
Tensor Methods for Large Sparse Systems ofNonlinear EquationsAli Bouaricha�MCS Division, Argonne National Laboratory, Argonne, IL 60439, USAandRobert B. SchnabelyDepartment of Computer Science, University of Colorado, Boulder, CO 80309-0430, USAAbstract. This paper introduces tensor methods for solving large sparse systems of nonlin-ear equations. Tensor methods for nonlinear equations were developed in the context of solvingsmall to medium-sized dense problems. They base each iteration on a quadratic model of thenonlinear equations, where the second-order term is selected so that the model requires no morederivative or function information per iteration than standard linear model-based methods, andhardly more storage or arithmetic operations per iteration. Computational experiments on smallto medium-sized problems have shown tensor methods to be considerably more e�cient thanstandard Newton-based methods, with a particularly large advantage on singular problems. Thispaper considers the extension of this approach to solve large sparse problems. The key issueconsidered is how to make e�cient use of sparsity in forming and solving the tensor model prob-lem at each iteration. Accomplishing this turns out to require an entirely new way of solvingthe tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobianis nonsingular or singular. We develop such an approach and, based upon it, an e�cient tensormethod for solving large sparse systems of nonlinear equations. Test results indicate that thistensor method is signi�cantly more e�cient and robust than an e�cient sparse Newton-basedmethod, in terms of iterations, function evaluations, and execution time.Key words. tensor methods, nonlinear equations, sparse problems, rank-de�cient matrices.�Work supported by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D, and by the National Science Foundation,through the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.yResearch supported by AFOSR Grants No. AFOSR-90-0109 and F49620-94-1-0101, ARO Grants No.DAAL03-91-G-0151 and DAAH04-94-G-0228, and NSF Grant No. CCR-9101795.1

1. IntroductionIn this paper we introduce tensor methods for solving the sparse nonlinear equations problemgiven F : <n ! <n; �nd x� 2 <n such that F (x�) = 0; (1:1)where it is assumed that n is large (say, n > 100), F (x) is a least once continuously di�er-entiable, and the Jacobian matrix F 0(x) 2 Rn�n is sparse. Large sparse systems of nonlinearequations arise frequently in many practical applications including various network-
ow prob-lems and equations produced by �nite-di�erence or �nite-element discretizations of boundaryvalues problems for ordinary and partial di�erential equations. In many situations, F 0(x�) is illconditioned or singular with a small rank de�ciency. For example, this occurs in curve-trackingapplications at or near bifurcation points. In such cases, tensor methods are especially intendedto improve upon the e�ciency of standard algorithms based on Newton's method. Tensor meth-ods are also intended to be at least as e�cient as standard methods on problems where F 0(x�) isnonsingular, and in practice they often seem to be considerably more e�cient on these problemsas well.Tensor methods for small to medium-sized dense systems of nonlinear equations were intro-duced by Schnabel and Frank [20], and a software package implementing them is described in[4]. The methods base each iteration on a quadratic model of F (x) that has the formM(xc + d) = F (xc) + F 0(xc)d+ 12Tcdd; (1:2)where xc is the current iterate, and Tc 2 Rn�n�n is the tensor term at xc. The tensor term isselected so that the model interpolates a very small number, p, of function values from previousiterations. This results in Tc being a rank p tensor, which is crucial to the e�ciency of the tensormethod. After the model (1.2) is formed, the problem�nd d 2 Rn that minimizes jjM(xc + d)jj2 (1:3)is solved; that is, at each iteration of tensor methods, a minimizer of the model is used if no rootexists. Methods for forming the tensor term and solving the tensor model for dense systemsof nonlinear equations are reviewed in more detail in the next section. The tensor methodrequires no more derivative or function information per iteration than Newton's method, andits storage requirement and arithmetic cost per iteration are not appreciably more than forNewton's method.Methods based on (1.2) have been shown to have very good theoretical properties and verygood computational performance on small to medium-sized dense problems. Theoretically, themethods converge at least as quickly as Newton's method on nonsingular problems and havebeen shown to have 3-step Q-order 1.5 convergence on problems where the Jacobian has rankn�1 at the solution, whereas Newton's method is linearly convergent with constant 1/2 on suchproblems [12]. In tests reported in [4] for both nonsingular and singular problems, the tensormethod virtually never is less e�cient than a standard method based upon a linear (Newton)model, and usually is more e�cient. The improvement by the tensor method over the standardmethod is substantial, averaging about 49% in iterations and 41% in function evaluations when2

a line search is used in each, and about 42% in iterations and 31% in function evaluations whenthe trust region is used in each, on problems solved successfully by both methods. Furthermore,the tensor method solves a considerable number of problems that the standard method doesnot, and the reverse virtually never is the case.The preliminary success of tensor methods for small to medium-sized nonlinear equationsmakes it reasonable to consider their application to large sparse systems of nonlinear equations.In doing so, there are several key considerations. First, tensor methods require that the Jacobianmatrix be available, either analytically or by �nite di�erences, at each iteration. While this is notalways the case for small problems|quasi-Newton approximations to the Jacobian sometimesbeing used instead|it is almost always the case in methods that are used for solving largesparse systems of nonlinear equations. The derivatives usually come from e�cient sparse �nitedi�erences (see, e.g., [8]), from user-supplied analytic derivatives, or recently through automaticdi�erentiation (see, e.g., [14, 15]). Hence, this requirement is not a problem and indeed �tsthis approach well. Second, the methods for forming and solving the tensor model must makee�cient use of the sparsity of the Jacobian matrix and not involve any dense linear algebrausing n � n matrices. The existing method for forming the tensor model adapts immediatelyto sparsity, as is shown in Section 2. However, the most di�cult and expensive part of thetensor method is solving the quadratic model (1.2) e�ciently, and the algorithms used for thisso far are entirely inappropriate for large sparse problems. These algorithms make crucial use oforthogonal transformations of both the variable and function space, especially to deal e�cientlyand stably with cases when the Jacobian matrix is singular or the tensor model has no root.They are not applicable to sparse problems because the orthogonal transformation of the variablespace would destroy the sparsity of the Jacobian.To deal e�ciently with sparsity, we develop an entirely new way of solving the tensor model.This approach is able to utilize a sparse variant of Gaussian elimination or any other sparse directsolver. It includes techniques that allow the tensor model to be solved e�ciently and stably whenthe Jacobian matrix is singular. It also entails ways to e�ciently calculate the Newton step,which is sometimes used in the tensor algorithm, as a by-product of the calculation of the tensorstep.Using these ingredients, we formulate an e�cient tensor method for large sparse nonlinearequations and apply this method to a number of test problems. We compare it with an e�cientNewton-based method for solving sparse nonlinear equations that is based upon the same sparselinear equations software and global strategy. Our experimental results indicate that the tensormethod is signi�cantly more robust and e�cient than the standard method, in terms of iterations,function evaluations, and execution time.The remainder of this paper is organized as follows. In Section 2 we brie
y review tensormethods for dense nonlinear equations, and point out the issues involved in extending themto large sparse problems. In Section 3 we �rst describe an e�cient algorithm for solving thetensor model when the Jacobian matrix is sparse and nonsingular. Next, we present an e�cientalgorithm for solving the tensor model when the Jacobian is sparse and rank de�cient. InSection 4 we show how to e�ciently solve the standard linear model in conjunction with thesealgorithms for solving the tensor model, both when the Jacobian matrix is nonsingular andwhen it is rank de�cient. Section 5 gives a high-level description of the complete tensor methodfor sparse nonlinear equations, including the global strategy. In Section 6 we compare results3

