
Massively Parallel Self-Consistent-FieldCalculationsJe�rey L. TilsonMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439October 29, 1994AbstractThe advent of supercomputers with many computational nodes each with itsown independent memory makes possible extremely fast computations. Our work,as part of the U.S. High Performance Computing and Communications Program(HPCCP), is focused on the development of electronic structure techniques for thesolution of Grand Challenge-size molecules containing hundreds of atoms. Our ef-forts have resulted in a fully scalable Direct-SCF program that is portable and e�-cient. This code, named NWCHEM, is built around a distributed-data model. Thisdistributed data is managed by a software package called Global Arrays developedwithin the HPCCP. We present performance results for Direct-SCF calculations ofinterest to the consortium.1 IntroductionAdvances in theoretical chemistry over the past two decades have consistently improvedthe ability of electronic structure calculations to accurately predict from �rst principlesthe structure, spectra, and energetics of molecules and radicals. Such predictions permittheoretical determinations of both thermochemistry and kinetics, fundamental informa-tion for all chemical processes. As might be expected, more accurate and computationallyintensive methods are restricted to smaller molecular systems. But even for the simplerab initio electronic structure techniques, there is a frequently encountered limit to the sizeof molecules that can be feasibly studied. Many practical problems in chemistry todayrequires information on molecules too large for conventional electronic structure codes tofeasibly handle. The fate of chloro
uorocarbon alternates in the atmosphere, the proper-ties of ligand substituents in polymerization catalysis, and the mechanism of enzymaticdestruction of toxins are all examples of current academic and industrial research areaswhere important electronic structure applications are frequently too large to be feasiblydone. 1



Improvements in theoretical chemistry have frequently exploited advances in com-puter hardware. At present, such an advance is occurring through the use of massivelyparallel processors (MPP), high speed networds of hundreds to thousands of computers.The economies of scale make such hardware the least expensive for assembling large scalecomputational resources, precisely the kind of resources necessary for electronic struc-ture applications for large molecular system such as discussed above. In recognition ofthis direction in computer architecture, theoretical chemists and computer scientists atArgonne National Laboratory, Paci�c Northwest Laboratory, three major oil companies,and two major chemical companies have formed a collaboration to adapt electronic struc-ture methods to the MPP architecture for the purpose of applications to large molecularsystems. This collaboration has operated through the Department of Energy under theauspices of the High Performance Computing and Communications Initiative. This pa-per reports the results of one particular MPP adaptation, that of the self-consistent �eld(SCF) [1, 2] electronic structure method. The results to date suggest that e�cient codingfor MPP technology can qualitatively change the size of the molecule that can be treatedby the SCF method.E�cient coding for the MPP architecture is not straightforward, because an MPP com-puter is fundamentally di�erent from a vector supercomputer. A typical MPP computerconsists of a collection of processors each with its own memory and each connected to ahigh performance network. When designing algorithms for these computers, important is-sues include avoiding replicated computation (computational e�ciency), distributing datastructures so as to avoid wasting memory (data distribution), distributing computationto processors so as to avoid idle time when one processor is busy and others are not (loadbalance), and minimizing time spent sending and receiving messages (communication e�-ciency). A metric that integrates these di�erent criteria is scalability: the extent to whichan algorithm is able to solve larger problems as the number of processors is increased.The complex architecture of MPP computers makes intuitive notions of performanceunreliable. Hence, a sound methodology when developing parallel algorithms is to beginby examining algorithmic alternatives at a theoretical level. Only after scalability has beenestablished should e�ort be devoted to implementations on parallel computers. In thispaper, we apply this methodology to the SCF method. In addition to being importantin its own right, the SCF method is the starting point for many other more rigorousmethods. The SCF approach is also typical of other more sophisticated methods in itsuse of large data structures and irregular data access patterns. Because of its importance,others have developed various parallel MPP SCF codes (see [3] and references therein).However, the code reported here is (in our opinion) the most scalable SCF code currentlyavailable.2 SCF WavefunctionsThe SCF wavefunction is constructed from an antisymmetrized product of single parti-cle functions. This is the molecular orbital (MO) approximation. These MOs representthe motion of an individual particle (electron) within the �eld of all the remaining elec-trons and a static (clamped) con�guration of nuclei. This wavefunction form and the2



