
Computational Electromagnetics and Parallel Dense MatrixComputationsKimmo Forsman� William Groppy Lauri Kettunen� David LevineyAbstractWe present computational results using CORAL, a parallel, three-dimensional,nonlinear magnetostatic code based on a volume integral equation formulation. Akey feature of CORAL is the ability to solve, in parallel, the large, dense systems oflinear equations that are inherent in the use of integral equation methods. Using theChameleon and PSLES libraries ensures portability and access to the latest linear algebrasolution technology.1 IntroductionFor the past twenty years most electromagnetic �eld computations have been done usingprograms based on the �nite element method and run on sequential computers. However,limitations of accuracy, problem size, and solution time make further advances using thisapproach more and more di�cult. We believe an approach that combines integral equationmethods and massively parallel computers can address many of the current limitations andprovide timely and accurate solutions to large, computationally demanding problems.In this paper we discuss CORAL, a volume integral equation code that runs on massivelyparallel processors as well as workstation networks and can solve three-dimensional,nonlinear magnetostatic problems. A key component of CORAL is the use of the Chameleonand PSLES libraries to provide parallel portability and access to a variety of parallel linearsystem solvers to solve the large, dense systems of linear equations that are inherent in theuse of integral equation methods.2 Integral Equation Formulation in CORALIn this section we brie
y discuss the integral equation formulation used in CORAL. Morecomplete details may be found in [6]. We denote magnetic 
ux density with B, magnetic�eld strength with H , magnetization with M , permeability with �, and susceptibilitywith �. The formulation behind CORAL is based on the idea of superposition of �eldsfrom current and magnetization sources. Let Hs stand for the magnetic �eld strengthfrom current sources in the absence of magnetic materials. The �eld component frommagnetization of materials is denoted with Hm. The �eld from source currents can beintegrated from Biot-Savart's law and is therefore known a priori. Arranging the unknownterms on the left and the source terms on the right, we getH �Hm = Hs :(1)�Tampere University of Technology, Tampere, Finland.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4801.This work was supported by the O�ce of Scienti�c Computing, U. S. Department of Energy, under ContractW-31-109-Eng-38. 1



2 The Hm-�eld at point r, resulting from a distribution of M in V (r0), can be integratedsuch that Hm(r) = grad" �14� ZV M(r0) � (r� r0)jr� r0j3 dv0# :(2) Since M can be given in terms of H , namely,M = �(jH j)H;(3)we get H �Hm(�;H) = Hs ;(4)and hence the �elds on the left-hand side can be written in terms of H , if � is known.The formulation employed in CORAL is now developed by multiplying the divergencecondition of B, divB = div �H = 0 ;(5)with an appropriate test function, substituting Eq. (4) into (5), and applying integralrelationships (i.e., theorems analogous to Green's �rst identity) to getZV �H � h0 � ZV �Hm(�;H) � h0 = ZV �Hs � h0; 8h0;(6)where h0 is the gradient of the test function.In order to establish a discrete problem, the magnetic �eld H is approximated in thespace of \edge elements," that is, Whitney elements of degree p = 1 [1]. The system ofequations is developed from Eq. (6) by choosing h0 the same as the basis functions ofthe space spanned by the edge elements. The numerical problem implies the tangentialcontinuity of H at all points, whereas the normal continuity of B is satis�ed only in theweak sense.In magnetostatics the problems are typically nonlinear, because the properties of thematerials depend on the �eld strength. These kinds of problem are solved iteratively; aninitial guess for � is inserted, and the nonlinearity is taken into account by solving successiveproblems updating the material data at each cycle. After a few cycles the Newton-Raphsonmethod is applied to accelerate the convergence.3 Parallelization AspectsThe parallel version of CORAL code is built on top of two libraries from PETSc (Portableand Extensible Tools for Scienti�c computing) [3], a large toolkit of software for portable,parallel (and serial) scienti�c computation. One of these, the Chameleon [2] library, is asecond-generation message-passing system that provides a uniform way to access third-party message-passing libraries such as p4, PICL, and PVM, as well as vendor-speci�cmessage-passing libraries such as Intel's NX and IBM's EUI-H.The other PETSc library used was the Parallel Simpli�ed Linear Equation Solvers(PSLES) package [3]. This library provides access to a wide variety of iterative solvers,preconditioners, and accelerators in an easy-to-use, e�cient, and portable manner. PSLESsupports direct methods using sparse or dense LU, and a wide variety of iterative methodsand preconditioners. PSLES allows the speci�cation of options such as the solver algorithm,choice of preconditioning matrix, and setting of the solution tolerance.



