On the Influence of Partitioning Schemes on the Efficiency of
Overlapping Domain Decomposition Methods

P. Ciarlet, Jr. F. Lamour B. F. Smith
CEA Cisi
CEL-V, D.MA, MCN Branche CEA et Défense
94195 Villeneuve-St-Georges Cedex BP 28, 91192 Gif-sur-Yvette Cedex

France France

Argonne National Laboratory
9700 South Cass Avenue
Argonne, 11 60439-4844

USA

Abstract

One level overlapping Schwarz domain decomposi-
tion preconditioners can be viewed as a generaliza-
tion of block Jacobi preconditioning. The effect of the
number of blocks and the amount of overlapping be-
tween blocks on the convergence rate is well under-
stood. This paper considers the related issue of the
effect of the scheme used to partition the matriz into
blocks on the convergence rate of the preconditioned
iterative method. Numerical results for Laplace and
linear elasticity problems in two and three dimensions
are presented. The tentative conclusion is that using
overlap tends to decrease the differences between the
rates of convergence for different partitioning schemes.

1 Introduction

One level overlapping Schwarz domain decomposi-
tion methods are simple, natural preconditioners for
the parallel solution of the linear systems that arise
from the discretization of elliptic PDEs. To apply
these methods efficiently in parallel, one must par-
tition the unknowns among the processors to achieve
both load balancing and reduce required interproces-
sor communication. However, for block Jacobi meth-
ods the particular partition used can have a large effect
on the numerical convergence rate.

Farhat and Lesoinne [11] and Farhat and Simon [12]
addressed the problem of load balancing and commu-
nications between processors on a parallel architec-
ture, and have run some experiments on parallel ma-
chines in order to compare the execution times. In
this paper we study the effects of several partitioning
strategies (with and without overlap) on the load bal-
ancing and communications but we focus on the con-

vergence rate of the method or, equivalently, on the
number of iterations required to reach a prescribed
tolerance.

We consider the numerical solution of elliptic PDEs
in both two and three dimensions on unstructured
grids using the finite element method. The result-
ing linear system 1is solved using a domain decompo-
sition preconditioned Krylov space method designed
for parallel computing. All of our numerical experi-
ments are performed on sequential machines because
we are mainly interested in the effect on the numeri-
cal convergence rate. Future studies will focus on the
non-numerical effects introduced by parallel machines.

The paper is organized as follows. In Section 2,
we present the elliptic problems to be solved, that is
the equations and the boundary conditions. We also
include a brief overview of the discretization, the itera-
tive domain decomposition methods used in the paper.
In the next Section, we give a detailed description of
the partitioning heuristics, the influence of which we
compare in Section 4.

2 Solving the elliptic problems
2.1 The problems and their discretization

Let Q denote the domain imbedded in IR? or IR3
and T' = TyJT; its boundary. The elliptic prob-
lems to be solved are either the Poisson problem with
Dirichlet boundary conditions on I'y and homogeneous
Neumann boundary conditions on I'y or the equations
of linear elasticity in the domain €2 with Dirichlet
boundary conditions on T'. Let u denote the (scalar)
solution of the Poisson problem and u the (vector)
solution of the elasticity equations. Finally, let F|
Young’s modulus, and v, Poisson’s ratio, be two posi-

tive constants. Then the problems can be written as:

—Au=fin Q, u=gon Iy, 6—u:00nF1,
on

FE 1—v
_ A
Ay

VV-oul=finQ u=gonl.

In order to derive a discretization of these prob-
lems, the equations are replaced by a suitable varia-
tional formulation and then the finite element method
[2] with the P1 finite element is used on the triangula-
tions. Even though the value of the solution is known
on I'y via the Dirichlet boundary condition, we have
chosen to keep these (trivial) equations in the linear
system. Because of this, the unknowns are the approx-
imations of the value of the true solution at all vertices
of the triangulation, and the matrix is nonsymmetric.

2.2 Iterative and DD methods

The resulting nonsymmetric linear system 1s solved
using the preconditioned bi-conjugate gradient stabi-
lized method (Bi-CGSTAB), due to van der Vorst
[23]. The preconditioner considered in this paper is
designed with the help of domain decomposition prin-
ciples.

