
On the In
uence of Partitioning Schemes on the E�ciency ofOverlapping Domain Decomposition MethodsP. Ciarlet, Jr. F. Lamour B. F. SmithCEA Cisi Argonne National LaboratoryCEL-V, D.MA, MCN Branche CEA et D�efense 9700 South Cass Avenue94195 Villeneuve-St-Georges Cedex BP 28, 91192 Gif-sur-Yvette Cedex Argonne, IL 60439-4844France France USAAbstractOne level overlapping Schwarz domain decomposi-tion preconditioners can be viewed as a generaliza-tion of block Jacobi preconditioning. The e�ect of thenumber of blocks and the amount of overlapping be-tween blocks on the convergence rate is well under-stood. This paper considers the related issue of thee�ect of the scheme used to partition the matrix intoblocks on the convergence rate of the preconditionediterative method. Numerical results for Laplace andlinear elasticity problems in two and three dimensionsare presented. The tentative conclusion is that usingoverlap tends to decrease the di�erences between therates of convergence for di�erent partitioning schemes.1 IntroductionOne level overlapping Schwarz domain decomposi-tion methods are simple, natural preconditioners forthe parallel solution of the linear systems that arisefrom the discretization of elliptic PDEs. To applythese methods e�ciently in parallel, one must par-tition the unknowns among the processors to achieveboth load balancing and reduce required interproces-sor communication. However, for block Jacobi meth-ods the particular partition used can have a large e�ecton the numerical convergence rate.Farhat and Lesoinne [11] and Farhat and Simon [12]addressed the problem of load balancing and commu-nications between processors on a parallel architec-ture, and have run some experiments on parallel ma-chines in order to compare the execution times. Inthis paper we study the e�ects of several partitioningstrategies (with and without overlap) on the load bal-ancing and communications but we focus on the con-

vergence rate of the method or, equivalently, on thenumber of iterations required to reach a prescribedtolerance.We consider the numerical solution of elliptic PDEsin both two and three dimensions on unstructuredgrids using the �nite element method. The result-ing linear system is solved using a domain decompo-sition preconditioned Krylov space method designedfor parallel computing. All of our numerical experi-ments are performed on sequential machines becausewe are mainly interested in the e�ect on the numeri-cal convergence rate. Future studies will focus on thenon-numerical e�ects introduced by parallel machines.The paper is organized as follows. In Section 2,we present the elliptic problems to be solved, that isthe equations and the boundary conditions. We alsoinclude a brief overview of the discretization, the itera-tive domain decomposition methods used in the paper.In the next Section, we give a detailed description ofthe partitioning heuristics, the in
uence of which wecompare in Section 4.2 Solving the elliptic problems2.1 The problems and their discretizationLet 
 denote the domain imbedded in IR2 or IR3and � = �0S�1 its boundary. The elliptic prob-lems to be solved are either the Poisson problem withDirichlet boundary conditions on �0 and homogeneousNeumann boundary conditions on �1 or the equationsof linear elasticity in the domain 
 with Dirichletboundary conditions on �. Let u denote the (scalar)solution of the Poisson problem and u the (vector)solution of the elasticity equations. Finally, let E,Young's modulus, and �, Poisson's ratio, be two posi-



tive constants. Then the problems can be written as:��u = f in 
; u = g on �0; @u@n = 0 on �1;� E1 + � f�u+ 1� �1� 2�r r � ug = f in 
; u = g on �:In order to derive a discretization of these prob-lems, the equations are replaced by a suitable varia-tional formulation and then the �nite element method[2] with the P1 �nite element is used on the triangula-tions. Even though the value of the solution is knownon �0 via the Dirichlet boundary condition, we havechosen to keep these (trivial) equations in the linearsystem. Because of this, the unknowns are the approx-imations of the value of the true solution at all verticesof the triangulation, and the matrix is nonsymmetric.2.2 Iterative and DD methodsThe resulting nonsymmetric linear system is solvedusing the preconditioned bi-conjugate gradient stabi-lized method (Bi-CGSTAB), due to van der Vorst[23]. The preconditioner considered in this paper isdesigned with the help of domain decomposition prin-ciples.In recent years, many papers have been devotedto the study of new domain decomposition methods.One of the main reasons for this renewed interest isthe emergence of parallel and massively parallel com-puters. This is because many domain decompositionmethods are naturally parallel. The additive Schwarzmethod we consider in this paper is very representa-tive. This method was introduced by Dryja in [8] andDryja and Widlund in [9]. For some results obtainedon parallel architectures with this method, we referthe reader to [17].Here, we consider the case of the one-level addi-tive Schwarz preconditioner, that is local problems aresolved without a coarse problem. It is well known thatthe addition of a coarse solver greatly reduces the con-dition number and therefore the number of iterations,but a coarse solver is de�ned from a coarse triangu-lation of the subdomain which may be costly to com-pute. In order to get a better condition number, itis possible, on the other hand, to consider overlap-ping subdomains. Here, the overlapping subdomainsare simply obtained by extending the nonoverlappingpartitions, at little additional cost. In the following,we thus allow subdomains to overlap.Finally, let us brie
y mention how the local prob-lems are solved: the (complete) LU-factorization of