approximate Hamiltonian yield the Hartree-Fock energy and wavefunction.Solution of the SCF problem has been shown useful in the determination of the nucleargeometry. Typical values di�er from experiment by 0.1-0.2 angs. This makes the SCFequation a useful way to examine molecular geometries. Another quantity of interestis the total energy and the orbital energies. The SCF gives reasonable total energies formany molecules at their equilibrium geometry. It cannot, however, describe the importantstructural correlations in molecules. This limitation, for example, prevents an accuratedescription of bond breaking and forming. The individual orbital energies may be usedfor a qualitative analysis of the electronic spectra. A very important aspect of the SCFequations is as a starting point for more accurate higher order methods. These methodsalmost exclusively correct the set MOs, making the SCF technique an integral part ofthem.2.1 FormalismThe total energy of a molecular system constructed from a set (�i) of occupied orthonormalMOs is Energy = occupiedXi;j hijDij + 12 occupiedXi;j;k;l gijkldijkl: (1)The terms hij and gijkl are one and two electron integrals, respectively and are independentof the precise form of the wavefunction.hij = Z d�1�i(1)ĥ�j(1) = < �i(1)jĥj�i(1) >gijkl = Z d�1d�2�i(1)�j(1) 1r12�k(2)�l(2) = < �i(1)�j(1)j 1r12 j�k(2)�l(2) >ĥ denotes the one-particle operator and r12 the interparticle distance. The form of thewavefunction in
uences the structure of the one- and two-particle density matrices, Dijand dijkl. Generally, the one-particle density matrix is simple to generate becoming adelta function for the canonical SCF, Dij = �ij. The two-particle density matrix typicallyrequires a substantial amount of e�ort for more accurate, highly correlated electronicstructure methods ( MCSCF, MRCI, full-CI, etc.) and can be a substantial computa-tional process. This matrix, however, takes on a particularly simple structure for SCFwavefunctions becoming sums of products of the one-particle densities. The simplicity ofthe SCF two-particle density matrix shifts the computational burden onto the generationof the integrals themselves.The SCF total energy may be simpli�ed by substituting into Eqn. 1 the nonzero valuesfor the D matrix. Energy = occupiedXi hii + 12 occupiedXi;j giijj � gijji (2)3



This equation satis�es the requirements necessary for application of the variation principle.In essence, the best MOs will result in the lowest (best) SCF energy. Hence, one can�nd the best MOs by minimizing Eqn. 2 subject to orbital orthonormality and energyconstraints. The details of this derivation are widely available, and so only the results arepresented here. This minimization results in the total energy expressionEnergy = 12Xi (hii + Fii) (3)where Fij is the MO Fock matrix.Fij = hij + occupiedXk gijkk � gikkj (4)The F matrix is constructed from the MO integrals and so depends on the �nal solution,requiring an iterative solution of the problem.This energy has been solved exactly by using numerical techniques but only for verysmall systems. This exact solution for the SCF wavefunction is called the Hartree-Focksolution. Modern implementations of the SCF procedure parameterize the orbitals byusing a �nite set of basis functions, ��, with expansion coe�cients, C. The basis functionsare linearly independent functions with a metric S�� selected to simplify the calculationof the two-particle integrals, gijkl. �i = X� ��C�i (5)S�� = Z d�����The (closed-shell) MO density matrix when transformed to the atomic orbital (AO) basisand with electron spin integrated out becomesDAO�� = 2 occupiedXj=1 C�jC�j (6)D = 2CC t (7)Substitution of Eqns. 5 and 7 into Eqn. 4 results in the canonical AO Fock matrix.FAO�� = h�� + 12X�� �2gAO���� � gAO�����DAO�� (8)(9)where the integrals are now over the AO functions.4