In recent years, many papers have been devoted
to the study of new domain decomposition methods.
One of the main reasons for this renewed interest is
the emergence of parallel and massively parallel com-
puters. This is because many domain decomposition
methods are naturally parallel. The additive Schwarz
method we consider in this paper is very representa-
tive. This method was introduced by Dryja in [8] and
Dryja and Widlund in [9]. For some results obtained
on parallel architectures with this method, we refer
the reader to [17].

Here, we consider the case of the one-level addi-
tive Schwarz preconditioner, that is local problems are
solved without a coarse problem. It is well known that
the addition of a coarse solver greatly reduces the con-
dition number and therefore the number of iterations,
but a coarse solver is defined from a coarse triangu-
lation of the subdomain which may be costly to com-
pute. In order to get a better condition number, it
is possible, on the other hand, to consider overlap-
ping subdomains. Here, the overlapping subdomains
are simply obtained by extending the nonoverlapping
partitions, at little additional cost. In the following,
we thus allow subdomains to overlap.

Finally, let us briefly mention how the local prob-
lems are solved: the (complete) LU-factorization of

each local problem is computed and then used as a
solver at every iteration of the method. To mini-
mize the fill (number of non-zero entries) during the
factorization, the matrix columns and rows are re-
ordered with nested dissection following George and
Liu’s Sparsepack [15].

3 The partitioning heuristics

In order to partition the domain, the triangulation
can be considered as a graph by identifying the no-
tions of vertices and edges. We call this graph a finite
element graph. Let G = (V, E) be a graph where V is
the set of nodes and E is the set of edges. Let p be
an integer, then we define the p edge-partition of GG as
a partition of V into p disjoint sets Vi, Vs, ...V}, such
that:

i Uf:l‘/izv’
o Vi~ Vi [for 1< ij<pand i)

o m=|{(vj,v;) € Eandv; € V;, v; € V; with 1 #
J} | is as small as possible.

Besides the requirements of the p edge-partitioning
problem it may be necessary to impose that each re-
sulting subset has to be connected.

For all the formulations and variants of graph par-
titioning, the general problem is a NP-hard problem.
Many heuristics have been developed while few opti-
mal results have been proved.

The heuristic methods proposed in the literature
for finite element graphs can be roughly arranged in
two categories: the greedy methods and the recursive
methods. A detailed study of the heuristics presented
here as well as a fair comparison of the corresponding
partitions are given in [6].

Let us first introduce some definitions and notations
about graphs that will be used in the following.

Let N =| V | and M =| F | be the number of
nodes and edges respectively. The degree of a node
v, denoted d(v), is the number of edges that have one
endpoint in v, i.e. the number of neighbors of v. More-
over we use d to denote the average degree of a node
inG.

The Laplacian matrix of a graph G, denoted
L(G) = (Lij)i j=1..~, is defined by:

-1 if(vi,vj) ekl
li]' = d(vl) if 7 Ij

0 otherwise

As we study finite element graphs we shall talk about
the boundary of the graph that is clearly defined with
respect to the meshes.

3.1 Recursive methods

3.1.1 Spectral bisection

Spectral partitioning methods are based on a partic-
ular eigenvalue, and on its associated eigenvector, of
the Laplacian matrix of the graph to be partitioned.

In order to understand the intuitive justifications of
these methods we must summarize some known prop-
erties of the eigenvalues of the Laplacian matrix of a
graph and display their links with the graph bisection,
or 2 edge-partitioning, problem.

Let L(G) be the Laplacian matrix of G and N > 2.
Let A < Ay < A3 < ... < Ay be the eigenvalues of
L(G).

To begin with, A; is always equal to zero. The
second smallest eigenvalue, Ay, 1s also known as the
algebraic connectivity of G. Let us recall that Ay =0
if and only if GG is a disconnected graph. In other
words, the number of eigenvalues equal to zero gives
exactly the number of connected components of the
graph. Let us assume, without loss of generality, that
Ag 18 the first non zero eigenvalue.

The 2 edge-partitioning problem can be reformu-
lated in the following terms. Let us consider a vector
7€Q={(¢:) € RN, ¢ = %1, > ¢; = 0} and the in-
duced balanced partition for which a node 7 is assigned
to subset Vi if ¢; = +1 or to subset V5 if ¢; = —1.

The number of intersubset edges (or edge cuts) is
equal to .

m = (¢, L(G)g).
So the 2 edge-partitioning problem amounts to finding
a vector ¢ € () which minimizes this quantity.

