figure 1In particular, initializing rx(i) = d(i), we compute the directional derivatived yd x � d = limh!0 y(x + h � d)� y(x)h : (13)Forward mode code is easy to generate, preserves any parallelizable or vectorizable structures withinthe original code, and is readily generalized to higher-order derivatives [4]. If we wish to compute mdirectional derivatives, then running forward-mode code requires at most on the order of m times asmuch time and memory as the original code.We also note that what we called the forward mode is the approach often employed when derivingthe tangent linear model of a computer code by hand. This should not come as a surprise. Applying theforward mode of automatic di�erentiation to a code computing (6) will result in the same derivatives asthe TLM accumulation (8) when rXi(0) = �Xi(0) ; i = 1; : : : ; n.3.2 The Reverse ModeIn contrast, the so-called reverse mode of automatic di�erentiation computes adjoint quantities | thederivative of the �nal result with respect to an intermediate quantity. To propagate adjoints, we haveto be able to reverse the 
ow of the program, and remember or recompute any intermediate value thatnonlinearly impacts the �nal result.Let s denote the adjoint of a particular variable s. As a consequence of the chain rule it can be shown(see, for example, [18]) that the statement s = f(v; w) in the original code impliesv + = @ s@ v sw + = @ s@ w s6



y(1) = 1.0; y(2) = 1.0;y1value(0) = y(1); c1 = 0;y2value(0) = y(2); c2 = 0;do i = 1,nif (x(i) > 0.0) thenjump(i) = 'left'; c1 = c1 + 1;y1value(c1) = y1value(c1 - 1) 3 x(i)elsejump(i) = 'right'; c2 = c2 + 1;y2value(c2) = y2value(c2 - 1) 3 x(i)endifenddoFigure 3: Code Fragment of Figure 1 Modi�ed in Preparation for Reverse-Mode Code Generationin the reverse mode code. The notation a += b is shorthand for a = a + b. When f is a linearelementary operation such as addition or subtraction, @ s@ v = @ s@ w = 1, and hence @ s@ v and @ s@ w do notdepend on the values of their operands. On the other hand, when f is a nonlinear operation such asa multiplication, both @ s@ v and @ s@ w do depend on the values of their operands, and one must remembereither these derivative values or the values of the operands. To be able to reverse the 
ow of the program,one must also remember intermediate values that were overwritten, and trace how branches were taken.To this end, we transform the code from Figure 1 to the form shown in Figure 3, where we generatea trace of the branch history in the \jump" array, and save intermediate values of the variables y(1)and y(2) in y1value(:) and y2value(:). The counters c1 and c2 are used to keep track of when avariable was last assigned. We are now in a position to automatically generate reverse mode code forthis computation. The result is shown in Figure 4. We use the notation s to denote the derivative objectassociated with the program variable s.We can easily convince ourselves that when we initialize y(1) = 1:0, y(2) = 0:0, and all otherderivative objects to zero, then by running the codes in Figures 3 and 4, we emerge with x(i) = @ x(i)@ y(1) .Similarly, initializing y(1) = 0:0, y(2) = 1:0, and all other derivative objects to zero, we computex(i) = @ x(i)@ y(2) . In general, if we view the adjoint vector associated with a program variable as columnvector, the linearity of di�erentiation implies that�x(1); � � � ; x(n)� = � y(1) ; y(2) � � d yd x; (14)where d yd x is as de�ned in equation (11). That is, reverse mode code allows us to compute arbitrarylinear combinations of the rows of the Jacobian. Initializing y(i) = d(i), we compute the derivative@ (dT � y(x))@ x : (15)7