The optimized MOs are determined by �nding the optimal coe�cients, C, that satisfyRoothaans [1] nonorthogonal matrix eigenvalue problemFC = SC�: (10)The eigenvalues, �, can be interpreted as the set of individual electron energies. In thelimit of a complete basis, the true Hartree-Fock limit is attained.Equations 2{10 give us a prescription for solving the SCF problem.1. Select a basis set, ��.2. Select an initial coe�cient matrix, C, and generate the current density matrix,DAO.3. Construct the matrix F using the current DAO and generating the AO integrals.4. Solve the generalized eigenvalue problem of Eqn. 10 to obtain the new orbitals.5. Check the new orbitals for self-consistency. If they have not converged, construct anew DAO matrix, and repeat.Once the converged orbitals are found, Eqn. 1 is solved, and the SCF calculation is�nished.2.2 AlgorithmE�cient, scalable SCF software requires a detailed understanding of the SCF algorithm.The principal operations in the SCF procedure are two primary steps that are iterateduntil a self-consistent solution of Eqn. 10 is obtained. These steps are the generation of theAO integrals to construct the AO Fock matrix and the diagonalization step to constructthe new coe�cients.The construction of the AO Fock matrix, even when the integrals are available, requiresmany more operations than the subsequent diagonalization. The two-electron integralsdepend on four indices. These indices sample the space of AO basis functions; therefore,the number of integrals grows as O(N4basis8 ), becoming huge for even small problems. As anexample, a small hydrocarbon might require 100 basis functions for an adequate represen-tation of the electron �eld. This requirement results in O(108) bytes of memory to storeall the integrals. This exorbitantly high storage forces the algorithm either to o�-loadthese integrals to disk or re-calculate then as needed. The integrals are constructed fromlocalized basis functions that introduces a considerable amount of sparsity. This sparsityand the very high CPU/IO capabilities for most computers greatly favors a recomputa-tion strategy. This type of SCF algorithm is denoted the direct-SCF method and is themethod selected for our work. The integrals can di�er in computational e�ort by O(102)arithmetic operations. In a sequential environment, this is of little consequence, but isan important issue in a parallel environment. The integrals are independent and may begrouped (blocked) into nearly any convenient manner. Finally, the symmetry propertiesof the two electron integrals and the AO F and D matrices results in a given integral,I = gAOijkl contributing to at most six elements of the AO F matrix and requiring at most5



six elements of the AO D matrix. A generic AO F construction algorithm is displayed inFig. 1.The second primary step is the diagonalization. Once the Fock matrix is constructedwe must solve Eqn. 10 to obtain the optimum orbitals. The operation count for a diago-nalization is typically O(N3basis) and is insigni�cant relative to the AO Fock constructionon a sequential computer. The diagonalization step takes on a much greater importancein a parallel environment, often becoming the computational bottleneck.3 Parallel SCFIn this section we describe our fully scalable SCF program named NWCHEM. A de-scription of NWCHEM is available in a recent review [3] on parallel SCF programs andalgorithms. Here we summarize the important points of our scalable distributed-dataSCF algorithm.A fully scalable, parallel direct-SCF algorithm must parallelize both the AO F con-struction and diagonalization steps. For Grand Challenge-size problems this parallelismmust address not only greatly reducing the time for solution but also e�ciently managingthe aggregate memory of the computer. For example, the number of integrals requiredfor a problem of size Nbasis = 100 is on the order O(107). If each integral requires on av-erage 1000 arithmetic operations, and the chosen CPU executes at 40 M
ops (millions of
oating-point instructions per second ), the total time to generate one integral is 25�sec.The total time to compute the integrals becomes 250 sec. A calculation on Decane withNbasis = 250 would require approximately 3:4 hours.The parallel algorithmmust also address the memory requirements of persistent matrixdata required for the calculation. The solution of a typical SCF problem requires thestorage ofO(10) persistent matrices each of size (Nbasis�Nbasis) elements. SCF solutions ofmolecular problems useful particularly to industry require matrices of dimension Nbasis =O(102 � 104) double-precision words. A typical SCF calculation would then require localmemory capacity of nearly O(109) bytes.3.1 Replicated Data ModelSeveral mature programs are now widely available on parallel architectures. The focus ofthese initial e�orts was to use parallel computers to greatly decrease the turnaround timeof a calculation. This was accomplished (most often) by using the direct-SCF techniqueand parallelizing the integral generation step. The density and Fock matrix data arereplicated on all computational nodes. Batches of integrals are then collected into acomputational task that is allocated to a waiting node. These integrals are contractedwith the locally available D matrix to create a partial F matrix. This technique constructsa F matrix e�ciently. The algorithms, however, are not inherently scalable, since memorystorage is limited to that available on a single node. Furthermore, these algorithms usea sequential diagonalization routine; hence the partial F matrices residing on each nodemust be summed together onto one node. This one node then solves Eqn. 10 for the neworbitals. These orbitals are then replicated back onto all nodes. This approach achievesvery good speedup on large numbers of nodes and is fairly straightforward to implement6