each local problem is computed and then used as asolver at every iteration of the method. To mini-mize the �ll (number of non-zero entries) during thefactorization, the matrix columns and rows are re-ordered with nested dissection following George andLiu's Sparsepack [15].3 The partitioning heuristicsIn order to partition the domain, the triangulationcan be considered as a graph by identifying the no-tions of vertices and edges. We call this graph a �niteelement graph. Let G = (V;E) be a graph where V isthe set of nodes and E is the set of edges. Let p bean integer, then we de�ne the p edge-partition of G asa partition of V into p disjoint sets V1; V2; :::Vp suchthat:� Spi=1 Vi = V ,� j Vi j�j Vj j for 1 � i; j � p and i 6= j,� m =j f(vi; vj) 2 E and vi 2 Vi; vj 2 Vj with i 6=jg j is as small as possible.Besides the requirements of the p edge-partitioningproblem it may be necessary to impose that each re-sulting subset has to be connected.For all the formulations and variants of graph par-titioning, the general problem is a NP-hard problem.Many heuristics have been developed while few opti-mal results have been proved.The heuristic methods proposed in the literaturefor �nite element graphs can be roughly arranged intwo categories: the greedy methods and the recursivemethods. A detailed study of the heuristics presentedhere as well as a fair comparison of the correspondingpartitions are given in [6].Let us �rst introduce some de�nitions and notationsabout graphs that will be used in the following.Let N =j V j and M =j E j be the number ofnodes and edges respectively. The degree of a nodev, denoted d(v), is the number of edges that have oneendpoint in v, i.e. the number of neighbors of v. More-over we use d to denote the average degree of a nodein G.The Laplacian matrix of a graph G, denotedL(G) = (lij)i;j=1:::N , is de�ned by:lij = 8<: �1 if (vi; vj) 2 Ed(vi) if i = j0 otherwise



As we study �nite element graphs we shall talk aboutthe boundary of the graph that is clearly de�ned withrespect to the meshes.3.1 Recursive methods3.1.1 Spectral bisectionSpectral partitioning methods are based on a partic-ular eigenvalue, and on its associated eigenvector, ofthe Laplacian matrix of the graph to be partitioned.In order to understand the intuitive justi�cations ofthese methods we must summarize some known prop-erties of the eigenvalues of the Laplacian matrix of agraph and display their links with the graph bisection,or 2 edge-partitioning, problem.Let L(G) be the Laplacian matrix of G and N � 2.Let �1 � �2 � �3 � ::: � �N be the eigenvalues ofL(G).To begin with, �1 is always equal to zero. Thesecond smallest eigenvalue, �2, is also known as thealgebraic connectivity of G. Let us recall that �2 = 0if and only if G is a disconnected graph. In otherwords, the number of eigenvalues equal to zero givesexactly the number of connected components of thegraph. Let us assume, without loss of generality, that�2 is the �rst non zero eigenvalue.The 2 edge-partitioning problem can be reformu-lated in the following terms. Let us consider a vectorq 2 Q = f(qi) 2 RN ; qi = �1; P qi = 0g and the in-duced balanced partition for which a node i is assignedto subset V1 if qi = +1 or to subset V2 if qi = �1.The number of intersubset edges (or edge cuts) isequal to m = 14(q; L(G)q):So the 2 edge-partitioning problem amounts to �ndinga vector q 2 Q which minimizes this quantity.By relaxing this discrete minimization problem to acontinuous problem, that is to the search of a vector xsuch that jj x jj22= N andPxi = 0, one �nds that theminimum of (x; L(G)x) is obtained for x = x2, wherex2 is the eigenvector associated with �2, named theFiedler vector, [14].Knowing this, the idea is to compute a vector q 2 Qby using x2 in the following way. Let xl be the medianvalue of the components of x2. Then qi is de�ned as:qi = 8<: +1 if (x2)i > xl�1 if (x2)i < xl�1 if (x2)i = xl (for the balancing)The partition induced by such a vector q is knownas the median cut partition. Of course this is not an

