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Abstract. This paper introduces tensor methods for solving large sparse systems of nonlin-
ear equations. Tensor methods for nonlinear equations were developed in the context of solving
small to medium-sized dense problems. They base each iteration on a quadratic model of the
nonlinear equations, where the second-order term is selected so that the model requires no more
derivative or function information per iteration than standard linear model-based methods, and
hardly more storage or arithmetic operations per iteration. Computational experiments on small
to medium-sized problems have shown tensor methods to be considerably more efficient than
standard Newton-based methods, with a particularly large advantage on singular problems. This
paper considers the extension of this approach to solve large sparse problems. The key issue
considered is how to make efficient use of sparsity in forming and solving the tensor model prob-
lem at each iteration. Accomplishing this turns out to require an entirely new way of solving
the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian
is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor
method for solving large sparse systems of nonlinear equations. Test results indicate that this
tensor method is significantly more efficient and robust than an efficient sparse Newton-based
method, in terms of iterations, function evaluations, and execution time.
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1. Introduction

In this paper we introduce tensor methods for solving the sparse nonlinear equations problem
given F : R" —R", find z, € R" such that F(z.) = 0, (1.1)

where it is assumed that n is large (say, n > 100), F(z) is a least once continuously differ-
entiable, and the Jacobian matrix F'(z) € R"*™ is sparse. Large sparse systems of nonlinear
equations arise frequently in many practical applications including various network-flow prob-
lems and equations produced by finite-difference or finite-element discretizations of boundary
values problems for ordinary and partial differential equations. In many situations, F’(z.) is ill
conditioned or singular with a small rank deficiency. For example, this occurs in curve-tracking
applications at or near bifurcation points. In such cases, tensor methods are especially intended
to improve upon the efficiency of standard algorithms based on Newton’s method. Tensor meth-
ods are also intended to be at least as efficient as standard methods on problems where F'(z.) is
nonsingular, and in practice they often seem to be considerably more efficient on these problems
as well.

Tensor methods for small to medium-sized dense systems of nonlinear equations were intro-
duced by Schnabel and Frank [20], and a software package implementing them is described in
[4]. The methods base each iteration on a quadratic model of F'(z) that has the form

1
M{z.+d) = Fe.)+ Fle.)d+ 5T.dd, (1.2)

where . is the current iterate, and T, € R"*"*" is the tensor term at x.. The tensor term is
selected so that the model interpolates a very small number, p, of function values from previous
iterations. This results in 7. being a rank p tensor, which is crucial to the efficiency of the tensor
method. After the model (1.2) is formed, the problem

find d € R" that minimizes ||M(z.+ d)||2 (1.3)

is solved; that is, at each iteration of tensor methods, a minimizer of the model is used if no root
exists. Methods for forming the tensor term and solving the tensor model for dense systems
of nonlinear equations are reviewed in more detail in the next section. The tensor method
requires no more derivative or function information per iteration than Newton’s method, and
its storage requirement and arithmetic cost per iteration are not appreciably more than for
Newton’s method.

Methods based on (1.2) have been shown to have very good theoretical properties and very
good computational performance on small to medium-sized dense problems. Theoretically, the
methods converge at least as quickly as Newton’s method on nonsingular problems and have
been shown to have 3-step Q-order 1.5 convergence on problems where the Jacobian has rank
n—1 at the solution, whereas Newton’s method is linearly convergent with constant 1/2 on such
problems [12]. In tests reported in [4] for both nonsingular and singular problems, the tensor
method virtually never is less efficient than a standard method based upon a linear (Newton)
model, and usually is more efficient. The improvement by the tensor method over the standard
method is substantial, averaging about 49% in iterations and 41% in function evaluations when



a line search is used in each, and about 42% in iterations and 31% in function evaluations when
the trust region is used in each, on problems solved successfully by both methods. Furthermore,
the tensor method solves a considerable number of problems that the standard method does
not, and the reverse virtually never is the case.

The preliminary success of tensor methods for small to medium-sized nonlinear equations
makes it reasonable to consider their application to large sparse systems of nonlinear equations.
In doing so, there are several key considerations. First, tensor methods require that the Jacobian
matrix be available, either analytically or by finite differences, at each iteration. While this is not
always the case for small problems—quasi-Newton approximations to the Jacobian sometimes
being used instead—it is almost always the case in methods that are used for solving large
sparse systems of nonlinear equations. The derivatives usually come from efficient sparse finite
differences (see, e.g., [8]), from user-supplied analytic derivatives, or recently through automatic
differentiation (see, e.g., [14, 15]). Hence, this requirement is not a problem and indeed fits
this approach well. Second, the methods for forming and solving the tensor model must make
efficient use of the sparsity of the Jacobian matrix and not involve any dense linear algebra
using n X n matrices. The existing method for forming the tensor model adapts immediately
to sparsity, as is shown in Section 2. However, the most difficult and expensive part of the
tensor method is solving the quadratic model (1.2) efficiently, and the algorithms used for this
so far are entirely inappropriate for large sparse problems. These algorithms make crucial use of
orthogonal transformations of both the variable and function space, especially to deal efficiently
and stably with cases when the Jacobian matrix is singular or the tensor model has no root.
They are not applicable to sparse problems because the orthogonal transformation of the variable
space would destroy the sparsity of the Jacobian.

To deal efficiently with sparsity, we develop an entirely new way of solving the tensor model.
This approach is able to utilize a sparse variant of Gaussian elimination or any other sparse direct
solver. It includes techniques that allow the tensor model to be solved efficiently and stably when
the Jacobian matrix is singular. It also entails ways to efficiently calculate the Newton step,
which is sometimes used in the tensor algorithm, as a by-product of the calculation of the tensor
step.

Using these ingredients, we formulate an efficient tensor method for large sparse nonlinear
equations and apply this method to a number of test problems. We compare it with an efficient
Newton-based method for solving sparse nonlinear equations that is based upon the same sparse
linear equations software and global strategy. Our experimental results indicate that the tensor
method is significantly more robust and efficient than the standard method, in terms of iterations,
function evaluations, and execution time.