y1value(c1) = y(1); y2value(c2) = y(2);do i = n to 1 step -1if (jump(i) = 'left') theny1value(c1� 1) += yvalue1(c1)x(i) += y1value(c1)c1 = c1 - 1elsey2value(c2� 1) += y2value(c2)x(i) += y2value(c2)c2 = c2 - 1endifenddoReverse Mode for 3 = +
y1value(c1) = y(1); y2value(c2) = y(2);do i = n to 1 step -1if (jump(i) = 'left') theny1value(c1� 1) += x(i)*y1value(c1)x(i) += y1value(c1-1)*y1value(c1)c1 = c1 - 1elsey2value(c2� 1) += x(i)*y2value(c2)x(i) += y2value(c2-1)*y2value(c2)c2 = c2 - 1endifenddo Reverse Mode for 3 = �Figure 4: Reverse Mode Code Generated from Code in Figure 3Note that it is quite an involved process to generate reverse mode code. While the complexity of theforward-mode code generation in Figure 2 changed minimally when we considered an addition insteadof a multiplication, the reverse mode code is very sensitive to this change: there is no need to save theintermediate values of y(1) and y(2) when 3 = +, but we must save them when 3 = �, at the expenseof an extra O(n) memory locations. Extra storage is required to remember the way the branches weretaken, regardless of whether the loop computed a multiplication or addition. Hence, the reverse modecan, in extreme cases, require as much memory for the tracing of intermediate values and branches asthere are 
oating-point operations being executed during the run of the program. However, its runningtime is roughly m times that of the function when computing m linear combinations of the rows of theJacobian. This is particularly advantageous for gradients, since then m = 1.We also note that what we called the reverse mode of automatic di�erentiation is what is usuallyperformed by hand when deriving an adjoint code. Applying the reverse mode of automatic di�erentia-tion to a code computing (6) will result in the same derivatives as the adjoint accumulation (10) whenXi(T ) = �Xi(T ) ; i = 1; : : : ; n:4 The ADIFOR Automatic Di�erentiation Tool and an Ap-plication to the MM5 Mesoscale Weather ModelThere have been various implementations of automatic di�erentiation; an extensive survey can be foundin [22]. In particular, we mentionGRESS [20], and PADRE-2 [23] for Fortran Programs and ADOL-C [17]for C programs. GRESS, PADRE-2, and ADOL-C implement both the forward and reverse mode. Tosave control 
ow information and intermediate values, these tools generate a \trace" of the computationby writing down the particulars of every operation performed in the code. The interpretation overhead8



associated with using this trace for the purposes of automatic di�erentiation and its potentially verylarge size can be a serious computational bottleneck [31].4.1 The ADIFOR (Automatic Di�erentiation of Fortran) ToolRecently, a \source transformation" approach to automatic di�erentiation has been explored in theADIFOR [2], ADIC [7], and Odyssee [29, 30] tools. ADIFOR and Odyssee transform Fortran 77 codeand ADIC transforms ANSI-C code. By applying the rules of automatic di�erentiation, these toolsgenerate new code, which, when executed, computes derivatives without the overhead associated withtrace interpretation schemes. ADIFOR and ADIC mainly use the forward mode2. In contrast, Odysseeemploys the reverse mode.Given a Fortran subroutine (or collection of subroutines) describing a \function," and an indicationof which variables in parameter lists or common blocks correspond to \independent" and \dependent"variables with respect to di�erentiation, ADIFOR performs a data 
ow analysis to determine whichstatements in the code have to be augmented with derivative computations and then produces Fortran77 code that computes the derivatives of the dependent variables with respect to the independent ones.ADIFOR produces portable Fortran 77 code, and accepts almost all of Fortran 77; in particular, itcan deal with arbitrary calling sequences, nested subroutines, common blocks, and equivalences. TheADIFOR-generated code tries to preserve vectorization and parallelism in the original code and employsa consistent subroutine-naming scheme, which allows for code tuning, the exploitation of domain-speci�cknowledge, and the use of vendor-supplied libraries.ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives. For eachassignment statement, it uses the reverse mode to generate code that computes the partial derivativesof the result with respect to the variables on the right-hand side and then employs the forward mode topropagate overall derivatives. For example, the single Fortran statementy = x(1) � x(2) � x(3) � x(4) � x(5)gets transformed into the code segment shown in Figure 5. Note that none of the common subexpressionsx(i)�x(j) are recomputed in the reverse mode section for @ y@ x(i) . The variable g$p$ denotes the numberof (directional) derivatives being computed. For example, if g$p$ = 5, and g$x(1:5,1:5) is the 5� 5identity matrix (i.e., g$x(i,j) = @ x(i)@ x(j)) then upon execution of these statements, g$y(1:5) equalsdydx . On the other hand, assume that we wished only to compute derivatives with respect to a scalarparameter s, so g$p$ = 1, and, on entry to this code segment, g$x(1,i) = @ x(i)@ s ; i = 1; : : : ; 5. Thenthe do-loop in Figure 5 implicitly computes dyds = dydx dxds without ever forming @ y@ x explicitly. Note thatthe cost of computing y is amortized over all the derivatives being computed. Thus, this approach ismore e�cient than the normal forward mode or a divided-di�erence approximation when more than afew derivatives are computed at the same time.We also see that ADIFOR-generated code provides the directional derivative computation possibilitiesassociated with the forward mode of automatic di�erentiation [6]. Instead of simply producing code tocompute the Jacobian J , ADIFOR produces code to compute J � S, where the \seed matrix" S is2Information on ADIFOR and ADIC can be found on the world-wide web underhttp://www.mcs.anl.gov/Projects/autodiff/index.html 9