optimal partition. Although we cannot say how closeto the optimal the median cut is, there are still someinteresting properties about it.First, there is an important result about the con-nectivity of a median cut partition which has beenstated by Fiedler [14]. Brie
y, if there are exactly N2strictly positive components and N2 strictly negativecomponents then both balanced subsets of the par-tition are connected. Regardless, the connectivity ofone of the subsets is always guaranteed.Secondly, it have been proved by Ciarlet, Chan andSzeto in [3] that for all p 2 Q, jj x2 � p jj� jj x2 �q jj. This result, which does not allow us to concludeabout the optimality of q, can nevertheless reassuresthe promoters of the median cut method by assumingthat it is a close enough choice.3.1.2 Recursive spectral bisectionIn order to partition a given graph into any number ofsubsets that is a power of two, the median cut parti-tioning method has been used as a step in a divide andconquer process, as in the Recursive Spectral Bisectionalgorithm (RSB) due to Simon [22]. There the mediancut algorithm is recursively applied to each subgraphinduced by the bisection previously computed untilthe required number of subsets is obtained.Moreover, as the computation of the Fiedler vectoris time consuming, many studies have been devotedto speeding up the calculation of this particular vec-tor. Barnard and Simon, [1], have accelerated the RSBalgorithm by approximating the Fiedler vector. Forthis, they contract some edges in the graph in orderto obtain a smaller graph and repeat this operation acertain number of times until the contracted graph issmall enough. Then, they compute the Fiedler vec-tor of the smallest graph. From the smallest graph,an approximation of the Fiedler vector of the previousgraph is deduced by an interpolation technique. Thisapproximated vector is then used as a starting pointin an iterative method that computes the Fiedler vec-tor. Once the re�ned Fiedler vector is obtained theprocess goes back to the larger graph and recomputesa Fiedler vector for this graph using the same strategy(interpolation and re�nement), and so on. The algo-rithm is given below and it will be referred to as \RP1".Algorithm RP 11. Compute the Fiedler vector for the graph by:(a) Constructing a series of smaller graphs(Gl)l=1;���;L obtained by some contraction



operations applied to the original graph,(contraction step).(b) Computing the Fielder vector for the small-est graph GL.(c) Constructing a series of Fiedler vectors cor-responding to the series of graphs by:i. interpolating the previously found Fied-ler vector to the next larger graph ina way that provides a good approxima-tion to next Fielder vector (interpola-tion step),ii. computing from the given approximatedFielder vector, a more accurate vector(re�nement step).2. Sort vertices according to the size of entries inFielder vector.3. Assign half of the vertices to each subdomain.4. Repeat recursively (divide and conquer).The complexity of RP 1 is estimated to O(M log2 p).3.1.3 Recursive multilevel algorithmIn a similar manner, Hendrickson and Leland in [20]used a multilevel technique to partition a graph. They�rst reduce the size of the graph, and derive a series ofsmaller graphs by contracting the edges of the originalgraph until the size of the last graph is small enough.They partition the smallest graph using the mediancut technique. Then, they re
ect the partition whenuncontracting the series of graphs. Moreover, to im-prove the quality of the partition (in term of balancingand of number of intersubset edges) they perform alocal optimization method which exchanges nodes be-tween the subsets of the partition. Finally they repeatthe previous sequence of steps on each subset until thetotal number of subsets is obtained. The algorithmbelow is called \RP 2".Algorithm RP 21. Construct a series of smaller graphs obtainedby contraction operations applied to the originalgraph.2. Partition the smallest graph using the median cutmethod.3. Propagate the partition by:(a) Uncontracting the smallest graph.