The remainder of this paper is organized as follows. In Section 2 we briefly review tensor
methods for dense nonlinear equations, and point out the issues involved in extending them
to large sparse problems. In Section 3 we first describe an efficient algorithm for solving the
tensor model when the Jacobian matrix is sparse and nonsingular. Next, we present an efficient
algorithm for solving the tensor model when the Jacobian is sparse and rank deficient. In
Section 4 we show how to efficiently solve the standard linear model in conjunction with these
algorithms for solving the tensor model, both when the Jacobian matrix is nonsingular and
when it is rank deficient. Section 5 gives a high-level description of the complete tensor method
for sparse nonlinear equations, including the global strategy. In Section 6 we compare results



for this implementation with those for the same implementation based on Newton’s method.
Finally, Section 7 gives a brief summary and discussion of future work.

2. Brief Overview of Tensor Methods for Dense Nonlinear Equations

Tensor methods are general-purpose methods intended to improve upon the efficiency of standard
algorithms based on Newton’s method particularly on problems where the Jacobian matrix at
the solution is singular or ill-conditioned. Each iteration is based upon a quadratic model (1.2)
of the nonlinear function F'(z). The choice of the tensor term 7. € R"*™*™ in this model causes
the second-order term 7T.dd in (1.2) to have a simple and useful form.

The tensor term is chosen to allow the model M(z. 4+ d) to interpolate values of the function
F(z) at past iterates _g; that is, the model satisfies

1
Fla_g) = F(z.) + Fl(z.)sr + §Tcsk5k, k= 1,...,p, (2.1)
where
S, = T_p — T, k= 1,...,p
The past points 2_q, ..., z_, are selected so that the set of directions {s;} from z. to the selected

points is strongly linearly independent; each direction sy is required to make an angle of at least
45 degrees with the subspace spanned by the previously selected past directions. The procedure
for finding linearly independent directions is implemented by using a modified Gram-Schmidt
algorithm, and usually results in p = 1 or 2.

After the linearly independent past directions, s, are selected, the tensor term is chosen to
be the smallest matrix that satisfies the interpolation conditions (2.1), that is,

i T, 2.2
L (2.2)

subject to Tespsi = 2 (F(o_g) — F(z.) — F'(x.)sp),
where ||T.||F, the Frobenius norm of T, is defined by

T = 505 S (Tl k) (2.9)

=1 j=1k=1

The solution to (2.3) is the sum of p rank-one tensors whose horizontal faces are symmetric,

p
= Z ()SkSk, (2.4)
k=1

where ay, is the k-th column of A € R"*P, A defined by A = ZM~'; Z is an n X p matrix
whose columns are Z; = 2(F(x_;)— F(z.) — F'(2.)s;); and M is a p X p matrix defined by
M(i,j) = (s;7s;)%, 1<, <p.

Using the tensor term (2.4), we obtain the tensor model

Mz + d) = F(e.) + Fl(z)d + % 3 o (s ) (2.5)
k=1



The simple form of the quadratic term in (2.5) is the key to being able to efficiently form, store,
and solve the tensor model. For dense problems, the cost of forming the tensor term in the tensor
model is O(n?p) < O(n*®) arithmetic operations, since p < y/n. The leading term comes from
the p matrix-vector products F’(z.)sg. The next most significant cost is the O(np?) operations
required to calculate A = ZM ™! and the O(np?) cost of the Gram-Schmidt orthogonalization.
The additional storage required is 4p n-vectors.

Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possible
that no root exists; in this case a least squares solution of the model is found instead. Thus, in
general, the problem

find d € R™ that minimizes || M(z. + d) ||2 (2.6)

is solved. Schnabel and Frank [20] show that the solution to (2.6) can be reduced to the solution
of ¢ quadratic equations in p unknowns (i.e., a very small system of quadratics), plus the solution
of n — ¢ linear equations in n — p unknowns. Here ¢ is equal to p whenever F’(x.) is nonsingular
and usually when rank(F’(z.)) > n — p, and ¢ is greater than p otherwise. In the dense case,
the main steps of the algorithm used to solve (2.6) are the following:

1. An orthogonal transformation of the variable space is used to cause the n equations in n
unknowns to be linear in n — p variables, dy € R"7P, and quadratic only in the remaining
p variables, dy € RP.

2. An orthogonal transformation of the equations is used to eliminate the n — p transformed
linear variables from n— ¢ of the equations. The result is a system of ¢ quadratic equations
in the p unknowns, dz, plus a system of n — ¢ equations in all the variables that is linear
in the n — p unknowns, ds.

3. A nonlinear unconstrained optimization software package, UNCMIN [21], is used to min-
imize the [y norm of the ¢ quadratic equations in the p unknowns, dy. (If p = 1, this
procedure is done analytically instead.)

4. The system of n — ¢ linear equations that is linear in the remaining n — p unknowns is
solved for d;.

An advantage of this algorithm is that it efficiently and stably solves (2.6), whether or not the
tensor model has a root or the Jacobian is nonsingular.

In the dense case, the arithmetic cost per iteration of the above algorithm is the standard
O(n®) cost of a matrix factorization, plus an additional O(n?p) (< O(n*®)) operations for the
orthogonal transformations, plus the cost of using UNCMIN [21] in Step 3 of the algorithm.
The cost of using UNCMIN is expected to be O(p*) < O(n?) operations, since each iteration
requires O(p®) operations (O(p?q) when ¢ > p) and a small multiple of p iterations generally
suffice. Thus, the total cost of the above algorithm is the O(n?) cost of Newton’s method plus
at most an additional cost of O(n%®) arithmetic operations. The Newton step is computed
inexpensively (in O(n?p) < O(n?®) operations) as a by-product of the tensor step solution.

An iteration of the tensor method is summarized in Algorithm 2.1 below. For more details
on tensor methods, including the global strategy used in Step 5 of Algorithm 2.1, see Schnabel



and Frank [20] and Bouaricha and Schnabel [4].

