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Abstract

This article describes the results of several numerical simulations of vortex dynamics
in type-1I superconductors. The underlying mathematical model is the time-dependent
Ginzburg-Landau model. The simulations concern vortex penetration in the presence
of twin boundaries, interface patterns between regions of opposite vortex orientation,
and magnetic-flux entry patterns in superconducting samples.



Numerical Simulation of Vortex Dynamics
in Type-II Superconductors

William D. Gropp, Hans G. Kaper, Gary K. Leaf, David M. Levine,
Mario Palumbo, Valerii M. Vinokur

1 Ginzburg-Landau Model

In this article we report on several numerical simulations of vortex motion in type-II su-
perconducting materials [1,2]. The simulations are based on the time-dependent Ginzburg-
Landau (TDGL) equations,
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The symbol £ stands for the density of the Helmholtz free-energy functional which, in the
Ginzburg-Landau (GL) approximation, is given by an expression of the form
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Here, 1 is the (complex-valued) order parameter, A the vector potential, and ® the electric
potential. The order parameter is identically equal to zero in a normal metal. The observable
quantities are the magnetic induction, B = V x A; the density of Cooper pairs, ny = |¥|%;
and the current density, J = cE + J,, where E = —(1/c)0A /0t — V& is the electric field
(Faraday’s law) and J the supercurrent density,
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The superscript * denotes complex conjugation, e, is the “effective charge” of a superelectron
(es < 0) and m, its “effective mass.” The constant D is a phenomenological diffusion
coeflicient. If J is viewed as the sum of a “normal” current, which satisfies Ohm’s law, and
the supercurrent, o may be interpreted as the “coefficient of normal conductivity.”
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The quantities @ and b in (1.3) are phenomenological parameters; they are functions of
external parameters, such as the temperature T, the concentration of impurities, etc.; & > 0
for all 7', and a changes sign at 7. (e <0 for T < T.,a > 0 for T > T.).

When the variational derivatives are written out, (1.1) and (1.2) assume the form
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The equation (1.5), first proposed by Schmid [3], was derived from the microscopic BCS

theory by Gor’kov and FEliashberg [4]; in the zero-field case, it reduces to a semilinear

diffusion equation with diffusion coefficient D. The equation (1.6)is Ampere’s law, VxB =

(47 /¢)J; see [5, Chapter 5].

Our numerical approximations are set up to simulate three-dimensional rectangular
configurations, where a superconducting material occupying a region . is surrounded by
a normal metal. The entire configuration occupies a region €2, which is in turn surrounded
by vacuum. The boundary 0€Q. of Q. is the interface between the superconductor and
the normal metal; the boundary 9% of Q is the outer boundary. Both are two-dimensional
surfaces. The unit normal vector, n, is always directed toward the exterior of the domain.
An arbitrary point in space is denoted by the vector x or by its coordinates (z,y, z).

At the interface, we impose the boundary condition
J,-n =0 on 9€. (1.7)

Strictly speaking, this condition is correct only for superconductor-insulator interfaces and
needs to be generalized for superconductor—metal interfaces [6, Section 7-3]. However, we
have implemented (1.7) everywhere on €.

On the outer surface, we may prescribe a surface current K to account for an applied
magnetic field H in the exterior vacuum. This surface current causes a jump discontinuity
in the tangential component of B, whose magnitude is (47 /c) times the magnitude of K
and whose direction is parallel to K x n.

Although the validity of the TDGL model for high-T,. superconductors is arguable—in
theory, it is valid only asymptotically near the critical temperature, T,—the results are in
excellent qualitative and quantitative agreement with the results of physical experiments
over a wide range of temperatures. The TDGL model has been used previously to study
the interaction of colliding vortices [7], nucleation in thin films [8,9], magnetization in thin
films [10], and I — V' characteristics of thin films [11]. A mathematical framework for the
GL functional can be found in [12]; the TDGL model is analyzed in detail in [13,14].

The computational (discrete) TDGL model is presented in Section 2, the results of the
numerical simulations in Section 3. All computations were done on the IBM POWERparallel
SP System at Argonne National Laboratory (128 processors, 128 megabytes per processor,
theoretical peak performance 16 Gflops).



2 Computational Model

Before introducing the discrete approximations, we reduce the TDGL model to a nondi-
mensional form, introduce the zero-electric potential gauge, and define the field variables in
terms of link variables.