(b) Re
ecting back the partition to the uncon-tracted graph.(c) Re�ning locally the partition using a localoptimization method.(d) Repeating steps (a), (b), (c), until the orig-inal graph.4. Repeat recursively (divide and conquer).The complexity of RP 2 is estimated to O(M log2 p).3.2 Greedy algorithms3.2.1 PrinciplesAccording to the p edge-partitioning problem a greedyalgorithm can be described as an algorithm that com-putes each subset Vi by simply accumulating nodeswhen traveling through the graph. The problematicalquestions are only: how to start and how to stop?The way of accumulating nodes in each subset isobvious from the graph structure of the problem. Astarting node vs is chosen and marked. The accretionprocess is done by selecting and marking the unmarkedneighbors of vs, then the unmarked neighbors of theneighbors of vs and so on as long as the expected totalnumber of nodes is not reached. This can be viewedas successively building fronts.The way of choosing a starting node vs will clearlya�ect the shape of the �nal partition. It will also in-
uence the communication scheme, i.e. the number ofexisting edges between di�erent subsets of the parti-tion.In the same way, the manner that one chooses theprescribed number of nodes among all the candidatenodes of the last front contributes to the quality of the�nal partition.Thus a greedy heuristic for solving the p edge-partitioning problem can be de�ned roughly by iter-ating the following 3 steps:1. Choose a \good" starting node vs,2. Build fronts,3. Stop according to some tie-break strategy in caseof multiple choices and mark all the chosen nodes.At present, there are no theoretical results on the\goodness" of one starting node. Neither are there re-sults on how good a tie-break strategy is. For thosetwo points only intuitive guesses help to design ppartitioning problem heuristics. However, an obvi-ous justi�cation of using greedy heuristics for solv-ing the p partitioning problem is that they are inex-pensive. We have shown in [5], that for the general



case the overall complexity of such an algorithm isO(N max(p; d; log2(Np ))). Note that the greedy algo-rithm was �rst proposed speci�cally for partitioningmeshes (and for parallel processing) by Farhat [10].3.2.2 Front oriented algorithmThe next algorithm, presented in detail in [5], im-plements the principles of a greedy method as wellas some other original features. First, this algorithmbuilds connected subsets. On the other hand, it doesnot always provide well balanced subsets. The subsetsare constructed in a concentric way around the bound-ary of the graph. Finally, for each subset, in case ofmultiple choices between the nodes of the last front,the tie-break strategy chooses those which are linkedto as few unmarked nodes as possible.More precisely, in the partitioning process, thestarting node of each iteration i is chosen in orderto belong simultaneously to the boundary of G, to bean unmarked neighbor of a node of Vi�1 and to havea minimal positive current degree (in [10], the start-ing node is chosen among those which do not belongto the boundary of G). Here, the current degree ofa node is the number of nodes connected to it whichhave not yet been selected, i.e. marked, during theaccumulation step.As for the tie-break strategy, it is achieved by keep-ing the nodes that have a minimal current degree. Infact, the algorithm does not simply build the subsetsas mentioned but also check the connectivity of eachof them. Whenever a subset is found to be multi-connected, the algorithm corrects the feature by re-assigning small components to other subsets and bykeeping the largest component. The algorithm \GP"is described next.Algorithm GP1. If i < p(a) Compute ni = N�Pi�1j=1 njp�(i�1) :(b) Choose an unmarked node vs such that:i. vs belongs to the current boundary,ii. if the current boundary is not new, vs isa neighbor of a node belonging to Vi�1(if possible1),iii. vs has a minimal current degree.Mark vs and initialize Vi with vs.1It may not be possible to �nd a node neighboring the pre-viously built subset if the boundary is multiconnected.