By relaxing this discrete minimization problem to a
continuous problem, that is to the search of a vector x
such that || z ||3= N and }_ «; = 0, one finds that the
minimum of (z, L(G)x) is obtained for & = x2, where
x5 18 the eigenvector associated with Az, named the
Fiedler vector, [14].

Knowing this, the idea is to compute a vector ¢ € @
by using z» in the following way. Let x; be the median
value of the components of x5. Then ¢; is defined as:

+1 if (22); > o
=1 —1 if(x2); <ay
+1 if (22); = 2; (for the balancing)

The partition induced by such a vector ¢ is known
as the median cut partition. Of course this is not an

optimal partition. Although we cannot say how close
to the optimal the median cut is, there are still some
interesting properties about it.

First, there is an important result about the con-
nectivity of a median cut partition which has been
stated by Fiedler [14]. Briefly, if there are exactly %
strictly positive components and % strictly negative
components then both balanced subsets of the par-
tition are connected. Regardless, the connectivity of
one of the subsets is always guaranteed.

Secondly, it have been proved by Ciarlet, Chan and
Szeto in [3] that for all p € Q, || x2 —p |[|> || #2 —
q ||- This result, which does not allow us to conclude
about the optimality of ¢, can nevertheless reassures
the promoters of the median cut method by assuming
that it is a close enough choice.

3.1.2 Recursive spectral bisection

In order to partition a given graph into any number of
subsets that is a power of two, the median cut parti-
tioning method has been used as a step in a divide and
conquer process, as in the Recursive Spectral Bisection
algorithm (RSB) due to Simon [22]. There the median
cut algorithm is recursively applied to each subgraph
induced by the bisection previously computed until
the required number of subsets 1s obtained.
Moreover, as the computation of the Fiedler vector
i1s time consuming, many studies have been devoted
to speeding up the calculation of this particular vec-
tor. Barnard and Simon, [1], have accelerated the RSB
algorithm by approximating the Fiedler vector. For
this, they contract some edges in the graph in order
to obtain a smaller graph and repeat this operation a
certain number of times until the contracted graph is
small enough. Then, they compute the Fiedler vec-
tor of the smallest graph. From the smallest graph,
an approximation of the Fiedler vector of the previous
graph is deduced by an interpolation technique. This
approximated vector is then used as a starting point
in an iterative method that computes the Fiedler vec-
tor. Once the refined Fiedler vector is obtained the
process goes back to the larger graph and recomputes
a Fiedler vector for this graph using the same strategy
(interpolation and refinement), and so on. The algo-
rithm is given below and it will be referred to as “RP

17.
Algorithm RP 1
1. Compute the Fiedler vector for the graph by:

(a) Constructing a series of smaller graphs
(G")i=1 ... obtained by some contraction

operations applied to the original graph,
(contraction step).

(b) Computing the Fielder vector for the small-
est graph G*.

(¢) Constructing a series of Fiedler vectors cor-
responding to the series of graphs by:

1. interpolating the previously found Fied-
ler vector to the next larger graph in
a way that provides a good approxima-
tion to next Fielder vector (interpola-
tion step),

1. computing from the given approximated
Fielder vector, a more accurate vector
(refinement step).

2. Sort vertices according to the size of entries in
Fielder vector.

3. Assign half of the vertices to each subdomain.

4. Repeat recursively (divide and conquer).

The complexity of RP 1 is estimated to O(M log, p).

3.1.3 Recursive multilevel algorithm

In a similar manner, Hendrickson and Leland in [20]
used a multilevel technique to partition a graph. They
first reduce the size of the graph, and derive a series of
smaller graphs by contracting the edges of the original
graph until the size of the last graph is small enough.
They partition the smallest graph using the median
cut technique. Then, they reflect the partition when
uncontracting the series of graphs. Moreover, to im-
prove the quality of the partition (in term of balancing
and of number of intersubset edges) they perform a
local optimization method which exchanges nodes be-
tween the subsets of the partition. Finally they repeat
the previous sequence of steps on each subset until the
total number of subsets i1s obtained. The algorithm

below i1s called “RP 2”.

Algorithm RP 2

1. Construct a series of smaller graphs obtained
by contraction operations applied to the original
graph.

2. Partition the smallest graph using the median cut
method.

3. Propagate the partition by:

(a) Uncontracting the smallest graph.

(b) Reflecting back the partition to the uncon-
tracted graph.

(¢) Refining locally the partition using a local
optimization method.

(d) Repeating steps (a), (b), (¢), until the orig-
inal graph.