for this implementation with those for the same implementation based on Newton's method.Finally, Section 7 gives a brief summary and discussion of future work.2. Brief Overview of Tensor Methods for Dense Nonlinear EquationsTensor methods are general-purpose methods intended to improve upon the e�ciency of standardalgorithms based on Newton's method particularly on problems where the Jacobian matrix atthe solution is singular or ill-conditioned. Each iteration is based upon a quadratic model (1.2)of the nonlinear function F (x). The choice of the tensor term Tc 2 Rn�n�n in this model causesthe second-order term Tcdd in (1.2) to have a simple and useful form.The tensor term is chosen to allow the model M(xc + d) to interpolate values of the functionF (x) at past iterates x�k ; that is, the model satis�esF (x�k) = F (xc) + F 0(xc)sk + 12Tcsksk; k = 1; : : : ; p; (2:1)where sk = x�k � xc; k = 1; : : : ; p:The past points x�1; : : : ; x�p are selected so that the set of directions fskg from xc to the selectedpoints is strongly linearly independent; each direction sk is required to make an angle of at least45 degrees with the subspace spanned by the previously selected past directions. The procedurefor �nding linearly independent directions is implemented by using a modi�ed Gram-Schmidtalgorithm, and usually results in p = 1 or 2.After the linearly independent past directions, sk, are selected, the tensor term is chosen tobe the smallest matrix that satis�es the interpolation conditions (2.1), that is,minTc2Rn�n�n jj Tc jjF (2:2)subject to Tcsksk = 2 (F (x�k) � F (xc) � F 0(xc)sk);where jjTcjjF , the Frobenius norm of Tc, is de�ned byjjTcjjF 2 = nXi=1 nXj=1 nXk=1(Tc[i; j; k])2: (2:3)The solution to (2.3) is the sum of p rank-one tensors whose horizontal faces are symmetric,Tc = pXk=1 aksksk; (2:4)where ak is the k-th column of A 2 Rn�p, A de�ned by A = ZM�1; Z is an n � p matrixwhose columns are Zj = 2(F (x�j) � F (xc) � F 0(xc)sj); and M is a p � p matrix de�ned byM(i; j) = (siTsj)2, 1 � i; j � p.Using the tensor term (2.4), we obtain the tensor modelM(xc + d) = F (xc) + F 0(xc)d + 12 pXk=1 ak (dTsk)2: (2:5)4

The simple form of the quadratic term in (2.5) is the key to being able to e�ciently form, store,and solve the tensor model. For dense problems, the cost of forming the tensor term in the tensormodel is O(n2p) � O(n2:5) arithmetic operations, since p � pn. The leading term comes fromthe p matrix-vector products F 0(xc)sk. The next most signi�cant cost is the O(np2) operationsrequired to calculate A = ZM�1, and the O(np2) cost of the Gram-Schmidt orthogonalization.The additional storage required is 4p n-vectors.Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possiblethat no root exists; in this case a least squares solution of the model is found instead. Thus, ingeneral, the problem �nd d 2 Rn that minimizes jj M(xc + d) jj2 (2:6)is solved. Schnabel and Frank [20] show that the solution to (2.6) can be reduced to the solutionof q quadratic equations in p unknowns (i.e., a very small system of quadratics), plus the solutionof n� q linear equations in n� p unknowns. Here q is equal to p whenever F 0(xc) is nonsingularand usually when rank(F 0(xc)) � n � p, and q is greater than p otherwise. In the dense case,the main steps of the algorithm used to solve (2.6) are the following:1. An orthogonal transformation of the variable space is used to cause the n equations in nunknowns to be linear in n� p variables, d̂1 2 Rn�p, and quadratic only in the remainingp variables, d̂2 2 Rp.2. An orthogonal transformation of the equations is used to eliminate the n� p transformedlinear variables from n�q of the equations. The result is a system of q quadratic equationsin the p unknowns, d̂2, plus a system of n � q equations in all the variables that is linearin the n� p unknowns, d̂1.3. A nonlinear unconstrained optimization software package, UNCMIN [21], is used to min-imize the l2 norm of the q quadratic equations in the p unknowns, d̂2. (If p = 1, thisprocedure is done analytically instead.)4. The system of n � q linear equations that is linear in the remaining n � p unknowns issolved for d̂1.An advantage of this algorithm is that it e�ciently and stably solves (2.6), whether or not thetensor model has a root or the Jacobian is nonsingular.In the dense case, the arithmetic cost per iteration of the above algorithm is the standardO(n3) cost of a matrix factorization, plus an additional O(n2p) (� O(n2:5)) operations for theorthogonal transformations, plus the cost of using UNCMIN [21] in Step 3 of the algorithm.The cost of using UNCMIN is expected to be O(p4) � O(n2) operations, since each iterationrequires O(p3) operations (O(p2q) when q > p) and a small multiple of p iterations generallysu�ce. Thus, the total cost of the above algorithm is the O(n3) cost of Newton's method plusat most an additional cost of O(n2:5) arithmetic operations. The Newton step is computedinexpensively (in O(n2p) � O(n2:5) operations) as a by-product of the tensor step solution.An iteration of the tensor method is summarized in Algorithm 2.1 below. For more detailson tensor methods, including the global strategy used in Step 5 of Algorithm 2.1, see Schnabel5