(c) If there are unmarked neighbors of nodes ofVi, let k be their number.i. If j Vi j +k < ni then mark those nodes,add them to Vi and update the currentdegree of their neighbors, and then re-turn to 1.(c).ii. Mark (ni� j Vi j) minimal current de-gree nodes and add them to Vi.Update the current and virtual bound-aries.Do i = i+ 1 and return to 1.(d) If there are no more unmarked neighbors ofnodes of Vi and if j Vi j< ni then unmark thenodes in Vi and assign them to neighboringsubsets. Return to 1.2. Mark all the remaining nodes and add them intoVp. If Vp is multiconnected then keep the largestcomponent and unmark the nodes of the othercomponents and assign these nodes to neighbor-ing subsets.The complexity of GP is O(M ).3.3 Local optimization methodsWhatever partitioning methods may be used, manyexperiments have shown that local optimizationmeth-ods can improve greatly the load balancing or the in-tersubset structure. One of the most well known op-timization methods for improving a given partition isdue to Kernighan and Lin [21].Fundamentally the method is based on a given 2edge-partition (V1; V2) of the node set V of a graphand tries to improve it by exchanging a subset of V1with one of V2. The selection criterion of the subsetsis determined from a gain function which is de�ned asfollows. First, for v 2 V1, gv = dV2(v)� dV1(v) (dA(v)is the number of neighbors of v which belong to A)and for w 2 V2, gw = dV1(w)� dV2(w). Then the gainobtained by exchanging a node v 2 V1 with a nodew 2 V2 is equal to:gv;w = gv + gw � 2�(v; w)where �(v; w) is de�ned by:�(v; w) = � 1 if (v; w) 2 E0 otherwise :The authors of RP 1 ([1]), have chosen to usethe KL algorithm as a postprocessing step after eachbisection has been performed. Nevertheless, as the



complexity of the KL method is in the order ofO(N2 logN ), the KL method is actually invoked onlywhen the number of nodes in each subset is less than300.Because of the complexity of the KL algorithm,Fiduccia and Mattheyses [13] slightly modi�ed the al-gorithm, and reduced the overall complexity to O(M ).Principally, the FM algorithm chooses to move onenode after another instead of directly exchanging apair of nodes. The authors of RP 2 generalized theFM method to an arbitrary number of subsets, [19]and [20]. In this case, the overall complexity is esti-mated to O((p � 1)M ). This method is then invokedin step 3.(c) for re�ning the partition.Finally, the authors of GP have designed, whatthey call a retro�tting method which has been sug-gested by the experiments conducted on their parti-tioning heuristic [4]. The �rst step tries to reshape theoutlines of the subsets by deleting some excrescences.Generally these occur during the accumulation stepof the partitioning process when some of the chosennodes encounter prematurely another subset. Thensome nodes are attached to the subset to which theybelong by a single edge. By reassigning those nodesto neighboring subsets and by iterating the processuntil no more excrescences remain, the shape of thesubsets is improved. Note that these boundary nodesare transferred to the subset which holds the highestnumber of its neighbors. It is not always possible toeliminate all the excrescences, so the reshaping stephas to stop when the overall shape of the partition,i.e. the number of excrescences, does not seem to beimproved over the iterations (more precisely �ve iter-ations). Here, one iteration consists of spanning thewhole set of nodes V and reassigning the excrescences.Because of the reassignment of nodes to neighbor-ing subsets in order to preserve the connectivity of thesubsets, the resulting partition provided by GP is notbalanced in most of the cases. Thus the second step ofthe retro�tting method looks for rebalancing the sub-sets by moving nodes from large subsets to small ones.One iteration of this consists of three parts. First, thelargest and smallest subsets are determined. Then aset of nodes (or front) of the largest subset is reas-signed to its smallest neighbor. Last, a set of nodesis reassigned to the smallest subset, coming from itslargest neighbor. Moreover this process includes a con-nectivity test step which allows a move of a front onlyif the subsets of the new partition remain connected.The balancing process is iterated until the standarddeviation approaches the optimal standard deviation

or until it does not decrease anymore.The complexity of one iteration of the reshapingstep is O(M ) while the complexity of the balancingstep is in the order of O(nd), where n is the aver-age number of node by subset. Note that when theretro�tting method is performed, neither the numberof iterations for the reshaping steps nor for the bal-ancing step are bounded a priori.4 Numerical experimentsFor our numerical experiments, we consider threedomains. One is imbedded in IR2 and is the exteriorof the section of a wing, made of four parts. The tri-angulation of this domain is due to T. Barth (fromNASA Ames). The other two are imbedded in IR3:they are a domain bounded by two concentric spheresand an axle (part of an automobile). The �rst tri-angulation comes from L. Crouzet (from CEA) andthe second one from M. Vidrascu (from INRIA). Thethree domains have been scaled in order to be in [0,1]2or [0,1]3. The wing grid has 33677 nodes and 99520edges, the spheres grid has 9020 nodes and 59418 edgesand �nally the axle grid has 25058 nodes and 156842edges.The Poisson problem is solved on the wing and thespheres, f is set to �9x2 sin 3y + 2 sin3y in 2D and 0in 3D. �0 = �Tf(x; y); x < 0:2g and g = x2 sin 3y in2D, �0 = � and g = x in 3D. For the linear elasticityequations, solved on the axle, the constants are set toE = 1 and � = 0:3. f is set to 30E(1��)(1+�)(1�2�)0@x4y4z41A.Finally, g = 0@x6y6z61A.The numerical experiments including both the par-titioning heuristics and the iterative solver are testedthrough a common tool: the Portable ExtensibleTools for Scienti�c computation (PETSc) developedby Gropp and Smith [16], [18]. PETSc is a softwarelibrary for parallel and serial scienti�c computations.It provides a variety of packages and in particular theiterative solver. In addition to these existing packages,PETSc makes it easy to include any software writteneither in C or Fortran. The softwares correspondingto the partitioning heuristics have been given by theirauthors and have been used in PETSc as is. We havewritten interfaces for transferring inputs and parame-ters as well as for interpreting the results. The RP 1code, written by Barnard and Simon, can be obtained