4. Repeat recursively (divide and conquer).

The complexity of RP 2 is estimated to O(M log, p).
3.2 Greedy algorithms

3.2.1 Principles

According to the p edge-partitioning problem a greedy
algorithm can be described as an algorithm that com-
putes each subset V; by simply accumulating nodes
when traveling through the graph. The problematical
questions are only: how to start and how to stop?

The way of accumulating nodes in each subset is
obvious from the graph structure of the problem. A
starting node v i1s chosen and marked. The accretion
process is done by selecting and marking the unmarked
neighbors of vs, then the unmarked neighbors of the
neighbors of v; and so on as long as the expected total
number of nodes is not reached. This can be viewed
as successively building fronts.

The way of choosing a starting node vs will clearly
affect the shape of the final partition. It will also in-
fluence the communication scheme, 1.e. the number of
existing edges between different subsets of the parti-
tion.

In the same way, the manner that one chooses the
prescribed number of nodes among all the candidate
nodes of the last front contributes to the quality of the
final partition.

Thus a greedy heuristic for solving the p edge-
partitioning problem can be defined roughly by iter-
ating the following 3 steps:

1. Choose a “good” starting node vy,

2. Build fronts,

3. Stop according to some tie-break strategy in case
of multiple choices and mark all the chosen nodes.

At present, there are no theoretical results on the
“goodness” of one starting node. Neither are there re-
sults on how good a tie-break strategy is. For those
two points only intuitive guesses help to design p
partitioning problem heuristics. However, an obvi-
ous Justification of using greedy heuristics for solv-
ing the p partitioning problem is that they are inex-
pensive. We have shown in [5], that for the general

case the overall complexity of such an algorithm is
O(N max(p, d,logz(%))). Note that the greedy algo-
rithm was first proposed specifically for partitioning
meshes (and for parallel processing) by Farhat [10].

3.2.2 Front oriented algorithm

The next algorithm, presented in detail in [5], im-
plements the principles of a greedy method as well
as some other original features. First, this algorithm
builds connected subsets. On the other hand, it does
not always provide well balanced subsets. The subsets
are constructed in a concentric way around the bound-
ary of the graph. Finally, for each subset, in case of
multiple choices between the nodes of the last front,
the tie-break strategy chooses those which are linked
to as few unmarked nodes as possible.

More precisely, in the partitioning process, the
starting node of each iteration ¢ is chosen in order
to belong simultaneously to the boundary of G, to be
an unmarked neighbor of a node of V;_; and to have
a minimal positive current degree (in [10], the start-
ing node is chosen among those which do not belong
to the boundary of). Here, the current degree of
a node i1s the number of nodes connected to it which
have not yet been selected, i.e. marked, during the
accumulation step.

As for the tie-break strategy, it 1s achieved by keep-
ing the nodes that have a minimal current degree. In
fact, the algorithm does not simply build the subsets
as mentioned but also check the connectivity of each
of them. Whenever a subset is found to be multi-
connected, the algorithm corrects the feature by re-
assigning small components to other subsets and by
keeping the largest component. The algorithm “GP”
is described next.

Algorithm GP
1. Ifi<p

i—1
N_ijl i
p—(i-1)

(b) Choose an unmarked node v; such that:

(a) Compute n; =

1. vy belongs to the current boundary,

i1. if the current boundary is not new, v; 1s
a neighbor of a node belonging to V;_1
(if possible!),

1. vy has a minimal current degree.

Mark v, and initialize V; with v,.

11t may not be possible to find a node neighboring the pre-
viously built subset if the boundary is multiconnected.

(¢) If there are unmarked neighbors of nodes of
Vi, let k be their number.

i. If | Vi | +k < n; then mark those nodes,
add them to V; and update the current
degree of their neighbors, and then re-
turn to 1.(c).

ii. Mark (n;— | Vi |) minimal current de-
gree nodes and add them to V;.
Update the current and virtual bound-
aries.

Do i =1+ 1 and return to 1.

(d) If there are no more unmarked neighbors of
nodes of V; and if | V; |< n; then unmark the
nodes in V; and assign them to neighboring
subsets. Return to 1.

2. Mark all the remaining nodes and add them into
Vp. If V}, is multiconnected then keep the largest
component and unmark the nodes of the other
components and assign these nodes to neighbor-
ing subsets.

