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AbstractThis article describes the results of several numerical simulations of vortex dynamicsin type-II superconductors. The underlying mathematical model is the time-dependentGinzburg-Landau model. The simulations concern vortex penetration in the presenceof twin boundaries, interface patterns between regions of opposite vortex orientation,and magnetic-ux entry patterns in superconducting samples.
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Numerical Simulation of Vortex Dynamicsin Type-II SuperconductorsWilliam D. Gropp, Hans G. Kaper, Gary K. Leaf, David M. Levine,Mario Palumbo, Valerii M. Vinokur1 Ginzburg-Landau ModelIn this article we report on several numerical simulations of vortex motion in type-II su-perconducting materials [1,2]. The simulations are based on the time-dependent Ginzburg-Landau (TDGL) equations, �h22msD � @@t + ies�h �� = � �L� � ; (1:1)�c �1c @A@t +r�� = � �L�A � 14�r�r�A: (1:2)The symbol L stands for the density of the Helmholtz free-energy functional which, in theGinzburg-Landau (GL) approximation, is given by an expression of the formL = aj j2 + 12bj j4+ 12ms ������hir� esc A� ����2 : (1:3)Here,  is the (complex-valued) order parameter, A the vector potential, and � the electricpotential. The order parameter is identically equal to zero in a normal metal. The observablequantities are the magnetic induction, B = r�A; the density of Cooper pairs, ns = j j2;and the current density, J = �E + Js, where E = �(1=c)@A=@t� r� is the electric �eld(Faraday's law) and Js the supercurrent density,Js = es�h2ims ( �r �  r �)� e2smsc j j2A: (1:4)The superscript � denotes complex conjugation, es is the \e�ective charge" of a superelectron(es < 0) and ms its \e�ective mass." The constant D is a phenomenological di�usioncoe�cient. If J is viewed as the sum of a \normal" current, which satis�es Ohm's law, andthe supercurrent, � may be interpreted as the \coe�cient of normal conductivity."The quantities a and b in (1.3) are phenomenological parameters; they are functions ofexternal parameters, such as the temperature T , the concentration of impurities, etc.; b > 0for all T , and a changes sign at Tc (a < 0 for T < Tc, a > 0 for T > Tc).When the variational derivatives are written out, (1.1) and (1.2) assume the form�h22msD � @@t + ies�h �� + 12ms ��hir� esc A� ���hir� esc A� � jaj + bj j2 = 0; (1:5)1



r�r�A = �4��c �1c @A@t +r��+ 4�c Js: (1:6)The equation (1.5), �rst proposed by Schmid [3], was derived from the microscopic BCStheory by Gor'kov and Eliashberg [4]; in the zero-�eld case, it reduces to a semilineardi�usion equation with di�usion coe�cient D. The equation (1.6) is Amp�ere's law, r�B =(4�=c)J; see [5, Chapter 5].Our numerical approximations are set up to simulate three-dimensional rectangularcon�gurations, where a superconducting material occupying a region 
sc is surrounded bya normal metal. The entire con�guration occupies a region 
, which is in turn surroundedby vacuum. The boundary @
sc of 
sc is the interface between the superconductor andthe normal metal; the boundary @
 of 
 is the outer boundary. Both are two-dimensionalsurfaces. The unit normal vector, n, is always directed toward the exterior of the domain.An arbitrary point in space is denoted by the vector x or by its coordinates (x; y; z).At the interface, we impose the boundary conditionJs � n = 0 on @
sc: (1:7)Strictly speaking, this condition is correct only for superconductor{insulator interfaces andneeds to be generalized for superconductor{metal interfaces [6, Section 7{3]. However, wehave implemented (1.7) everywhere on @
sc.On the outer surface, we may prescribe a surface current K to account for an appliedmagnetic �eld H in the exterior vacuum. This surface current causes a jump discontinuityin the tangential component of B, whose magnitude is (4�=c) times the magnitude of Kand whose direction is parallel to K� n.Although the validity of the TDGL model for high-Tc superconductors is arguable|intheory, it is valid only asymptotically near the critical temperature, Tc|the results are inexcellent qualitative and quantitative agreement with the results of physical experimentsover a wide range of temperatures. The TDGL model has been used previously to studythe interaction of colliding vortices [7], nucleation in thin �lms [8,9], magnetization in thin�lms [10], and I � V characteristics of thin �lms [11]. A mathematical framework for theGL functional can be found in [12]; the TDGL model is analyzed in detail in [13,14].The computational (discrete) TDGL model is presented in Section 2, the results of thenumerical simulations in Section 3. All computations were done on the IBM POWERparallelSP System at Argonne National Laboratory (128 processors, 128 megabytes per processor,theoretical peak performance 16 Gops). 2