in existing programs. This technique, unfortunately, shifts the computational bottleneckfrom the highly parallel integral generation step to the diagonalization and is limited bythe amount of memory on one node.3.2 Distributed-Data ModelSeveral models of scalable Fock matrix construction algorithms have been previouslyanalyzed [4]. The resulting program has been thoroughly discussed in [5]. We summarizethe important parallel details here.To develop a fully scalable parallel SCF program requires e�ciently distributing ma-trix data throughout the aggregate memory of the parallel computer. This process elimi-nates the memory restrictions of the replicated-data model algorithm. This distribution,however, forces the program to communicate data (send messages) between nodes. Ourcommunications are performed with a new library of software functions that emulate ashared-memory model using the primitive massage-passing capabilities of the MPP.We �rst partition all AOmatrix data, D, F, S, etc. into atomic blocks. These blocks aresubmatrices with indices that span all basis functions for a given atomic center. Theseblocks are then arbitrarily allocated to the di�erent nodes on the computer. We alsogenerate integrals in atomic blocks (each of the four indices span all basis functions forthe given atom) and dynamically allocate blocks to a node with a shared counter. Whena node is instructed to generate an integral block, a check on sparsity is performed; then,appropriate blocks of the D matrix are fetched and resulting F matrix blocks are updated.The simplicity of this algorithm is complicated by the varying data requirements fordi�erent integral blocks. Our algorithm performs these communications with a library ofroutines called Global Arrays. These Global Arrays support a lightweight one-sided com-munications model, thereby greatly simplifying development of our scalable program [6, 7].The scalable construction of the F matrix requires that the integrals be allocated dy-namically and that nonlocal data requirements be satis�ed without unduly synchronizingthe computational progress. These requirements are di�cult to satisfy by using a tradi-tional point-to-point communications scheme. The integral blocks very greatly in theircomputational e�ort; and, equally important, for a given integral block the actual amountof F and D data required depends upon the indices. Dynamic data caching increases thedi�culty of data management.In developing software for a typical message-passing environment, data is transferredto a remote node by explicitly having SEND and RECEIVE calls made by the participat-ing nodes. A program written this way essentially blocks the progress of the calculationuntil both nodes have satis�ed their respective communication operation. This approachplaces an e�ective synchronization step into the program. Asynchronous point-to-pointcommunications and double bu�ering can lessen the impact of such a scheme. This arti�-cial synchronization is not related to the algorithm at all. For many kinds of calculationsa natural synchronization step exists and so is of no consequence.The Global Arrays library eliminates this explicit synchronization. It allows the pro-grammer to simply insert into a code a \request" for data. No companion \send" need bemade. This local request activates a mechanism that �nds the data, interrupts the workon the node holding the data, and commands the node to send the data. The interrupted7



node then resumes with its work. If the data are local to the requesting node, no mes-sages are sent. The overhead associated with this type of communications is higher than aprimitive message-passing function but is not inhibiting. The much greater integral loadbalance obtained in this way greatly compensates for the slightly higher communicationcost. The Global Arrays are capable of several one-sided kinds of communications ( read,send, accumulate, etc.) and also support all traditional point-to-point communications.The library is currently portable to several di�erent parallel architectures. The simplicityof using Global Arrays to write distributed-data applications does not obviate the needfor algorithm modeling. The applications engineer still must consider the memory andnetwork characteristics of the target computer for e�cient implementation.Once the F matrix is constructed, the optimum orbitals must be generated. We havethe capability to perform the generalized eigenvalue analysis