2.1 Dimensionless Form

We render the TDGL model dimensionless by measuring lengths in units of the London
penetration depth \; time in units of a characteristic relazation time T = £2/D, where € is
coherence length; fields in units of H./2, where H. is the thermodynamic critical field; and
energy densities in units of H2/(4x). With ¢2 = |a|/b, we have
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The penetration depth and coherence length are characteristic lengths for the magnetic

field and the order parameter, respectively. The ratio x = A/ is the Ginzburg-Landau
parameter, which is approximately temperature-independent; typically, & ~ 100 in the case
of a high-T, superconductor.

Distinguishing a dimensionless quantity from its dimensal counterpart by a prime, we
make the following substitutions: x = (z,y,2) = (A2/, Ay, A2") = AX, t = 7/, ¢ = oy,
A = AHA2A', & = (M er)AH/29', L = (H2/47)L', B = H.\/2B’, E = (\/cr)H.\/2E/,
J = (V@esh/ms£)T’, and o = (c*1/47\?)0’. Here, ¢/, A’, etc. are functions of x’ and t'.
Omitting all primes, we obtain the dimensionless form of the variational equations (1.1)
and (1.2),
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The observable quantities are B = V x A; ny = [¢]|% and J = oE + J,, where E =
—0A /0t — V& and
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2.2 Zero Potential Gauge

The TDGL model is invariant under the gauge transformation

dx
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where the gauge y is any function of space and time; see [2, Section 19.6]. We choose
the zero-electric potential gauge, so ® = 0 at all times. (Other possible gauge choices are
discussed in [13].) Dropping the overbars, we thus reduce (2.2) to
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2.8 Link Variables

We introduce the auxiliary vector U = (U, Uy, U,),

Ug(z,y,2)=exp (—m /; A&y, 2) d{) ,

0
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Uy(z,y,z)=exp (—m /yo Ay(z,m,2) dn) , (2.7)
U.(z,y,z) = exp (—m /Z A.(z,y,C) d{) .
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(We omit the argument ¢.) The point xo = (20, Yo, 20) is an arbitrary reference point. Each
U, (pt = 2,y,2) is complex valued and unimodular, U} = U;l. It follows from (2.7) that
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The energy density (2.3) can now be written in the form

(2.9)
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This expression shows that the presence of a nonzero field induces anisotropic diffusion of
the order parameter. The diffusion coefficient depends locally on the auxiliary vector U.



The variables (2.7) are related to the link variables of lattice gauge theory [15,16]; see
the remark following (2.32). Their introduction at this point facilitates the preservation
of gauge invariance under discretization [17]. Borrowing the terminology, we refer to the
vector U as the vector of link variables.

When the equations (2.6) are worked out, the differential equations to be solved are

o1 O , .
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The supercurrent density J is given in terms of ¢» and A by (2.4) or, alternatively, in terms

of » and U by

Js,u = ﬂ (Uulb %(U%ﬂb) - U%ﬂb%(Uulb )) s H=T,Y,Z. (212)
The equation (2.10) must be solved subject to the boundary condition J, - n = 0 on 9.
The TDGL model is completed by the specification of initial conditions for |¢| and B.

We observe that, if J;-n = 0 on 0Qq, then A -n does not vary with time on 0Qg.. (Take
the divergence of both sides of (2.11), integrate the resulting identity over an infinitesimally
thin volume adjacent to Q., and apply Gauss’s theorem.) Because J;, = 0 in Q\Q, the
same argument shows that A - n does not vary with time on 9€2.

2.4 Computational Grid

We consider rectangular configurations, where a brick-shaped region . of superconducting
material is imbedded in a normal metal. The entire configuration has the shape of a
rectangular box, which occupies a region {2 in space. The brick and the box are lined up in
parallel. Outside Q, the magnetic field is given and uniform.

All computations are done on a uniform grid with mesh widths %, h,, and k.. The grid
is asymptotically regular, in the sense that h,/h, = O(1) as h = max{hy, hy, h,} — 0, for
any pair g, v (u,v = ,y, 2). A typical grid cell is

Qijr={x=(2,9,2) 12 <2 <2ip1,¥; <Y < Yj41,2k < 2 < Zk1 ), (2.13)
where
ti=a1+(t— LDhy, yy =1+ (G — Dhy, 2 =21+ (k= 1)h,. (2.14)
The vertex x; ;% = (%, 9, 2x) is the reference point for €; ;z. Unless noted otherwise, the
indices run through the values i = 1,...,n7=1,...,n bk =1,...,n,.