2 Computational ModelBefore introducing the discrete approximations, we reduce the TDGL model to a nondi-mensional form, introduce the zero-electric potential gauge, and de�ne the �eld variables interms of link variables.2.1 Dimensionless FormWe render the TDGL model dimensionless by measuring lengths in units of the Londonpenetration depth �; time in units of a characteristic relaxation time � = �2=D, where � iscoherence length; �elds in units of Hcp2, where Hc is the thermodynamic critical �eld ; andenergy densities in units of H2c =(4�). With  20 = jaj=b, we have� =  msc24� 20e2s!1=2 ; � =  �h22msjaj!1=2 ; Hc = �4�jaj 20�1=2 : (2:1)The penetration depth and coherence length are characteristic lengths for the magnetic�eld and the order parameter, respectively. The ratio � = �=� is the Ginzburg-Landauparameter, which is approximately temperature-independent; typically, � � 100 in the caseof a high-Tc superconductor.Distinguishing a dimensionless quantity from its dimensal counterpart by a prime, wemake the following substitutions: x = (x; y; z) = (�x0; �y0; �z0) = �x0, t = �t0,  =  0 0,A = �Hcp2A0, � = (�=c�)�Hcp2�0, L = (H2c =4�)L0, B = Hcp2B0, E = (�=c�)Hcp2E0,J = ( 20es�h=ms�)J0, and � = (c2�=4��2)�0. Here,  0, A0, etc. are functions of x0 and t0.Omitting all primes, we obtain the dimensionless form of the variational equations (1.1)and (1.2), � @@t + i��� = � �L� � ; ��@A@t +r�� = �12 �L�A � r�r�A; (2:2)where L = �j j2+ 12 j j4 + ����� 1i�r�A� ����2 : (2:3)The observable quantities are B = r � A; ns = j j2; and J = �E + Js, where E =�@A=@t� r� and Js = 12i�( �r �  r �)� j j2A: (2:4)3



2.2 Zero Potential GaugeThe TDGL model is invariant under the gauge transformation =  ei��; A = A+r�; � = �� @�@t ; (2:5)where the gauge � is any function of space and time; see [2, Section 19.6]. We choosethe zero-electric potential gauge, so � = 0 at all times. (Other possible gauge choices arediscussed in [13].) Dropping the overbars, we thus reduce (2.2) to@ @t = � �L� � ; � @A@t = �12 �L�A � r�r�A: (2:6)2.3 Link VariablesWe introduce the auxiliary vector U = (Ux; Uy; Uz),Ux(x; y; z) = exp��i� Z xx0 Ax(�; y; z) d�� ;Uy(x; y; z) = exp��i� Z yy0 Ay(x; �; z) d�� ; (2:7)Uz(x; y; z) = exp��i� Z zz0 Az(x; y; �) d�� :(We omit the argument t.) The point x0 = (x0; y0; z0) is an arbitrary reference point. EachU� (� = x; y; z) is complex valued and unimodular, U�� = U�1� . It follows from (2.7) thatAx = � 12i� �U�x @Ux@x � Ux@U�x@x � ;Ay = � 12i�  U�y @Uy@y � Uy @U�y@y ! ; (2:8)Az = � 12i� �U�z @Uz@z � Uz @U�z@z � :The energy density (2.3) can now be written in the formL = �j j2+ 12 j j4 + 1�2 X�=x;y;z ���� @@�(U� )����2 : (2:9)This expression shows that the presence of a nonzero �eld induces anisotropic di�usion ofthe order parameter. The di�usion coe�cient depends locally on the auxiliary vector U.4



The variables (2.7) are related to the link variables of lattice gauge theory [15,16]; seethe remark following (2.32). Their introduction at this point facilitates the preservationof gauge invariance under discretization [17]. Borrowing the terminology, we refer to thevector U as the vector of link variables.When the equations (2.6) are worked out, the di�erential equations to be solved are@ @t � 1�2 X�=x;y;z U�� @2@�2 (U� )�  + j j2 = 0 in 
sc; (2:10)�@A@t +r�r�A = ( Js in 
;0 in 
n
sc: (2:11)The supercurrent density Js is given in terms of  and A by (2.4) or, alternatively, in termsof  and U by Js;� = 12i� �U�� � @@�(U� )� U� @@�(U�� �)� ; � = x; y; z: (2:12)The equation (2.10) must be solved subject to the boundary condition Js � n = 0 on @
sc.The TDGL model is completed by the speci�cation of initial conditions for j j and B.We observe that, if Js �n = 0 on @
sc, thenA �n does not vary with time on @
sc. (Takethe divergence of both sides of (2.11), integrate the resulting identity over an in�nitesimallythin volume adjacent to 
sc, and apply Gauss's theorem.) Because Js = 0 in 
n
sc, thesame argument shows that A � n does not vary with time on @
.2.4 Computational GridWe consider rectangular con�gurations, where a brick-shaped region 
sc of superconductingmaterial is imbedded in a normal metal. The entire con�guration has the shape of arectangular box, which occupies a region 
 in space. The brick and the box are lined up inparallel. Outside 
, the magnetic �eld is given and uniform.All computations are done on a uniform grid with mesh widths hx, hy , and hz . The gridis asymptotically regular, in the sense that h�=h� = O(1) as h = maxfhx; hy; hzg ! 0, forany pair �; � (�; � = x; y; z). A typical grid cell is
i;j;k = fx = (x; y; z) : xi < x < xi+1; yj < y < yj+1; zk < z < zk+1g; (2:13)where xi = x1 + (i� 1)hx; yj = y1 + (j � 1)hy; zk = z1 + (k � 1)hz : (2:14)The vertex xi;j;k = (xi; yj ; zk) is the reference point for 
i;j;k. Unless noted otherwise, theindices run through the values i = 1; : : : ; nx; j = 1; : : : ; ny; k = 1; : : : ; nz.5



