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Abstract

hen given a set of properties or conditions (say, three) that are claimed to be equivalent, the claim
e

s
can be verified by supplying what we call a circle of proofs. In the case in point, one proves th
econd property or condition from the first, the third from the second, and the first from the third. If

r
s
the proof that 1 implies 2 does not rely on 3, then we say that the proof is pure with respect to 3, o
imply say the proof is pure. If one can renumber the three properties or conditions in such a way that

t
one can find a circle of three pure proofs—technically, each proof pure with respect to the condition
hat is neither the hypothesis nor the conclusion—then we say that a circle of pure proofs has been

n
s
found. Here we study the specific question of the existence of a circle of pure proofs for the thirtee
hortest single axioms for equivalential calculus, subject to the requirement that condensed detachment

t
be used as the rule of inference. For an indication of the difficulty of answering the question, we note
hat a single application of condensed detachment to the (shortest single) axiom known as P4 (also

-
t
known as UM) with itself yields the (shortest single) axiom P5 (also known as XGF), and two applica
ions of condensed detachment beginning with P5 as hypothesis yields P4. Therefore, except for P5,

o
one cannot find a pure proof of any of the twelve shortest single axioms when using P4 as hypothesis

r axiom, for the first application of condensed detachment must focus on two copies of P4, which
.

F
results in the deduction of P5, forcing P5 to be present in all proofs that use P4 as the only axiom

urther, the close proximity in the proof sense of P4 when using as the only axiom P5 threatens to
e

a
make impossible the discovery of a circle of pure proofs for the entire set of thirteen shortest singl
xioms. Perhaps more important than our study of pure proofs, and of a more general nature, we also

s
s
present the methodology used to answer the cited specific question, a methodology that relies on variou
trategies and features offered by W. McCune’s automated reasoning program OTTER. The strategies

s
a
and features of OTTER we discuss here offer researchers the needed power to answer deep question
nd solve difficult problems. We close this article (in the last two sections) with some challenges and

1

some topics for research and (in the Appendix) with a sample input file and some proofs for study.

. Motivation, Background, and the Specific Problem to Solve

n
m

To set the stage for the type of problem central to this article, we note that occasionally i
athematics and in logic researchers are interested in which axioms of a given field are independent

r
and which dependent. For example, among the usual axioms for a group, those of right identity and
ight inverse are each dependent on the remaining set. Somewhat related, one sometimes wonders

r
w
whether a chosen lemma (such as the inverse of the inverse of x equals x) is needed for a proof, o

hether one can find a proof in which no terms of a specified form occur, such as n(n(t)) for any term t

d
where the function n denotes negation. Given a set of formulas, equations, properties, conditions, or
efinitions each of which implies all of the others, the general problem in focus here asks whether one

e
w
can find a sequence of proofs such that the sequence forms a circle and such that each proof is pur

ith respect to the remaining formulas.
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Definition, circle of proofs. For a set of k equivalent elements—formulas, equations, properties,

t
conditions, or definitions—a circle of proofs is a sequence of proofs such that the first proof shows that
he first element implies the second, the second proof shows that the second element implies the third,

..., and the k-th proof shows that the k-th element implies the first.

Definition, pure proof with respect to a set of elements. For a set of elements—formulas,

r
equations, properties, conditions, or definitions—a proof of element j from element i is pure with
espect to the set of elements if and only if it does not rely on the use of any of the elements but the j-

t
r
th and the i-th. The presence of a proper instance of an element other than the j-th or i-th does no
ender the proof impure. If such instances are in fact absent, we say the proof is instance pure.

,
w
Further, if none of the deduced steps contains as a proper subterm an instance of an unwanted element

e say the proof is subterm pure.

To remove any ambiguity regarding what we mean by proof in general, we require that one or

[
more specific inference rules be used and specified, for example, rules such as paramodulation
Wos87,Wos92] (which generalizes equality substitution) and condensed detachment

i
[Kalman78,Kalman83] (which we discuss with examples in Section 1.2). The particular problem of
nterest here asks whether one can find a circle of thirteen pure proofs, relying solely on condensed

s
[
detachment, given the thirteen (equivalent) shortest single axioms for equivalential calculu
Kalman78,Peterson76] (defined and briefly discussed in Section 1.2). In other words, regarding the cir-

p
cle property, can one order the thirteen shortest single axioms in such a way that one can find thirteen
roofs, the first proof deducing (with condensed detachment) the second axiom from the first, ..., the

o
thirteenth deducing the first axiom from the thirteenth? Regarding purity, the first proof must not rely
n the use of the axioms numbered 3 through 13, ..., the thirteenth must not rely on the use of the

axioms numbered 2 through 12.

>From the viewpoint of a graph, one is asked to arrange the nodes in such a manner that a path
e

o
begins at one node, passes through a second node once, a third node once, ..., and completes with th
riginal node. For a simple example that is closely related in the context of purity, imagine being

f
t
asked to prove some theorem in group theory without proving and using the lemma that the inverse o
he inverse of x equals x, or without using the axiom of, say, right identity.

-
i

To complete the stage setting for presenting our attack on the specific problem and for introduc
ng the methodology that may prove of use in totally unrelated areas, we provide (in Section 1.1) a bit

m
of history and (in Section 1.2) a brief treatment of equivalential calculus. In part to complement the

aterial of this article, we offer in Sections 5 and 6 some challenges and some topics for research, and,

1

to stimulate such research, we provide (in the Appendix) a sample input file and some proofs for study.

.1. Genesis

Two factors led us to the study of the question of whether there exists a circle of pure proofs for
,

w
the thirteen shortest single axioms for equivalential calculus. Perhaps most important, in the late 1970s

e were introduced to this area of logic by the logician J. Kalman, to whom we extend our thanks.

t
That introduction (as various of our papers show) has led us to visit and revisit this area in various con-
exts, including seeking shorter proofs, testing new strategies, and developing methodology.

r
m

Also playing a role in our interest in the specific problem, in the mid-1960s (if we can trust ou
emory), we were told a small amount about Moufang loops. We were told that any one of three

f
o
equations played the key role, and were told that the three are equivalent. We were told that the proo
f the equivalence of the three identities was, in the following sense, flawed. Proofs existed that 1

g
p
implies 2, that 2 implies 3 and—rather than the preferred pure proof that 3 implies 1—the existin
roof was two-stage, 3 implies 2, then 2 implies 1. In other words, in the obvious sense, four proofs

c
were required, rather than three. Finally, we were told that every ordering of the three identities and
orresponding proofs suffered a similar aesthetic flaw. Regarding the concern of this article, in effect

i
we were told of a circle of proofs for the three Moufang identities—1 implies 2, 2 implies 3, and 3
mplies 1—but the proofs are not pure. The lack of purity rests with the fact that the proof of 3 implies

r
1 relies on the use of the second identity, 2. With the given ordering of proofs—1, 2, 3, 1—purity
equires the replacement of the proof of 3 implies 1, passing through the second identity, by a proof

that 3 implies 1 without use of 2. As an alternative, to produce a pure circle of proofs requires a
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reordering of the three identities and corresponding proofs, each of which (three) does not rely on the

1

intermediate use of the so-called third property.