The complexity of GP is O(M).
3.3 Local optimization methods

Whatever partitioning methods may be used, many
experiments have shown that local optimization meth-
ods can improve greatly the load balancing or the in-
tersubset structure. One of the most well known op-
timization methods for improving a given partition is
due to Kernighan and Lin [21].

Fundamentally the method is based on a given 2
edge-partition (V1,Va2) of the node set V' of a graph
and tries to improve it by exchanging a subset of V;
with one of V5. The selection criterion of the subsets
is determined from a gain function which is defined as
follows. First, for v € V1, gy = dv,(v) — dv,(v) (da(v)
is the number of neighbors of v which belong to A)
and for w € V4, gy = dv, (w) — dy,(w). Then the gain
obtained by exchanging a node v € V; with a node
w € Vs 18 equal to:

Jv,w = Ju + Gw — 26(1},10)

where 8(v, w) is defined by:

5(v w):{ 1 if(v,w)€eE

’ 0 otherwise

The authors of RP 1 ([1]), have chosen to use
the KL algorithm as a postprocessing step after each
bisection has been performed. Nevertheless, as the

complexity of the KL method is in the order of
O(N?log N), the KL method is actually invoked only
when the number of nodes in each subset is less than

300.

Because of the complexity of the KL algorithm,
Fiduccia and Mattheyses [13] slightly modified the al-
gorithm, and reduced the overall complexity to O(M).
Principally, the FM algorithm chooses to move one
node after another instead of directly exchanging a
pair of nodes. The authors of RP 2 generalized the
FM method to an arbitrary number of subsets, [19]
and [20]. In this case, the overall complexity is esti-
mated to O((p — 1)M). This method is then invoked
in step 3.(c) for refining the partition.

Finally, the authors of GP have designed, what
they call a retrofitting method which has been sug-
gested by the experiments conducted on their parti-
tioning heuristic [4]. The first step tries to reshape the
outlines of the subsets by deleting some excrescences.
Generally these occur during the accumulation step
of the partitioning process when some of the chosen
nodes encounter prematurely another subset. Then
some nodes are attached to the subset to which they
belong by a single edge. By reassigning those nodes
to neighboring subsets and by iterating the process
until no more excrescences remain, the shape of the
subsets is improved. Note that these boundary nodes
are transferred to the subset which holds the highest
number of its neighbors. It i1s not always possible to
eliminate all the excrescences, so the reshaping step
has to stop when the overall shape of the partition,
i.e. the number of excrescences, does not seem to be
improved over the iterations (more precisely five iter-
ations). Here, one iteration consists of spanning the
whole set of nodes V' and reassigning the excrescences.

Because of the reassignment of nodes to neighbor-
ing subsets in order to preserve the connectivity of the
subsets, the resulting partition provided by GP is not
balanced in most of the cases. Thus the second step of
the retrofitting method looks for rebalancing the sub-
sets by moving nodes from large subsets to small ones.
One iteration of this consists of three parts. First, the
largest and smallest subsets are determined. Then a
set of nodes (or front) of the largest subset is reas-
signed to its smallest neighbor. Last, a set of nodes
is reassigned to the smallest subset, coming from its
largest neighbor. Moreover this process includes a con-
nectivity test step which allows a move of a front only
if the subsets of the new partition remain connected.
The balancing process is iterated until the standard
deviation approaches the optimal standard deviation

or until it does not decrease anymore.

The complexity of one iteration of the reshaping
step is O(M) while the complexity of the balancing
step is in the order of O(nd), where n is the aver-
age number of node by subset. Note that when the
retrofitting method is performed, neither the number
of iterations for the reshaping steps nor for the bal-
ancing step are bounded a prior:.

4 Numerical experiments

For our numerical experiments, we consider three
domains. One is imbedded in IR? and is the exterior
of the section of a wing, made of four parts. The tri-
angulation of this domain is due to T. Barth (from
NASA Ames). The other two are imbedded in IR3:
they are a domain bounded by two concentric spheres
and an axle (part of an automobile). The first tri-
angulation comes from L. Crouzet (from CEA) and
the second one from M. Vidrascu (from INRITA). The
three domains have been scaled in order to be in [0,1]?
or [0,1]2. The wing grid has 33677 nodes and 99520
edges, the spheres grid has 9020 nodes and 59418 edges
and finally the axle grid has 25058 nodes and 156842
edges.