Conceptually, the domain 
 lies inside the grid at a distance of one-half mesh widthfrom the bounding faces in each coordinate direction,
 = fx = (x; y; z) : x1 + 12hx < x < xnx + 12hx;y1 + 12hy < y < xny + 12hy ; z1 + 12hz < z < xnz + 12hzg: (2.15)The domain 
sc is located an integer number of mesh widths inside 
, in such a way thatthere is always at least one layer of grid points between 
sc and 
. That is,
sc = fx = (x; y; z) : xnsx + 12hx < x < xnex�1 + 12hx;ynsy + 12hy < y < yney�1 + 12hy ; znsz + 12hz < z < znez�1 + 12hzg; (2.16)for three pairs of integers (nsx; nex), (nsy ; ney), and (nsz ; nez), which satisfy the inequalities1 < ns� < ne� < n� (� = x; y; z). (The subscripts sx, sy, sz and ex, ey, ez stand forthe \starting" and \ending" values in the x, y, z direction, respectively.) The somewhatunorthodox numbering is a historical accident.We shall derive the discrete TDGL model from an approximation to the free-energyfunctional. The approximation is second-order accurate as the mesh width goes to zero,since all integrals are evaluated by means of the midpoint rule and derivatives approximatedby central di�erences.2.5 Discrete VariablesWe denote the discrete variables by the same symbols as their continuous counterparts.The index (i; j; k) is assigned to any quantity related to the grid cell 
i;j;k. The primaryvariables are the order parameter and the vector of link variables; all other variables (vectorpotential, induced magnetic �eld, supercurrent) are expressed in terms of these primaryvariables. The primary variables are evaluated on staggered grids.� The order parameter  , = f i;j;k : i = nsx; : : : ; nex; j = nsy ; : : : ; ney ; k = nsz ; : : : ; nezg; (2:17)where  i;j;k =  (xi; yj ; zk): (2:18)The interface conditions impose a constraint on the values of  i;j;k when either of theindices is equal to its starting or ending value; see (2.45) and (2.46).� The vector of link variables U = (Ux; Uy; Uz),Ux = fUx;i;j;k : i; j; kg; Uy = fUy;i;j;k : i; j; kg; Uz = fUz;i;j;k : i; j; kg; (2:19)6



where Ux;i;j;k = exp��i� Z xi+1xi Ax(�; y; z) d�� ; (2:20)Uy;i;j;k = exp �i� Z yj+1yj Ay(x; �; z) d�! ; (2:21)Uz;i;j;k = exp��i� Z zk+1zk Az(x; y; �) d�� : (2:22)� The vector potential A = (Ax; Ay; Az),Ax = fAx;i;j;k : i; j; kg; Ay = fAy;i;j;k : i; j; kg; Az = fAz;i;j;k : i; j; kg; (2:23)where Ax;i;j;k = Ax(xi + 12hx; yj ; zk); Ay;i;j;k = Ay(xi; yj + 12hy; zk);Az;i;j;k = Az(xi; yj ; zk + 12hz): (2:24)� The magnetic �eld vector B = (Bx; By ; Bz),Bx = fBx;i;j;k : i; j; kg; By = fBy;i;j;k : i; j; kg; Bz = fBz;i;j;k : i; j; kg; (2:25)whereBx;i;j;k = Bx(xi; yj + 12hy ; zk + 12hz); By;i;j;k = By(xi + 12hx; yj ; zk + 12hz);Bz;i;j;k = Bz(xi + 12hx; yj + 12hy ; zk): (2:26)The boundary conditions impose a constraint on the values of Bz;i;j;k when eitherof the indices i or j is equal to its �rst or last value; see (2.47), (2.48), and (2.49).Similarly for the other directions.� The supercurrent Js = (Js;x; Js;y; Js;z),Js;x = fJs;x;i;j;k : i = nsx; : : : ; nex � 1; j = nsy ; : : : ; ney ; k = nsz ; : : : ; nezg; (2:27)Js;y = fJs;y;i;j;k : i = nsx; : : : ; nex; j = nsy ; : : : ; ney � 1; k = nsz ; : : : ; nezg; (2:28)Js;z = fJs;z;i;j;k : i = nsx; : : : ; nex; j = nsy ; : : : ; ney ; k = nsz ; : : : ; nez � 1g; (2:29)where Js;x;i;j;k = Js;x(xi + 12hx; yj ; zk); Js;y;i;j;k = Js;y(xi; yj + 12hy ; zk);Js;z;i;j;k = Js;z(xi; yj ; zk + 12hz): (2:30)7