.2. Equivalential Calculus in Brief

Rather than a study of Moufang loops, the focus here, as noted, is on equivalential calculus. The
)

a
elements to be studied are formulas that one can produce with the two-place function e (for equivalent
nd the variables x, y, z, ... . Among such formulas, we have

(
(1) e(x,x),
2) e(e(x,y),e(y,x)),

.

I

(3) e(e(x,y),e(e(y,z),e(x,z)))

t is no coincidence that we selected these three formulas; they were chosen because they will remind
h

‘
one, respectively, of reflexivity, symmetry, and transitivity, properties naturally associated wit
‘equivalence’’. In fact, these three formulas taken together provide an axiomatization for equivalential

r
calculus. Not so obvious, and unlike equivalence in general, the formula (1) (that we identify with
eflexivity) is provable from (2) and (3) [Wos90].

In place of (1), (2), and (3) as an axiomatization, the calculus is often studied in terms of one of
t

s
thirteen formulas, each of which serves as an axiom system. Following are provably all of the shortes
ingle axioms for equivalential calculus. Each is expressed as a clause [Wos87,Wos92] in notation

e
f
acceptable to OTTER [McCune93], where the predicate P can be interpreted as ‘‘provable’’ and th
unction e as ‘‘equivalent’’; OTTER is offered on diskette in [Wos92]. (The numbering of the follow-

s
ing is indeed strange, but we have repeated it as we were introduced to the notation; P6, if memory
erves, was once thought to be a shortest single axiom.) When a line contains a ‘‘%’’, the characters

from the first ‘‘%’’ to the end of the line are treated by the program as a comment.

P(e(e(x,y),e(e(z,y),e(x,z)))). % P1iYQL
F

P
P(e(e(x,y),e(e(x,z),e(z,y)))). % P2iYQ

(e(e(x,y),e(e(z,x),e(y,z)))). % P3iYQJ

P
P(e(e(e(x,y),z),e(y,e(z,x)))). % P4iUM

(e(x,e(e(y,e(x,z)),e(z,y)))). % P5iXGF

P
P(e(e(x,e(y,z)),e(z,e(x,y)))). % P7iWN

(e(e(x,y),e(z,e(e(y,z),x)))). % P8iYRM
O

P
P(e(e(x,y),e(z,e(e(z,y),x)))). % P9iYR

(e(e(e(x,e(y,z)),z),e(y,x))). % PYO
M

P
P(e(e(e(x,e(y,z)),y),e(z,x))). % PY

(e(x,e(e(y,e(z,x)),e(z,y)))). % XGK
K

P
P(e(x,e(e(y,z),e(e(x,z),y)))). % XH

(e(x,e(e(y,z),e(e(z,x),y)))). % XHN

The inference rule that is often used is condensed detachment. For this area of logic, condensed
r

p
detachment considers two formulas, e(A,B) and C—respectively called the major and the mino

remiss—and, if C unifies with A, yields the formula D, where D is obtained by applying to B the most

i
general unifier of C and A. (For the curious, and consistent with earlier publications, the word ‘‘prem-
ss’’ is spelled as Church recommends.) Unification [Wos87,Wos92] is a procedure that considers two

o
i
expressions and seeks to find the most general substitution of terms for variables that makes the tw
dentical. Unification is the basis of many of the procedures applied by OTTER and, more generally, is

relied upon in automated reasoning.

Just for illustration, if one applies condensed detachment to

and

e(x,e(x,e(y,y)))

e(z,z)

with the second formula playing the role of (the minor premiss) C, one obtains

e(e(z,z),e(y,y)).
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If one reverses the roles of the two formulas and applies condensed detachment, one obtains a copy of

i
the first formula. To gain a fuller appreciation of the intricacy of using condensed detachment—
gnoring the possible truth of the following expression (F)—one might by hand attempt to produce the

conclusion obtainable from applying the inference rule to two copies of

(F) e(e(e(e(x,e(y,z)),e(y,x)),e(z,u)),u).

The conclusion one obtains with condensed detachment applied to two copies of the preceding formula

c
is e(x,x). To capture condensed detachment, we use hyperresolution [Wos87,Wos92] and the following
lause, where lines beginning with ‘‘%’’ are treated as comments, where ‘‘-’’ denotes logical not, and

where ‘‘ e ’’ denotes logical or.

% a clause for condensed detachment

>

-P(e(x,y)) e -P(x) e P(y).

From the fact that any of the given thirteen shortest single axioms serves as a complete axiom
o

p
system by itself, one sees that any can be used to deduce each of the other twelve. For example, t
rove P5 from P4 requires a single application of condensed detachment, applied to two copies of P4.

d
Therefore, any proof of, say, XHN from P4 using condensed detachment must contain as its first

educed step P5. Regarding purity of proof, if one selects P4 as the hypothesis with the goal of prov-
r

w
ing one of the other twelve shortest single axioms, only one proof is possible, that of P5. Put anothe

ay, with P4 as the axiom and condensed detachment as the inference rule, all proofs of the other shor-

1

test single axioms (except that of P5) are not free of P5 and are, therefore, not pure.

.3. Objectives

The following two questions are central to this article. First, from the viewpoint of mathematics
s

s
and logic, does there exist an ordering of the thirteen shortest single axioms of equivalential calculu
uch that one can find a circle of pure proofs for that ordering? If such an ordering does exist, from the

-
i
preceding remarks, P4 must immediately precede P5. Second, from the viewpoint of automated reason
ng, what strategy or strategies can be used together with other mechanisms to enable a program such as

OTTER to bear the brunt of the research?

Rather than giving a terse answer to either question, we shall detail our study with the additional

s
objective of showing those unfamiliar with OTTER how it can be used as a research assistant. We
uspect that even those with some experience with this program will find various techniques we present

2

useful for quite unrelated research.

. Attacking the Specific Problem

For those researchers who prefer a somewhat brisk treatment that focuses on the highlights rather

w
than on the detailed development, we close (in Section 2.6) this section with a review. That review

ill also serve for those researchers who, after reading the details, wish access to a summary.

2.1. Beginning the Attack

With the knowledge that at least one constraint must be observed—P4 must immediately precede
e

t
P5—the first move was to determine whether other constraints of the type existed. We took each of th
hirteen formulas (shortest single axioms) A (given in Section 1.2) and, with the following command,

d
instructed OTTER to (in effect) apply condensed detachment to A with itself and immediately cease

rawing conclusions.

.

T

assign(maxigiven,1)

o verify the soundness of this aspect of the methodology, we began with P4, placing the negations (or
)

a
denials) of all thirteen shortest single axioms in list(passive) [McCune93]. The clauses in list(passive
re used only for forward subsumption and for unit conflict, the latter being the most common test for

d
establishing that a proof by contradiction has been completed. Clauses in that list are not subject to
emodulation [Wos87,Wos92], and they are not used to draw conclusions (of course, other than the

p
empty clause). If all is in order, P5 will be deduced, and it was, as confirmed by the corresponding
roof by contradiction. When the cited methodology was applied to each of the other twelve shortest
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5

ingle axioms, no proofs were returned. In other words, no other constraints of the type under discus-
sion exist.