r$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2 9>>>>>>>>>>=>>>>>>>>>>; Reverse Mode for computing @ y@ x(i) :r$jbar = @ y@ x(i) ; i = 1; : : : ; 4r$3 = @ y@ x(5)do g$i$ = 1, g$p$g$y(g$i$) = r$1bar * g$x(g$i$,1)+ r$2bar * g$x(g$i$,2)+ r$3bar * g$x(g$i$,3)+ r$4bar * g$x(g$i$,4)+ r$3 * g$x(g$i$, 5)enddo 9>>>>>>=>>>>>>; Forward Mode:Assembling ry from @ y@ x(i) and rx(i),i = 1; : : : ; 5.y = r$3 * x(5) 	 Computing function valueFigure 5: Sample Segment of an ADIFOR-generated Codeinitialized by the user. Thus, if S is the identity, ADIFOR computes the full Jacobian; whereas if S isjust a vector, ADIFOR computes the product of the Jacobian by a vector. In [5] the 
exibility of theADIFOR interface is exploited in a \stripmining" approach to decrease turnaround time for derivativecomputations by spawning several independent subprocesses computing parts of the desired gradientor Jacobian. The seed matrix also provides a powerful mechanism for decreasing the computationalcomplexity of derivative codes through judicious use of the chain rule [8, 21]. The running time andstorage requirements of the ADIFOR-generated code are roughly proportional to the numbers of columnsof S, which equals the g$p$ variable in the sample code above.ADIFOR has been successfully applied to codes from various domains of science. Experiences withmeteorological codes, for example, have been reported in [10, 25, 26, 27]. Typically, ADIFOR-generatedcode runs two to four times faster than one-sided divided di�erence approximations when one computesmore than 5-10 derivatives at one time. The superior performance is due to the reverse/forward hybridmode and a dependence analysis that tries to avoid computing derivatives of expressions that do not a�ectthe \dependent variables". We also note that in order to take full advantage of reduced complexity ofADIFOR-generated code, it is advantageous to compute several directional derivatives at the same time| so the ADIFOR-generated code may require signi�cantly more memory than the original simulationcode.4.2 First Results with a Sensitivity-Enhanced Version of the MM5 Meso-scale Weather ModelThe development of a sensitivity-enhanced version of the Fifth-Generation Penn State/NCAR mesoscaleweather model (MM5) [14] using the ADIFOR automatic di�erentiation tool is in progress. ADIFORexpects code that complies with the Fortran 77 standard. MM5 does not comply with this standard |10