In Figure 1, we show a typical grid cell 
i;j;k in the interior of 
sc with the evaluation pointsfor  and the components of A, B and Js.Within the framework of a second-order accurate approximation, the de�nitions (2.20),(2.21), and (2.22) are equivalent withU�;i;j;k = exp (�i�h�A�;i;j;k) ; � = x; y; z; (2:31)where A�;i;j;k is de�ned in (2.24). This expression is readily inverted,A�;i;j;k = �(i�h�)�1 logU�;i;j;k; � = x; y; z: (2:32)The relation (2.32) is the discrete analog of (2.8). It is used to compute the vector potentialfrom the link variables.Remark. In the literature on discrete GL models, (2.31) is used to de�ne the linkvariables. The link variables are introduced in an ad hoc fashion to restore gauge invariance,which is normally lost if the partial di�erential equations of the continuous GL model arediscretized by means of �nite di�erences [7,9,18,19]. Here, the link variables arise naturallywhen the GL functional is formulated in terms of U, as in (2.9), and a consistently second-order accurate approximation is constructed by means of the midpoint rule and centraldi�erences.The computation of the magnetic �eld is more complicated. We consider one component(Bz) in detail; the others are treated similarly.Let D be any two-dimensional domain that is orthogonal to the z direction; let @Ddenote the (oriented) boundary of D, t the unit tangential vector along @D. According toStokes's identity, exp��i� ZZDBz dxdy� = exp��i� I@DA � dt� : (2:33)Take D = fx = (x; y; z) 2 
 : xi < x < xi+1; yj < y < yj+1; z = zkg. If we approximate thearea integral in (2.33) by the midpoint rule and the resulting exponential by the �rst twoterms of its Taylor expansion, we obtain the second-order accurate identityexp��i� ZZDBz dxdy� = 1� i�hxhyBz;i;j;k ; (2:34)where Bz;i;j;k is de�ned in (2.26). The exponential of the contour integral in (2.33) is theproduct of four link variables (or their complex conjugates) associated with 
i;j;k,exp��i� I@DA � dt� = U�x;i;j+1;kU�y;i;j;kUx;i;j;kUy;i+1;j;k : (2:35)Combining (2.33), (2.34), and (2.35), we obtain Bz;i;j;k in terms of the link variables,Bz;i;j;k = 1� U�x;i;j+1;kU�y;i;j;kUx;i;j;kUy;i+1;j;ki�hxhy : (2:36)8



In general, we have B�;i;j;k = h� 1�W�;i;j;ki�hxhyhz ; � = x; y; z; (2:37)where we have introduced the abbreviationsWx;i;j;k = U�y;i;j;k+1U�z;i;j;kUy;i;j;kUz;i;j+1;k ; (2:38)Wy;i;j;k = U�z;i+1;j;kU�x;i;j;kUz;i;j;kUx;i;j;k+1; (2:39)Wz;i;j;k = U�x;i;j+1;kU�y;i;j;kUx;i;j;kUy;i+1;j;k: (2:40)Observe that W�;i;j;k, like U�;i;j;k , is complex valued and unimodular; W ��;i;j;k = W�1�;i;j;k.Lastly, we consider the supercurrent. The continuous variable is given in terms of theorder parameter and link variables in (2.12). According to (2.30), we haveJs;x;i;j;k = 12i� �(U�x �) (xi + 12hx; yj ; zk)�@(Ux )@x � (xi + 12hx; yj ; zk)� (Ux ) (xi + 12hx; yj; zk)�@(U�x �)@x � (xi + 12hx; yj; zk)� : (2.41)Here, we approximate the value of Ux at (xi + 12hx; yj ; zk) by the average of its values at(xi; yj; zk) and (xi+1; yj; zk) and the value of its derivative by the di�erence of its values atthese points (central di�erence approximation),(Ux ) (xi + 12hx; yj ; zk) = 12(Ux;i;j;k i+1;j;k +  i;j;k); (2:42)�@(Ux )@x � (xi + 12hx; yj; zk) = Ux;i;j;k i+1;j;k �  i;j;khx : (2:43)Hence, Js;x;i;j;k = 12i�hx �Ux;i;j;k �i;j;k i+1;j;k � U�x;i;j;k i;j;k �i+1;j;k� ; (2:44)which expresses the x component of the supercurrent density in terms of the order parameterand link variables. The y and z components are treated similarly.2.6 Interface and Boundary ConditionsThe interface @
sc consists of six two-dimensional planar surfaces, orthogonal to the co-ordinate axes and located at x = xnsx + 12hx (\left") and x = xnex�1 + 12hx (\right"),y = ynsy + 12hy (\front") and y = yney�1 + 12hy (\back"), and z = znsz + 12hz (\bottom")and z = znez�1 + 12hz (\top"); see (2.16). They are surfaces of continuity for the magnetic�eld. Our de�nition of the discrete variables accomplishes this continuity to second-orderaccuracy in the mesh size, because the magnetic �eld is evaluated at points on the surfaces.9