With the knowledge that, other than the required P4-P5 immediate juxtaposition (in that order),

c
any other immediate juxtaposition was possible, we set about to find out which (shortest single) axioms
ould be used by OTTER to deduce which axioms. We say ‘‘used by OTTER’’ because the theoretical

r
deducibility of one axiom from another sheds no light on the practical deducibility by an automated
easoning program—or, for that matter, by a researcher unaided. Indeed, for two examples of the depth

e
q
and difficulty offered by the study of the thirteen (shortest single axiom) formulas, we note that th
uestions of whether XHK and XHN are each strong enough to provide a complete axiomatization were

open until the early 1980s. S. Winker settled each question in the affirmative [Wos83,Wos84].

Put another way, if one chooses either XHK or XHN and attempts to deduce one of the other

t
twelve shortest single axioms—without excellent choices regarding strategy [Wos90]—one encounters a
ough problem, for a person or for a program. The formula XGK presents similar problems. (Kalman

e
t
[Kalman78] proved this formula to be a single axiom.) Being aware of the toughness presented by thes
hree (axiom) formulas and being aware that P5 leads to a deduction of P4 in but two applications of

o
condensed detachment—implying that, if one happens to exist, the escape route to completing a circle
f pure proofs is indeed narrow—we expected that a variety of strategies would be needed to obtain

deductions of various formulas from each of the twelve (including P5 and, of course, excluding P4).

>From earlier studies in the context of seeking shorter and less complex proofs [Wos90], we had
n

o
a proof that completes with the deduction of P4 starting with XHN, and that study yielded the deductio
f none of the other eleven shortest single axioms. Therefore, the obvious move was to place XHN

f
p
immediately before P4 in our search for a circle of pure proofs. (We again note that the definition o
ure says nothing about proper instances of the disallowed items.) In contrast to the ease of extending

t
p
the partial circle in what might be called the direction left—XHN, P4, P5—adding on the righ
resented a problem, for our first attempt to deduce shortest single axioms from P5 yielded P4 and

e
d
XHN, and no others. Further, the proof of XHN (that was obtained) is not even pure, for it relies on th
eduction of P4. Obviously, the insertion to the right of P5 of either P4 or XHN was out, and, almost

l
as obvious, purity of a proof of a fourth axiom to be placed to the right of P5 was presenting a prob-
em. In particular, P4 and XHN might be an intermediate step in all proofs starting with P5 as the only

axiom, thus preventing one from ever producing a circle of pure proofs.

Closer examination of the run that deduces both P4 and XHN from P5 shows how narrow is the

o
escape route, if one plans to escape to a pure proof by avoiding the deduction of either, but especially
f P4. In particular, the condensed detachment of P5 with itself yields a clause numbered (18), and the

d
condensed detachment of (18) as major premiss (unified with the first literal of the clause for condensed
etachment) with P5 as the minor premiss yields P4. Two possible escape routes are left, if the

f
u
corresponding application of condensed detachment succeeds rather than being blocked because o
nification failure: P5 can be used as the major premiss and (18) as the minor, and (18) can be used as

-
d
both the major and minor premisses. A further check of the run shows that both applications of con
ensed detachment succeed. Again one sees how the use of an automated reasoning program facilitates

-
d
research, even at the more mundane level of ascertaining the results of specific applications of con
ensed detachment.

We therefore made two changes in our search for shortest single axioms deducible from P5.

r
First, to give more latitude to the program, we increased the maxiweight (permissible complexity of
etained formulas) from 28 to 40. Second, because of our interest in pure proofs, with the inclusion of

b
the following weight template (whose contained formula is in fact P4) in weightilist(purgeigen), we

locked the retention of the clause corresponding to P4.

(

weight(P(e(e(e(x,y),z),e(y,e(z,x)))),200).

A clause technically has two weights, its pickigiven weight that is used in the context of choosing
d

i
clauses as the focus of attention to drive the program’s reasoning, and its purgeigen weight that is use
n the context of clause discarding; often the two weights are the same.) The inclusion of the given

e
w
weight template is not without risk, for other formulas that match it, ignoring variables (which is th

ay the weighting strategy [McCharen76,Wos87,Wos92] works), will also be purged because of our
tchosen maxiweight, namely, 40. (The weight of a clause is computed solely in terms of symbol coun
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if no included weight template applies.) (In Section 2.5, we give a means that relies on demodulation
for having one’s cake and eating it too, for purging an unwanted formula but not purging its relatives.)

Regarding the unchanged options, with the intention of decreasing the required CPU time, we
r

c
used the hot list strategy [Wos94] with the heat parameter assigned to 1 and with P5 and the clause fo
ondensed detachment in the hot list. (Briefly, the hot list strategy enables the researcher to include in

-
c
the hot list clauses that are conjectured to merit repeated and immediate visiting to complete the appli
ation of an inference rule rather than initiate it, when the program has decided to retain a new clause.)

-
i
We used a level saturation approach [Wos92], which instructs OTTER to drive its reasoning by focus
ng on the clauses in the order they are retained, first come first serve (breadth first). Because of the

e
c
fecundity that would almost certainly occur with maxiweight assigned to 40, after 50 clauses wer
hosen as the focus of attention to drive OTTER’s reasoning, we reduced the maxiweight to 24. The

following two commands were, therefore, included.

assign(changeilimitiafter, 50).

W

assign(newimaxiweight, 24).

e included the following two commands (which instruct OTTER to search for ever shorter proofs of

c
each deduced conclusion) with the notion (perhaps, but not for certain) that shorter proofs might be
orrelated to pure proofs.

.
s
set(ancestorisubsume)
et(backisub).

OTTER first deduced XHN, with a proof of length 27 and level 12 (in contrast to length 15 and

a
level 8 when the program was allowed to retain the clause equivalent of P4) and then deduced XHN
gain, with a proof of length 24 and level 13. (With one exception, the length of a proof in this article

s
w
as given by OTTER, is the number of applications of condensed detachment. The exception occur

hen the dynamic hot list strategy [Wos94] is in use, for two copies of a deduced clause may appear,

o
one from the modified hot list, and one from the usable list.) (The level of input clauses is 0; the level
f a deduced clause is one greater than the maximum of the levels of its parents.) Then, in approxi-

P
mately 350 CPU-seconds (on a SPARCstation-10) with retention of clause (10266), OTTER deduced

YM. The proof has length 32 and level 14. Far more important for our purposes, the proof of PYM
t

m
from P5 is pure. We were thus able to insert PYM to the right, obtaining for our partial circle (tha

ight not be completable) the sequence XHN, P4, P5, PYM.