by a request to their authors2. The RP 2 code iscopyrighted but can be obtained via a request to Hen-drickson or Leland3. The GP code has been writtenby Ciarlet and Lamour.The experiments were carried out on a Sun VikingSuperSparc.4.1 The partitioning characteristicsThe characteristics of the three partitioning heuris-tics can be summarized according to two parameters.The �rst one measures the balancing of the subsets.It gives a realistic idea of the di�erence of the sizebetween large subsets and small ones according to theaverage size of the subsets: �=n, where n is the averagenumber of nodes by subset and � is the standard de-viation of the number of nodes by subset and is equalto q1pPpi=1(ni � n)2. The second one measures thepercentage of intersubset edges (m=M ).From extensive numerical experiments [6], [7], wecan see that �=n is very small in all cases (and optimalby de�nition for the recursive heuristics). But this isnot enough to ensure the load balancing [7]. Furthercomments are made in the next Section.The ratio m=M measures the communication vol-ume between the subdomains, where M is given whilem is the parameter to be minimized by the heuristics.In general we can see that this volume is smallest forRP 2, followed closely by RP 1. Nevertheless, GPgives reasonably close values [6], [7]. The impact ofdi�erences between communication volumes on itera-tion time is not measurable in our experiments as wehave run them on a sequential machine.4.2 The numerical characteristicsBasically, the numerical characteristics of the it-erative method are the number of iterations neededto reach the prescribed tolerance of 10�5, and theamount of work by iteration. Let us �rst address thelatter for nonoverlapping subdomains.Mainly, an iteration consists in solving p linear sys-tems, one for each subdomain. Therefore the amountof work is proportional to the number of nonzero en-tries, or �ll, of the LU-factorization of the local matri-ces, that is the restriction of the matrix to each subdo-main. Concerning the average �lls, GP gives generallybetter results than the recursive heuristics (for numer-ical results, we refer the reader to [7]). This can be2simon@nas.nasa.gov or barnard@nas.nasa.gov.3bahendr@cs.sandia.gov or rwlelan@cs.sandia.gov.

explained in part by the average �ll of the local matri-ces before factorization. It is equal to (M+N)�mp andtherefore smaller for GP. The reordering and factor-ization process does not seem to reduce these originaldi�erences. The reordering is done using Sparsepack'snested dissection routines.Moreover, as these methods are designed for paral-lel architectures, it is natural to study the load bal-ancing, that is not the average �ll but the �ll for eachsubdomain. The most important values are the mini-mum and the maximum �lls for a given partition. Inmost cases, there is a great imbalance [7].The maximum value is representative of the largestamount of work on a processor, in the case of a paral-lel experiment. Generally, these are very close for thethree heuristics. As a function of the number of parti-tions p, RP 1 gives the best results for small p whereasGP performs best for large p, both for overlapping andnonoverlapping subdomains [7].Let us now investigate the possible origins of theimbalance. It can be caused by some original imbal-ance, i.e. the discrepancy in �ll of the local matricesbefore they are factored. It can also be caused by thestructure of these matrices which a�ects the reorder-ing and factorization process. The second cause is notclearly related to the partitioning heuristic, but the�rst one is.Indeed, the constraint, when partitioning, is on thenumber of vertices. Unfortunately, the nonzero entriesof the local matrices correspond exactly to the edgesof the graph. Thus, in order to have balanced localmatrices, one has to replace the constraint on verticesby a constraint on edges. But it can not be easily done,since the average number of edges by subset (M+N)�mpis not known a priori: a value for m is obtained onlyafter the partition is computed.Nevertheless, for this particular problem, it is pos-sible to design special postprocessing strategies. Here,once m is determined, some \retro�tting" techniquecould be applied very simply, targeting the number ofedges instead of the number of vertices. Note that, inthis case, the original constraint on the number of ver-tices is not crucial any more. Brie
y, let us mentionanother way of avoiding this problem in 2D. As a mat-ter of fact, for a given regionR of the 2D-triangulation,if TR denotes the number of triangles and MR thenumber of edges in the region, then3TR � 2MR:Based on this observation, it can be interesting to par-tition the triangulation in terms of triangles, as wellbalanced subsets of triangles correspond roughly to