The Poisson problem is solved on the wing and the
spheres, f is set to —922sin 3y + 2sin3y in 2D and 0
in 3D. T'g = T N{(z,y),2 < 0.2} and ¢ = 2%sin 3y in
2D, Ty =T and g = z in 3D. For the linear elasticity
equations, solved on the axle, the constants are set to

24
E =1and v = 03. fis set to % vt
4
26
Finally, ¢ = | «°
.6

The numerical experiments including both the par-
titioning heuristics and the iterative solver are tested
through a common tool: the Portable Extensible
Tools for Scientific computation (PETSc) developed
by Gropp and Smith [16], [18]. PETSc is a software
library for parallel and serial scientific computations.
It provides a variety of packages and in particular the
iterative solver. In addition to these existing packages,
PETSc makes it easy to include any software written
either in C or Fortran. The softwares corresponding
to the partitioning heuristics have been given by their
authors and have been used in PETSc as i1s. We have
written interfaces for transferring inputs and parame-
ters as well as for interpreting the results. The RP 1
code, written by Barnard and Simon, can be obtained

by a request to their authors?. The RP 2 code is
copyrighted but can be obtained via a request to Hen-
drickson or Leland®. The GP code has been written
by Ciarlet and Lamour.

The experiments were carried out on a Sun Viking
SuperSparc.

4.1 The partitioning characteristics

The characteristics of the three partitioning heuris-
tics can be summarized according to two parameters.
The first one measures the balancing of the subsets.
It gives a realistic 1dea of the difference of the size
between large subsets and small ones according to the
average size of the subsets: ¢/n, where n is the average
number of nodes by subset and o is the standard de-
viation of the number of nodes by subset and is equal

to 4 /%Zle(ni —n)?. The second one measures the

percentage of intersubset edges (m/M).

From extensive numerical experiments [6], [7], we
can see that o/n is very smallin all cases (and optimal
by definition for the recursive heuristics). But this is
not enough to ensure the load balancing [7]. Further
comments are made in the next Section.

The ratio m/M measures the communication vol-
ume between the subdomains, where M is given while
m is the parameter to be minimized by the heuristics.
In general we can see that this volume is smallest for
RP 2, followed closely by RP 1. Nevertheless, GP
gives reasonably close values [6], [7]. The impact of
differences between communication volumes on itera-
tion time is not measurable in our experiments as we
have run them on a sequential machine.

4.2 The numerical characteristics

Basically, the numerical characteristics of the it-
erative method are the number of iterations needed
to reach the prescribed tolerance of 107°, and the
amount of work by iteration. Let us first address the
latter for nonoverlapping subdomains.

Mainly, an iteration consists in solving p linear sys-
tems, one for each subdomain. Therefore the amount
of work is proportional to the number of nonzero en-
tries, or fill, of the LU-factorization of the local matri-
ces, that is the restriction of the matrix to each subdo-
main. Concerning the average fills, GP gives generally
better results than the recursive heuristics (for numer-
ical results, we refer the reader to [7]). This can be

2simon@nas.nasa.gov or barnard@nas.nasa.gov.

3bahendr@cs.sandia.gov or rwlelan@cs.sandia.gov.

explained in part by the average fill of the local matri-
ces before factorization. It is equal to MAN)=m and
therefore smaller for GP. The reordering and factor-
ization process does not seem to reduce these original
differences. The reordering is done using Sparsepack’s
nested dissection routines.

Moreover, as these methods are designed for paral-
lel architectures, 1t 1s natural to study the load bal-
ancing, that is not the average fill but the fill for each
subdomain. The most important values are the mini-
mum and the maximum fills for a given partition. In
most cases, there is a great imbalance [7].

The maximum value is representative of the largest
amount of work on a processor, in the case of a paral-
lel experiment. Generally, these are very close for the
three heuristics. As a function of the number of parti-
tions p, RP 1 gives the best results for small p whereas
GP performs best for large p, both for overlapping and
nonoverlapping subdomains [7].

Let us now investigate the possible origins of the
imbalance. It can be caused by some original imbal-
ance, 1.e. the discrepancy in fill of the local matrices
before they are factored. It can also be caused by the
structure of these matrices which affects the reorder-
ing and factorization process. The second cause is not
clearly related to the partitioning heuristic, but the
first one is.

Indeed, the constraint, when partitioning, is on the
number of vertices. Unfortunately, the nonzero entries
of the local matrices correspond exactly to the edges
of the graph. Thus, in order to have balanced local
matrices, one has to replace the constraint on vertices
by a constraint on edges. But it can not be easily done,
since the average number of edges by subset (MAN)=m
i1s not known a priori: a value for m is obtainedp only
after the partition is computed.