We incorporate the boundary condition Js � n = 0 by imposing constraints on the discretevariables. For example, on the left face we impose the constraint nsx;j;k = Ux;nsx;j;k nsx+1;j;k; j = nsy ; : : : ; ney; k = nsz ; : : : ; nez ; (2:45)and on the right face, nex;j;k = U�x;nex�1;j;k nex�1;j;k ; j = nsy ; : : : ; ney ; k = nsz ; : : : ; nez ; (2:46)and similarly in the other directions.The outer boundary @
 also consists of six two-dimensional planar surfaces, orthogonalto the coordinate axes and located at x = x1 + 12hx (\left") and x = xnx + 12hx (\right"),y = y1 + 12hy (\front") and y = yny + 12hy (\back"), and z = z1 + 12hz (\bottom") andz = znz + 12hz (\top"); see (2.15). Here, the induced magnetic �eld B must be matched tothe applied magnetic �eld H = (Hx; Hy; Hz), which is uniform. If there is no surface cur-rent, the matching is continuous; otherwise, there is a jump discontinuity in the tangentialcomponents. We assume that the surface current density on @
 is K. We accomplish thematching by imposing constraints on the discrete variables. For example, on the left andright face we impose the constraintsBz;1;j;k = Hz �Ky(x1 + 12hx; yj + 12hy ; zk); Bz;nx ;j;k = Hz +Ky(xnx + 12hx; yj + 12hy ; zk);(2:47)on the front and back face,Bz;i;1;k = Hz+Kx(xi+12hx; y1+12hy ; zk); Bz;i;ny ;k = Hz�Kx(xi+12hx; yny+12hy ; zk); (2:48)and on the bottom and top face,Bz;i;j;1 = Hz; Bz;i;j;nz = Hz : (2:49)Similar constraints hold for the x and y components.2.7 Discrete Energy FunctionalWe consider the various contributions to the free-energy functional. As before, we evaluateall integrals by means of the midpoint rule and approximate derivatives by central di�er-ences, so the resulting approximation is second-order accurate as the mesh width goes tozero. We omit the variable t (time is a parameter in the discretization) and use the symbolPcyclic to indicate cyclic permutation according to the scheme(x; y; z; i; j; k)! (y; z; x; j; k; i)! (z; x; y; k; i; j)! (x; y; z; i; j; k): (2:50)10



The condensation energy is readily approximated,Lcond � Z
sc(�j j2+ 12 j j4) dxdydz= nezXk=nsz neyXj=nsy nexXi=nsx Z zk+12hzzk�12hz Z yj+12hyyj�12hy Z xi+12hxxi�12hx (�j j2+ 12 j j4) dxdydz= nezXk=nsz neyXj=nsy nexXi=nsx(�j i;j;kj2 + 12 j i;j;kj4)hxhyhz : (2.51)For the kinetic energy, we haveLkin � 1�2 X�=x;y;z Z
sc ���� @@�(U� )����2 dxdydz= 1�2 Xcyclic nezXk=nsz neyXj=nsy nex�1Xi=nsx Z zk+12 hzzk�12hz Z yj+12hyyj�12hy Z xi+1xi ���� @@x(Ux )����2 dxdydz= 1�2 Xcyclic nezXk=nsz neyXj=nsy nex�1Xi=nsx ����Ux;i;j;k i+1;j;k �  i;j;khx ����2 hxhyhz : (2.52)Lastly, we have the �eld energy,Z
 jr �Aj2 dxdydz = Xi;j;k XcyclicZ zk+12hzzk�12hz Z yj+1yj Z xi+1xi jBz j2 dxdydz= Xi;j;k Xcyclic jBz;i;j;k j2hxhyhz = XcyclicXi;j;k j1�Wz;i;j;k j2�2h2xh2y hxhyhz : (2.53)The discrete energy functional is thereforeLd[ ;U] = Xi;j;k0@Li;j;k[ ;U] + Xcyclic j1�Wz;i;j;kj2�2h2xh2y 1A hxhyhz ; (2:54)where Li;j;k = �j i;j;kj2 + 12 j i;j;kj4 + 1�2 Xcyclic ����Ux;i;j;k i+1;j;k �  i;j;khx ����2 : (2:55)2.8 Equations of MotionIt remains to take the derivatives of the discrete energy functional and derive the analogof (2.6). Because the TDGL model involves a di�usion e�ect that is nonlocal in terms of11



A, but local in terms of U, it is most convenient to formulate the discrete TDGL model interms of the discrete vectors  and U. From (2.31) we obtain the relations@U�;i;j;k@A�;i;j;k = �i�h�U�;i;j;k; � = x; y; z: (2:56)The equation of motion for the order parameter is@ i;j;k@t = (F [ ;U])i;j;k ; (2:57)where (F [ ;U])i;j;k = �1� j i;j;kj2� i;j;k� 1�2 Xcyclic �U�x;i�1;j;k i�1;j;k + 2 i;j;k � Ux;i;j;k i+1;j;kh2x : (2.58)The cyclic sum in F [ ;U] is a discretization of a weighted Laplacian; the weight at anypoint is determined by the values of the vectorU at the point itself and its nearest neighbors.The equation of motion for Ux is@Ux;i;j;k@t = � i�Ux;i;j;k (FU[ ;U])i;j;k ; (2:59)where(FU[ ;U])i;j;k = Im Wz;i;j;k �Wz;i;j�1;kh2y � Wy;i;j;k �Wy;i;j;k�1h2z + Ux;i;j;k �i;j;k i+1;j;k! :(2:60)The equations for Uy and Uz are obtained by cyclic permutation.The equations (2.57) and (2.59) are integrated by a one-step forward-di�erence tech-nique, with time step �t, i;j;k(t+ �t) =  i;j;k(t) + (F [ (t);U(t)])i;j;k�t; (2:61)Ux;i;j;k(t+ �t) = Ux;i;j;k(t) exp�� i� (FU[ (t);U(t)])i;j;k�t� ; (2:62)and similarly for the other components. The choice of a one-step procedure is the result of acompromise. Clearly, a multistep algorithm yields more accuracy, but requires the storageof two or more generations of computed data. This requirement poses an undesirablelimitation on the size of the problems that we would like to investigate. In our simulations,we compensate for the limited accuracy by keeping the time step �t su�ciently small.Because the problems of interest are di�usion-driven, rather than convection-driven,(typically, the vortex density is high, and the transport currents are relatively weak), the12