Conceptually, the domain 2 lies inside the grid at a distance of one-half mesh width
from the bounding faces in each coordinate direction,

Q= {x=(2.y.2) i es + bhy < <, + L,
b+ by <y <y + By b < 2 < 4 B, (2.15)

The domain {). is located an integer number of mesh widths inside ), in such a way that
there is always at least one layer of grid points between . and Q. That is,

QSC = {X = ($7y72') C T, ‘I’ %hx <z < Lhea—1 —I_ %hgﬂ
ynsy —I_ %hy < 3/ < yney_l —I_ %hlﬂznsz —I_ %hZ <z< Znez—l —I_ %h2}7 (216)

for three pairs of integers (755, Neg )y (Msy, ey ), and (s, N, ), which satisfy the inequalities
1 < ngy < ney < ny (b= 2,y,2). (The subscripts sz, sy, sz and ez, ey, ez stand for
the “starting” and “ending” values in the z, y, z direction, respectively.) The somewhat
unorthodox numbering is a historical accident.

We shall derive the discrete TDGL model from an approximation to the free-energy
functional. The approximation is second-order accurate as the mesh width goes to zero,
since all integrals are evaluated by means of the midpoint rule and derivatives approximated
by central differences.

2.5 Discrete Variables

We denote the discrete variables by the same symbols as their continuous counterparts.
The index (¢, 7, k) is assigned to any quantity related to the grid cell €, ;. The primary
variables are the order parameter and the vector of link variables; all other variables (vector
potential, induced magnetic field, supercurrent) are expressed in terms of these primary
variables. The primary variables are evaluated on staggered grids.

e The order parameter 1,

¢ = {¢i,j,k 1= Nsgy e '7nex;j = Nsy,-- '7ney;k = Ngzy.. '7nez}7 (217)

where
Vi ik = V(X Y5, 2k). (2.18)

The interface conditions impose a constraint on the values of 9; ; . when either of the
indices is equal to its starting or ending value; see (2.45) and (2.46).

o The vector of link variables U = (U, U,, U.),

U, = {Ux;i,j,k : ivjvk}v Uy = {Uy;i,j,k : ivjvk}v U, = {Uz;i,j,k : ivjvk}v (219)



where

Tit1
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o The vector potential A = (A, 4,, A,),

A =A{Agiin 6,0k}, Ay ={ Ay 0,0, kY, Ao ={ Ak 0,7k}, (2.23)

where
Avsije = Au(@i + Shey Ui, 21)s Aysige = Ay(2i, 95+ 3hy, 21),

Aniin = As(@i, yj 2k + $he). (2.24)
o The magnetic field vector B = (B, By, B.),
By =A{Byiik:t, 7.k}, By ={Byujk: 0,75k}, B, ={B.; k11,5, k}, (2.25)
where
Busijk = Bu(wisyj + ghy, 26+ 3h2)s Byijk = By(wi + ha, yj, 26 + 3he),

Bujk = Bo(xi 4 ghe, yj + 3hy, 21). (2.26)

The boundary conditions impose a constraint on the values of B, ;) when either
of the indices ¢ or j is equal to its first or last value; see (2.47), (2.48), and (2.49).
Similarly for the other directions.

o The supercurrent J; = (Js2,Jsy, Js.2),

Jsx = {Js,ac;i,j,k 1= Nsgy ooy Nex — 17] = Mgy, .- '7n6y;k = Ngzy.. '7nez}7 (227)
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In Figure 1, we show a typical grid cell €, ;1 in the interior of {};. with the evaluation points
for 1 and the components of A, B and Js.

Within the framework of a second-order accurate approximation, the definitions (2.20),
(2.21), and (2.22) are equivalent with

Uik = exp (=ikhy Ay jn), =292, (2.31)
where A, ;% is defined in (2.24). This expression is readily inverted,
Au;id}k = —(ilihu)_l log UM;Z}]}kv u=1x,y,z. (2.32)

The relation (2.32) is the discrete analog of (2.8). It is used to compute the vector potential
from the link variables.

Remark. In the literature on discrete GL models, (2.31) is used to define the link
variables. The link variables are introduced in an ad hoc fashion to restore gauge invariance,
which is normally lost if the partial differential equations of the continuous GL model are
discretized by means of finite differences [7,9,18,19]. Here, the link variables arise naturally
when the GL functional is formulated in terms of U, as in (2.9), and a consistently second-
order accurate approximation is constructed by means of the midpoint rule and central
differences.

The computation of the magnetic field is more complicated. We consider one component
(B.) in detail; the others are treated similarly.