and Frank [20] and Bouaricha and Schnabel [4].Algorithm 2.1. An Iteration of the Tensor Method for Dense Nonlinear EquationsGiven n, current iterate xc, F (xc)Step 0 Calculate F 0(xc), and decide whether to stop. If not:Step 1 Select the past points to use in the tensor model from among the pn most recent points.Step 2 Calculate the second-order term of the tensor model, Tc, so that the tensor modelinterpolates F (x) at all the points selected in Step 1.Step 3 Find the root of the tensor model, or its minimizer (in the l2 norm) if it has no realroot.Step 4 Select the next iterate x+ using either a line search global strategy or a two-dimensionaltrust region method.Step 5 Set xc x+, F (xc) F (x+); go to Step 1.Now consider applying Algorithm 2.1 to large sparse systems of nonlinear equations. Theleading costs of the tensor model formation are p Jacobian-vector products, to form F 0(xc)sk ; nsolutions of a dense p� p systems of linear equations with the same p� p matrix M to form A;and a Gram-Schmidt orthogonalization of p n-vectors. Thus, as long as p is restricted to beingless than or equal to a very small integer (rather than p � pn as for dense problems), these costsare small for large sparse problems: the p Jacobian-vector products can be calculated e�cientlyby utilizing the sparsity of the Jacobian, and the remaining costs total a small multiple of noperations. Since dense tensor methods generally choose p = 1 or 2 anyhow, even when pn isconsiderably larger, the restriction on the size of p is not a problem. In fact, our test softwarewill be seen to use p = 1 because larger values did not improve its performance.The procedure for solving the tensor model in the dense case, however, does not adapt to largesparse problems. The �rst step of this process, the orthogonal transformation of the variablespace, is crucial to this approach and would destroy the sparsity of the Jacobian, making theremaining steps have an O(n3) cost even if the Jacobian had been sparse. Therefore, if tensormethods are to be applied to large sparse problems, an entirely di�erent method for solving thetensor model is needed. This is developed in the next section.3. Solving the Tensor Model When the Jacobian Is SparseAs motivated in Section 2, the key challenge in developing an e�cient tensor method for largesparse systems of nonlinear equations is to construct an e�cient algorithm for �nding a root ofthe tensor model (2.5) when the Jacobian matrix is large and sparse. That is,6

Find d 2 Rn such thatM(xc + d) = F (xc) + F 0(xc)d + 12 pXk=1 ak fdTskg2 = 0; (3:1)where F 0(xc) is large and sparse. We give such an algorithm in this section. We show thatthe solution of (3.1) can be reduced to the solution of a system of p quadratic equations inp unknowns, plus the solution of p + 1 systems of linear equations that all involve the samematrix, J(xc), if this one is nonsingular and well conditioned. We also show that our algorithme�ciently solves the generalization of (3.1),�nd d 2 Rn that minimizes jjM(xc + d)jj2: (3:2)The basic approach used in all these cases is illustrated by the case when the Jacobianmatrix is nonsingular and the tensor model has a root. In this case, premultiplying (3.1) bysiTJ�1; i = 1; : : : ; p, gives the p quadratic equations in the p unknowns �i = siTd,siTJ�1F + �i + 12 pXk=1(siTJ�1ak)�k2 = 0; i = 1; : : : ; p: (3:3)(Here and in the remainder of this section, we let F denote F (xc) and J denote F 0(xc).) Theseequations can be solved for �i; i = 1; : : : ; p, and then from (3.1) the equationF + Jd+ 12 pXk=1 ak�k2 = 0can be solved for d. The entire process requires the solution of p+1 systems of linear equations inthe matrix J to compute J�1F and J�1ak; k = 1; : : : ; p (or, alternatively, J�1(F+ 12Ppk=1 ak�k2)and J�T si; i = 1; : : : ; p) and the solution of the small system of quadratics (3.3).3.1. Solving the Sparse Tensor Model When the Jacobian Is NonsingularThe preceding paragraph indicated how to solve (3.2) e�ciently when the Jacobian matrix isnonsingular and the tensor model has a root. Now we address the more general problem ofsolving (3.2) e�ciently whether or not the model has a root, when the Jacobian matrix isnonsingular. We do this by considering the equivalent minimization problem to (3.2),mind2 Rn jjQM(xc + d)jj2; (3:4)where Q is an n � n orthogonal matrix that has the structureQ = " UTZT # ;with U 2 <n�p; U = J�TS[ST (JTJ)�1S]� 12 , S an (n� p) matrixwhose columns are si = 1; : : : ; p7

Z 2 <n�(n�p) is an orthonormal basis for the orthogonal complementof the subspace spanned by the columns of J�TS.Note that ZTJ�TS = 0. If we de�ne W = [ST(JTJ)�1S], � = STd, andq(�) = STJ�1F + � + 12STJ�1A�2;where �2 denotes the vector in <p whose i-th component is (�i)2, thenQM(xc + d) = " W� 12 q(�)ZTM(xc + d) # : (3:5)The following lemma is the key to showing that (3.4) can be solved e�ciently through (3.5).Lemma 3.1. For any � 2 <p, there exists a d 2 <n such that ZTM(xc + d) = 0 and STd = �.Proof. Let d = (JTJ)�1SW�1� + J�1Z t; (3:6)where t is an arbitrary vector 2 <n�p. ThenSTd = ST (JTJ)�1SW�1� + STJ�1Z t = �;from the de�nitions of W and Z, andZTM(xc + d) = ZTF + ZTJ [(JTJ)�1SW�1� + J�1Z t] + 12ZTA�2= ZTF + t+ 12ZTA�2:Thus the choice t = �ZT [F + 12A�2]in (3.6) yields a value of d for which ZTM(xc + d) = 0 and STd = � are both satis�ed.2Since for any � we are able to �nd a step d such that ZTM(xc+d) = 0 and STd = �, Lemma3.1 and (3.5) show that the minimization problem (3.4) can be reduced to the minimizationproblem in p variables min�2<p jjW� 12 q(�)jj2: (3:7)Furthermore, once the value of � that solves (3.7) is determined, we can obtain the solution dto (3.4) e�ciently as follows. From (3.5) and Lemma 3.1, d� must satisfyM(xc + d�) = QT " W� 12 q(�)0 #= UW� 12 q(�):8

From this equation and the de�nition of U we haveF + Jd� + 12A�2 = J�TSW�1q(�)and, hence, d� = �J�1[F + 12A�2 � J�TSW�1q(�)]: (3:8)Therefore, once we know �, we simply calculate the value of q(�) and substitute these two valuesinto Equation (3.8) to obtain the value of d�.Now we can give the implementation that we use to solve (3.2).Algorithm 3.1. Solving the Sparse Tensor Model When J Is NonsingularLet J 2 Rn�n be sparse, F 2 Rn, S, A 2 Rn�p.Step 0 Form the q(�) equations (3.3) by calculating J�TS as follows: factor J , and solveJT yj = sj ; j = 1; : : : ; p.Step 1 Form the positive de�nite matrix W 2 Rp�p, where Wij = [siT (JTJ)�1sj], 1 � i; j � p,as follows: Wij = (J�T si)T (J�T sj) = yiT yj .Step 2 Perform a Cholesky decomposition of W (i.e., W = LLT), resulting in L 2 Rp�p, alower triangular matrix.Step 3 Use UNCMIN ([21]), an unconstrained minimization software package, to solvemin�2Rp jj L�1 q(�)jj22; (3:9)or solve (3.9) in closed form if p = 1.Step 4 Substitute the values of � and q(�) intod = �J�1(F + 12A�2 � J�TSW�1q(�)) (3:10)to obtain the tensor step d; this involves one additional solve, since the factorization of Jis already calculated.The total cost of this process is the factorization of the sparse matrix J , p + 1 back solvesusing this factorization, the unconstrained minimization of a function of p variables, and somelower-order (O(n)) costs. 9