stability of the algorithm is determined primarily by the rate of di�usion, which in turndepends on the Ginzburg-Landau parameter: a larger value of � requires a smaller time step.In our simulations, we choose the time step experimentally, taking into account previousexperience.2.9 GeneralizationsThe numerical approximation of the TDGL model described in the preceding section pro-vides the skeleton for a computational algorithm for vortex dynamics simulations. Becausesimulations of realistic high-Tc superconductors require the incorporation of several otherphysically relevant e�ects, the actual implemetation of the computational model has addi-tional features, which we now describe briey.2.9.1 Impurities and Material DefectsAn important feature of high-Tc superconducting materials is the presence of impurities andmaterial defects. Impurities and point defects are included in the computational model by alocal suppression of the condensation energy. This suppression is accomplished by replacingthe term �j i;j;kj2 in the GL functional density (2.55) by a term (�1 + �(xi;j;k)) j i;j;kj2.If the grid point xi;j;k is not on a defect, �(xi;j;k) = 0; otherwise, �(xi;j;k) is a randomvariable, which is chosen from a Gaussian distribution with a speci�ed mean value < � > inthe range (0; 12) and a standard deviation �d. The mean and standard deviation are uniformfor all defects. A twin boundary, which is a plane defect of a certain thickness, is modeledby specifying the location and number of lattice planes inside the region corresponding tothe twin boundary. For each grid point xi;j;k on the twin boundary, we use the coe�cient�1 + �(xi;j;k) in the GL functional. In the actual implementation, we consider only planeswhose generators are parallel to the z axis, thus allowing planes parallel to the (y; z)- or(z; x)-plane, as well as diagonal planes whose orientation is determined by the mesh aspectratio hy=hx.2.9.2 Transport CurrentsTransport currents are incorporated by means of an applied surface current at the outerboundary. In the actual implementation, we allow for surface currents on four faces only(left, right, top, and bottom); moreover, if there is a surface current on any of these fourfaces, we assume that the domain 
 is in�nite in one of the coordinate directions spanningthis face plane and that the current is in the in�nite direction. Thus, we always model asection of a current path, not a current loop.13



3 Numerical SimulationsAn issue of interest is the pattern of ux penetration through edge barriers. Recent experi-ments indicate that, as magnetic ux penetrates into a sample, vortices tend to concentratealong twin boundaries [20{23]; however, it is still an open question whether twin bound-aries actually enhance vortex entry and guide vortex motion, or whether they simply absorbvortices from the bulk of the sample. We explore the issue computationally in Section 4.1.Magnetic ux vortices of opposite polarity attract and annihilate each other, so whenthe direction of the applied �eld is reversed, vortices of opposite polarity enter the sampleand annihilate existing vortices. Experiments indicate an irregular interface between theregions of opposite polarity [24]. Simulations show that the TDGL model captures theroughness and irregularity of the interface; see Section 4.2.A third numerical simulation concerned pattern formation and the spawning of vorticesas a magnetic �eld penetrates into a superconducting sample. A speci�c issue is whether,in a pure sample of rectangular shape, the avoidance of the corners by the �eld is primarilyan electromagnetic e�ect. Some results are presented in Section 4.3.Finally, in Section 4.4, we present some results of long-time simulations to show thatthe symmetry of an intermediate metastable state can di�er from the symmetry of thethermodynamical equilibrium state.A parallel program to implement the discrete TDGL model was written in Fortran [25]and run on the IBM POWERparallel SP System at Argonne National Laboratory (128processors, 128 megabytes per processor, theoretical peak performance 16 Gops). It isbased on the distributed-memory programming model and uses the BlockComm library (partof PETSc [26] ) to handle the decomposition of the unknowns across the parallel computerand the communication between the processes. The BlockComm library provides supportfor the computational stencil described in Section 3. The Chameleon library [27] is used toprovide both the portable message-passing interface and the scalable parallel I/O.In all simulations, we took � = 4 and � = 1.3.1 Twin BoundariesThe purpose of the �rst numerical simulation was to study vortex entry in the presence oftwin boundaries. We adopted the model of a very thick sample of superconducting materialsurrounded by a single layer of normal metal on all sides. We assumed no variation in thelongitudinal direction, so the problem was strictly two-dimensional (coordinates x and y).To adequately resolve the vortices, we chose the mesh widths hx = hy = 0:125. With � = 4and the penetration length � as the unit of length, this choice corresponded to a mesh width14