Nevertheless, for this particular problem, 1t is pos-
sible to design special postprocessing strategies. Here,
once m 1s determined, some “retrofitting” technique
could be applied very simply, targeting the number of
edges instead of the number of vertices. Note that, in
this case, the original constraint on the number of ver-
tices is not crucial any more. Briefly, let us mention
another way of avoiding this problem in 2D. As a mat-
ter of fact, for a given region R of the 2D-triangulation,
if T denotes the number of triangles and Mg the
number of edges in the region, then

3TR ~ QMR.

Based on this observation, it can be interesting to par-
tition the triangulation in terms of triangles, as well
balanced subsets of triangles correspond roughly to

well balanced subsets of edges. In 3D, however, there
is no such relationship between the number of tetra-
hedra and edges in a region.

Finally, let us mention that Vanderstraeten, Zone,
Keunings and Wolsey have proposed in [24] a postpro-
cessing strategy to balance a quantity that approxi-
mates the actual fill.

Now, we consider the number of iterations as a func-
tion of both the number of subdomains p and the over-
lap.

p | 16 | 32 | 64 | 128 | 256
RP 1 | 146 | 158 | 134 | 136 | 152
RP 2| 83 | 94 | 107 | 142 | 79
GP | 105 | 83 | 96 | 119 | 144

Wing: Number of iterations without overlap.

p | 163264128 | 256
RP 1|21]25] 22| 28 | 27
RP 2| 10| 21 | 21| 29 | 22

GP |19 |21 |27 | 24 | 29

Spheres: Number of iterations without overlap.

p | 3264128 | 256
RP1 |11 |13] 14| 17
RP2 10|13 16 | 16
GP | 15|16 17 | 20

Axle: Number of iterations without overlap.

First, we consider the nonoverlapping case. It is
the only case we calculate for the axle because of
memory limitations. We can see from the Tables that
no heuristic performs really better than the others in
terms of the number of iterations. Moreover, these
numbers are relatively close to one another for a given
p, especially when they are small (see the 3D exam-
ples). Finally, for the spheres and the axle we note
that the number of iterations increases only slowly
with the number of subdomains. This is particularly
true for the axle.

Figures 1 to 6 illustrate the behavior of the number
of iterations according to the overlap, the number of
subdomains being fixed. For Figures 5 and 6, the miss-
ing parts of the curves are due to memory limitations.
In the case of overlapping subdomains we can also see
that no heuristic performs dramatically better. The
different values of the number of iterations tend to be
more clustered as the overlap increases. Once again,
the behavior of the curves is not strictly monotonic.
Yet, it tends to decrease as the overlap increases.

We note that the reason for the larger number of
iterations for the problem in two dimensions is due to
the Neumann boundary conditions which usually de-
crease the convergence rate of block Jacobi type pre-
conditioners.

5 Conclusion

We solved some elliptic PDEs in two and three di-
mensions on unstructured grids using the one level
overlapping Schwarz method. We partitioned the tri-
angulations with three different heuristics and studied
the impact of the partitioning on the numerical re-
sults. Based on these experiments, it appears that the
three heuristics behave very similarly in terms of load
balancing. For the convergence rate the increasing
amount of overlap tends to smooth out the differences
between the iterative solvers. For nonoverlapping sub-
domains it 1s difficult to point out any advantage of
one heuristic over the others, since different heuristics
perform best on different problems.

Acknowledgments

We thank Horst Simon for providing the code of
RP 1 and Bruce Hendrickson and Robert Leland for
allowing us to use the RP 2 code.

The work of the first author was partially supported
by the DGA/DRET under contract 93-1192. The
work of the second author was partially supported by
the National Science Foundation under contract ASC
92-01266, the Army Research Office under contract
DAATLO03-91-G-0150, and ONR under contract ONR-
N00014-92-J-1890. The work of the third author was
supported by the Office of Scientific Computing, U.S.
Department of Energy, under contract W-31-109-Eng-
38.

References

[1] S.T. Barnard and H.D. Simon. A fast multilevel
implementation of recursive spectral bisection for
partitioning unstructured problems. Technical re-
port, NASA Ames Research Center, RNR-092-
033, 1992.

[2] P. Ciarlet. The finite element method for elliptic
problems. North Holland, 1978.