4. Solving the Newton Model Along with the Sparse Tensor ModelAs in the dense case [20, 4], the global strategy that is used in our tensor method for sparsenonlinear equations sometimes utilizes the Newton step rather than the tensor step (see Section5). In the dense case, the Newton step can be computed inexpensively as a by-product ofcomputing the tensor step. In this section, we show that this computation can also be done inthe large sparse case.If the Jacobian matrix J is nonsingular, then the calculation of the tensor step describedabove produces a sparse LU factorization of J . In this case, the Newton step is simply foundby performing one additional pair of triangular solves to solve the systemJd = � F: (4:1)That is, since J = P1TLUP2T ; (4:2)where L 2 Rn�n is unit lower triangular, U 2 Rn�n is upper triangular, and P1 and P2 are rowand column permutation matrices, we �rst solveLy = c (4:3)for y, where y = UP2Td and c = � P1F . Then we solveUz = y (4:4)for z, where z = P2Td. Finally d = P2 z. Our algorithm uses the MA28 package [11] toperform the sparse matrix factorization and triangular solves.If the matrix J is singular, then (4.1) has either zero or an in�nite number of solutions.Therefore, we would like to solve the least squares problemmind2 Rn jjJd+ F jj2: (4:5)The method that we use to solve the problem (4.5) is an extension of the method of Peters andWilkinson [19] that was suggested by Bjorck and Du� [2]. This approach usually produces abetter solution to (4.5) than the one obtained by using the MA28 package, which sets the lastr components of the solution z in (4.4) to 0, where r is the rank de�ciency of J . In particular,on problems where singular or very nearly singular Jacobians are encountered, Newton-basedmethods using the step produced by the Bjorck and Du� method usually require fewer iterationsthan those using the step produced by MA28. The remainder of this section reviews the methodof Bjorck and Du�.The �rst step in the method of Bjorck and Du� [2] is to compute an LU factorization of theJacobian matrix J , using Gaussian elimination with both row and column interchanges. This isequivalent to multiplying a permutation of J from the left by the product, G, of a sequence ofelementary elimination matrices, to obtainGP1JP2 = U0 ! ; (4:6)10

where P1; P2 are permutation matrices, and U is an r � n upper trapezoidal matrix withr = rank(J). If we apply the same transformations to the right-hand side b = �F , weobtain GP1b = ce ! ; (4:7)where c 2 Rr and e 2 Rn�rIf we look at this in terms of an LU decomposition of J ,P1JP2 = LU; (4:8)with L a unit lower trapezoidal n� r matrix, we haveP1b = Lc + 0e ! : (4:9)Now if ds is any solution of the system UP2Td = c; (4:10)the residual norm corresponding to it is given byjjJds � b jj2 = jj P1(Jds � b) jj2 = jj Lc � Lc � 0e ! jj2 = jj e jj2: (4:11)Thus, if jje jj2 < � (� some suitable tolerance), then ds is a solution to (4.5) with a slightlyperturbed right-hand side b, and we can immediately accept ds as the solution to our problemat the cost of a simple forward elimination (4.7) and back substitution (4.10).However, if jje jj2 is larger, we would like to solve the least squares problem using our initialdecomposition (4.6) and (4.7). For an arbitrary d we have thatP1(Jd� b) = LUP2Td� Lc� 0e != Lz � 0e ! ; (4:12)where UP2Td = c+ z: (4:13)Therefore, d is a least squares solution of (4.5) if it satis�es (4.13), where z is the solution ofminimize jjLz � 0e ! jj2: (4:14)This least squares problem can be solved by using the (n+r)�(n+r) augmented system matrix2666664 0 LTL I 37777752666664 z� 3777775 = 2666664 0e 3777775 ; (4:15)11

followed by the solution of (4.13) for d. Here � is the residual of (4.14). We use the augmentedsystem approach because it is an e�cient method in terms of preservation of sparsity andaccuracy.Hence, if jjejj2 is larger than �, then d is the solution to (4.5) at the cost of one forward solve(4.7), one back solve (4.10), an LU factorization of the augmented matrix (4.15) followed by oneforward and one backward solve using the resulting factors, and a back solve (4.13).An advantage of Bjorck and Du�'s method is that (4.14) is used only to compute a correc-tion to the equations (4.13). Hence, for problems with small residuals, this method should bereasonably stable, since any ill-conditioning in L will a�ect only the correction z. Also, L is lesslikely than U to be ill conditioned. Furthermore, since(JTJd = �JTF)) dTJTF = �dTJTJd � 0; (4:16)the solution d to (4.5) is a descent direction unless Jd = 0, which would imply that JTF = 0.Hence d is a descent direction unless we are at a root of F (x) or a critical point of jjF (x)jj22.The step produced by MA28 when J is singular does not necessarily have this property.5. Implementation of Tensor Methods for Sparse Nonlinear EquationsThis section gives a complete high-level description of an iteration of the sparse tensor methodfor nonlinear equations that is used in our computational tests. The description includes somemore details about the sparse matrix factorization than were given in preceding sections, and adescription of the global strategy. We present test results for this implementation in Section 6.As stated previously, the sparse linear equation solutions in our implementation use theMA28 package [11], a widely used package for solving large, sparse, unsymmetric systems oflinear equations. To detect near-singularity of the Jacobian, we have modi�ed the factorizationphase of MA28 to be able to detect the row and column indices of the �rst pivot whose absolutevalue is less than or equal to some given tolerance, tol, times the largest element in absolutevalue in the pivot row. This stability test detects a su�cient condition for the condition numberof the Jacobian to be greater than a given tolerance. While it is clearly not an optimal testfor ill-conditioning, it appears to work well in practice. Also, as mentioned previously, theimplementation reported here uses only one past iterate at each iteration to form the tensorterm Tc (i.e., p = 1). We use only one past point because our tests indicated that no furtherimprovements were obtained by allowing a larger number of past points. In addition, using p =1 reduces the storage requirement and cost per iteration of the tensor method, allows the tensormodel to be solved in closed form, and does not require an unconstrained optimization package.The entire additional cost of an iteration of the tensor method with p = 1, in comparison withNewton's method, is essentially one sparse matrix vector multiplication of F 0(xc) times a vectorto form the tensor model, one additional upper and lower triangular solve to solve the tensormodel, and sometimes a second additional pair of triangular solves to calculate the Newton step.Some parts of Algorithm 5.1 are still stated in terms of arbitrary p, for generality.The global strategy that is used in our implementation is a standard line search. In [4], bothline search and two-dimensional trust region strategies were used in tensor methods for small,dense systems of nonlinear equations. In the tests in that paper, both methods appeared to be12