Let D be any two-dimensional domain that is orthogonal to the z direction; let 9D
denote the (oriented) boundary of D, t the unit tangential vector along dD. According to

Stokes’s identity,
exp (—m // B, dxdy) = exp (—m A dt) . (2.33)
D oD

Take D = {x = (2,y,2) € Q: 2, < ¥ < xi41,Y; < Y < Yj41,7 = 2} If we approximate the
area integral in (2.33) by the midpoint rule and the resulting exponential by the first two
terms of its Taylor expansion, we obtain the second-order accurate identity

exp (—m // B. dxdy) =1—1ikhzhy B, ;x, (2.34)
D

where B..; ;1 is defined in (2.26). The exponential of the contour integral in (2.33) is the
product of four link variables (or their complex conjugates) associated with €; ; 1,
exp (‘m D A- dt) = Ui 1k Ugi ik Unsi g kUi - (2.35)

Combining (2.33), (2.34), and (2.35), we obtain B.,; ;x in terms of the link variables,
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In general, we have
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where we have introduced the abbreviations
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Observe that W, ;k, like U, ; i, is complex valued and unimodular; Wik =Wk

Lastly, we consider the supercurrent. The continuous variable is given in terms of the
order parameter and link variables in (2.12). According to (2.30), we have

1 O(Us
Js,x;i,j,k = ﬂ ((U;¢*) (xz + %hxvijzk) ( (axlb)) (xz + %hl’vijzk)
AU 1™

Here, we approximate the value of U, at (x; + %hx, Yj, 2k) by the average of its values at
(4, 9;.2k) and (2441, Y5, 2¢) and the value of its derivative by the difference of its values at
these points (central difference approximation),

(Us®) (2 + $ha,yjs 28) = 3(Ussijptbivr e + ik (2.42)
AUz) Usii ik Wit1 .k — ik
( o ) (wl + %hl’vijzk) = ! h: Sl (243)
Hence,
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Jswiijhk = Sk (Ux;i,j,k¢i,j,k¢i+l,j,k - Ux;i,j,k¢i,j,k¢i+1,j,k) ) (2.44)

which expresses the x component of the supercurrent density in terms of the order parameter
and link variables. The y and z components are treated similarly.

2.6 Interface and Boundary Conditions

The interface 0€Q. consists of six two-dimensional planar surfaces, orthogonal to the co-
ordinate axes and located at @ = x,_, + %hw (“left”) and z = @, -1 + %hw (“right”),
Y = Yn., + 3hy (“front”) and y = y,,,—1 + $hy (“back”), and z = z,_, + $h. (“bottom”)
and z = z,,,—1 + 1h. (“top”); see (2.16). They are surfaces of continuity for the magnetic
field. Our definition of the discrete variables accomplishes this continuity to second-order
accuracy in the mesh size, because the magnetic field is evaluated at points on the surfaces.



We incorporate the boundary condition J, - n = 0 by imposing constraints on the discrete
variables. For example, on the left face we impose the constraint

¢nsm7j7k = Uﬂﬁ;nsm,j,klbnsm-l-l,j,kv ] = Mgy, w5 Neys k= NszyeneyNes, (245)

and on the right face,

* > . p——
¢ne$7j7k = Ul’;nem—l,j7k¢nem—1,j,k7 J = Nsyy ey Ney; k= NszyeeeyNes, (246)
and similarly in the other directions.

The outer boundary 0€) also consists of six two-dimensional planar surfaces, orthogonal
to the coordinate axes and located at # = x1 + 1h, (“left”) and @ = x,, + $h, (“right”),
y = y1 + thy (“front”) and y = y,, + $hy (“back”), and z = 2z + $h. (“bottom”) and
Z = zn, + 3h. (“top”); see (2.15). Here, the induced magnetic field B must be matched to
the applied magnetic field H = (H,, H,, H.), which is uniform. If there is no surface cur-
rent, the matching is continuous; otherwise, there is a jump discontinuity in the tangential
components. We assume that the surface current density on 9€Q is K. We accomplish the
matching by imposing constraints on the discrete variables. For example, on the left and
right face we impose the constraints

Bz;l,j,k = HZ - I(y(xl + %hxay] + %hyazk)v Bz;nm,j,k = Hz + ](y(xnm + %hxay] + %hyazk)v
(2.47)
on the front and back face,
Bz;i,l,k = Hz‘l’](x(wi‘l’%hxvyl‘l'%hyvzk)v Bz;i,ny,k = Hz_](x(xi‘l’%hxvyny‘l'%hyvzk)v (248)
and on the bottom and top face,

BZ;L]J = HZv Bz;i,j,nz =11, (2.49)

Similar constraints hold for the 2 and y components.