well balanced subsets of edges. In 3D, however, thereis no such relationship between the number of tetra-hedra and edges in a region.Finally, let us mention that Vanderstraeten, Zone,Keunings and Wolsey have proposed in [24] a postpro-cessing strategy to balance a quantity that approxi-mates the actual �ll.Now, we consider the number of iterations as a func-tion of both the number of subdomains p and the over-lap. p 16 32 64 128 256RP 1 146 158 134 136 152RP 2 83 94 107 142 79GP 105 83 96 119 144Wing: Number of iterations without overlap.p 16 32 64 128 256RP 1 21 25 22 28 27RP 2 19 21 21 29 22GP 19 21 27 24 29Spheres: Number of iterations without overlap.p 32 64 128 256RP 1 11 13 14 17RP 2 10 13 16 16GP 15 16 17 20Axle: Number of iterations without overlap.First, we consider the nonoverlapping case. It isthe only case we calculate for the axle because ofmemory limitations. We can see from the Tables thatno heuristic performs really better than the others interms of the number of iterations. Moreover, thesenumbers are relatively close to one another for a givenp, especially when they are small (see the 3D exam-ples). Finally, for the spheres and the axle we notethat the number of iterations increases only slowlywith the number of subdomains. This is particularlytrue for the axle.Figures 1 to 6 illustrate the behavior of the numberof iterations according to the overlap, the number ofsubdomains being �xed. For Figures 5 and 6, the miss-ing parts of the curves are due to memory limitations.In the case of overlapping subdomains we can also seethat no heuristic performs dramatically better. Thedi�erent values of the number of iterations tend to bemore clustered as the overlap increases. Once again,the behavior of the curves is not strictly monotonic.Yet, it tends to decrease as the overlap increases.

We note that the reason for the larger number ofiterations for the problem in two dimensions is due tothe Neumann boundary conditions which usually de-crease the convergence rate of block Jacobi type pre-conditioners.5 ConclusionWe solved some elliptic PDEs in two and three di-mensions on unstructured grids using the one leveloverlapping Schwarz method. We partitioned the tri-angulations with three di�erent heuristics and studiedthe impact of the partitioning on the numerical re-sults. Based on these experiments, it appears that thethree heuristics behave very similarly in terms of loadbalancing. For the convergence rate the increasingamount of overlap tends to smooth out the di�erencesbetween the iterative solvers. For nonoverlapping sub-domains it is di�cult to point out any advantage ofone heuristic over the others, since di�erent heuristicsperform best on di�erent problems.AcknowledgmentsWe thank Horst Simon for providing the code ofRP 1 and Bruce Hendrickson and Robert Leland forallowing us to use the RP 2 code.The work of the �rst author was partially supportedby the DGA/DRET under contract 93-1192. Thework of the second author was partially supported bythe National Science Foundation under contract ASC92-01266, the Army Research O�ce under contractDAAL03-91-G-0150, and ONR under contract ONR-N00014-92-J-1890. The work of the third author wassupported by the O�ce of Scienti�c Computing, U.S.Department of Energy, under contract W-31-109-Eng-38.References[1] S.T. Barnard and H.D. Simon. A fast multilevelimplementation of recursive spectral bisection forpartitioning unstructured problems. Technical re-port, NASA Ames Research Center, RNR-092-033, 1992.[2] P. Ciarlet. The �nite element method for ellipticproblems. North Holland, 1978.[3] P. Ciarlet, Jr, T.F. Chan, and W.K. Szeto. Onthe optimality of the median cut spectral bisec-