Algorithm 2.1. An Iteration of the Tensor Method for Dense Nonlinear Equations
Given n, current iterate z., F(z.)

Step 0 Calculate F'(z.), and decide whether to stop. If not:

Step 1 Select the past points to use in the tensor model from among the y/n most recent points.

Step 2 Calculate the second-order term of the tensor model, T,, so that the tensor model
interpolates F'(x) at all the points selected in Step 1.

Step 3 Find the root of the tensor model, or its minimizer (in the /3 norm) if it has no real
root.

Step 4 Select the next iterate x4 using either a line search global strategy or a two-dimensional
trust region method.

Step 5 Set z. — x4, F(x.) < F(z1); go to Step 1.

Now consider applying Algorithm 2.1 to large sparse systems of nonlinear equations. The
leading costs of the tensor model formation are p Jacobian-vector products, to form F'(x.)sg; n
solutions of a dense p X p systems of linear equations with the same p X p matrix M to form A;
and a Gram-Schmidt orthogonalization of p n-vectors. Thus, as long as p is restricted to being
less than or equal to a very small integer (rather than p < \/n as for dense problems), these costs
are small for large sparse problems: the p Jacobian-vector products can be calculated efficiently
by utilizing the sparsity of the Jacobian, and the remaining costs total a small multiple of n
operations. Since dense tensor methods generally choose p = 1 or 2 anyhow, even when /n is
considerably larger, the restriction on the size of p is not a problem. In fact, our test software
will be seen to use p = 1 because larger values did not improve its performance.

The procedure for solving the tensor model in the dense case, however, does not adapt to large
sparse problems. The first step of this process, the orthogonal transformation of the variable
space, is crucial to this approach and would destroy the sparsity of the Jacobian, making the
remaining steps have an O(n>) cost even if the Jacobian had been sparse. Therefore, if tensor
methods are to be applied to large sparse problems, an entirely different method for solving the
tensor model is needed. This is developed in the next section.

3. Solving the Tensor Model When the Jacobian Is Sparse

As motivated in Section 2, the key challenge in developing an efficient tensor method for large
sparse systems of nonlinear equations is to construct an efficient algorithm for finding a root of
the tensor model (2.5) when the Jacobian matrix is large and sparse. That is,



Find d € R™ such that

p

Mzo+ d) = Fla) + Fle)d + % S {dTs)? = 0, (3.1)
k=1

where F'(z.) is large and sparse. We give such an algorithm in this section. We show that

the solution of (3.1) can be reduced to the solution of a system of p quadratic equations in

p unknowns, plus the solution of p 4+ 1 systems of linear equations that all involve the same

matrix, J(z.), if this one is nonsingular and well conditioned. We also show that our algorithm

efficiently solves the generalization of (3.1),

find d € R" that minimizes ||M(z.+ d)||2. (3.2)

The basic approach used in all these cases is illustrated by the case when the Jacobian
matrix is nonsingular and the tensor model has a root. In this case, premultiplying (3.1) by

s;TJYi=1,...,p, gives the p quadratic equations in the p unknowns 3; = s;7d,
12
SZ'TJ_IF—I—ﬁZ'—I— §Z(SiTJ_1ak)ﬁk2 =0, ¢+ =1,...,p. (3.3)
k=1

(Here and in the remainder of this section, we let F' denote F(z.) and J denote F'(z.).) These
equations can be solved for 3;,¢ =1,...,p, and then from (3.1) the equation

1P
F+Jd+ - 2=
+Jd+ 5 > arbr 0
k=1
can be solved for d. The entire process requires the solution of p+ 1 systems of linear equations in
the matrix .J to compute J~1F and J~tay,k = 1,...,p (or, alternatively, J~1(F+ % S arB?)
and J™Ts;,i=1,...,p) and the solution of the small system of quadratics (3.3).

3.1. Solving the Sparse Tensor Model When the Jacobian Is Nonsingular

The preceding paragraph indicated how to solve (3.2) efficiently when the Jacobian matrix is
nonsingular and the tensor model has a root. Now we address the more general problem of
solving (3.2) efficiently whether or not the model has a root, when the Jacobian matrix is
nonsingular. We do this by considering the equivalent minimization problem to (3.2),

Jin - ||QM(ze + d)l2, (3.4)

where () is an n X n orthogonal matrix that has the structure

UT
Q = [ ZT ] 9
with )
Uc e U = J-TS[ST(JTT)"18]72, 5 an (n X p) matrix
whose columns are s; = 1,...,p



Z € ®<("=1) is an orthonormal basis for the orthogonal complement
of the subspace spanned by the columns of J=1§.

Note that ZTJ=TS = 0. If we define W = [ST(JTJ)"15], 3 = 5Td, and
1
a(B) = STJTF 454 5517 AR,
where 3% denotes the vector in R? whose i-th component is (3;)%, then

QM(ze+ d) = [Z}/V]\;(Exqc(f—)d) ] (3.5)

The following lemma is the key to showing that (3.4) can be solved efficiently through (3.5).

Lemma 3.1. For any 3 € R?, there exists a d € R" such that ZT M (z. +d) =0 and STd = 3.
Proof. Let

d= (JTNHLsw=g + J 'z, (3.6)
where ¢ is an arbitrary vector € 7P, Then

5Td= STJTnHtswip + sTytz ¢t = 3,
from the definitions of W and Z, and
ZTM(ze+ d) = ZTF+ ZTJ[JTN)ASWIg+J71Z 1]+ 127 Ap?
= ZTF + 14 327 Ap%
Thus the choice
t = —Z7[F+ %AﬁQ]

in (3.6) yields a value of d for which ZTM(z.+d) = 0and STd = p are both satisfied.O

Since for any 3 we are able to find a step d such that Z7 M (z.4+d) = 0and S7d = 3, Lemma
3.1 and (3.5) show that the minimization problem (3.4) can be reduced to the minimization
problem in p variables

min W= 24(5)]]2. (3.7)

Furthermore, once the value of § that solves (3.7) is determined, we can obtain the solution d
to (3.4) efficiently as follows. From (3.5) and Lemma 3.1, d. must satisfy

QT [ W_%(](ﬁ) ]

Mz + d.) 0

= UW=3q(B).