in particular, it makes much use of \pointer variables." We circumvented this di�culty by developingan MM5-speci�c tool to map the pointer handling to standard-conforming Fortran77 code acceptable toADIFOR, and to remap ADIFOR's output to obtain the desired sensitivity-enhanced code.To date, we have developed sensitivity-enhanced versions of the nonhydrostatic dynamics and mostof the physics, including the Blackadar high-resolution planetary boundary layer parameterization, theGrell and Kuo cumulus parametrizations, the Dudhia long- and short-wave radiation scheme, and themodels representing explicit moisture with treatment of mixed phase processes (ice), shallow convection,and dry convective adjustment.To verify our ADIFOR-generated sensitivities, we used the sensitivity-enhanced version of MM5to compute the time-evolution of �rst-order perturbations of pressure, temperature, water vapor, andconvective rain, in response to perturbations in the initial-pressure data. Our perturbation schemeintroduces an arti�cial perturbation parameter �. To properly address the leapfrog scheme employed inMM5, we perturbed the pressure3 on the two initial time-slices t0 and t1 as follows:p0(x; y; z; t0; �) := (1 + �) p0(x; y; z; t0)p0(x; y; z; t1; �) := (1 + �) p0(x; y; z; t1) : (16)Then � parameterizes a family of perturbed solutions for the MM5 variables, with the unperturbedsolution obtained at � = 0: Any quantity (Q, say) in
uenced by the initial pressure therefore acquiresan implicit dependence on �. Pressure, temperature, water vapor, and convective rain, are particularinstances of such quantities. By de�nition, the �rst-order perturbation-theoretic sensitivity of Q is�Q(x; y; z; t) := @ Q(x; y; z; t; �)@ � �����=0 : (17)Given our choice of the perturbation of p0, �Q(x; y; z; t) can be interpreted as the sensitivity of Q to auniform relative change in the initial pressure �elds. We note that both p0(t0) and p0(t1) were perturbed,since a leapfrog timestepping approach is employed in MM5.The sensitivity �Q(x; y; z; t) can easily be computed by using automatic di�erentiation. We slightlymodify MM5 to include � as an input parameter entering into the computation of the initial pressre, asshown above. We then employ an automatic di�erentiation tool (ADIFOR, in our case) to di�erentiatethe code with respect to �. Finally, we evaluate the sensitivity-enhanced code at � = 0. In this fashion,we can compute quantities equivalent to those obtained in the tangent linear model without any furtherhand-modi�cation of the code.We compared the results of our perturbation AD-based method with the results of perturbing theinitial-pressure data by one part in 103 in the fully nonlinear model, which corresponds to choosing� = �10�3 in Equation (16). For each of pressure (MM5 variable ppa), temperature (ta), water vapor(qva), and convective rain (rainc), we computed the following quantities:� Its value using the initial pressure distribution.� Its sensitivity �Q(x; y; z; t) provided by the ADIFOR-generated code.3Following standard notation, p0 = p� p0 is the deviation of the absolute pressure p from the reference-state pressurep0; this is the quantity actually computed by MM5 in nonhydrostatic mode.11



� An approximation to this sensitivity via a central divided-di�erence approximation (4). Hence, forexample, choosing Q = ppa, we also compute the values ppa� obtained by a relative perturbationof the initial pressure distribution by �� = 10�3, as in Equation (16). We then computed thesecond-order divided di�erence approximation ~�ppa to �ppa:~�ppa(x; y; z; t; �) := ppa+ � ppa�2� :� The di�erence �Q := ~�Q� �Qbetween the divided-di�erence approximation and the �rst-order sensitivity. It follows from (1)that, assuming that the model is continuously di�erentiable in the vicinity of the base state, �Qshould be of the order O(�3) and hence negligible except for areas of high nonlinearity. It shouldbe noted, however, that there is no guarantee that the model is continuously di�erentiable|inparticular, in light of the switching behavior in the moisture physics modeling.We note that for this particular case the ADIFOR-generated code exhibits run times and storagerequirements on the order of twice those of the original MM5 code, and hence it obtains �rst-ordersensitivities at about two-thirds the cost of the divided-di�erence approximation.The data set we had at our disposal for testing purposes uses a 28 � 25� 23 grid, without nesting.We ran the model for 12 time steps of 4 minutes each, terminating at 48 minutes. In Figure 6, for the�nal time-step, we show for surface pressure� the value of the forecast variable,� the sensitivity of the forecast variable with respect to a uniform relative change of the pressure attime zero, and� the di�erence between the �rst-order sensitivity and the divided-di�erence approximation.We mention that this perturbation may violate some consistency conditions enforced by the MM5 pre-processors. We would have had to perturb the vertical wind velocity as well, in order not to excite soundwaves. This issue will also be addressed by generating sensitivity-enhanced versions of the MM5 pre-processors. We did observe these waves, but they quickly propagate out of the system. At any rate, thepurpose of this exercise was to validate our ADIFOR-generated derivatives. Since pressure couples withall the other variables, it still is an appropriate choice to check the correctness of the ADIFOR-generatedderivative propagation code.The upper left plot in Figure 6 shows the value of ppa after the twelfth time step, the upper rightplot shows the sensitivity �ppa, and the bottom plots shows �ppa. Pressure is in Pascals, and �ppaand �ppa are in Pascals per unit �. The labels in the legend denote the boundaries between contourintervals.As we can see, excellent �rst-order agreement is achieved everywhere for surface pressure. We seethat the fractional di�erences between the �rst-order sensitivity and its divided-di�erence approximationare only a few parts in 103. Since the perturbation is the sensitivity times �; it follows that the absolutedi�erences between the tangent-linear and fully nonlinear models of the surface-pressure �eld are onlyof the order of a few parts in 106: 12