equally robust, with the trust region method possibly having a small advantage in e�ciency.We have used the line search in the sparse code, however, because of its greater simplicityand because the two-dimensional trust region method requires two additional matrix-vectormultiplications involving the Jacobian matrix.The line search strategy that we use is identical to that developed and used in [20] and[4], so we review it only very brie
y here. If the full tensor step provides su�cient decreasein jjF (x)jj, it is taken. Otherwise, line searches usually are conducted in both the tensor andNewton directions, resulting in two possible next iterates, and the point with the lower functionvalue is chosen as the next iterate. (The extra cost of this dual line search strategy, usuallyone function evaluation per iteration, has proven empirically to be justi�ed by the decrease inthe number of iterations required.) However, if the tensor step is not a descent direction or theJacobian matrix is singular, the line search is based solely upon the Newton direction.Algorithm 5.1. An Iteration of the Tensor Method for Sparse Nonlinear EquationsGiven current iterate xc; F (xc)Step 0 Calculate J = F 0(xc) analytically or by �nite-di�erence approximations [6, 7], anddecide whether to stop. If not:Step 1 Form the second-order term of the tensor model, Tc, so that the tensor model interpo-lates F (x) at the most recent past point (i.e., p = 1).Step 2 Factorize J by using the MA28 software package [11].Step 3 If J has full rank, perform Algorithm 3.1 on the tensor model M(xc + d) = F (xc) +Jd+ 12 Ppk=1 ak(dTsk)2 to compute the tensor step dt, and go to Step 4. Else:Step 3.1 Calculate the Newton step dn from the LU factorization of J by the Bjorck andDu� [2] method to �nd some solution to mind2Rn jjJd+ F jj2.Step 3.2 Select the next iterate x+ by using the line search algorithm 5.2 outlined below,where dn is the search direction, and go to Step 5.Step 4 Select the next iterate x+ by using a line search global strategy as follows:Step 4.1 If xc + dt is acceptable, set x+ = xc + dt and go to Step 5. Else:Step 4.2 Calculate the Newton step dn from the LU factorization of J (or as in Step 3.1if J is singular). Then calculate xn+ = xc + �dn for some � > 0, using Algorithm 5.2.Step 4.3 If the tensor step is a descent direction, then calculate xt+ = xc + �dt for some� > 0, using Algorithm 5.2.Step 4.4 If jjF (xn+)jj2 > jjF (xt+)jj2, then x+ xt+; else x+ xn+.Step 5 Set xc x+; F (xc) F (x+). Go to Step 0.13

Algorithm 5.2. Standard Quadratic Backtracking Line SearchGiven xc, search direction d, g = J(xc)TF (xc), and � = 10�4slope := gTdfc := 12 jjF (xc)jj22� := 1:0xp := xc + �dfp := 12 jjF (xp)jj22while fp > fc + � � �� slope do�temp := ��� slope /(2[fp � fc � �� slope])� :=maxf�temp; �=10gxp := xc + �dfp := 12 jjF (xp)jj22endwhileThe sparse tensor code (and the Newton code) terminates successfully if the relative size of(x+�xc) is less thanmacheps 23 , or jjF (x+)jj1 is less thanmacheps 23 ; it terminates unsuccessfullyif the iteration limit is exceeded. If the last global step fails to locate a point lower than xc inthe line search global strategy or if the relative size of J(x+)TF (x+) is less than macheps 13 , themethod stops and reports this condition; this situation may indicate either success or failure.6. Test ResultsThis section describes the comparative testing of the sparse tensor method from Section 5 withan analogous implementation based upon a linear model (Newton's method). The Newton'smethod algorithm is identical to the tensor Algorithm 5.1 except that the tensor model is neverformed or solved, and the next iterate x+ is calculated from a line search based solely on theNewton search direction dn. That is, it uses steps 0, 2, 4.2/3.1, and 5 of Algorithm 5.1. As inAlgorithm 5.1, the Jacobian matrix is factored at each iteration by using the MA28 package, andif the Jacobian is singular, the search direction is calculated by the method of Bjorck and Du�.In all our experiments, we calculate the Jacobian matrix by �nite-di�erence approximations[6, 7].We tested these algorithms on a variety of nonsingular and singular problems. First wetested them on three sparse problems provided to us from Boeing Computer Services (BCS) andused as test problems in [13]. These problems are described as follows:1. LTS : This problem discretizes the di�erential equations for the Linear Tangent Steeringproblem in Bryson and Ho [5]. This is the search problem formulation where the adjoint di�er-ential equations are also discretized and an optimality condition is imposed.2. GRST : This problem discretizes the di�erential equations for a coast about a spherical earth.The problem is initialized on the equator in an orbit with inclination of 1.0 radians. A searchproblem is obtained by requiring that the vehicle be at a given latitude at the �nal time. Thereare two solutions for every desired �nal latitude that is less than the inclination in absolute value.There is a single solution if the �nal latitude is required to be greater than the inclination.3. LGNDR : The recurrence relation for the Legendre polynomials is used to generate a sparse14

system of nonlinear equations equivalent to �nding the value of x at which the n-th Legendredegree polynomial is equal to 1.We then tested our methods on a system of sparse trigonometric equations from [18] that havethe form nXj=1(aijsin xj + bijcos xj) + nXj=1 cijxj = dj; i = 1; 2; : : : ; n; (6:1)where the matrices faijg and fbijg have the same sparsity pattern as one another, includingnonzeros on the diagonal, and fcijg has a di�erent sparsity pattern. Each matrix is a bandmatrix consisting of a main diagonal and zero, one, or two superdiagonals and subdiagonals thatare each distance two apart. The nonzero values are generated randomly in [0; 1]. The solutioncomponents are generated randomly in [0; 1], and the right-hand side vector d is calculated fromthe solution. For the starting iterate we randomly perturb the components of the solution byadding or subtracting 0.1 from each.We also ran our methods on some sparse nonlinear equations problems from Mor�e, Garbow,and Hillstrom [17], namely, the Broyden banded, the Broyden tridiagonal, and the variable-dimension test problems, and on the distillation column test problem from [16]. Finally, we testedour methods on the MINPACK-2 test problems collection [1], namely, the driven cavity, the
owin a channel, the incompressible elastic rod, and the swirling
ow between disks problems. In theremainder of this section, we will refer to the trigonometric, the BCS, and the Mor�e, Garbow,and Hillstrom test problems as the TBM collection.These problems all have nonsingular Jacobians at the solution. We created singular testproblems as proposed in Schnabel and Frank [20] by modifying these nonsingular test problemsto the form F̂ (x) = F (x)� F 0(x�)A(ATA)�1AT (x� x�); (6:2)where F (x) is the standard nonsingular test function, x� is its root, and A 2 Rn�k has full columnrank with 1 � k � n. Note that F̂ (x) also has a root at x� and rank(F̂ 0(x�)) = n � rank(A).We used (6.2) to create two sets of sparse singular problems, with F̂ 0(x�) having rank n � 1and n� 2, respectively, by using the matrices A 2 Rn�1 and Rn�2 whose columns are the unitvectors e1, and fe1; e2g, respectively. Note that these changes do not a�ect the sparsity patternof the Jacobian, except possibly for the �rst and second diagonal elements.The dimensions of the test problems we ran ranged from n = 31 to n = 324, with elevenof the fourteen problems we used having dimension 300 or greater. For each test problem, weused several di�erent starting guesses, generated byx̂0 = x0 + const(x0 � x�); (6:3)where const is an real number indicating how far the initial guess is from the solution, and x�is the solution resulting from running the problem with initial guess x0. All our computationswere performed on a Sun SPARCstation 2 computer in the Computer Science Department atthe University of Colorado at Boulder, using double-precision arithmetic.Tables 6.1 and 6.2 summarize the performance of the sparse tensor and sparse Newton meth-ods on the TBM and MINPACK-2 test problems collections. Each subtable in Table 6.1 presentsthe test results for a nonsingular test problem and for its rank n � 1 and rank n � 2 singular15