in parallel. The scalability,however, is much worse than construction of the F matrix because of the nature of thediagonalization algorithm. [8, 9] This fact led us to investigate and include alternativeschemes as suggested by Shepard [10] . These techniques are all second-order convergencetechniques that try to �nd the minimum SCF energy within the space of parameters, C.A recent paper [11] compares various techniques for direct-SCF calculations. Shepard andTilson are exploring the use of a simultaneous vector expansion method for overlappingcomputational e�ort. These second-order techniques can greatly accelerate the time forsolution for some kinds of problems. They are strongly dependent, however, on the initialguess of C and so do not always exhibit quadratic convergence. These importance of thesetechniques is in their exposing highly scalable AO F constructions to the optimizationscheme.4 BenchmarksA set of molecular problems that represent the interests of our consortium has beenassembled. The problems include simple alkanes and transition-metal containing species.The largest alkane problem, C20H44, represents the interaction of two decane molecules.The three other presented benchmarks are� (C5H5)Co(NO)(CH3) designated cobalt� ((Cp)2(CH2))T iCl2 designated titanium� 2; 20 � di(trifluoromethyl)biphenyl named biphenylWe note that all total energies have been veri�ed by independent calculations. Thespeedup is a measure of the e�ciency with which parallelism has been implemented. If aprogram executes in time T (1) on a single node and in time T (P ) on P nodes the speedup (SU) becomes SU(P ) = T (1)T (P ):If the parallel program is perfectly parallelized, T (P ) = T (1)P and SU(P ) becomessimply P . A percent SU may be calculated as SU(P )P � 100.8



Table 1 lists the time to construct the Fock matrix on the IBM SP1 and Intel Touch-stone DELTA computers as a function of the number of nodes. Analytical performancemodels predict that speedup will approach 90�95 percent of ideal for very large problems.This is observed in Table 1, where we observe a speedup of 98 percent for the biphenylbenchmark on the DELTA computer.The IBM SP1 results appear degraded relative to the DELTA. Detailed analysis ofthe SP1 behavior on smaller problems (see butane results) indicates that the overheadassociated with creating the parallel environment markedly degrades performance on twoSP1 nodes. As the number of SP1 nodes increases, the observed speedup relative toone node is actually greater than ideal. This situation suggests that favorable overlap ofoperations occurs less frequently on two nodes. We �nd that the slope of the speedupcurves for calculations on the SP1 closely parallels the ideal line. The speedup for thelarger benchmarks is derived by assuming ideal speedup for the calculation with the fewestnumber of nodes.These benchmarks were also analyzed by using an available replicated data modelprogram on the CRAY C90 computer. This program is implemented as a shared-memorymodel and is expected to be well vectorized. In this model the communications overheadis very cheap, since relatively few messages are sent. We expect a speedup on the 16-nodeC90 of close to 15. The time per AO F construction for these C90 tests are collected inTable 2. We also �nd that generally a C90 node is observed to be 15 � 20 times fasterthan a node on the Intel DELTA and 3 � 5 times faster than a node on the IBM SP1.We �nd that calculations on the DELTA and SP1 can be made to run faster than on theC90 by application of enough computational nodes.The scalability of NWCHEM is found to be quite good for large molecular problems.The somewhat lessened performance for the smaller benchmarks is not an issue, sincethis MPP software is designed for the solution of massive problems that are not currentlypossible. In particular, the SU begins to decrease when the number of processors (P )approaches O(N2atoms). Clearly, for large problems (Natoms = 1000) high performance isexpected on all available MPPs. This high performance stems primarily from the useof integral and data blocking and the asynchronous communications made possible byGlobal Arrays.The total times for solution are presented in Table 3. These calculations were per-formed on the IBM SP1 computer. The wavefunctions were optimized with a second-orderconvergence scheme, where the number of iterations are called macro iterations. Eachmacro iteration corresponds to an SCF iteration and generally requires several AO F ma-trix construction steps for the optimization. All energies are converged to 10�12 atomicunits (au). The large number of macro iterations for the titanium benchmark re
ects theexpected convergence di�culties of a transition metal containing species.5 ConclusionThe HPCCP consortium has developed a fully scalable and e�cient direct-SCF programcalled NWCHEM. We have validated the program and demonstrated high performanceon two currently available MPP computers. This work was accomplished by using a9