Figure 6: Plot showing the surface-pressure �eld ppa (upper left), the �rst-order sensitivity �ppa (upperright), and the di�erence �ppa (bottom) 13



5 PseaudoadjointsLet us now assume that we have a computation where we repeatedly update a (large) state X and atthe end use a merit function that summarizes the relevant features of the �nal state in a few numbers.That is, we can view the computation as follows:X(0) H�! X(1) H�! � � � H�! X(T ) R�! r; (18)where, as in (6), H denotes the update operator and R denotes the merit function. We further assumefor simplicity that 1 = dim(r)� n := dim(X).We are interested in e�ciently evaluating the gradient@ r@ X(0) = @ r@ X(T ) � @ X(T )@ X(T � 1) � : : : � @ X(1)@ X(0) : (19)A forward-mode based approach like that used in ADIFOR will require a run time that is proportionalto n, whereas a reverse mode approach might require a run time that is comparable to a few functionevaluations. Of course, the complexity of the reverse mode approach greatly depends on the operatorH. If H is \mostly linear," then applying the reverse mode to H does not require much storage forintermediate values. A \highly nonlinear"H, on the other hand, may pose considerable storage demands.Let us further assume that� @ R@ x can be computed easily (often it is a weighted sum of squares) and that� @ H@X is sparse. This situation is fairly typical because of the local nature of stencil-based approxi-mations.5.1 Exploiting Sparsity in Forward-Mode Derivative ComputationsForward-mode approaches can be used advantageously to compute large sparse Jacobians. One canemploy a so-called compressed Jacobian approach, which, given the sparsity pattern of the Jacobian,derives a graph coloring that identi�es which columns of the Jacobian can be computed with the samedirectional derivative. To illustrate, let us assume that we have a functionF = 0BBBB@ f1f2f3f4f5 1CCCCA : x 2 R4 7! y 2 R5whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):J = 0BBBB@ 

 34 34 24 2 1CCCCA :14



Columns 1 and 2, as well as columns 3 and 4, are structurally orthogonal. In divided-di�erence approx-imations one could exploit that structure by perturbing both x1 and x2 in one function evaluation, andboth x3 and x4 in the other. In an automatic di�erentiation system like ADIFOR, one can exploit thisfact by setting S = 0BB@ 1 01 00 10 1 1CCA ;which results in the computation of the compressed JacobianJS = 0BBBB@ 

 34 34 24 2 1CCCCAat roughly half the cost. For most grid problems, the width p of the compressed Jacobian is independentof the problem size and depends only on the local stencil chosen. Experimental results with this approachin computing large sparse Jacobians as they arise in large-scale nonlinear equations have been reportedin [1].This compressed Jacobian approach is also applicable to the computation of gradients of so-calledpartially separable functions [19], which are functions f that can be represented in the formf(x) = npXi=1 fi(x); (20)where each of the component functions fi has limited support. Hence, the gradients rfi are sparse,even though the �nal gradient rf is dense. It can be shown [19] that any function with a sparse Hessianis a partially separable one. The computation of the gradient of a partially separable function can bereduced to the problem of computing a sparse Jacobian [9] by realizing that the gradient of f can easilybe obtained by summing the rows of the sparse Jacobian dGdx , whereG(x) = 0B@ f1(x)...fnp(x) 1CA : (21)Another approach is based on the realization that the workhorse of any mainly forward-mode�rst-order automatic di�erentiation approach is a \vector linear combination," for example, ry(1)= x(i)*ry(1) + y(1)*rx(i) in Figure 3. Here ry(1) and rx(i) are vectors of length p, where, asin Subsection 4, p denotes the number of directional derivatives to be computed, and y(1) and x(i) arescalars. This operation is a particular instantiation ofw = kXi=1 �i � vi; (22)15