2.7 Discrete Energy Functional

We consider the various contributions to the free-energy functional. As before, we evaluate
all integrals by means of the midpoint rule and approximate derivatives by central differ-
ences, so the resulting approximation is second-order accurate as the mesh width goes to
zero. We omit the variable ¢ (time is a parameter in the discretization) and use the symbol
> _cyelic to indicate cyclic permutation according to the scheme

(2,9, 210, 5, k) = (y, 2,25, k1) — (22,1 k.4, 5) — (2,9, 210, 5, k). (2.50)

10



The condensation energy is readily approximated,

Leona = /Q (|02 + L1¢[Y) dadydz

Nez ey n Zk‘l‘ hz y]‘l‘ hy 2 4
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k=nsz j=ney t=Nsa kT35 hz

Nez Tey Nex

S0 > (il + Sliel ) hohyh. (2.51)

k=nez j:nsy 1=Teg

For the kinetic energy, we have

1 0 2
Lin = — / U0)| dedydz
) K? M=Zx;y,z Osc 8“( ) g
_ Z %i % Trex I/Zk‘l' 5 e /Z/J‘F%hy /xi+1 Q(U ¢) 2 v
) IETRN SO VY S P B
Cychck Nsz j=Nsy 1=Nsg * 7 z JY;Thy i
Nez Tey Nex—1 o 2
I L ER VR (2.52)

Cychck Nsz J=Ney 1=Nsx

Lastly, we have the field energy,

z hz
/|VxA|2 dxdydz—ZZ/k+ /
Y

Yj+1  fTit1 9
/ |B.|* dadydz

1,7,k cyclic k__hz J g
1 - &
3 bt = ¥ S . e
1,7,k cyclic cyclict,7,k

The discrete energy functional is therefore

1 232,7,
Lafy, Ul =) ( ikl Ul+ > %) hohyh, (2.54)

1,7,k cyclic

where
Ussi g kit1,5,5 — Yijk
hy

1
Ligr = =il + 3leigalt + = D (2.55)

cyclic

2.8 Equations of Motion

It remains to take the derivatives of the discrete energy functional and derive the analog
of (2.6). Because the TDGL model involves a diffusion effect that is nonlocal in terms of

11



A, but local in terms of U, it is most convenient to formulate the discrete TDGL model in
terms of the discrete vectors ¢ and U. From (2.31) we obtain the relations

oU,.; ; ]
aAM.’],’Z = —ikh, Upijr, p=72,9,2 (2.56)
1431,
The equation of motion for the order parameter is
OV; j k
815] = (‘El}[lva])Z”]"kv (2.57)

where

(Fulth, U, = (1= [isal?) G
Ly —Usicgn¥i-tih + 20igk — Usigantivt i

2 2
cyclic h95

(2.58)
The cyclic sum in Fy[¢, U] is a discretization of a weighted Laplacian; the weight at any
point is determined by the values of the vector U at the point itself and its nearest neighbors.

The equation of motion for U, is

OUssi 5.k i

g = g Umiik (Fule, U],k (2.59)
where
Weigk = Weig—ik - Wysige — Wyajik— .
(Fule,U]); ;, = Im ( ’ e ’ - e VLIS 4 Ux;z',j,k%,j,klbiﬂ,j,k)
Yy z

(2.60)

The equations for U, and U, are obtained by cyclic permutation.

The equations (2.57) and (2.59) are integrated by a one-step forward-difference tech-
nique, with time step At,

Vit + At) =, k(8) + (Fy[(1), U(D)]), ., At, (2.61)

Fle.UOD A ). (26)

and similarly for the other components. The choice of a one-step procedure is the result of a
compromise. Clearly, a multistep algorithm yields more accuracy, but requires the storage

2
o

Ugg;id"k(t + At) = Ux;i,j,k(t) exp (

of two or more generations of computed data. This requirement poses an undesirable
limitation on the size of the problems that we would like to investigate. In our simulations,
we compensate for the limited accuracy by keeping the time step At sufficiently small.

Because the problems of interest are diffusion-driven, rather than convection-driven,
(typically, the vortex density is high, and the transport currents are relatively weak), the

12



stability of the algorithm is determined primarily by the rate of diffusion, which in turn
depends on the Ginzburg-Landau parameter: alarger value of k requires a smaller time step.
In our simulations, we choose the time step experimentally, taking into account previous
experience.

2.9 Generalizations

The numerical approximation of the TDGL model described in the preceding section pro-
vides the skeleton for a computational algorithm for vortex dynamics simulations. Because
simulations of realistic high-T,. superconductors require the incorporation of several other
physically relevant effects, the actual implemetation of the computational model has addi-
tional features, which we now describe briefly.