From this equation and the definition of U we have
1
F+Jd, + §Aﬂ2 = JTsw1¢(B)
and, hence,
1
d, = —J7YF+ §Aﬁ2 — J T swt¢(p)]. (3.8)

Therefore, once we know 3, we simply calculate the value of ¢(3) and substitute these two values
into Equation (3.8) to obtain the value of d..
Now we can give the implementation that we use to solve (3.2).

Algorithm 3.1. Solving the Sparse Tensor Model When J Is Nonsingular
Let J € R™™ be sparse, F' € R", §, A € R"*P,

Step 0 Form the ¢(3) equations (3.3) by calculating J~7 S as follows: factor J, and solve
JTyj =s55,7=1,...,p.

Step 1 Form the positive definite matrix W € RPXP, where W;; = [s,T(JTJ)7s;], 1 < 4,5 < p,
as follows: W;; = (J = Ts;)T(J7Ts;) = Ty,

Step 2 Perform a Cholesky decomposition of W (i.e., W = LLT), resulting in I, € RP*?, a
lower triangular matrix.

Step 3 Use UNCMIN ([21]), an unconstrained minimization software package, to solve

. -1 2
min ] L7 g5l (3.9)

or solve (3.9) in closed form if p = 1.

Step 4 Substitute the values of 3 and ¢(3) into
1
d = —JYF + §Aﬂ2 — JTsw¢(3)) (3.10)

to obtain the tensor step d; this involves one additional solve, since the factorization of J
is already calculated.

The total cost of this process is the factorization of the sparse matrix J, p + 1 back solves
using this factorization, the unconstrained minimization of a function of p variables, and some
lower-order (O(n)) costs.



4. Solving the Newton Model Along with the Sparse Tensor Model

As in the dense case [20, 4], the global strategy that is used in our tensor method for sparse
nonlinear equations sometimes utilizes the Newton step rather than the tensor step (see Section
5). In the dense case, the Newton step can be computed inexpensively as a by-product of
computing the tensor step. In this section, we show that this computation can also be done in
the large sparse case.

If the Jacobian matrix J is nonsingular, then the calculation of the tensor step described
above produces a sparse LU factorization of J. In this case, the Newton step is simply found
by performing one additional pair of triangular solves to solve the system

Jd = - F (4.1)

That is, since
J = PTLUPT, (4.2)

where I € R™ ™ is unit lower triangular, U € R™*™ is upper triangular, and P; and P, are row
and column permutation matrices, we first solve

Ly = ¢ (4.3)
for y, where y = UPy'd and ¢ = — P;F. Then we solve
Uz =y (4.4)

for z, where z = P,7d. Finally d = P, z. Our algorithm uses the MA28 package [11] to
perform the sparse matrix factorization and triangular solves.

If the matrix .J is singular, then (4.1) has either zero or an infinite number of solutions.
Therefore, we would like to solve the least squares problem

Join, [|Jd+ F||2. (4.5)

The method that we use to solve the problem (4.5) is an extension of the method of Peters and
Wilkinson [19] that was suggested by Bjorck and Duff [2]. This approach usually produces a
better solution to (4.5) than the one obtained by using the MA28 package, which sets the last
r components of the solution z in (4.4) to 0, where r is the rank deficiency of J. In particular,
on problems where singular or very nearly singular Jacobians are encountered, Newton-based
methods using the step produced by the Bjorck and Duff method usually require fewer iterations
than those using the step produced by MA28. The remainder of this section reviews the method
of Bjorck and Duff.

The first step in the method of Bjorck and Duff [2] is to compute an LU factorization of the
Jacobian matrix J, using Gaussian elimination with both row and column interchanges. This is
equivalent to multiplying a permutation of J from the left by the product, GG, of a sequence of
elementary elimination matrices, to obtain

GPLIP, = ( g ) , (4.6)

10



where Py, P, are permutation matrices, and U is an r X n upper trapezoidal matrix with
r = rank(J). If we apply the same transformations to the right-hand side b = —F, we

obtain
GPb = ( Z ) : (4.7)
wheree¢ € R"ande € R™ 7

If we look at this in terms of an LU decomposition of J,
P JP, = LU, (4.8)

with L a unit lower trapezoidal n X r matrix, we have

Pb= Le + (2) (4.9)
Now if d; is any solution of the system
UPTd = e, (4.10)

the residual norm corresponding to it is given by
0
WJds = bl = || A(Jds = b) |la = || Le = Le — (6) 2 = Il e[l (4.11)

Thus, if ||le ||s < € (€ some suitable tolerance), then d; is a solution to (4.5) with a slightly
perturbed right-hand side b, and we can immediately accept d; as the solution to our problem
at the cost of a simple forward elimination (4.7) and back substitution (4.10).

However, if ||e ||z is larger, we would like to solve the least squares problem using our initial
decomposition (4.6) and (4.7). For an arbitrary d we have that

Pi(Jd—b) = LUPYd— Lc - ( 0)

€

. (2) (4.12)

UPTd = ¢+ 2. (4.13)

Therefore, d is a least squares solution of (4.5) if it satisfies (4.13), where 2 is the solution of

where

minimize ||Lz — ( 2 ) l|2- (4.14)

This least squares problem can be solved by using the (n+7) x (n+7) augmented system matrix

= , (4.15)

11



followed by the solution of (4.13) for d. Here p is the residual of (4.14). We use the augmented
system approach because it is an efficient method in terms of preservation of sparsity and
accuracy.

Hence, if ||e]|2 is larger than €, then d is the solution to (4.5) at the cost of one forward solve
(4.7), one back solve (4.10), an LU factorization of the augmented matrix (4.15) followed by one
forward and one backward solve using the resulting factors, and a back solve (4.13).