versions, whereas each subtable in Table 6.2 presents the test results only for a nonsingular testproblem. Columns \Better" and \Worse" represent the number of times the tensor methodwas better and worse, respectively, than Newton's method by more than one iteration, overall the starting points for the problem under consideration. The \Tie" column represents thenumber of times the tensor and Newton methods required within one iteration of each other.The columns labeled \Average Ratio" measure the e�ciency of the tensor method against New-ton's method; for example, if the test set contained two problems for which the tensor methodrequired 3 and 5 iterations, respectively, and Newton's method 7 and 9 iterations, respectively,then the average ratio would be 3+57+9 = 0:50. The same measure is used for execution times andfunction evaluations. These average ratios include only problems that were successfully solvedby both methods. Columns \Itns", \Time", and \Fevals" represent the number of iterations,the execution time, and the number of function evaluations, respectively. Problems that weresolved by only one method are included in the \Better" and \Worse" columns, however, and thenumbers of such problems are discussed below. We have excluded entirely from Tables 6.1 and6.2 all cases where the tensor and Newton methods converge to di�erent roots, or to the sameroot but not the singular root x� for a singular problem.Though nonlinear systems of equations may sometimes converge to a stationary point thatis not a root, this convergence failure has not occurred in our test experiments. The convergencefailures that were encountered in our test results are (1) iteration limit exceeded and (2) failureof the last global step to locate a point lower than the current iterate in the line search globalstrategy. This latter failure generally occurs when the generated tensor or Newton steps aretoo small that the line search fails to satisfy the su�cient decrease conditions in the objectivefunction.Table 6.3 presents the average iteration, execution time, and function evaluation ratios ofthe tensor method versus Newton's method for all of the rank n, n � 1, and n � 2 problemsthat are included in the average ratio statistics in Tables 6.1 and 6.2. The one exception isthat we exclude the rank n � 2 versions of the Legendre problem from the last line in Table6.3 because in almost all cases, the tensor and Newton methods converge to a di�erent root.For the three cases where the two methods converged to the same root, the tensor method wasdramatically more e�cient than the Newton method. These results are so di�erent from any ofthe others that it seemed best to eliminate them from the summary statistics. Their inclusionwould change the numbers in the last line of Table 6.3 to 0.43, 0.51, and 0.43.On the basis of Table 6.1, the following observations can be made. The tensor methodvirtually never is less e�cient than Newton's method and usually is more e�cient in terms ofiterations, function evaluations, and execution times. The improvement by the tensor methodover Newton's method is substantial, averaging about 50% in iterations, 40% in execution times,and 50% in function evaluations, if all problems are considered. For all the nonsingular problems,the improvement averages 40% in iterations, 28% in execution times, and 41% in functionevaluations. For problems where F 0(x�) has a small rank de�ciency, the improvement is greater.It averages 56% in iterations, 45% in execution times, and 46% in function evaluations for rankn� 1 problems, and 52% in iterations, 45% in execution times, and 52% in function evaluationsfor rank n� 2 problems. In the case of the rank n� 1 problems, this advantage is due in part tothe tensor method achieving 3 step Q-order 32 convergence whereas Newton's method is linearlyconvergent ([12]). 16

The tensor method also has a substantial advantage in robustness in comparison with New-ton's method on this test set. Over all the test problems, 12 nonsingular problems, 11 rank n�1problems, and 12 rank n � 2 problems were solved by the tensor and not by Newton's method.On the other hand, there were no problems that were solved by Newton's method and not bythe tensor method.A close look at the numerical performance of the tensor and Newton methods is presented inTable 6.4. This table shows the test results for the TBM collection in which the values of constin the equation for the starting point, 6.3, are given in the �rst column. Note that \Fevals"also includes the function evaluations required by the �nite-di�erence approximations of theJacobian matrix, and that 150 in the \Itns" column means that the iteration limit has beenexceeded. Table 6.4 clearly shows that the tensor method outperforms the Newton method bya large margin on the rank n� 1 and n� 2 versions of the TBM test problems collection. Thisis a re
ection of faster local convergence by the tensor method on singular problems with asmall rank de�ciency. The substantial gains by the tensor method over Newton's method on therank n � 2 TBM test problems are somewhat surprising because in theory the tensor methodmay not always achieve faster than linear convergence on problems where the rank of F 0(x�) isn � 2 or less [20]. Though the tensor and Newton methods are both quadratically convergenton nonsingular problems, the tensor method is clearly the more e�cient on the nonsingularTBM test problems. The improvement by the tensor method over the Newton method on thenonsingular TBM test problems, however, is less dramatic.Another important observation that can be made on the basis of Table 6.3 is that theaverage improvement of the tensor method over Newton's method in execution times is about10% smaller than in iterations. This is primarily because a tensor iteration requires at least onemore pair of triangular solves than a Newton iteration (two more if both the tensor and Newtondirections are calculated), and one additional matrix vector multiplication. The increased costper iteration ranges from 12% on problems with relatively expensive function evaluations, likethe LTS problem, to 57% on problems with very sparse Jacobians and inexpensive functionevaluations, like the Broyden tridiagonal problem. (Note that one exception is the rank nand n � 2 versions of the trigonometric problem in Table 6.1. Here, the average executiontime improvement is about 5% more than the average iteration improvement. This is becauseNewton's method line search requires many nonunit steps on this problem, as is clearly indicatedby the large improvement in function evaluations, and because function evaluations are expensivefor the trigonometric test problem.)The MINPACK-2 test results presented in Table 6.2 show that the tensor method performsvery slightly worse than its Newton counterpart on the DFIC problem, essentially the same onthe DSFD problem, and considerably better on the DFDC (Reynolds = 400), DFDC (Reynolds= 1000), and the DIER problems. Note that all of these functions are relatively inexpensivewith respect to the �nite-di�erence approximation of the Jacobian matrix and its factorization,which explains why the improvement by the tensor method over Newton's method in executiontimes on the DFDC ((Reynolds = 400), DFDC (Reynolds = 1000), and DIER problems is stillsigni�cant even though on function evaluations both methods perform about the same. Overall the runs on the MINPACK-2 collection, two problems were solved by the tensor method andnot by Newton's method, whereas no problems were solved by Newton's method and not bythe tensor method. Both methods failed to converge on many problems for which the starting17