tion graph partitioningmethod. Technical report,UCLA, CAM 93-14, 1993.[4] P. Ciarlet, Jr and F. Lamour. A front-orientedapproach to partitioning sparse graphs. Technicalreport, in preparation.[5] P. Ciarlet, Jr and F. Lamour. An e�cient lowcost greedy graph partitioning heuristic. Techni-cal report, UCLA, CAM 94-1, 1994.[6] P. Ciarlet, Jr and F. Lamour. Recursive partition-ing methods and greedy partitioning methods: acomparison on �nite element graphs. Technicalreport, UCLA, CAM 94-9, 1994.[7] P. Ciarlet, Jr, F. Lamour, and B.F. Smith. Onthe in
uence of the partitioning schemes on thee�ciency of overlapping domain decompositionmethods. Technical report, UCLA, CAM 94-23,1994.[8] M. Dryja. An additive Schwarz algorithm fortwo- and three-dimensional �nite element ellipticproblems. In T. Chan, R. Glowinsky, J. P�eriaux,and O. Widlund, editors, Domain DecompositionMethods. SIAM, Philadelphia, PA, 1989.[9] M. Dryja and O. B. Widlund. An additive variantof the Schwarz alternating method for the case ofmany subregions. Technical report, 339, Dept ofComputer Science, Courant Institute, 1987.[10] C. Farhat. A simple and e�cient automatic FEMdomain decomposer. Computers and structures,vol 28, no 5, pp 579-602, 1988.[11] C. Farhat and M. Lesoinne. Automatic partition-ing of unstructured meshes for the parallel so-lution of problems in computational mechanics.International Journal for Numerical Methods inEngineering, vol 36, no 5, pp 745-764, 1993.[12] C. Farhat and H.D. Simon. TOP/DOMDEC- asoftware tool for mesh partitioning and parallelprocessing. Technical report, NASA Ames Re-search Center, RNR-93-011, 1993.[13] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network partitions.Proceedings of the 19th IEEE Design AutomationConference, IEEE, pp 175-181, 1982.[14] M. Fiedler. Algebraic connectivity of graphs.Czechoslovak Mathematical Journal, 23, (98), pp298-305, 1973.

[15] A. George and J. Liu. Computer solution of largesparse positive de�nite systems. Prentice-Hall,Englewood Cli�s, NJ, 1981.[16] W.D. Gropp and B.F. Smith. Portable, Extensi-ble Toolkit for Scienti�c Computation (PETSc).Available at info.mcs.anl.gov in the directorypub/pdetools via anonymous ftp.[17] W.D. Gropp and B.F. Smith. Experiences withdomain decomposition in three dimensions: over-lapping Schwarz methods. In A. Quarteroni, Y.A.Kuznetsov, J. P�eriaux, and O. Widlund, editors,Domain Decomposition Methods in Science andEngineering. AMS contemporary mathematics,vol 157, 1993.[18] W.D. Gropp and B.F. Smith. Scalable, exten-sible, and portable numerical libraries. Proceed-ings of the Scalable Parallel Libraries Conference,IEEE, pp 87-93, 1993.[19] B. Hendrickson and R. Leland. Multidimensionalspectral load balancing. Technical report, SAND93-0074, 1993.[20] B. Hendrickson and R. Leland. A multilevel algo-rithm for partitioning graphs. Technical report,SAND 93-1301, 1993.[21] B.W. Kernighan and S. Lin. An e�cient heuristicfor partitioning graphs. The Bell System Techni-cal Journal, vol 49, no 2, pp 291-307, 1970.[22] H.D. Simon. Partitioning of unstructured prob-lems for parallel processing. Computing Systemsin Engineering, vol 2, no 2/3, pp 135-148, 1991.[23] H. A. van der Vorst. Bi-cgstab: a fast andsmoothly converging variant of bi-cg for the so-lution of nonsymmetric linear systems. SIAM J.Sci. Stat. Comp., vol 13, no 2, pp 631-644, 1992.[24] D. Vanderstraeten, O. Zone, R. Keunings, andL. A. Wolsey. Non-deterministic heuristics forautomatic domain decomposition in direct paral-lel �nite element calculations. In R.F. Sincovec,editor, in Parallel Processing for Scienti�c Com-puting. SIAM, 1993.