An advantage of Bjorck and Duff’s method is that (4.14) is used only to compute a correc-
tion to the equations (4.13). Hence, for problems with small residuals, this method should be
reasonably stable, since any ill-conditioning in I will affect only the correction z. Also, L is less
likely than U to be ill conditioned. Furthermore, since

(JTJd = —JTF)y=d'J'F = —d¥JTjd <o, (4.16)

the solution d to (4.5) is a descent direction unless Jd = 0, which would imply that JTF = 0.
Hence d is a descent direction unless we are at a root of F(z) or a critical point of ||F(z)||5>.
The step produced by MA28 when J is singular does not necessarily have this property.

5. Implementation of Tensor Methods for Sparse Nonlinear Equations

This section gives a complete high-level description of an iteration of the sparse tensor method
for nonlinear equations that is used in our computational tests. The description includes some
more details about the sparse matrix factorization than were given in preceding sections, and a
description of the global strategy. We present test results for this implementation in Section 6.

As stated previously, the sparse linear equation solutions in our implementation use the
MA?28 package [11], a widely used package for solving large, sparse, unsymmetric systems of
linear equations. To detect near-singularity of the Jacobian, we have modified the factorization
phase of MA28 to be able to detect the row and column indices of the first pivot whose absolute
value is less than or equal to some given tolerance, tol, times the largest element in absolute
value in the pivot row. This stability test detects a sufficient condition for the condition number
of the Jacobian to be greater than a given tolerance. While it is clearly not an optimal test
for ill-conditioning, it appears to work well in practice. Also, as mentioned previously, the
implementation reported here uses only one past iterate at each iteration to form the tensor
term T, (i.e., p = 1). We use only one past point because our tests indicated that no further
improvements were obtained by allowing a larger number of past points. In addition, using p =
1 reduces the storage requirement and cost per iteration of the tensor method, allows the tensor
model to be solved in closed form, and does not require an unconstrained optimization package.
The entire additional cost of an iteration of the tensor method with p = 1, in comparison with
Newton’s method, is essentially one sparse matrix vector multiplication of F'(z.) times a vector
to form the tensor model, one additional upper and lower triangular solve to solve the tensor
model, and sometimes a second additional pair of triangular solves to calculate the Newton step.
Some parts of Algorithm 5.1 are still stated in terms of arbitrary p, for generality.

The global strategy that is used in our implementation is a standard line search. In [4], both
line search and two-dimensional trust region strategies were used in tensor methods for small,
dense systems of nonlinear equations. In the tests in that paper, both methods appeared to be

12



equally robust, with the trust region method possibly having a small advantage in efficiency.
We have used the line search in the sparse code, however, because of its greater simplicity
and because the two-dimensional trust region method requires two additional matrix-vector
multiplications involving the Jacobian matrix.

The line search strategy that we use is identical to that developed and used in [20] and
[4], so we review it only very briefly here. If the full tensor step provides sufficient decrease
in ||[F()]|, it is taken. Otherwise, line searches usually are conducted in both the tensor and
Newton directions, resulting in two possible next iterates, and the point with the lower function
value is chosen as the next iterate. (The extra cost of this dual line search strategy, usually
one function evaluation per iteration, has proven empirically to be justified by the decrease in
the number of iterations required.) However, if the tensor step is not a descent direction or the
Jacobian matrix is singular, the line search is based solely upon the Newton direction.

Algorithm 5.1. An Tteration of the Tensor Method for Sparse Nonlinear Equations
Given current iterate z., F'(z,)

Step 0 Calculate J = F'(z.) analytically or by finite-difference approximations [6, 7], and
decide whether to stop. If not:

Step 1 Form the second-order term of the tensor model, T, so that the tensor model interpo-
lates F'(z) at the most recent past point (i.e., p = 1).

Step 2 Factorize J by using the MA28 software package [11].

Step 3 If J has full rank, perform Algorithm 3.1 on the tensor model M(z. +d) = F(z.) +
Jd + %Zizl ak(dek)2 to compute the tensor step d;, and go to Step 4. Else:

Step 3.1 Calculate the Newton step d,, from the LU factorization of J by the Bjorck and
Duff [2] method to find some solution to mingepgn ||Jd + F||2.

Step 3.2 Select the next iterate x4 by using the line search algorithm 5.2 outlined below,
where d,, is the search direction, and go to Step 5.

Step 4 Select the next iterate x4 by using a line search global strategy as follows:

Step 4.1 If z. + d; is acceptable, set x4 = x. + d; and go to Step 5. Else:

Step 4.2 Calculate the Newton step d,, from the LU factorization of J (or as in Step 3.1
if J is singular). Then calculate 2% = . + Ad,, for some A > 0, using Algorithm 5.2.

Step 4.3 If the tensor step is a descent direction, then calculate acfl_ = x. + Ad; for some
A > 0, using Algorithm 5.2.

Step 4.4 If [|F(27)[|2 > || F(2f )2, then 2y — 2l ; else x4 — 27}.

Step 5 Set z. — 24, F(z.) — F(z4). Go to Step 0.
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Algorithm 5.2. Standard Quadratic Backtracking Line Search

Given z., search direction d, ¢ = J(z.)T F(z.), and a = 107*

slope := ¢Td

Jo = lF ()]
A:=1.0

Tp =2+ Ad

fo = %HF(%)H?Q

while f, > f. + a - A slope do
Atemp 1= —A- slope [(2[f, — fo — A- slope])
A r=max{ Atepmp, A/10}

Tp =2+ Ad
Ipi= %HF(%)H?Q
endwhile

The sparse tensor code (and the Newton code) terminates successfully if the relative size of
(z4—a.)is less than macheps? , or || F'(24)]]c0 is less than macheps?; it terminates unsuccessfully
if the iteration limit is exceeded. If the last global step fails to locate a point lower than z. in
the line search global strategy or if the relative size of J(z4 )T F(2, ) is less than macheps? , the
method stops and reports this condition; this situation may indicate either success or failure.