3ctx = PSVCreate(mat,PSVLU) ctx = PSVCreate(mat,PSVBDD)PSVSetAccelerator(ctx,ITGMRES)PSVSetUp(ctx) PSVSetUp(ctx)PSVSolve(ctx,b,x) its = PSVSolve(ctx,b,x)PSVDestroy(ctx) PSVDestroy(ctx)Fig. 1. PSLES Code for LU factorization and GMRES with block diagonal preconditioningThe key data structures in CORAL are the integral equation and Jacobian matrices.Each nonlinear iteration requires the generation of a new integral equation matrix orJacobian matrix. We decomposed the matrices rowwise such that each processor generatesand updates certain rows of the integral equation matrix or the Jacobian matrix. Duringmatrix generation no data broadcasting between the processors is needed. In addition, onlya small amount of overlapping data is computed on two or more processors.The elements of the integral equation matrix are computed from the solution to thelinear system from the previous nonlinear iteration and some terms, which arise from Eq.(2), that depend only on the problem geometry. Because of the lowest-order \edge element"approximation, magnetization becomes a constant vector within each element, and thereforeone has to integrate terms of the form (r � r0)=jr � r0j3dv0. We compute the appropriateintegrals for each processor once, store them to disk �les, and read them during eachsuccessive nonlinear iteration. This approach saves a considerable amount of processingtime.The systems that arise in CORAL have several special features. First, the linear systemthat arises is asymmetric. Second, each system of linear equations arises from an outernonlinear problem and so may need only a relatively low accuracy solution. Third, theactual matrix, while dense, has many \small" elements. Finally, the size of the matricesto be solved varies signi�cantly according to the mesh re�nement and desired solutionaccuracy.The classical method for solving dense systems of linear equations is LU factorization.However, the solution time for LU factorization scales as O(n3) and can be prohibitive forlarge values of n. In CORAL, there may be computational advantages to using iterativemethods, such as using the solution computed at the previous nonlinear iteration as thestarting guess to solve the next linear system or allowing an early exit with an approximatesolution. There may also, however, be cases where it is useful to use a direct method, suchas solving the linear system on the �rst nonlinear iteration.Ideally, we would like the capability to switch easily between di�erent solution methods.The PSLES library provides that capability. PSLES allows the user to easily experiment withthe choice of di�erent solvers. For example, the PSLES code fragments in Figure 1 use LUfactorization and GMRES with block diagonal preconditioning, to solve a linear system.Note the similarity of the two code fragments.4 Computational ExperimentsIn this paper we focus on linear algebra and parallel computing experiments. Details of theaccuracy of the calculated electromagnetic �eld have been given in other papers [4, 5, 6].



4 Table 1TEAM 13 Timings, 2041 EquationsPreconditioner LU GMRES Bi-CGStabNone 99.1BDD(4) 25.8/(25) 40.8/(23)Band(25%) 26.4/(21) 38.7/(18)SILUF 229.5/(177) Not convergedTable 2TEAM 20 Timings, 2867 EquationsPreconditioner LU GMRES Bi-CGStabNone 166.4BDD(4) 30.5/(16) 41.7/(15)Band(25%) 28.3/(12) 39.4/(11)SILUF 34.8/(16) 51.8/(14)4.1 Sequential ResultsThe experiments in this section compare sequential implementations of LU factorizationand several iterative methods. All the results in this section were computed on a DECAlpha 3000-600 AXP workstation. The test problems used are the international TEAM(Testing Electromagnetic Analysis Methods) benchmark problems, numbers 13 [7] and 20[8]. TEAM 13 was run using a mesh that resulted in a system of 2041 equations. TEAM20 was run using a mesh that resulted in a system of 2867 equations.Tables 1 and 2 compare LU factorization (from LAPACK) with two iterative methods,GMRES and Bi-CGStab, using three di�erent preconditioners. The row None means nopreconditioner was used. The row BDD(4) refers to a block diagonal LU preconditionerusing four blocks of equal size. The row Band(25%) is an incomplete LU preconditionerthat uses a band containing approximately 25% of the matrix. The row SILUF is astandard incomplete LU factorization (i.e., the same idea as in Cholesky factorization,but for nonsymmetric matrices).For each method and preconditioner, the table entries are the maximum CPU timein seconds, over all nonlinear iterations, to solve a linear system, followed by the numberof iterations required by the iterative solver to solve that linear system to an accuracy of1.0e-9. For the iterative methods, if P is the preconditioning matrix, then the initial guesswe used for the starting solution was the solution to Px = b.For both problems, both GMRES and Bi-CGStab, using either the BDD(4) orBand(25%) preconditioners, are more e�ective than LU factorization. Also, GMRESoutperforms Bi-CGStab on both problems as well.4.2 Parallel ResultsThe results in this section were computed on an IBM SP1 parallel computer with 128RS/6000 model 370 processors, each with 128 Mbytes of memory and a one Gbyte local disk.