[3] P. Ciarlet, Jr, T.F. Chan, and W.K. Szeto. On

the optimality of the median cut spectral bisec-

[13]

tion graph partitioning method. Technical report,

UCLA, CAM 93-14, 1993.

P. Ciarlet, Jr and F. Lamour. A front-oriented
approach to partitioning sparse graphs. Technical
report, in preparation.

P. Ciarlet, Jr and F. Lamour. An efficient low
cost greedy graph partitioning heuristic. Techni-
cal report, UCLA, CAM 94-1, 1994.

P. Ciarlet, Jr and F. Lamour. Recursive partition-
ing methods and greedy partitioning methods: a
comparison on finite element graphs. Technical

report, UCLA, CAM 94-9, 1994.

P. Ciarlet, Jr, F. Lamour, and B.F. Smith. On
the influence of the partitioning schemes on the
efficiency of overlapping domain decomposition
methods. Technical report, UCLA, CAM 94-23,
1994.

M. Dryja. An additive Schwarz algorithm for
two- and three-dimensional finite element elliptic
problems. In T. Chan, R. Glowinsky, J. Périaux,
and O. Widlund, editors, Domain Decomposition

Methods. STAM, Philadelphia, PA, 1989.

M. Dryja and O. B. Widlund. An additive variant
of the Schwarz alternating method for the case of
many subregions. Technical report, 339, Dept of
Computer Science, Courant Institute, 1987.

C. Farhat. A simple and efficient automatic FEM
domain decomposer. Computers and structures,

vol 28, 1° 5, pp 579-602, 1988.

C. Farhat and M. Lesoinne. Automatic partition-
ing of unstructured meshes for the parallel so-
lution of problems in computational mechanics.
International Journal for Numerical Methods in
Engineering, vol 36, n° 5, pp 745-764, 1993.

C. Farhat and H.D. Simon. TOP/DOMDEC- a
software tool for mesh partitioning and parallel
processing. Technical report, NASA Ames Re-
search Center, RNR-93-011, 1993.

C.M. Fiduccia and R.M. Mattheyses. A linear-
time heuristic for improving network partitions.
Proceedings of the 19th IEEE Design Automation
Conference, IEEE, pp 175-181, 1982.

M. Fiedler. Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal, 23, (98), pp
298-305, 1973.

[15]

[16]

[18]

A. George and J. Liu. Computer solution of large
sparse posttive definite systems. Prentice-Hall,

Englewood Cliffs, NJ, 1981.

W.D. Gropp and B.F. Smith. Portable, Extensi-
ble Toolkit for Scientific Computation (PETSc).
Awvailable at info.mcs.anl.gov in the directory
pub/pdetools via anonymous fip.

W.D. Gropp and B.F. Smith. Experiences with
domain decomposition in three dimensions: over-
lapping Schwarz methods. In A. Quarteroni, Y. A.
Kuznetsov, J. Périaux, and O. Widlund, editors,
Domain Decomposition Methods in Science and
Engineering. AMS contemporary mathematics,

vol 157, 1993.

W.D. Gropp and B.F. Smith. Scalable, exten-
sible, and portable numerical libraries. Proceed-
wngs of the Scalable Parallel Libraries Conference,
IEFE, pp 87-93, 1993.

B. Hendrickson and R. Leland. Multidimensional
spectral load balancing. Technical report, SAND
93-0074, 1993.

B. Hendrickson and R. Leland. A multilevel algo-
rithm for partitioning graphs. Technical report,

SAND 93-1301, 1993.

B.W. Kernighan and S. Lin. An efficient heuristic
for partitioning graphs. The Bell System Techni-
cal Journal vol 49, n° 2, pp 291-307, 1970.

H.D. Simon. Partitioning of unstructured prob-
lems for parallel processing. Computing Systems
in Engineering, vol 2, n° 2/3, pp 135-148, 1991.

H. A. van der Vorst. Bi-cgstab: a fast and
smoothly converging variant of bi-cg for the so-
lution of nonsymmetric linear systems. STAM J.

Sci. Stat. Comp., vol 13, n° 2, pp 631-644, 1992.

D. Vanderstraeten, O. Zone, R. Keunings, and
L. A. Wolsey. Non-deterministic heuristics for
automatic domain decomposition in direct paral-
lel finite element calculations. In R.F. Sincovec,
editor, «n Parallel Processing for Scientific Com-

puting. STAM, 1993.