6. Test Results

This section describes the comparative testing of the sparse tensor method from Section 5 with
an analogous implementation based upon a linear model (Newton’s method). The Newton’s
method algorithm is identical to the tensor Algorithm 5.1 except that the tensor model is never
formed or solved, and the next iterate z, is calculated from a line search based solely on the
Newton search direction d,,. That is, it uses steps 0, 2, 4.2/3.1, and 5 of Algorithm 5.1. As in
Algorithm 5.1, the Jacobian matrix is factored at each iteration by using the M A28 package, and
if the Jacobian is singular, the search direction is calculated by the method of Bjorck and Duff.
In all our experiments, we calculate the Jacobian matrix by finite-difference approximations
[6, 7].

We tested these algorithms on a variety of nonsingular and singular problems. First we
tested them on three sparse problems provided to us from Boeing Computer Services (BCS) and
used as test problems in [13]. These problems are described as follows:

1. LTS : This problem discretizes the differential equations for the Linear Tangent Steering
problem in Bryson and Ho [5]. This is the search problem formulation where the adjoint differ-
ential equations are also discretized and an optimality condition is imposed.

2. GRST : This problem discretizes the differential equations for a coast about a spherical earth.
The problem is initialized on the equator in an orbit with inclination of 1.0 radians. A search
problem is obtained by requiring that the vehicle be at a given latitude at the final time. There
are two solutions for every desired final latitude that is less than the inclination in absolute value.
There is a single solution if the final latitude is required to be greater than the inclination.

3. LGNDR : The recurrence relation for the Legendre polynomials is used to generate a sparse
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system of nonlinear equations equivalent to finding the value of 2 at which the n-th Legendre
degree polynomial is equal to 1.

We then tested our methods on a system of sparse trigonometric equations from [18] that have
the form

n
J=

n
(a;jsin x; + byjcos xj)+Zcijxj = d;, v = 1,2,...,n, (6.1)
1 j=1
where the matrices {a;;} and {b;;} have the same sparsity pattern as one another, including
nonzeros on the diagonal, and {c¢;;} has a different sparsity pattern. Each matrix is a band
matrix consisting of a main diagonal and zero, one, or two superdiagonals and subdiagonals that
are each distance two apart. The nonzero values are generated randomly in [0, 1]. The solution
components are generated randomly in [0, 1], and the right-hand side vector d is calculated from
the solution. For the starting iterate we randomly perturb the components of the solution by
adding or subtracting 0.1 from each.

We also ran our methods on some sparse nonlinear equations problems from Moré, Garbow,
and Hillstrom [17], namely, the Broyden banded, the Broyden tridiagonal, and the variable-
dimension test problems, and on the distillation column test problem from [16]. Finally, we tested
our methods on the MINPACK-2 test problems collection [1], namely, the driven cavity, the flow
in a channel, the incompressible elastic rod, and the swirling flow between disks problems. In the
remainder of this section, we will refer to the trigonometric, the BCS, and the Moré, Garbow,
and Hillstrom test problems as the TBM collection.

These problems all have nonsingular Jacobians at the solution. We created singular test
problems as proposed in Schnabel and Frank [20] by modifying these nonsingular test problems
to the form

F(z) = F(z) = Fl(z)A(ATA) T AT (2 — 2,), (6.2)

where F'(z) is the standard nonsingular test function, z, is its root, and A € R™"** has full column
rank with 1 < k < n. Note that F(z) also has a root at z. and rank(F’(z,)) = n — rank(A).
We used (6.2) to create two sets of sparse singular problems, with F'(z,) having rank n — 1
and n — 2, respectively, by using the matrices A € R"*! and R"*? whose columns are the unit
vectors eq, and {ey,es}, respectively. Note that these changes do not affect the sparsity pattern
of the Jacobian, except possibly for the first and second diagonal elements.

The dimensions of the test problems we ran ranged from n = 31 ton = 324, with eleven
of the fourteen problems we used having dimension 300 or greater. For each test problem, we
used several different starting guesses, generated by

&g = wo+ const(zg — ), (6.3)

where const is an real number indicating how far the initial guess is from the solution, and =z,
is the solution resulting from running the problem with initial guess 2. All our computations
were performed on a Sun SPARCstation 2 computer in the Computer Science Department at
the University of Colorado at Boulder, using double-precision arithmetic.

Tables 6.1 and 6.2 summarize the performance of the sparse tensor and sparse Newton meth-
ods on the TBM and MINPACK-2 test problems collections. FEach subtable in Table 6.1 presents
the test results for a nonsingular test problem and for its rank n — 1 and rank n — 2 singular
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versions, whereas each subtable in Table 6.2 presents the test results only for a nonsingular test
problem. Columns “Better” and “Worse” represent the number of times the tensor method
was better and worse, respectively, than Newton’s method by more than one iteration, over
all the starting points for the problem under consideration. The “Tie” column represents the
number of times the tensor and Newton methods required within one iteration of each other.
The columns labeled “Average Ratio” measure the efficiency of the tensor method against New-
ton’s method; for example, if the test set contained two problems for which the tensor method
required 3 and 5 iterations, respectively, and Newton’s method 7 and 9 iterations, respectively,
then the average ratio would be % = 0.50. The same measure is used for execution times and
function evaluations. These average ratios include only problems that were successfully solved
by both methods. Columns “Itns”, “Time”, and “Fevals” represent the number of iterations,
the execution time, and the number of function evaluations, respectively. Problems that were
solved by only one method are included in the “Better” and “Worse” columns, however, and the
numbers of such problems are discussed below. We have excluded entirely from Tables 6.1 and
6.2 all cases where the tensor and Newton methods converge to different roots, or to the same
root but not the singular root z, for a singular problem.

Though nonlinear systems of equations may sometimes converge to a stationary point that
is not a root, this convergence failure has not occurred in our test experiments. The convergence
failures that were encountered in our test results are (1) iteration limit exceeded and (2) failure
of the last global step to locate a point lower than the current iterate in the line search global
strategy. This latter failure generally occurs when the generated tensor or Newton steps are
too small that the line search fails to satisfy the sufficient decrease conditions in the objective
function.