5Table 3TEAM 13 Timings, Di�erent Nonlinear Solution Methods, 801 EquationsMethod 4 Proc. 8 Proc.LU 59 34GMRES 23 235Table 4APS Dipole Magnet Timings, 7536 equationsNo. of Processors 16 32 64LU factorization 948.2 533.0 308.1RHS generation 396.3 204.6 71.7Matrix generation 824.3 412.6 207.6CPU time/sec. 18306 11208 6878Compilation was done using the IBM xlf Fortran compiler with level O3 optimizations.Chameleon generated EUI-H message-passing calls.For the results in Table 3 TEAM 13 was solved using a mesh that led to a system of801 equations. The rows LU and GMRES refer to the method used (on four and eightprocessors, respectively) to solve the linear system that arises each nonlinear iteration.The row LU refers to using LU factorization. The row GMRES refers to using GMRESwith block diagonal preconditioning. In the case of GMRES, except for the �rst nonlineariteration, the solution to the linear system from the previous nonlinear iteration was usedas the starting guess.GMRES with block diagonal preconditioning is superior to LU factorization when fourprocessors are used, but signi�cantly worse using eight processors. Our experience is thatblock diagonal preconditioning works well as long as the blocks are large enough (in general,we have found it best not to use more than four blocks for problems with 1000{3500equations.) However, the parallel version of the block diagonal preconditioner used inPSLES uses one block per processor. In this case, the blocks are large enough when we usefour processors but too small when we use eight processors (a similar result was observedusing block diagonal preconditioning with eight blocks in other sequential tests as well.)As a third test problem we used a positron accumulator ring dipole magnet from theAdvanced Photon Source (APS) at Argonne National Laboratory. The APS dipole magnetwas run using a mesh with 34,645 tetrahedral mesh elements resulting in a system of7536 equations. Results using LU factorization each nonlinear iteration on 16, 32, and 64processors are shown in Table 4. The rows show the three most computationally demandingsteps: linear system solution, right-hand-side generation, and matrix generation. Goodspeedups are obtained.4.3 DiscussionOur sequential results show that iterative methods with appropriate preconditioners canoutperform direct factorization, even when the underlying problem is a dense matrix.



6Simple, easily parallelized preconditioners such as BDD, however, do not scale well tolarge numbers of processors. This result suggests two approaches for better parallelperformance. One is to use e�cient parallel implementations of the ILU preconditioner(using multicoloring for better parallelism). The other is to use BDD, but keep the numberof BDD blocks independent of the number of processors, and use a parallel LU for eachblock. This approach requires that the parallel LU software run on arbitrary subsets ofprocessors; this is relatively easy for software written using MPI or Chameleon.AcknowledgmentsWe thank Sean Pratt, Jennifer Rovegno, Jukka Salonen, Diana Tabor, Hania Yassin,and Vector Fields Inc. for their assistance. We acknowledge use of the Argonne High-Performance Computing Research Facility.References[1] A. Bossavit. Whitney forms: A class of �nite elements for three-dimensional computations inelectromagnetism. In IEE Proceedings, volume 135, Pt. A, pages 493{499, 1988.[2] W. D. Gropp and B. Smith. Users manual for the Chameleon parallel programming tools.Technical Report ANL-93/23, Mathematics and Computer Science Division, Argonne NationalLaboratory, March 1993.[3] W. D. Gropp and B. F. Smith. Scalable, extensible, and portable numerical libraries. InProceedings of Scalable Parallel Libraries Conference, pages 87{93. IEEE, 1994.[4] L. Kettunen, K. Forsman, D. Levine, and W. Gropp. Solutions of team problem #13 usingintegral equations in a sequential and parallel computing environment. In Proceedings of theFourth International TEAM Workshop, pages 41{43, Florida International University, Miami,1994.[5] L. Kettunen, K. Forsman, D. Levine, and W. Gropp. Solutions of team problems 13 and20 using a volume integral formulation. In Proceedings of Aix-les-Bains TEAM Workshop,Aix-les-Bains, France, 1994.[6] L. Kettunen, K. Forsman, D. Levine, and W. Gropp. Volume integral equations in nonlinear3-d magnetostatics. Technical Report MCS-P460-0894, Argonne National Laboratory, 1994.[7] T. Nakata, N. Takahashi, K. Fujiwara, K. Muramatsu, T. Imai, and Y. Shiraki. Numericalanalysis and experiments of 3-D non-linear magnetostatic model. In Proceedings of TEAMWorkshop on Computation of Applied Electromagnetics in Materials, pages 308{310, Okayama,Japan, 1990.[8] T. Nakata, N. Takahashi, and H. Morishige. Analysis of 3-d static force problem. In Proceedingsof TEAM Workshop on Computation of Applied Electromagnetics in Materials, Sapporo,Japan, 1993.