2.2. Our Original Approach

While we were gathering the evidence just presented, at the same time we also ran various exper-

a
iments, each designed to see which axioms were deducible by OTTER from each of the remaining
xioms taken one at a time. To gather our data, we used a level saturation approach, assigned a

b
maxiweight (on the complexity of retained conclusions) of 28, reassigned it to 24 after 50 clauses had
een chosen as the focus of attention (to drive or direct the program’s reasoning), used ancestor sub-

c
sumption [McCune93,Wos92] (instructing OTTER to seek ever and ever shorter proofs of each deduced
onclusion) coupled with back subsumption, and used the hot list strategy to promote ease of proof

t
completion. (When the hot list strategy is combined with level saturation, it enables the program to, so
o speak, look ahead, drawing conclusions that have a level greater than those being drawn without its

c
use.) For the hot list strategy, we assigned the heat parameter to 1 and placed in the hot list only the
lause for condensed detachment and the clause corresponding to the shortest single axiom under con-

sideration. We shall refer to this as our original approach.

Motivated by the structure of the partially completed circle of pure proofs, from the ensemble of

d
experiments, we immediately reviewed the experiment using PYM as the only axiom. The only
ifference between this experiment and the experiment focusing on P5 that deduced P4 and XHN and

y
m
no other axioms was the axiom in use. Indeed, consistent with our approach, PYM was the onl

ember in the initial set of support, and it and the clause for condensed detachment were the only
.

E
members in the hot list. OTTER completed proofs of P5, XGK, XHK, XHK (a second time), and P4

xcept for the first of the two proofs of XHK, all proofs are pure. Immediately we see the value of
relying on ancestor subsumption (which, from a practical standpoint, requires the use of back
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subsumption), for its use enabled the program to find a pure proof of XHK, the second proof of that for-
mula.

The structure of the partially completed circle of pure proofs made the deduction of both P5 and
)

X
P4 worthless for extending it to the left or to the right. The choice between inserting (at the right

GK and XHK was easy to make. First, the experiment with XGK as the only axiom produced one

p
proof, that of PYO. Second, earlier studies of XHK as the only axiom in the pursuit of short proofs had

roduced various proofs of P1, P2, P7, P8, and P9; that of P2 is not pure—discovered only after this

w
article was essentially complete—but the other proofs are. Clearly, the most appealing path to follow

as to insert (on the right) XGK, and then immediately insert (on its right) PYO to yield the sequence
XHN, P4, P5, PYM, XGK, PYO (as a longer, partially completed circle of pure proofs).

Examination of other experiments immediately enabled us to find a shortest single axiom to insert

i
on the left of our partially completed circle. Specifically, the search for a deduction of XHN revealed
ts proof from P8. Since, in that run, XHN was the first axiom deduced, the proof was guaranteed to be

e
a
pure, for (as noted) list(passive) was provided with the negation of each of the thirteen shortest singl
xioms. We, therefore, inserted (on the left) P8. Next, a glance at the run using P1 as an axiom

,
a
showed how fecund it indeed is; its use led OTTER to completing twenty proofs (including duplicates)
nd all of the other twelve shortest single axioms were deduced. All twenty proofs are pure, the expla-

-
a
nation of which we leave to future research. The sixteenth and the twentieth are of P8. We immedi
tely inserted (on the left of P8) P1. (Actually, one might have expected us to postpone the decision of

s
where to place P1, in view of the fact that its use leads to the deduction of each of the other twelve
hortest single axioms; we simply did not make this choice for reason or reasons we cannot give.)

t
p

We then inserted P2 immediately to the left of P1, for the deduction of P1 from P2 is the firs
roof (of thirteen) completed when using P2 as the only axiom. The proof is, therefore, pure. With

3
w
almost the same justification, we next inserted (on the left of P2) P3. The deduction of P2 from P

as the fifth proof completed, and we (as so often) used some Unix commands to check that the proof
,

P
is indeed pure. We were nearing success—so we thought—for we now had the sequence P3, P2, P1

8, XHN, P4, P5, PYM, XGK, PYO (as a longer, partially completed circle of pure proofs).

2.3. Modifying Our Original Approach

Because none of the experiments conducted so far produced a proof that completed with the
e

d
deduction of P3, except from formulas such as P1 and P2 (which we did not wish to displace), w
ecided to modify our study of the formula PYO. Modification of the options was required, for an

(
assignment of 28 and of 32 to maxiweight resulted in OTTER’s running out of conclusions to draw
with the message sos empty) before any proofs were completed. Raising the maxiweight to 36 pro-

m
duced a proof of XGK and none other; that proof was of no use given the partial circle. Raising the

axiweight to 40 produced the same result.

Therefore, we replaced a level saturation approach (for choosing the clauses on which to focus to
e

p
drive the program’s reasoning) with the ratio strategy (formulated by McCune) [Wos92], with th
ickigiveniratio assigned to 4. With this change, OTTER was instructed to choose (for the focus of

r
b
attention) four clauses by weight (symbol complexity, in this case), one by first come first serve (o
readth first), then four, then one, and the like. Our motive was to sharply perturb the space of possible

i
conclusions to be deduced. We replaced weightilist(purgeigen) by weightilist(pickiandipurge) and
ncluded as its sole member the clause equivalent of the formula XGK with an assignment of a weight

c
of 200, strictly greater than the chosen maxiweight of 36. In other words, similar to the actions dis-
ussed earlier (in Section 2.1) in the context of the formula P5, we prevented the program from retain-

o
ing (if deduced) the clause equivalent of XGK, risking the loss of like formulas that differ only in terms
f which variables are present. We took this action in deference to our goal of finding a pure proof of

f
a shortest single axiom not yet a member of our partially completed circle. To perturb the search space
urther, we dropped the use of ancestor subsumption and back subsumption and instructed OTTER to

0
w
change the maxiweight to 24 after 70 clauses were chosen as the focus of attention, rather than after 5

ere chosen.

In contrast to the sparsity of completed proofs before we made the cited changes, the program
.completed ten proofs of which eight are pure, (in order) of P4, P7, P9, PYM, P3, XHK, P1, and P2
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The impure proofs (the fourth and eighth) are of P8 and XHN, each relying on the deduction of P4.
,

w
The last of the ten proofs was completed in approximately 6700 CPU-seconds (on a SPARCstation-10)

ith retention of clause (111681).

A glance at the partially completed circle shows that three of the eight pure proofs are of interest,

i
those of P7, P9, and XHK. In particular, we rejected the proof of P3 for, although a circle would
ndeed be completed, its acceptance would leave no room for the as-yet unused axioms. The choice

a
from among the three proofs of interest was easy to make. First, our experiment with P9 as the only
xiom had deduced XHK and no other shortest single axiom. Second, in our earlier study of XHK, we

a
S
had found a pure proof of P7, in approximately 78,273 CPU-seconds (on the equivalent of

PARCstation-2), with retention of clause (98393); the proof has length 39 and level 25. (A
n

t
SPARCstation-2 is roughly half as fast as a SPARCstation-10.) Therefore, we chose P9, inserting it o
he right of our partially completed circle, which immediately allowed us to then insert to its right XHK

e
s
followed by P7. We thus were near our goal of a complete circle of pure proofs, for we had th
equence P3, P2, P1, P8, XHN, P4, P5, PYM, XGK, PYO, P9, XHK, P7. Indeed, with a pure proof of

a
P3 from P7—if one existed—we would have answered the question (central to this article) in the
ffirmative.