Table 6.1: Summary Statistics of the Test Results for the TBM CollectionLTS ProblemDimension Rank Tensor Average Ratio{Tensor/Newtonn F 0(x�) Better Worse Tie Itns Time Fevals313 n 12 2 3 0.78 0.90 0.84n� 1 11 0 0 0.55 0.67 0.60n� 2 7 0 0 0.62 0.68 0.65GRST Problem324 n 2 0 5 0.52 0.63 0.52n� 1 14 0 0 0.48 0.57 0.51n� 2 14 0 1 0.46 0.53 0.43LGNDR Problem50 n 13 0 0 0.86 1.02 0.86n� 1 7 0 1 0.45 0.87 0.51n� 2 3 0 0 0.10 0.15 0.10Trigonometric Problem300 n 4 1 2 0.40 0.35 0.21n� 1 5 0 1 0.47 0.47 0.31n� 2 8 0 0 0.42 0.38 0.26Broyden Banded Problem300 n 11 0 0 0.81 0.95 0.83n� 1 11 0 0 0.69 0.81 0.69n� 2 11 0 0 0.66 0.77 0.64Broyden Tridiagonal Problem300 n 11 0 0 0.30 0.48 0.35n� 1 11 0 0 0.23 0.36 0.27n� 2 11 0 0 0.31 0.47 0.50Variable Dimension Problem300 n 11 0 0 0.36 0.39 0.38n� 1 11 0 0 0.38 0.40 0.39n� 2 10 0 0 0.34 0.36 0.35Distillation Column Problem (31 Variables)31 n 5 0 10 0.93 1.16 0.95n� 1 4 0 0 0.43 0.48 0.40n� 2 8 0 0 0.53 0.66 0.53Distillation Column Problem (99 Variables)99 n 3 0 4 0.45 0.61 0.44n� 1 6 0 0 0.31 0.34 0.31n� 2 5 0 0 0.50 0.60 0.4918

points were chosen to be relatively far from the solution. Based on our previous experience withtrust region and line search methods [4], we believe that a trust region strategy often wouldhave helped on these cases.We examined our test results to obtain an experimental indication of the local convergencebehavior of the tensor method and Newton's method on problems where rank(F 0(x�)) = n�1.Speci�cally, we examined the sequence of ratiosjjxk � x�jj=jjxk�1 � x�jj (6:4)produced by the Newton and tensor methods on problems with rank(F 0(x�)) = n � 1. Theratios for a typical problem are given in Table 6.5. In almost all cases the standard methodexhibits local linear convergence with constant near 0.5, which is consistent with the theoreticalanalysis (see, e.g., [9, 10]). The local convergence rate of the tensor method is faster, with atypical �nal ratio of around 0.01. This �nal ratio might be smaller if analytic Jacobians wereused in combination with tighter stopping tolerances. As is anticipated in [12], the convergenceusually seems to be one-step superlinear, although only a three-step Q-order 32 result can beproven.Finally, we also tried, on most of the test problems, a variant of the tensor method thatallows up to two past points (i.e., p � 2) to be used in the tensor model formation. Therewas almost no di�erence in terms of number of iterations or function evaluations. There was,however, an increase in execution time by approximately 10% to 20% when we allowed two pastpoints. This is due in part to the extra pair of triangular solves required per tensor iteration,because when p � 2 a total of up to 3 solves may be performed.Overall, the size and consistency of the e�ciency gains indicate that the tensor method maybe preferable to the linear model-based method for solving large sparse systems of nonlinearequations. The tensor method seems to obtain a surprisingly large improvement from a compar-atively small amount of additional information. In particular, the tensor method using only onepast point seems to be more e�cient than the tensor method using more than one past point,from the viewpoints of execution time and storage.Table 6.2: Summary Statistics of the Test Results for the MINPACK-2 CollectionDriven Cavity Problem (DFDC) (Reynolds = 400)Dimension Rank Tensor Average Ratio{Tensor/Newtonn F 0(x�) Better Worse Tie Itns Time Fevals304 n 2 0 3 0.69 0.75 0.98Driven Cavity Problem (DFDC) (Reynolds = 1000)303 n 2 0 0 0.52 0.51 0.94Flow in a Channel Problem (DFIC)308 n 1 0 4 1.06 1.03 1.20Incompressible Elastic Rod Problem (DIER)324 n 1 0 0 0.61 0.64 0.83Swirling Flow between Disks Problem (DSFD)324 n 0 0 6 1.00 0.99 1.0419

Table 6.3: Average Ratios of Tensor Method versus Newton's Method for the TBM CollectionRank TensorF 0(x�) Itns Time Fevalsn 0.60 0.72 0.59n� 1 0.44 0.55 0.44n� 2 0.48 0.55 0.487. Summary and Future WorkWe have developed and tested an e�cient tensor method for solving large sparse systems ofnonlinear equations. The method, like previous tensor methods for nonlinear equations, is basedupon using a second-order model of the nonlinear equations at each iteration. The tensor modelis formed in the same way as in the previous tensor method research for small, dense nonlinearequations ([20, 4]), since this approach still is e�cient for large sparse problems. The solutionof the tensor model, however, uses an entirely new approach. With this new approach, we areable to make the main step of the tensor model solution procedure be a (sparse) factorizationof the Jacobian matrix, which can be performed e�ciently. In contrast, previous approachesfor solving the tensor model required orthogonal transformations to the Jacobian matrix, whichwould destroy its sparsity, before performing a matrix factorization. The approach also allowsa minimizer of the tensor model to be found e�ciently if no root exists.In computational comparisons using an analogous code based on Newton's method, thetensor method is signi�cantly more e�cient in terms of iterations, function evaluations, andexecution times. The advantages of the tensor method are greater on singular problems than onnonsingular problems, but are large in both cases, averaging about 30% to 40% for nonsingularproblems and about 45% to 55% for problem with small rank de�ciencies. The tensor methodcode also solves considerably more problems successfully than Newton's method code. The moste�ective tensor method uses a rank-one second-order term, in which the tensor model interpolatesthe function value at just the previous iterate. The additional storage and arithmetic cost periteration needed to use this tensor model are particularly small.We are continuing to re�ne and test the software corresponding to the methods described inthis paper, and plan to make it generally available in the near future. We have also developedtensor methods for solving large, sparse nonlinear least squares problems. The issues involvedare considerably di�erent because of the di�erent large sparse linear algebraic computations thatare required. This work is described in [3] and in a forthcoming paper. Finally, we continue todevelop variants of tensor methods for solving very large systems of nonlinear equations thatare based on iterative linear solvers such as Krylov subspace methods.References[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G. L. Xue. The MINPACK-2 test problem col-lection. Preprint MCS-P153-0692, Mathematics and Computer Science Division, Argonne20