2.9.1 Impurities and Material Defects

An important feature of high-T,. superconducting materials is the presence of impurities and
material defects. Impurities and point defects are included in the computational model by a
local suppression of the condensation energy. This suppression is accomplished by replacing
the term —|¢;;x|* in the GL functional density (2.55) by a term (=1 + a(x; jx)) % jx]?-
If the grid point x; ;1 is not on a defect, a(x; ;%) = 0; otherwise, a(x; ;) is a random
variable, which is chosen from a Gaussian distribution with a specified mean value < a > in
the range (0, 1) and a standard deviation o4. The mean and standard deviation are uniform
for all defects. A twin boundary, which is a plane defect of a certain thickness, is modeled
by specifying the location and number of lattice planes inside the region corresponding to
the twin boundary. For each grid point x; ; ; on the twin boundary, we use the coefficient
—1+ a(x; ;%) in the GL functional. In the actual implementation, we consider only planes
whose generators are parallel to the z axis, thus allowing planes parallel to the (y,z)- or
(z,z)-plane, as well as diagonal planes whose orientation is determined by the mesh aspect
ratio hy /.

2.9.2 Transport Currents

Transport currents are incorporated by means of an applied surface current at the outer
boundary. In the actual implementation, we allow for surface currents on four faces only
(left, right, top, and bottom); moreover, if there is a surface current on any of these four
faces, we agssume that the domain  is infinite in one of the coordinate directions spanning
this face plane and that the current is in the infinite direction. Thus, we always model a
section of a current path, not a current loop.
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3 Numerical Simulations

An issue of interest is the pattern of flux penetration through edge barriers. Recent experi-
ments indicate that, as magnetic flux penetrates into a sample, vortices tend to concentrate
along twin boundaries [20-23]; however, it is still an open question whether twin bound-
aries actually enhance vortex entry and guide vortex motion, or whether they simply absorb
vortices from the bulk of the sample. We explore the issue computationally in Section 4.1.

Magnetic flux vortices of opposite polarity attract and annihilate each other, so when
the direction of the applied field is reversed, vortices of opposite polarity enter the sample
and annihilate existing vortices. Experiments indicate an irregular interface between the
regions of opposite polarity [24]. Simulations show that the TDGL model captures the
roughness and irregularity of the interface; see Section 4.2.

A third numerical simulation concerned pattern formation and the spawning of vortices
as a magnetic field penetrates into a superconducting sample. A specific issue is whether,
in a pure sample of rectangular shape, the avoidance of the corners by the field is primarily
an electromagnetic effect. Some results are presented in Section 4.3.

Finally, in Section 4.4, we present some results of long-time simulations to show that
the symmetry of an intermediate metastable state can differ from the symmetry of the
thermodynamical equilibrium state.

A parallel program to implement the discrete TDGL model was written in Fortran [25]
and run on the IBM POWERparallel SP System at Argonne National Laboratory (128
processors, 128 megabytes per processor, theoretical peak performance 16 Gflops). It is
based on the distributed-memory programming model and uses the BlockComm library (part
of PETSc [26] ) to handle the decomposition of the unknowns across the parallel computer
and the communication between the processes. The BlockComm library provides support
for the computational stencil described in Section 3. The Chameleon library [27] is used to
provide both the portable message-passing interface and the scalable parallel 1/0.

In all simulations, we took Kk = 4 and o = 1.

3.1 Twin Boundaries

The purpose of the first numerical simulation was to study vortex entry in the presence of
twin boundaries. We adopted the model of a very thick sample of superconducting material
surrounded by a single layer of normal metal on all sides. We assumed no variation in the
longitudinal direction, so the problem was strictly two-dimensional (coordinates & and y).
To adequately resolve the vortices, we chose the mesh widths A, = h, = 0.125. With x =4
and the penetration length A as the unit of length, this choice corresponded to a mesh width
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of one-half of a coherence length (£) in both directions. The sample size was 32 x 48 units
(M), resulting in a grid of 256 x 384 points. A pair of twin boundaries, separated by 15
units (120 mesh widths), was placed at 45° angles to the edges of the sample. Each twin
boundary had a thickness of 2.5 coherence lengths (5 mesh widths); all defects in the twin
boundaries had a mean strength < a >= 0.25, with a standard deviation of o4 = 0.125.

After establishing the Meissner state with an applied magnetic field H, = 0.1 (i.e., in
dimensional units, H, = 0.1 x H.\/2 =~ 0.14H.) in the z direction, we increased the strength
of the applied field to H, = 1.5 (= 2.12H.). The vortex pattern (i.e., |¢|) at various
successive times is shown in Figure 2.

In general, we observe that the vortices tend to avoid the corners. In simulations with
thin samples (not shown), the avoidance is even more pronounced, and the flux entry
pattern becomes more pillow-like. This phenomenon has also been observed in magneto-
optical experiments and can be explained by electrodynamic considerations.