2.4. Pursuing an Alternate Goal

But the desired proof to complete the (first) circle provided substantial resistance, so much so that

p
we decided to attempt to complete a second circle of pure proofs. Because we had thought we had a
ure proof of P2 using XHK as the only axiom, obtained in approximately 51,359 CPU-seconds on the

e
equivalent of a SPARCstation-2 with retention of clause (77799), perhaps we could find pure proofs to
nable us to move both P3 and P7. After this article was essentially completed, we discovered that the

e
n
cited proof is not pure, for it relies on P9 as an intermediate step; on August 12, 1994, we found th

eeded proof, of length 76 and level 37, in approximately 767 CPU-seconds on a SPARCstation-10,

P
with retention of clause (22558). In other words, our plan was to seek appropriate pure proofs so that

3 is not, so to speak, to the left of P2 and so that P7 is not, so to speak, to the right of XHK (of
course meaning before the circle is closed).

By revisiting our original set of experiments designed to see which axiom could be used by
e

o
OTTER to deduce which axioms, a place for P3 was suggested by finding a pure proof (using it as th

nly axiom) of XHK. What was therefore needed was a pure proof of P3 using P9 as the only axiom.
.

N
A search of the early experiment with P9 as the only axiom revealed no proof, pure or impure, of P3

oting that the original experiment completed three proofs of XHK and none for any other shortest sin-

t
gle axiom, similar to what we did earlier in our focus on P5, we blocked the program from retaining
he clause equivalent of XHK—at least, that was our intention. However, closer inspection of the input

t
file reveals that, by mistake, we included in weightilist(purgeigen) a weight template corresponding to
he formula XHN.

The experiment was saved by the fact that XHK and XHN have the same shape, if the variables
.

W
are ignored (treated as indistinguishable), which is how weight templates work in OTTER, fortunately

e increased the maxiweight to 36 (to give OTTER more room in which to work) and made no other
f

o
changes, still directing the search with level saturation. The program completed the desired pure proo
f P3 in approximately 1862 CPU-seconds (on a SPARCstation-10), with retention of clause (36379).

r
t

As for where to insert P7, we remarked earlier that from P1 OTTER deduces all of the othe
welve shortest single axioms. The proof of P7 is pure. All that remained was to produce a pure proof

l
i
from P7 of P8, and we would have the desired (second) circle of pure proofs, with the first circle stil
n doubt. A glance at the original experiment using P7 as the only axiom revealed that, if we were to

e
c
succeed, some modification was required. For reason or reasons we cannot recall, we made but on
hange: We added the use of the dynamic hot list strategy, assigning 8 to the dynamiciheatiweight.

w
With this addition, we instructed OTTER to adjoin to the hot list during the run any clause whose

eight is less than or equal to 8; in this run, weight was determined solely in terms of symbol count.
.

M
(Credit for extending the hot list strategy by formulating the dynamic hot list strategy belongs to W

cCune.) This small, but obviously significant, change was just what was needed. The program pro-
duced the desired deduction of P8, and we had answered the question of interest in the affirmative.
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g With the following ordering of the thirteen shortest single axioms, we found, with the invaluable
,

P
assistance of OTTER, a circle of pure proofs. The (second) circle is P2, P1, P7, P8, XHN, P4

5, PYM, XGK, PYO, P9, P3, XHK, P2.

s2.5. Returning to the Pursuit of the First Circle of Pure Proof

Inspired by the cited success in hand, we conjectured that added effort might in fact enable us to
.

R
complete the first circle, which (as noted) completes if one can find a pure proof from P7 of P3

ecognizing the possible difficulty (or, perhaps, impossibility) of the task, we began two almost simul-
.

I
taneous attacks, the first on the equivalent of a SPARCstation-2, and the second on a SPARCstation-10
n both attacks, because we wished to avoid all shortest single axioms but one—in contrast to blocking

l
d
one particular axiom—we used demodulation (rather than weighting) in a significant way that we shal

iscuss shortly. (We thus fulfill our earlier promise made in Section 2.1 of giving a means that relies
-

i
on demodulation for having one’s cake and eating it too, for purging an unwanted formula but not purg
ng its relatives.)

In the first attack, we assigned the maxiweight to 48, reassigned it to 24 after 70 clauses were
f

l
chosen as the focus of attention to drive the reasoning, assigned the pickigiveniratio to 4 (in place o
evel saturation), and dropped the use of ancestor subsumption and back subsumption. In the second

s
w
and almost simultaneous attack, we assigned the maxiweight to 32, reassigned it to 24 after 50 clause

ere chosen as the focus of attention, used level saturation, and otherwise proceeded as in the first

a
attempt. For a different comparison, we merely modified our original treatment of P7 as the only
xiom by assigning the maxiweight to 32 rather than to 28, dropped the use of ancestor subsumption

and back subsumption, and used demodulation.

Regarding the use of demodulation, with the following technique (thanks to McCune), we

n
instructed OTTER to block all proofs of shortest single axioms other than that of P3; of course, we did

othing to interfere with P7 itself. Put another way, of the thirteen shortest single axioms, we used
demodulation to block the use of all but P7 and P3.

makeievaluable(i&i, $AND(i,i)).

(
list(demodulators).
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(e(z,y),e(x,z)))) = $T. % P1iYQL

F
%
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(e(x,z),e(z,y)))) = $T. % P2iYQ

($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(e(z,x),e(y,z)))) = $T. % P3iYQJ

(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(e(x,y),z),e(y,e(z,x)))) = $T. % P4iUM
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,e(x,z)),e(z,y)))) = $T. % P5iXGF

N
(
% ($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,e(y,z)),e(z,e(x,y)))) = $T. % P7iW
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(z,e(e(y,z),x)))) = $T. % P8iYRM

O
(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(z,e(e(z,y),x)))) = $T. % P9iYR
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(e(x,e(y,z)),z),e(y,x))) = $T. % PYO

M
(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(e(x,e(y,z)),y),e(z,x))) = $T. % PY
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,e(z,x)),e(z,y)))) = $T. % XGK

K
(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,z),e(e(x,z),y)))) = $T. % XH
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,z),e(e(z,x),y)))) = $T. % XHN

A

endiofilist.

lthough the second attack began later than the first, it finished earlier, no doubt due in part to the
almost double speed of a SPARCstation-10 over a SPARCstation-2.