where w and vi are vectors of length p, the �i are scalar multipliers, and k is referred to as the \arity."If the initial seed matrix is sparse (e.g., the identity), then, if we ignore exact numerical cancellation,the left-hand side vector w in (22) has no fewer nonzeros than any of the vectors on the right-handside. Hence, if the �nal derivative objects, which correspond to a row of the Jacobian J or a componentgradient rfi, are sparse, all intermediate vectors must be sparse. That is, by expressing the derivativelinear combinations with algorithms and data structures tailored toward to sparse vectors, we can exploitsparsity in a transparent fashion, even if the sparsity pattern of the derivative matrix is not knownbeforehand. Also note that the sparsity structure of J or rfi is computed as a byproduct of thederivative computation.The SparsLinC (Sparse Linear Combination) Library [3, 8] addresses the scenario where p is largeand most of the vectors involved in vector linear combination are sparse. It provides support for sparsevector linear combination, in a fashion that is well suited to the use of this operation in the context ofautomatic di�erentiation. SparsLinC, which is written in ANSI C, includes the following features:Three data structures for sparse vectors: SparsLinC has di�erent data structures for a vector con-taining only one nonzero, a few nonzeros, or several nonzeros.E�cient Memory Allocation Scheme: SparsLinC employs a \bucket" memory allocation schemewhich, in e�ect, provides a bu�ered memory allocation mechanism.Polyalgorithms: SparsLinC switches between vector representations in a transparent fashion and pro-vides special support for the \+=" operation w = �1 �w + �2 � v, which occurs frequently whencomputing gradients of partially separable functions, as suggested by (20).Full Precision Support: single and double precision computations are provided for both real- andcomplex-valued computations.In this fashion, SparsLinC can adapt to the dynamic nature of the derivative vectors, e�ciently rep-resenting derivative vectors that grow from a column of the identity matrix (often occurring in theADIFOR seed matrix) to a dense vector, such as rf in (20). We also mention that almost no memory isallocated for derivative objects that are all zeros. SparsLinC will be fully integrated in the forthcomingrelease of the ADIFOR 2.0 system.Note that neither the run time of the compressed Jacobian nor that of the SparsLinC approach isa�ected by nonlinearities in the program. That is, changing all additions in the code to multiplicationsdoes not increase the required storage, and the run time increases at most by a factor of two.5.2 PseudoadjointsNow, coming back to the problem of computing @ r@ X(0) , we realize that if we consider the computationof @ H@X as a \black box," we can interpret equation (19) as a series of matrix-matrix and vector-matrixmultiplications, namely, = * * : : : * ,16



where the vector on the left-hand side corresponds to @ r@ X(0) , the vector on the right-hand side correspondsto @ r@ X jX=X(T ), and the matrices on the right-hand side correspond toJ(i) := @ H@ X jX=X(i); i = 1; : : : ; T � 1:An automatic di�erentiation tool that employs the forward mode throughout can be interpreted asaccumulating this product from the right, forming a large matrix corresponding to @ X(T )@ X(0) , which thenis multiplied by the vector @ r@ X(T ) to result in the �nal gradient. Obviously, it would be much moreadvantageous to accumulate the product from the left, computing @ r@ X(i) ; i = T; : : : ; 1 through a seriesof matrix-vector multiplies. The �rst approach can be interpreted as the forward mode in an algebrawhere H and R are elementary operators, the latter one as the reverse mode in this algebra.However, using the approaches outlined in the previous subsection, we are in a position to inex-pensively compute @ H@X , with predictable storage and runtime requirements that do not depend on thenonlinearity of the model. Hence, by storing all intermediate derivatives J(i) in a forward sweep. wecan compute d rdX(0) through a series of sparse matrix-vector multiplies at a runtime complexity that isof the order T � runtime(@ H@ X ) + T � runtime(sparse matrix-vector multiply)and the storage complexity is of the order T � storage(@ H@ X ):If we only store snapshots of X in the forward pass and regenerate individual Jacobians @ H@X jX=X(i)when needed, the runtime complexity is of the orderT � runtime(@ H@ X ) + T � runtime(H) + T � runtime(sparse matrix-vector multiply)and storage complexity that is of the orderstorage(@ H@ X ) + T � storage(X):When we employ the snapshotting scheme proposed by Griewank [16] to regenerate the X(i) from aseries of checkpoints, the time complexity of the latter approach becomes of the orderT � runtime(@ H@ X ) + T � (1 + log(T )) � runtime(H)+ T � runtime(sparse matrix-vector multiply)and storage complexity is of the orderstorage(@ H@ X ) + (1 + log(T )) � storage(X):17
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dw/dxFigure 8: Parallel Derivative ComputationGiven that we can compute sparse Jacobians e�ciently, at a storage and memory cost that is a moderatemultiple of the cost for evaluatingH itself, the last approach may be an attractive approach to developinga gradient code. It shares with a \usual" adjoint the characteristic that the ratio of gradient to functionevaluation does not depend on the number of input parameters. This approach capitalizes on theadvantages of the forward mode (e�cient computation of sparse Jacobians with predictable complexityindependent of the nonlinearity of the model) and the reverse mode (lower arithmetic complexity). Italso avoids the drawbacks of the forward mode (the ratio of gradient to function evaluation depends onthe number of input variables) and the reverse mode (a highly nonlinear model may lead to excessivestorage demands).However, if execution time is of the essence, we can do even better by exploiting chain rule associa-tivity to break the time dependency in the derivative computation. To illustrate this idea, we considerthe situation shown in Figure 7: G cannot start before F has been computed, and H has to wait forthe completion of G. That is, none of these processes may execute in parallel. This is not the case inderivative computations, however, because of the associativity of the derivative chain rule. For example,we could proceed as in Figure 8. That is, at the same time that we spawn a process to compute F , wespawn a process to compute d yd x , and at the same time that we start with computation of G, we spawna process to compute d zd y . Lastly, the computation of dwdz is initiated. Under the assumption that thecomputation of derivatives takes signi�cantly longer than the simulation itself, we will, in the end, havethe three derivative processes running in parallel. When they have �nished, we simply accumulate theiroutputs to arrive at the desired result, dwd x . Thus, if we are willing to duplicate the computation of y andz, we can in this fashion arrive at a coarse-grained parallel schedule that, with minimal synchronizationrequirements, could be mapped to a network of workstations.In particular, if we now apply this idea to our problem (18), we could, if enough memory andprocessors were available, spawn processes to independently compute J(i) in parallel, and would only18