The simulations provide insight into the effect of twin boundaries on the transport prop-
erties of superconducting materials. Measurements of Kwok et al. taken at Argonne [20]
show a sharp drop in the angular dependence of the resistivity in the thermally assisted flux
flow (TAFF) regime when the magnetic field is aligned with the twin boundaries. These
observations suggest that vortex motion along twin boundaries is suppressed and that twin
boundaries enhance vortex pinning, even in the case where vortices move along the twins.
On the other hand, magneto-optical data on flux penetration gathered by researchers at
AT&T [21] show a higher concentration of the magnetic field near twin boundaries. These
observations suggest that twin boundaries actually enhance flux penetration. In this sce-
nario, twin boundaries act as channels for “easy vortex motion,” and vortex pinning is
reduced along twin boundaries. More recent magneto-optical experiments at Argonne [22]
hint at an even more complicated picture including shadow effects, where the vortex con-
centration is enhanced on one side of a twin boundary and reduced on the other. The
experimental situation has been clarified recently by Welp et al. [23], who showed that
the two types of behavior occur in different limits, when the direction of vortex motion is
parallel or perpendicular to the twin-boundary plane.

Our simulations reveal a rather complicated picture of vortex motion and support as-
pects of all the above observations. Twin boundaries modeled as a plane containing point
defects tend to impede vortex motion in the tangential direction, so twin boundaries cannot
be viewed as mere conduits for vortices. Where the twin boundaries meet the surface of
the sample, vortex entry is enhanced. (This observation is consistent with the fact that the
Bean-Livingstone surface barrier is destroyed there.) Vortices trapped on the twin bound-
aries near the surface are impeded in their motion along the twin boundary; they leave the
twin boundary, pass into the bulk within a few penetration depths from the surface, and get
absorbed later by the twin boundary. As the twin boundaries become saturated (at vortex
densities that are generally higher than in the bulk), vortices pass directly into the bulk.
Therefore, one can indeed observe higher vortex concentrations, which, at the initial stage
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of the penetration process, can be interpreted as enhanced vortex penetration. But the
actual vortex motion along the twin boundaries is inhibited by the point defects on those
twin boundaries. In the long term, there is very little distortion of the flux penetration
pattern.

Thermal fluctuations and bulk pinning, not included in these simulations, bring ad-
ditional features to this picture of vortex motion. As was found recently by W. Kwok
(personal communication), the motion of vortex lines trapped by the twin boundaries is
favored compared with motion in the bulk in the regime of thermally activated creep. This
observation is in qualitative agreement with collective creep theory, since the enhanced pin-
ning within the twin plane gives rise to smaller creep barriers for vortex motion. We are
currently investigating this feature numerically.

3.2 Magnetic Polarity Reversal

The purpose of the next series of simulations was to study the interface between regions of
opposite magnetic polarity. Magnetic flux vortices of opposite polarity attract and annihi-
late each other, so when the direction of the applied field is reversed, vortices of opposite
polarity enter the sample and annihilate existing vortices. Experiments indicate an irreg-
ular interface between the regions of opposite polarity [24]. The roughness is caused by
a thermodynamic instability; since the domain interface has negative surface energy, it is
unstable. As its length increases, the interface tends to break up and spawn regions of one
polarity enclosed by regions of the opposite polarity.

In our simulations, we used the configuration of Section 4.1. We first established an
equilibrium state for an applied magnetic field with H, = 1.5 (= 2.12H.). Subsequently, we
reversed the orientation of the applied magnetic field, choosing H, = —0.8 (~ —1.13H.,.).
Figure 3 gives a snapshot of B, at a particular instant. The polarity is down in the very
dark region, up in the light region. We clearly observe that the rough and inclusive nature of
the polarity interface is an intrinsic feature of the Ginzburg-Landau model. Consequently,
it is not necessary to use specially designed fluid models to account for the rough interfaces
observed in magneto-optic experiments.

3.3 Flux Entry Patterns

Magneto-optic experiments show a pillow-like pattern for the magnetic field penetrating a
pure superconducting sample. The avoidance of the corners by the field has been shown to
be primarily an electromagnetic effect. The goal of our numerical simulations was to show
that pillow-like patterns are indeed generated by a GL model and, furthermore, to analyze
the early penetration patterns in more detail.
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We used a three-dimensional model, where a very small and very thin rectangular su-
perconducting sample was embedded in a block of normal metal. The dimension of the
superconducting sample was 5 x 5 x 0.5 units (A). With x = 4 and a mesh width of one-half
of a coherence length in each direction, the superconducting sample requires a computational
grid with 40 x 40 x 4 grid points. The thickness of the layer of normal metal surrounding
the superconducting sample was 2.25 units in each direction, suffliciently large to resolve the
magnetic field in the vicinity of the sample edges. The complete computational grid had
therefore 60 x 60 x 24 grid points.