The first attack proved successful, yielding a deduction of P3 in approximately 15,000 CPU-

o
seconds, with retention of clause (176938); the proof is pure, which required no examination, for no
ther proof was completed because of our use of demodulation; it has length 28 and level 14. The

,
w
second attack also proved successful, yielding a deduction of P3 in approximately 3320 CPU-seconds

ith retention of clause (51777); the proof is pure, which required no examination, for no other proof

fi
was completed because of our use of demodulation; it has length 18 and level 9. In other words, the

rst circle does complete.
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g With the following ordering of the thirteen shortest single axioms, we found, with the invaluable
,

P
assistance of OTTER, a (first) circle of pure proofs. The (first) circle is P3, P2, P1, P8, XHN

4, P5, PYM, XGK, PYO, P9, XHK, P7, P3.

s2.6. Review of the Attack on the Search for Pure Proof

Here we provide a somewhat brisk review of our attack on the following question; the attack
-

t
relies on a wide variety of strategies offered by McCune’s automated reasoning program OTTER, stra
egies we touch on here for researchers who may wish to apply them elsewhere. Does there exist a cir-

-
c
cle of pure proofs for the thirteen shortest single axioms (given in Section 1.2) for equivalential cal
ulus? For a circle of proofs to exist, one must find an ordering A1 through A13 of the axioms and a

e
t
set of proofs such that the first proof deduces A2 from A1, the second deduces A3 from A2, ..., and th
hirteenth deduces A1 from A13. For each of the thirteen proofs to be pure, each must rely on its

r
e
hypothesis (shortest single) axiom and its conclusion (shortest single) axiom and on none of the othe
leven (shortest single) axioms. In the context of equivalential calculus, we require the use of the infer-

ence rule condensed detachment (of Section 1.2) for deducing the steps of each proof.

To show that no circle of pure proofs exists (thus answering the question under attack in the
r

e
negative), one must prove that (in effect) all possible paths to such an arrangement are blocked. Fo
xample, because a single application of condensed detachment to two copies of the formula P4 yields

t
the formula P5, P4 must immediately precede P5. If a single application of condensed detachment to
wo copies of P5 yields P4, then no circle of pure proofs exists. On the other hand, to prove that a cir-

a
cle of pure proofs does exist (thus answering the question under attack in the affirmative), one must find
n ordering of the thirteen shortest single axioms and a corresponding set of pure proofs. Of course, as

o
observed, one of the proofs must deduce P5 from P4; any such proof will be pure, and all proofs of any

f the other eleven shortest single axioms with P4 as hypothesis will not be pure.

s
e

The first phase of our attack had the objective of determining whether other P4-P5 constraint
xisted. For each of the thirteen shortest single axioms, we instructed OTTER to apply condensed

detachment to two copies of it and cease. For this purpose, we used the following command.

assign(maxigiven,1).

For condensed detachment (in our entire study), we used hyperresolution and the following clause,

‘
where ‘‘-’’ denotes logical not, ‘‘ e ’’ denotes logical or, and the predicate P can be interpreted as
‘provable’’ and the function e as ‘‘equivalent’’.

W

-P(e(x,y)) e -P(x) e P(y).

e learned that no additional constraints of the type under discussion exist.

y
o

In the next phase, we instructed OTTER to take each of the thirteen axioms and deduce as man
f the remaining axioms as reasonably possible with what we call our original approach (Section 2.2).

t
Featured in the original approach was the use of level saturation (first come first serve or breadth first)
o direct the search for conclusions. To give the program enough room to operate in regard to the

d
weight or complexity of retained conclusions (measured solely in terms of symbol count) and yet avoid
rowning the program, we included the following commands.

a
assign(maxiweight,28).
ssign(changeilimitiafter, 50).

W

assign(newimaxiweight, 24).

ith the perhaps naive notion that the fewer deduced steps in a proof, the greater the likelihood that

c
the proof would be pure, we included the following two commands, the first designed specifically to
ause the program to seek shorter proofs of each deduced conclusion.

s
set(ancestorisubsume).
et(backisub).

The second of the two commands just given is, from a practical standpoint, required when including the

p
first. (The default in OTTER is ‘‘back subsumption is set’’.) To instruct OTTER to seek as many
roofs as the assigned CPU time and memory permit, we included the following command.

assign(maxiproofs, -1).
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Finally, because of earlier experiments in other contexts, we included one additional command (which
will merit some explanation) to increase the reasoning power of the program, the following.

assign(heat,1).

(The default value for this parameter is 1; the hot list strategy is automatically invoked by including
one or more members in the hot list.)

The preceding command, or a similar command with a value greater than 1, is included when the
a

h
researcher instructs the program to use the hot list strategy. This strategy enables one to include in

ot list clauses that are conjectured to merit repeated immediate visiting and, when the value is greater

r
than 1, even immediate revisiting. Such clauses are used to complete the application of an inference
ule, and not to initiate the application. Regarding the phrase ‘‘immediate visiting’’, when OTTER

e
i
decides to retain a conclusion (in the form of a clause), before the conclusion is placed in the databas
n list(sos), the new clause is considered with the appropriate number of members of the hot list in the

-
r
attempt to draw additional conclusions. Use of the hot list strategy almost invariably dramatically rear
anges the order in which clauses are deduced. If one wishes to add to the hot list during the run, then

t
l
one includes a command of the following type to instruct the program to also rely on the dynamic ho
ist strategy (due to McCune).

.

W

assign(dynamiciheatiweight, 8)

ith the command as given, OTTER will adjoin to the hot list each clause it decides to retain if the
-

t
clause has weight less than or equal to 8, technically, pickigiven weight, which is its weight in the con
ext of being chosen as the focus of attention; its purgeigen weight is its weight in the context of being

r
t
discarded. Very often the two weights of a clause are identical. Regarding the choice of members fo
he (initial) hot list, typically (in this study) we included the shortest single axiom under consideration

and the clause for condensed detachment, in the following manner.

list(hot).
% Following clause is for condensed detachment.

%
-P(e(x,y)) e -P(x) e P(y).

Following is hypothesis, P5
F

e
P(e(x,e(e(y,e(x,z)),e(z,y)))). % P5iXG
ndiofilist.

When a line contains a ‘‘%’’, the characters from the first ‘‘%’’ to the end of the line are treated by the
program as a comment.

The use of our original approach in the second phase of our attack yielded a substantial amount

l
of information, not all of which was welcomed. Most welcome was the discovery that various formu-
as, such as P1, P2, and P3, are indeed fertile, yielding many proofs. Even better, most of the proofs

;
f
obtained in the second phase are pure. Not so welcome, formulas such as PYO appear almost sterile
rom PYO, the original approach yielded a deduction of XGK and no other. Also not welcome, use of

i
the formula P5 yielded a deduction of P4 in but two applications of condensed detachment, correctly
mplying that the escape route (with it as hypothesis) to the deduction of another element to add to a

possible circle of pure proofs is narrow.

Intending to use various proofs found in the second phase, supplemented by some proofs found in
.

T
earlier studies in the context of seeking shorter proofs, we commenced the third phase of our attack

his phase had the objective of following the narrow (possible) escape route that would lead from P5 to
g

w
another shortest single axiom as yet not used, via a pure proof. Our approach was to use the followin

eight template (whose contained formula is in fact P4) to prevent OTTER from retaining P4.