have to wait for an additional run time of the order ofruntime(@ H@ X ) + T � runtime(sparse matrix-vector multiply);to obtain the desired gradient @ r@ X(0) .6 Conclusions and Future WorkThis paper gave a brief introduction into automatic di�erentiation and related it to the tangent linearmodel and adjoint approaches commonly used in meteorology. We brie
y reviewed the forward andreverse mode of automatic di�erentiation and introduced the ADIFOR automatic di�erentiation tool.We also presented �rst results of a sensitivity-enhanced version of the MM5 PSU/NCAR mesoscaleweather model, thus demonstrating that automatic di�erentiation can generate results equivalent to atangent linear model for sophisticated weather models, with minimal recourse to laborious and error-prone hand-coding.We presented a novel approach to the computation of gradients, which used a reverse mode approachat the timestep level and a forward mode approach at every time step. The resulting \pseudoadjoint"shared the characteristic of an adjoint code that the ratio of gradient to function evaluation did notdepend on the number of independent variables, but, in contrast to a true adjoint approach, the nonlin-earity of the model played no role in the complexity of the derivative code. Lastly, we motivated howchain rule associativity could be employed to break time dependencies in the derivative computation.The pseudoadjoint strategy is a particular instantiation of what we call a \hybrid mode," where bothforward and reverse modes of automatic di�erentiation are employed at various levels in the derivativecomputation. The strategy employed in the ADIFOR and ADIC tools is a particularly simple instance ofsuch a hybrid strategy which, in some sense, is at the opposite spectrum of the \pseudoadjoint" approachsuggested here. In the pseudoadjoint approach suggested in Section 5 we are using the reverse modeat the outermost loop level, and a forward based technique in the rest, whereas ADIFOR and ADICemploys the reverse mode at the lowest level, within the scope of an assignment statement. Clearly,there are many other alternatives, and we are beginning to explore them in a systematic fashion withan eye toward capitalizing on the bene�ts of the forward and reverse mode approaches while avoidingtheir respective drawbacks.AcknowledgmentsWe thank Andreas Griewank for many stimulating discussions on the subject, Alan Carle for his instru-mental role in the ADIFOR project, and Gordon Pusch for his essential role in the development of thesensitivity-enhanced version of the MM5 code. We also thank Kelvin Droegemeier and Seon Ki Park forintroducing us to the use of tangent linear and adjoint models in meteorology.19
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