Table 6.3 presents the average iteration, execution time, and function evaluation ratios of
the tensor method versus Newton’s method for all of the rank n, n — 1, and n — 2 problems
that are included in the average ratio statistics in Tables 6.1 and 6.2. The one exception is
that we exclude the rank n — 2 versions of the Legendre problem from the last line in Table
6.3 because in almost all cases, the tensor and Newton methods converge to a different root.
For the three cases where the two methods converged to the same root, the tensor method was
dramatically more efficient than the Newton method. These results are so different from any of
the others that it seemed best to eliminate them from the summary statistics. Their inclusion
would change the numbers in the last line of Table 6.3 to 0.43, 0.51, and 0.43.

On the basis of Table 6.1, the following observations can be made. The tensor method
virtually never is less efficient than Newton’s method and usually is more efficient in terms of
iterations, function evaluations, and execution times. The improvement by the tensor method
over Newton’s method is substantial, averaging about 50% in iterations, 40% in execution times,
and 50% in function evaluations, if all problems are considered. For all the nonsingular problems,
the improvement averages 40% in iterations, 28% in execution times, and 41% in function
evaluations. For problems where F’(z,) has a small rank deficiency, the improvement is greater.
It averages 56% in iterations, 45% in execution times, and 46% in function evaluations for rank
n — 1 problems, and 52% in iterations, 45% in execution times, and 52% in function evaluations
for rank n — 2 problems. In the case of the rank n — 1 problems, this advantage is due in part to
the tensor method achieving 3 step Q-order % convergence whereas Newton’s method is linearly
convergent ([12]).
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The tensor method also has a substantial advantage in robustness in comparison with New-
ton’s method on this test set. Over all the test problems, 12 nonsingular problems, 11 rank n—1
problems, and 12 rank n — 2 problems were solved by the tensor and not by Newton’s method.
On the other hand, there were no problems that were solved by Newton’s method and not by
the tensor method.

A close look at the numerical performance of the tensor and Newton methods is presented in
Table 6.4. This table shows the test results for the TBM collection in which the values of const
in the equation for the starting point, 6.3, are given in the first column. Note that “Fevals”
also includes the function evaluations required by the finite-difference approximations of the
Jacobian matrix, and that 150 in the “Itns” column means that the iteration limit has been
exceeded. Table 6.4 clearly shows that the tensor method outperforms the Newton method by
a large margin on the rank n — 1 and n — 2 versions of the TBM test problems collection. This
is a reflection of faster local convergence by the tensor method on singular problems with a
small rank deficiency. The substantial gains by the tensor method over Newton’s method on the
rank n — 2 TBM test problems are somewhat surprising because in theory the tensor method
may not always achieve faster than linear convergence on problems where the rank of F'(z,) is
n — 2 or less [20]. Though the tensor and Newton methods are both quadratically convergent
on nonsingular problems, the tensor method is clearly the more efficient on the nonsingular
TBM test problems. The improvement by the tensor method over the Newton method on the
nonsingular TBM test problems, however, is less dramatic.

Another important observation that can be made on the basis of Table 6.3 is that the
average improvement of the tensor method over Newton’s method in execution times is about
10% smaller than in iterations. This is primarily because a tensor iteration requires at least one
more pair of triangular solves than a Newton iteration (two more if both the tensor and Newton
directions are calculated), and one additional matrix vector multiplication. The increased cost
per iteration ranges from 12% on problems with relatively expensive function evaluations, like
the LTS problem, to 57% on problems with very sparse Jacobians and inexpensive function
evaluations, like the Broyden tridiagonal problem. (Note that one exception is the rank n
and n — 2 versions of the trigonometric problem in Table 6.1. Here, the average execution
time improvement is about 5% more than the average iteration improvement. This is because
Newton’s method line search requires many nonunit steps on this problem, as is clearly indicated
by the large improvement in function evaluations, and because function evaluations are expensive
for the trigonometric test problem.)

The MINPACK-2 test results presented in Table 6.2 show that the tensor method performs
very slightly worse than its Newton counterpart on the DFIC problem, essentially the same on
the DSF'D problem, and considerably better on the DFDC (Reynolds = 400), DFDC (Reynolds
= 1000), and the DIER problems. Note that all of these functions are relatively inexpensive
with respect to the finite-difference approximation of the Jacobian matrix and its factorization,
which explains why the improvement by the tensor method over Newton’s method in execution
times on the DFDC ((Reynolds = 400), DFDC (Reynolds = 1000), and DIER problems is still
significant even though on function evaluations both methods perform about the same. Over
all the runs on the MINPACK-2 collection, two problems were solved by the tensor method and
not by Newton’s method, whereas no problems were solved by Newton’s method and not by
the tensor method. Both methods failed to converge on many problems for which the starting
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Table 6.1: Summary Statistics of the Test Results for the TBM Collection
LTS Problem