B

weight(P(e(e(e(x,y),z),e(y,e(z,x)))),200).

ecause of being assigned such a high weight (200), P4 and clauses that are similar to it (where vari-

m
ables are treated as indistinguishable) will be purged for having a weight in excess of our chosen

axiweight. To give the program added latitude, we increased the maxiweight from 28 (which it was

f
in our original approach) to 40. The modified approach succeeded: OTTER found a pure proof of the
ormula PYM, enabling us to place PYM, so to speak, to the right of P5. We completed this phase by

,relying on proofs found in phase 2, resulting in the following partially complete circle: P3, P2, P1, P8
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XHN, P4, P5, PYM, XGK, PYO.

The apparent lack of fecundity possessed by PYO took us to the fourth phase in which we

a
replaced level saturation by the use of the ratio strategy (due to McCune), with the pickigiveniratio
ssigned to 4. The cited strategy blends (subject to the assignment) weighting and level saturation.

i
With the assignment of 4, OTTER is instructed to choose for the focus of attention to drive its reason-
ng four clauses by weight, one by first come first serve (or breadth first), then four, then one, and the

-
t
like. Our motive was to sharply perturb the search space. Therefore, we also dropped the use of ances
or subsumption and back subsumption. In addition, with an appropriate weight template, we prevented

e
a
the program from retaining the clause equivalent of XGK. Our actions produced a sharp contrast to th
pparent just-cited sparsity of proofs, for this phase yielded ten proofs of which eight are pure. >From

-
t
these proofs, we chose a pure proof of P9. Borrowing from earlier experiments, we added to our par
ially completed circle, obtaining P3, P2, P1, P8, XHN, P4, P5, PYM, XGK, PYO, P9, XHK, P7.

n
o

With a pure proof of P3 from P7, if one existed, we would have answered the specific questio
f interest in this article in the affirmative, by finding a circle of pure proofs for the thirteen shortest

t
single axioms. Because our efforts were temporarily thwarted, (as we report in Section 2.4) we applied
he methodology in an attempt to complete a second circle of pure proofs. Rather than a full account,

c
here we note that success was the result. OTTER found the needed pure proofs for the following cir-
le: P2, P1, P7, P8, XHN, P4, P5, PYM, XGK, PYO, P9, P3, XHK, P2. We note that we were

s
t
required to correct (on August 12, 1994) one flaw, the lack of purity in the proof of P2 with XHK a
he only axiom; we found the needed proof, of reported length 80 (because of using the dynamic hot

S
list strategy) and actual length 76 and level 37, in approximately 767 CPU-seconds on a

PARCstation-10, with retention of clause (22558).

Then, directly because of completing a (second) circle of pure proofs, (as reported in Section 2.5)
-

c
we renewed our effort in the context of the first possible circle. With the objective of deducing pre
isely one shortest single axiom, P3, from P7—rather than blocking the retention of one particular shor-

t
s
test single axiom—we used demodulation (Section 2.5) in place of weighting. We initiated almos
imultaneously two attacks (with demodulation). In the first attack, we assigned the maxiweight to 48

-
t
and the pickigiveniratio to 4, and we dropped the use of both ancestor subsumption and back subsump
ion. In the second, we assigned the maxiweight to 32 and used level saturation. Both attacks suc-

,
P
ceeded, and we had the desired circle of pure proofs, the following: P3, P2, P1, P8, XHN, P4, P5

YM, XGK, PYO, P9, XHK, P7, P3.

s3. Arbitrary Circles of Pure Proof

When we conveyed our results to our colleague McCune, he made a suggestion that generalized
-

o
one we had in mind. We had thought that, since we had developed an apparently powerful methodol
gy (almost totally dependent on OTTER) for finding circles of pure proofs, perhaps we could produce

.
M
a circle of pure proofs with the ordering of the shortest single axioms first given to us (see Section 1.2)

ore generally, McCune suggested that we choose an arbitrary ordering to test the methodology. Of
-

a
course, he was ruling out placing P5, so to speak, to the left of P4, for (as noted) P5 must be immedi
tely to the right of P4; P5 is yielded from P4 with the first application of condensed detachment that

t
must be made. Despite the merit of McCune’s suggestion, we were content to test the methodology on
he order in which we were introduced to the thirteen shortest single axioms, the following: P1, P2,

P3, P4, P5, P7, P8, P9, PYM, PYO, XGK, XHK, XHN, P1.

Immediately, we had a master plan: where possible, borrow from the earlier studies of the two
t

p
completed circles of pure proofs, and otherwise run new experiments utilizing the methodology tha
roduced the two circles. We searched for the proofs in the order (just cited) dictated by the intended

o
e
circle of shortest single axioms. In the following, we give proof length and level and other such data t
nable the researcher to extend our results in various ways and to provide information for evaluating

new programs and new ideas.

A glance at the original approach applied to P1 yielded a pure proof of P2; the proof has length 9
f

c
and level 6 and required approximately 36 CPU-seconds to obtain, completing with the retention o
lause (2987); the computer was a SPARCstation-2 (used on July 18, 1994). The original approach also

dyielded the desired proof of P3, using as the only axiom P2; the proof has length 10 and level 7 an



13

required approximately 40 CPU-seconds to obtain, completing with retention of clause (3301); the com-
-

o
puter was a SPARCstation-2 (used on July 18, 1994). To obtain a pure proof of P4 from P3, after vari
us failures, we succeeded by changing the maxiweight from 28 to 32, dropping the use of ancestor

f
t
subsumption and back subsumption, and using demodulation to prevent OTTER from retaining any o
he twelve possible target axioms other than P4. The proof has length 13 and level 7 and required

r
w
approximately 798 CPU-seconds to obtain, completing with retention of clause (25793); the compute

as a SPARCstation-10 (used on July 20, 1994). The proof of P5 from P4 was obtained even before

d
we applied our original approach, when we were simply having the program apply a single condensed
etachment step (to each of the thirteen axioms in turn) to see, in the context of ordering the axioms,

,
c
which moves were forced. The proof has length 1 and level 1 and required .3 CPU-seconds to obtain
ompleting with retention of clause (16); the computer was a SPARCstation-2 (used on July 18, 194).

.
W

Our search of various experiments for a proof of P7 using P5 as the only axiom yielded none
e also failed to find the desired proof when using the just-described approach that succeeded with P3

o
3
as the only axiom. Therefore, using level saturation, we assigned the maxiweight to 36 rather than t
2, reassigned the maxiweight to 20 rather than to 24 (because a maxiweight of 36 produces many

n
a
more conclusions), and, more important, instituted the use of the dynamic hot list strategy with a
ssignment of 8 to the dynamiciheatiweight. We also assigned the heat parameter to 2 rather than to

y
1
1. On a SPARCstation-10 (on July 20, 1994), OTTER obtained the desired proof in approximatel
275 CPU-seconds, completing with retention of clause (32512); the reported proof length is 46, and

d
f
the level is 23. The actual proof length is 44; the extra two copies of deduced clauses are accounte
or by being present in both the hot list, adjoined during the run, and in list(usable) after being chosen

as the focus of attention.