Table 6.4: Test Results of the Tensor and Newton Methods for Some Values of constLTS Problemconst Newton TensorItns Time Fevals Itns Time Fevals4 24 19.37 467 14 13.70 2834 46 37.10 866 17 16.21 3434 150 204.36 3676 40 62.33 802GRST Problem10 50 24.45 831 13 7.66 22410 68 33.68 1065 24 13.46 39310 72 36.38 1176 24 13.97 370LGNDR Problem10 74 2.45 375 69 2.78 35010 75 2.40 381 26 1.65 16610 150 5.35 1564 8 0.38 57Trigonometric Problem1 28 10.55 425 11 3.49 801 18 6.54 225 13 4.27 911 66 24.67 939 25 9.63 283Broyden Banded Problem0 22 5.76 184 18 5.54 1520 37 9.72 321 20 6.34 1680 44 11.63 411 23 7.06 192Broyden Tridiagonal Problem0 14 1.67 60 5 0.97 240 27 2.99 112 7 1.23 320 31 3.63 151 9 1.47 40Variable Dimension Problem0 24 42.48 7525 5 10.21 18060 44 87.31 13546 12 26.01 39130 44 91.25 13546 14 30.88 4515Distillation Column Problem (31 Variables)1 5 0.21 72 5 0.25 721 19 0.96 280 7 0.39 961 26 0.87 357 12 0.51 157Distillation Column Problem (99 Variables)0 8 1.38 136 8 1.55 1400 20 4.11 315 11 2.49 1820 26 3.75 436 13 2.29 21121

Table 6.5: Speed of Convergence on the LTS Problem (n = 313), modi�ed by (6.2) to haverank(F̂ 0(x�)) = n � 1, started from x0. The ratios in the second and third columns are de�nedby (6.4) Iteration (k) Tensor Method Standard Method. : : : : : :3 0.9789 0.97894 0.9511 0.95115 0.9899 0.93966 0.9710 0.92897 0.9362 0.88638 0.9207 0.76329 0.8209 0.481510 0.4955 0.617611 0.5573 0.444312 0.3450 0.673013 0.6667 0.575614 0.1131 0.222415 0.1104 0.411916 0.1233 0.763917 0.6085 0.947218 0.5505 0.947419 0.9529 0.947620 0.1571 0.947721 0.1032 0.947822 0.0440 0.948023 0.0095 0.948124 0.948225 0.948326 0.948427 0.947728 0.944529 0.940930 0.936731 0.931732 0.925833 0.918734 0.910035 0.898936 0.884637 0.865438 0.839039 0.801340 0.496741 0.499642 0.499843 0.499944 0.499945 0.499922

National Laboratory, 1992.[2] A. Bjorck and I. S. Du�. A direct method for the solution of sparse linear least squaresproblems. Linear Algebra and Its Applications, 34:43{67, 1980.[3] A. Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear leastsquares problems using tensor methods on sequential and parallel computers. Ph.D. the-sis, Computer Science Department, University of Colorado at Boulder, 1992.[4] A. Bouaricha and R. B. Schnabel. TENSOLVE: A software package for solving systemsof nonlinear equations and nonlinear least squares problems using tensor methods. Tech-nical Report CU-CS-735-94, Department of Computer Science, University of Colorado atBoulder, 1994.[5] A. E. Bryson and A. E. Ho. Applied Optimal Control, Chap. 2. Wiley, New York, 1975.[6] T. F. Coleman, B. S. Garbow, and J. J. Mor�e. Fortran subroutines for estimating sparseJacobian matrices. ACM Trans. Math. Software, 10:346{347, 1984.[7] T. F. Coleman, B. S. Garbow, and J. J. Mor�e. Software for estimating sparse Jacobianmatrices. ACM Trans. Math. Software, 10:329{345, 1984.[8] T. F. Coleman and J. J. Mor�e. Estimation of sparse Jacobian matrices and graph coloringproblems. SIAM J. Numer. Anal., 20:187{207, 1983.[9] D. W. Decker and C. T. Kelly. Newton's method at singular points I. SIAM J. Numer.Anal., 17:66{70, 1980.[10] D. W. Decker and C. T. Kelly. Newton's method at singular points II. SIAM J. Numer.Anal., 17:465{471, 1980.[11] I. S. Du�. MA28: A set of Fortran subroutines for for sparse unsymmetric linear equations.Technical Report R-8730, AERE Harwell Laboratory, 1977.[12] D. Feng, P. Frank, and R. B. Schnabel. Local convergence analysis of tensor methods fornonlinear equations. Math. Prog., 62:427{459, 1993.[13] P. D. Frank and W. P. Hu�man. Parallel solution of large and sparse nonlinear systems.Technical Report ECA-TR-128, Boeing Computer Services, 1989.[14] Andreas Griewank. On automatic di�erentiation. In Mathematical programming: Recentdevelopments and applications, pages 83{108, Amsterdam, 1989. Kluwer Academic Pub-lishers, Amsterdam.[15] Andreas Griewank and George F. Corliss, editors. Automatic di�erentiation of algorithms:Theory, implementation, and application. Society for Industrial and Applied Mathematics,1991. 23

[16] J. J. Mor�e. A collection of nonlinear model problems. In E. L. Allgower and K. Georg,editors, Computational solution of nonlinear systems of equations, volume 26 of LectureNotes in Applied Mathematics, pages 723{762. American Mathematical Society, 1990.[17] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.ACM Trans. Math. Software, 7:17{41, 1981.[18] N. Munksgaard. NS02: A Fortran subroutine for solving sparse sets of nonlinear equationsby Powell's Dog-leg algorithm. Technical Report R-11047, AERE Harwell Laboratory, 1938.[19] G. Peters and J. H. Wilkinson. The least squares problem and pseudo-inverses. ComputerJ., 13:309{316, 1970.[20] R. B. Schnabel and P. D. Frank. Tensor methods for nonlinear equations. SIAM J. Numer.Anal., 21:815{843, 1984.[21] R. B. Schnabel, J. E. Koontz, and B. E. Weiss. A modular system of algorithms of uncon-strained minimization. ACM Trans. Math. Softw., 11:419{440, 1985.

24