of one-half of a coherence length (�) in both directions. The sample size was 32� 48 units(�), resulting in a grid of 256 � 384 points. A pair of twin boundaries, separated by 15units (120 mesh widths), was placed at 45o angles to the edges of the sample. Each twinboundary had a thickness of 2.5 coherence lengths (5 mesh widths); all defects in the twinboundaries had a mean strength < � >= 0:25, with a standard deviation of �d = 0:125.After establishing the Meissner state with an applied magnetic �eld Hz = 0:1 (i.e., indimensional units, Hz = 0:1�Hcp2 � 0:14Hc) in the z direction, we increased the strengthof the applied �eld to Hz = 1:5 (� 2:12Hc). The vortex pattern (i.e., j j) at varioussuccessive times is shown in Figure 2.In general, we observe that the vortices tend to avoid the corners. In simulations withthin samples (not shown), the avoidance is even more pronounced, and the ux entrypattern becomes more pillow-like. This phenomenon has also been observed in magneto-optical experiments and can be explained by electrodynamic considerations.The simulations provide insight into the e�ect of twin boundaries on the transport prop-erties of superconducting materials. Measurements of Kwok et al. taken at Argonne [20]show a sharp drop in the angular dependence of the resistivity in the thermally assisted uxow (TAFF) regime when the magnetic �eld is aligned with the twin boundaries. Theseobservations suggest that vortex motion along twin boundaries is suppressed and that twinboundaries enhance vortex pinning, even in the case where vortices move along the twins.On the other hand, magneto-optical data on ux penetration gathered by researchers atAT&T [21] show a higher concentration of the magnetic �eld near twin boundaries. Theseobservations suggest that twin boundaries actually enhance ux penetration. In this sce-nario, twin boundaries act as channels for \easy vortex motion," and vortex pinning isreduced along twin boundaries. More recent magneto-optical experiments at Argonne [22]hint at an even more complicated picture including shadow e�ects, where the vortex con-centration is enhanced on one side of a twin boundary and reduced on the other. Theexperimental situation has been clari�ed recently by Welp et al. [23], who showed thatthe two types of behavior occur in di�erent limits, when the direction of vortex motion isparallel or perpendicular to the twin-boundary plane.Our simulations reveal a rather complicated picture of vortex motion and support as-pects of all the above observations. Twin boundaries modeled as a plane containing pointdefects tend to impede vortex motion in the tangential direction, so twin boundaries cannotbe viewed as mere conduits for vortices. Where the twin boundaries meet the surface ofthe sample, vortex entry is enhanced. (This observation is consistent with the fact that theBean-Livingstone surface barrier is destroyed there.) Vortices trapped on the twin bound-aries near the surface are impeded in their motion along the twin boundary; they leave thetwin boundary, pass into the bulk within a few penetration depths from the surface, and getabsorbed later by the twin boundary. As the twin boundaries become saturated (at vortexdensities that are generally higher than in the bulk), vortices pass directly into the bulk.Therefore, one can indeed observe higher vortex concentrations, which, at the initial stage15



of the penetration process, can be interpreted as enhanced vortex penetration. But theactual vortex motion along the twin boundaries is inhibited by the point defects on thosetwin boundaries. In the long term, there is very little distortion of the ux penetrationpattern.Thermal uctuations and bulk pinning, not included in these simulations, bring ad-ditional features to this picture of vortex motion. As was found recently by W. Kwok(personal communication), the motion of vortex lines trapped by the twin boundaries isfavored compared with motion in the bulk in the regime of thermally activated creep. Thisobservation is in qualitative agreement with collective creep theory, since the enhanced pin-ning within the twin plane gives rise to smaller creep barriers for vortex motion. We arecurrently investigating this feature numerically.3.2 Magnetic Polarity ReversalThe purpose of the next series of simulations was to study the interface between regions ofopposite magnetic polarity. Magnetic ux vortices of opposite polarity attract and annihi-late each other, so when the direction of the applied �eld is reversed, vortices of oppositepolarity enter the sample and annihilate existing vortices. Experiments indicate an irreg-ular interface between the regions of opposite polarity [24]. The roughness is caused bya thermodynamic instability; since the domain interface has negative surface energy, it isunstable. As its length increases, the interface tends to break up and spawn regions of onepolarity enclosed by regions of the opposite polarity.In our simulations, we used the con�guration of Section 4.1. We �rst established anequilibrium state for an applied magnetic �eld with Hz = 1:5 (� 2:12Hc). Subsequently, wereversed the orientation of the applied magnetic �eld, choosing Hz = �0:8 (� �1:13Hc).Figure 3 gives a snapshot of Bz at a particular instant. The polarity is down in the verydark region, up in the light region. We clearly observe that the rough and inclusive nature ofthe polarity interface is an intrinsic feature of the Ginzburg-Landau model. Consequently,it is not necessary to use specially designed uid models to account for the rough interfacesobserved in magneto-optic experiments.3.3 Flux Entry PatternsMagneto-optic experiments show a pillow-like pattern for the magnetic �eld penetrating apure superconducting sample. The avoidance of the corners by the �eld has been shown tobe primarily an electromagnetic e�ect. The goal of our numerical simulations was to showthat pillow-like patterns are indeed generated by a GL model and, furthermore, to analyzethe early penetration patterns in more detail.16