Dimension | Rank Tensor Average Ratio—Tensor/Newton
n F'(x.) || Better | Worse | Tie || Ttns | Time Fevals
313 n 12 2 3 0.78 | 0.90 0.84
n—1 11 0 0 0.55 | 0.67 0.60
n—2 7 0 0 0.62 | 0.68 0.65
GRST Problem
324 n 2 0 5 0.52 | 0.63 0.52
n—1 14 0 0 0.48 | 0.57 0.51
n—2 14 0 1 0.46 | 0.53 0.43
LGNDR Problem
50 n 13 0 0 0.86 | 1.02 0.86
n—1 7 0 1 0.45 | 0.87 0.51
n—2 3 0 0 0.10 | 0.15 0.10
Trigonometric Problem
300 n 4 1 2 0.40 | 0.35 0.21
n—1 5 0 1 0.47 | 0.47 0.31
n—2 8 0 0 0.42 | 0.38 0.26
Broyden Banded Problem
300 n 11 0 0 0.81 | 0.95 0.83
n—1 11 0 0 0.69 | 0.81 0.69
n—2 11 0 0 0.66 | 0.77 0.64
Broyden Tridiagonal Problem
300 n 11 0 0 0.30 | 0.48 0.35
n—1 11 0 0 0.23 | 0.36 0.27
n—2 11 0 0 0.31 | 0.47 0.50
Variable Dimension Problem
300 n 11 0 0 0.36 | 0.39 0.38
n—1 11 0 0 0.38 | 0.40 0.39
n—2 10 0 0 0.34 | 0.36 0.35
Distillation Column Problem (31 Variables)
31 n 5 0 10 |} 0.93 | 1.16 0.95
n—1 4 0 0 0.43 | 0.48 0.40
n—2 8 0 0 0.53 | 0.66 0.53
Distillation Column Problem (99 Variables)
99 n 3 0 4 0.45 | 0.61 0.44
n—1 6 0 0 0.31 | 0.34 0.31
n—2 5 0 0 0.50 | 0.60 0.49
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points were chosen to be relatively far from the solution. Based on our previous experience with
trust region and line search methods [4], we believe that a trust region strategy often would
have helped on these cases.

We examined our test results to obtain an experimental indication of the local convergence
behavior of the tensor method and Newton’s method on problems where rank( F'(z.)) = n—1.
Specifically, we examined the sequence of ratios

l2* = a|/l|2*7 = a.]] (6.4)

produced by the Newton and tensor methods on problems with rank(F’(z.)) = n — 1. The
ratios for a typical problem are given in Table 6.5. In almost all cases the standard method
exhibits local linear convergence with constant near 0.5, which is consistent with the theoretical
analysis (see, e.g., [9, 10]). The local convergence rate of the tensor method is faster, with a
typical final ratio of around 0.01. This final ratio might be smaller if analytic Jacobians were
used in combination with tighter stopping tolerances. As is anticipated in [12], the convergence
usually seems to be one-step superlinear, although only a three-step Q-order % result can be
proven.

Finally, we also tried, on most of the test problems, a variant of the tensor method that
allows up to two past points (i.e., p < 2) to be used in the tensor model formation. There
was almost no difference in terms of number of iterations or function evaluations. There was,
however, an increase in execution time by approximately 10% to 20% when we allowed two past
points. This is due in part to the extra pair of triangular solves required per tensor iteration,
because when p < 2 a total of up to 3 solves may be performed.

Overall, the size and consistency of the efficiency gains indicate that the tensor method may
be preferable to the linear model-based method for solving large sparse systems of nonlinear
equations. The tensor method seems to obtain a surprisingly large improvement from a compar-
atively small amount of additional information. In particular, the tensor method using only one
past point seems to be more efficient than the tensor method using more than one past point,
from the viewpoints of execution time and storage.

Table 6.2: Summary Statistics of the Test Results for the MINPACK-2 Collection
Driven Cavity Problem (DFDC) (Reynolds = 400)

Dimension | Rank Tensor Average Ratio—Tensor/Newton
n F'(x.) || Better | Worse | Tie || Ttns | Time Fevals
304 n 2 0 3 0.69 | 0.75 0.98
Driven Cavity Problem (DFDC) (Reynolds = 1000)
| 303 | » [ 2 [ 0 ] o0 [o52] 051 ] 0.94 |
Flow in a Channel Problem (DFIC)
[ 38 | = [ 1 [ 0 | 4 ]106] 103] 1.20 |
Incompressible Elastic Rod Problem (DIER)
| 324 | n» ] 1 [ 0 [0 Jo61] 064 ] 0.83 |
Swirling Flow between Disks Problem (DSFD)
| 324 | » [ 0 [ 0 ] 6 [[100] 099 ] 1.04 |
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Table 6.3: Average Ratios of Tensor Method versus Newton’s Method for the TBM Collection
Rank Tensor
F'(z,) | Itns | Time | Fevals
n 0.60 | 0.72 | 0.59
n—1 1044 ] 055 | 044
n—2 1048 | 055 | 0.48

7. Summary and Future Work

We have developed and tested an efficient tensor method for solving large sparse systems of
nonlinear equations. The method, like previous tensor methods for nonlinear equations, is based
upon using a second-order model of the nonlinear equations at each iteration. The tensor model
is formed in the same way as in the previous tensor method research for small, dense nonlinear
equations ([20, 4]), since this approach still is efficient for large sparse problems. The solution
of the tensor model, however, uses an entirely new approach. With this new approach, we are
able to make the main step of the tensor model solution procedure be a (sparse) factorization
of the Jacobian matrix, which can be performed efficiently. In contrast, previous approaches
for solving the tensor model required orthogonal transformations to the Jacobian matrix, which
would destroy its sparsity, before performing a matrix factorization. The approach also allows
a minimizer of the tensor model to be found efficiently if no root exists.

In computational comparisons using an analogous code based on Newton’s method, the
tensor method is significantly more efficient in terms of iterations, function evaluations, and
execution times. The advantages of the tensor method are greater on singular problems than on
nonsingular problems, but are large in both cases, averaging about 30% to 40% for nonsingular
problems and about 45% to 55% for problem with small rank deficiencies. The tensor method
code also solves considerably more problems successfully than Newton’s method code. The most
effective tensor method uses a rank-one second-order term, in which the tensor model interpolates
the function value at just the previous iterate. The additional storage and arithmetic cost per
iteration needed to use this tensor model are particularly small.

We are continuing to refine and test the software corresponding to the methods described in
this paper, and plan to make it generally available in the near future. We have also developed
tensor methods for solving large, sparse nonlinear least squares problems. The issues involved
are considerably different because of the different large sparse linear algebraic computations that
are required. This work is described in [3] and in a forthcoming paper. Finally, we continue to
develop variants of tensor methods for solving very large systems of nonlinear equations that
are based on iterative linear solvers such as Krylov subspace methods.
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