few molecular benchmarks of interest to the consortium. Comparisons with a fully func-tional replicated-data direct-SCF code on the CRAY C90 indicate that MPP performancecan surpass that of traditional vector supercomputers when using appropriately designedscalable software.This work has focused on e�cient use of MPP CPUs and high-speed networking.Future e�orts must address utilization of all MPP resources, especially I/O. In the direct-SCF, the recomputation of integrals eliminates the potentially massive storage of integralswhile decreasing the total number of arithmetic operations. This fortuitous behavior isnot necessarily applicable to other electronic structure algorithms nor to algorithms ingeneral. Our consortium is now beginning to address the issues of parallel I/O and itsapplications to remote data storage.The work of the consortium is also not limited to direct-SCF. Several parallel projectsare currently in place, including MP2, SCF gradients, and MCSCF. These techniquesallows us to fully optimize SCF geometries and determine corrections to the SCF wave-function.AcknowledgmentsThis work was performed under the auspices of the High Performance Computing andCommunications Program of the O�ce of Scienti�c Computing, U.S. Department of En-ergy under contract W-31-109-Eng-38 with the University of Chicago which operates theArgonne National Laboratory.This research was performed in part using the Intel Touchstone Delta System operatedby Caltech on behalf of the Concurrent Supercomputing Consortium. Access to thisfacility was provided by Argonne National Laboratory.The author gratefully acknowledges use of the Argonne High-Performance ComputingResearch Facility. The HPCRF is funded principally by the U.S. Department of EnergyO�ce of Scienti�c Computing.The author thanks A. F. Wagner and M. Minko� for helpful discussions and assistance.References[1] Roothaan, C., Reviews of Modern Physics, 23, 69, 1951.[2] Alml�of, J., Faegri, K., and Korsell, K., J. Comp. Chem, 3, 385, 1982.[3] Harrison, R. J., and Shepard, R., Annual Review of Physical Chemistry, to appear1994.[4] Foster, I., T., Tilson, J., L., Shepard, R. L., Wagner, A. F., Harrison, R. J.,Kendall, R. A., Little�eld, R. L. submitted J. Comp. Chem., 1994.[5] Harrison, R. J., Guest, M. F., Kendall, R. A., Bernholdt, D. E., Wong, A. T.,Stave, M., Anchell, J., Hess, A. C., Little�eld, R. L., Fann, G. L., Nieplocha, J.,Thomas, G. S., Elwood, D., Tilson, J., Shepard, R. L., Wagner, A. F., Foster, I., T.,Lusk, E., and Stevens, R. submitted J. Comp. Chem., 1994.10
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AO Fock ConstructionDO i = 1, NDO j = 1, iIF (i,j pair survive screening) THENDO k = 1, iIF (k.EQ.i) lhi = jIF (k.NE.i) lhi = kDO l = 1, lhiIF (k,l pair survive screening) THENEVALUATE I = gijklFij = Fij + DklIFkl = Fkl + DijIFik = Fik - 12DjlIFil = Fil - 12DjkIFjl = Fjl - 12DikIFjk = Fjk - 12DilIENDDOENDDOENDIFENDDOENDDOFigure 1: Basic logic for Fock matrix construction
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Table 1: Speedup characteristics of NWCHEM on the Intel Touchstone Delta and IBMSP1 computers. All times are for one AO Fock matrix construction. Speedup times for agiven molecular species are relative to the measure timed on the fewest number of nodes.ND = Not Done DELTA IBM SP1Molecule NBF Time per Number of Speed- Time per Number of Speed-AO F Nodes up AO F Nodes upC4H10 110 1140:51 1 1 218:43 1 1110 580:63 2 1:96 134:77 2 1:62110 293:65 4 3:88 63:2 4 3:45110 74:08 16 15:39 15:13 16 14:44110 37:31 32 30:57 ND ND NDC20H44 520 1287:79 32 32 1060:39 8 8520 860:90 48 47:8 539:25 16 15:7520 647:73 64 63:6 272:04 32 31:2520 333:11 128 123:7 184:19 48 46:1520 188:51 256 218:6 141:11 64 60:1cobalt 114 891:93 2 2 330:18 1 1114 453:05 4 3:9 247:75 2 1:33114 233:16 8 7:6 106:98 4 3:1114 121:47 16 14:7 50:33 8 6:6114 63:84 32 27:9 ND ND NDbiphenyl 324 2291:61 16 16 846:48 8 8324 1148:13 32 31:9 429:33 16 15:8324 575:86 64 63:7 260:85 32 25:96324 290:59 128 126:2 131:73 64 51:4titanium 147 3008:09 4 4 713:26 4 4147 773:48 16 15:6 364:51 8 7:8147 400:13 32 30:1 186:64 16 15:3147 212:82 64 56:5 95:69 32 29:8147 119:3 128 100:8 50:55 64 56:413



Table 2: Time for an AO F matrix construction on the Cray C90 using a commonlyavailable ab-initio package Molecule Number of Time PerNodes AO FC4H10 1 78:24C4H10 4 19:59C20H44 1 2490:23C20H44 2 1204:26cobalt 1 64:36titanium 1 382:47biphenyl 8 474:5
Table 3: Time to solution. Initial estimates from atomic densities. Energy converged to10�12au Time To Solution IBM SP1Molecular Number Number Number Number Total TimeSpecies Atoms Basis Ftns Nodes Iterations secondsCH4 5 35 16 4 9:80C4H10 14 110 16 4 328:35C8H18 26 210 32 5 1342:10titanium 24 174 128 14 3761:35biphenyl 28 324 64 7 4539:57biphenyl 28 324 128 7 2382:3514