We used a three-dimensional model, where a very small and very thin rectangular su-perconducting sample was embedded in a block of normal metal. The dimension of thesuperconducting sample was 5�5�0:5 units (�). With � = 4 and a mesh width of one-halfof a coherence length in each direction, the superconducting sample requires a computationalgrid with 40� 40� 4 grid points. The thickness of the layer of normal metal surroundingthe superconducting sample was 2.25 units in each direction, su�ciently large to resolve themagnetic �eld in the vicinity of the sample edges. The complete computational grid hadtherefore 60� 60� 24 grid points.Starting from the Meissner state, we applied a magnetic �eld with Hz = 1:8 (� 2:55Hc)and integrated the TDGL model forward in time with a time step �t = 0:0025. Figure 4shows the entry pattern of the induced magnetic �eld (Bz) in the mid-plane of the super-conducting sample at four successive moments. (a) t = 3:0. The dark region in the centeris a region where the �eld has not yet penetrated. The grey regions show where the �eldhas penetrated, and the light-colored ring separates a region of high �eld density (outsidethe ring) from a region of low �eld density (inside the ring). The �eld has penetrated theentire sample, including the corner regions. (b) t = 8:0. The region where the �eld haspenetrated is squared o�, and the ux is beginning to be excluded from the diagonals. (c)t = 11:0. The ux is excluded from the diagonals, and a pillow-shaped pattern is emerging.The pattern is similar to the one observed in the magneto-optic experiments. (d) t = 13:75.The ux is further excluded from the diagonals and individual ux tubes are created.The pillow pattern is clearly exhibited by the GL model; however, its formation is notsimply due to the �eld penetrating only on the sides. At least in the case considered here,the �eld �rst penetrates everywhere in the sample and is subsequently excluded from thediagonals. Further simulations con�rmed that, in accordance with physical arguments, thepillow-shaped pattern is a common feature in larger samples in three dimensions as well.We note that the original images are in color, with high densities in red, intermediatedensities in yellow, and low densities in green to blue. In the grey-tone representation, fromwhich the �gures are drawn, yellow yields light, blue yields dark, while red and green yieldvarious shades of grey. The particular choice of the color map and the transition from colorto gray scale introduce some loss of information. This loss causes the interface to appear asa surface of discontinuity, especially for t = 8:0 and beyond. However, the magnetic �eld iscontinuous at the interface.3.4 SymmetryIn the �nal con�guration of Figure 4 (d), taken at t = 13:75, the 16 ux tubes were arrangedin a pattern with 45o rotational symmetry. We continued the computations to study thelong-time evolution of the magnetic ux con�guration. Subsequent ux patterns are shownin Figure 5. (a) t = 25:0. The pattern of Figure 4 (d) still persists. (b) t = 200:0. The17



pattern is distorted, and the symmetry is broken. (c) t = 325:0. The original pattern isdestroyed, and a new pattern is emerging. (d) t = 600:0. A new pattern is established. Ithas a 90o rotational symmetry; the 16 ux tubes are arranged in a rectangular array.The simulations show that, in the process of penetration, a metastable state may bereached, whose symmetry properties are di�erent from those of the �nal equilibrium state.This phenomenon of symmetry breaking during the dynamic evolution of the system towardits equilibrium state has important practical consequences. Suppose, for example, that thegeometry of the system dictates that the equilibrium solution possess certain symmetries.One might then wish to exploit these symmetries during the transient calculation. However,such a strategy could (and probably would) lead to a quasi-equilibrium solution, since onecannot assume that the symmetries in the TDGL model will not be broken in the course ofthe evolution toward the equilibrium state.Acknowledgments. We acknowledge the various contributions made by our colleaguesDrs. Man Kam Kwong (ANL) and Salman Ullah (U. of Chicago) during the early stagesof this work. We thank our students Ibrahima Ba, Andrew Burdick, Nicholas Galbreath,David Gunter, and Todd Morgan for their help with program development, visualization,and some of the calculations. The numerical simulations were designed in collaborationwith Drs. George W. Crabtree and Alexei E. Koshelev (ANL). All computations were doneat the Argonne High-Performance Computing Research Facility; the Argonne HPCRF isfunded principally by the U.S. Department of Energy, O�ce of Scienti�c Computing.
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Figure CaptionsFigure 1. Evaluation points for  (�), Ax and Js;x (X), Ay and Js;y (Y), Az and Js;z(Z), Bx (>), By (2), Bz (4)Figure 2. Successive vortex-entry patterns (j j) in twin boundary experimentFigure 3. Induced magnetic �eld (Bz) in polarity reversal simulationFigure 4. Induced magnetic �eld (Bz) during the transient phase: (a) t = 3:0; (b)t = 8:0; (c) t = 11:0; and (d) t = 13:75Figure 5. Induced magnetic �eld (Bz) during the evolution toward equilibrium: (a)t = 25:0; (b) t = 200:0; (c) t = 325:0; and (d) t = 600:0; units as in Figure 4
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Figure 2: Successive vortex-entry patterns (j j) in twin boundary experiment
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Figure 3: Induced magnetic �eld (Bz) in polarity reversal simulation
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(a) (b)
(c) (d)Figure 4: Induced magnetic �eld (Bz) during the transient phase: (a) t = 3:0; (b) t = 8:0;(c) t = 11:0; and (d) t = 13:75
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(a) (b)
(c) (d)Figure 5: Induced magnetic �eld (Bz) during the evolution toward equilibrium: (a) t = 25:0;(b) t = 200:0; (c) t = 325:0; and (d) t = 600:0; units as in Figure 4
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