Starting from the Meissner state, we applied a magnetic field with H, = 1.8 (~ 2.55H..)
and integrated the TDGL model forward in time with a time step At = 0.0025. Figure 4
shows the entry pattern of the induced magnetic field (B.) in the mid-plane of the super-
conducting sample at four successive moments. (a) ¢ = 3.0. The dark region in the center
is a region where the field has not yet penetrated. The grey regions show where the field
has penetrated, and the light-colored ring separates a region of high field density (outside
the ring) from a region of low field density (inside the ring). The field has penetrated the
entire sample, including the corner regions. (b) ¢t = 8.0. The region where the field has
penetrated is squared off, and the flux is beginning to be excluded from the diagonals. (c)
t = 11.0. The flux is excluded from the diagonals, and a pillow-shaped pattern is emerging.
The pattern is similar to the one observed in the magneto-optic experiments. (d) ¢ = 13.75.
The flux is further excluded from the diagonals and individual flux tubes are created.

The pillow pattern is clearly exhibited by the GL model; however, its formation is not
simply due to the field penetrating only on the sides. At least in the case considered here,
the field first penetrates everywhere in the sample and is subsequently excluded from the
diagonals. Further simulations confirmed that, in accordance with physical arguments, the
pillow-shaped pattern is a common feature in larger samples in three dimensions as well.

We note that the original images are in color, with high densities in red, intermediate
densities in yellow, and low densities in green to blue. In the grey-tone representation, from
which the figures are drawn, yellow yields light, blue yields dark, while red and green yield
various shades of grey. The particular choice of the color map and the transition from color
to gray scale introduce some loss of information. This loss causes the interface to appear as
a surface of discontinuity, especially for ¢ = 8.0 and beyond. However, the magnetic field is
continuous at the interface.

3.4 Symmetry

In the final configuration of Figure 4 (d), taken at ¢ = 13.75, the 16 flux tubes were arranged
in a pattern with 45° rotational symmetry. We continued the computations to study the
long-time evolution of the magnetic flux configuration. Subsequent flux patterns are shown
in Figure 5. (a) ¢t = 25.0. The pattern of Figure 4 (d) still persists. (b) ¢ = 200.0. The
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pattern is distorted, and the symmetry is broken. (c¢) ¢t = 325.0. The original pattern is
destroyed, and a new pattern is emerging. (d) ¢ = 600.0. A new pattern is established. It
has a 90° rotational symmetry; the 16 flux tubes are arranged in a rectangular array.

The simulations show that, in the process of penetration, a metastable state may be
reached, whose symmetry properties are different from those of the final equilibrium state.
This phenomenon of symmetry breaking during the dynamic evolution of the system toward
its equilibrium state has important practical consequences. Suppose, for example, that the
geometry of the system dictates that the equilibrium solution possess certain symmetries.
One might then wish to exploit these symmetries during the transient calculation. However,
such a strategy could (and probably would) lead to a quasi-equilibrium solution, since one
cannot assume that the symmetries in the TDGL model will not be broken in the course of
the evolution toward the equilibrium state.
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Figure Captions

Figure 1. Evaluation points for ¢ (), A, and J,, (X), 4, and J,, (Y), A, and J; .
(2), By (1), By (B), B: (A)

Figure 2. Successive vortex-entry patterns (|?|) in twin boundary experiment

Figure 3. Induced magnetic field (B,) in polarity reversal simulation

Figure 4. Induced magnetic field (B,) during the transient phase: (a) t = 3.0; (b)

t=28.0;(c)t=11.0;and (d) t = 13.75

Figure 5. Induced magnetic field (B,) during the evolution toward equilibrium: (a)
t=25.0; (b) t =200.0; (c) t = 325.0; and (d) t = 600.0; units as in Figure 4
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Figure 2: Successive vortex-entry patterns (|?|) in twin boundary experiment

23



Figure 3: Induced magnetic field (B,) in polarity reversal simulation
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(c) (d)

Figure 4: Induced magnetic field (B,) during the transient phase: (a) ¢t = 3.0; (b) ¢
(¢)t=11.0; and (d) t = 13.75
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Figure 5: Induced magnetic field (B, ) during the evolution toward equilibrium: (a) ¢ = 25.0;
(b) t =200.0; (c) t = 325.0; and (d) t = 600.0; units as in Figure 4
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