To obtain a proof of P8 from P7, we made the single change to our original approach of adding
e

h
the use of the dynamic hot list strategy, again with the dynamiciheatiweight assigned to 8 and with th

eat parameter assigned to 1. After all, that strategy seemed to make the difference in the preceding
d

a
sought-after proof. In approximately 65 CPU-seconds, the desired proof was obtained with (reporte
nd actual) length 12 and level 8, completing with retention of clause (5759), and the computer used

,
w
was a SPARCstation-10 (on July 19, 1994). Then, except for assigning heat to 1 (rather than to 2)

ith the same approach just described in the context of P5 as the only axiom, we turned to P8 with the
,

1
objective of deducing P9. In approximately 436 CPU-seconds on a SPARCstation-10 (on July 20
994), the desired proof was obtained, with reported and actual length 58 and level 13, completing with

8
w
retention of clause (17324). We next simply again applied the approach, but replacing the axiom of P

ith the axiom of P9 and replacing the target of P9 with the target of PYO. Still on a SPARCstation-

r
10 (on July 20, 1994), OTTER obtained the desired proof in approximately 24,495 CPU-seconds with
eported and actual length 53 and level 13, with retention of clause (145282).

d
i

Regarding our attack on finding a proof of PYM using PYO as the only axiom, we were indee
nfluenced by our early experiments that deduced XGK and no other axiom. Since purity was

p
paramount, as we did in earlier-cited experiments, we used a weight template (as the only member of a
ickiandipurge weightilist) to prevent OTTER from retaining the clause equivalent of XGK, risking

t
e
the purging of similar formulas. (We did not rely on demodulation, for, at this point in our earlies
xperimentation, we had not yet begun to use that mechanism in the context of blocking the retention

s
t
of various clauses.) We assigned maxiweight to 36, reassigned it to 24 after 70 clauses were chosen a
he focus of attention, assigned the pickigiveniratio to 4, and (for the hot list strategy) assigned the

e
d
heat parameter to 1. On the equivalent of a SPARCstation-2 (on July 18, 1994), OTTER obtained th
esired proof in approximately 4743 CPU-seconds with length 64 and level 25, with retention of clause

f
o
(94387). On the same computer and same date, we had obtained (with our original approach) a proo
f XGK from PYM in approximately 81 CPU-seconds; the proof has length 23 and level 11 and com-

pletes with retention of clause (3561).

We obtained the last three proofs with the following approach, using a SPARCstation-10 (on July
d

p
21, 1994). Rather than assigning a maxiweight, we had OTTER (in effect) begin with none an
eriodically lower it through the use of set(controlimemory), which computes lower maxiweights based

o
m
on the memory usage in relation to the assigned (by the researcher) maximem. We assigned t

aximemory a limit of 15 megabytes, deliberately squeezing the program despite the use of a com-
puter offering more than 80 megabytes. We assigned maxiproofs to 1, the pickigiveniratio to 3, the
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heat parameter to 1 (for the hot list strategy), and the dynamiciheatiweight to 8 (for the dynamic hot
list strategy).

Two lists of demodulators were included, one to block the retention of all but the target (shortest

a
single) axiom and the hypothesis (shortest single) axiom, and one to purge all conclusions that contain
s a proper subterm a term of the form e(x,x) for any term x. (In other words, with regard to the

-
m
second list of demodulators, we used a strategy we call the subtautology strategy [Wos95].) In approxi

ately 342 CPU-seconds, XHK was deduced from XGK with a proof of reported length 94 and actual

d
length 91 and level 34, with retention of clause (15803). In approximately 688 CPU-seconds, XHN was
educed from XHK with a proof of reported length 76 and actual length 72 and level 40, with retention

f
r
of clause (21506). In approximately 480 CPU-seconds, P1 was deduced from XHN with a proof o
eported length 58 and actual length 55 and level 32, with retention of clause (15009).

-g With the following ordering of the thirteen shortest single axioms—we found—with the invalu
able assistance of OTTER—a (third) circle of pure proofs. The (third) circle is P1, P2, P3, P4,

4

P5, P7, P8, P9, PYM, PYO, XGK, XHK, XHN, P1.

. Pristine Proofs

We note that, although our original goal was that of finding, if one existed, a circle of pure
.

S
proofs, far more was discovered through heavy use of McCune’s automated reasoning program OTTER

tronger than purity is the property of instance purity, which demands that, other than the hypothesis

a
and the conclusion, no deduced step be even an instance of one of the other eleven shortest single
xioms. An inspection of the proofs for each of the three circles shows that all of them are instance

pure.

Also stronger than purity is the property of subterm purity, which requires that, other than the
e

o
hypothesis and the conclusion, no deduced step even contain a proper subterm that is an instance of on

f the other eleven shortest single axioms. Except for the proof of PYM with P5 as hypothesis and the
e

t
proof of P7 with P5 as hypothesis, all of the proofs used in the three circles are subterm pure. We not
hat we did revisit the study of deducing P7 from P5 to obtain a proof that is subterm pure; in our ori-

a
ginal pure proof, proper subterms that are instances of P4 are present. On a SPARCstation-10, in
pproximately 5724 CPU-seconds, the desired proof was completed with actual length 50 and reported

e
(
length 52 (because of using the dynamic hot list strategy) and level 22, with retention of claus
84762).

g In other words, the proofs of which the three circles consist are indeed pristine, for the proofs are
e

o
instance pure and, with one exception (that of PYM from P5), subterm pure (after replacing th

riginal proof of P7 from P5).

Were one to press forward (as we did after this article was virtually complete), one might ask
e

n
about one additional property, still in the spirit of being pristine. The property in question concerns th
umber of deduced steps shared by more than one proof, where the focus is on each of the circles

n
(taken one at a time) of thirteen pure proofs. In the following way, the cited property extends the
otion of a circle of pure proofs. Indeed, for a given circle of thirteen pure proofs, each of the shortest

t
single axioms appears twice, once as a hypothesis, and once as a conclusion. If the concern is confined
o the thirteen axioms, then, because of purity, two proofs selected from one of the circles of pure

o
proofs have no intersection, or they touch at a single (formula) point, the end of one and the beginning

f the other. For example, from the first circle, the P3-P2 proof and the P7-P3 proof share P3 and
e

P
touch at no other point (with respect to the thirteen shortest single axioms). In the same context, th

3-P2 proof does not touch the P5-PYM proof. Curiosity naturally led us to broaden the scope of for-

t
mula sharing to include all formulas of equivalential calculus and to focus on the deduced steps of the
hirteen proofs for a given circle.

If one uses various Unix features, one finds that, on the surface, the following seven deduced
steps are shared by various proofs among the thirteen proofs of the first circle.
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P
P(e(e(e(x,e(y,e(z,x))),z),y)).

(e(e(e(x,y),x),y)).
.

P
P(e(e(e(x,y),y),x))

(e(e(x,y),e(y,e(e(z,x),z)))).

P
P(e(e(x,y),e(y,x))).

(e(e(x,y),e(y,x))).
.

O

P(e(x,e(e(y,z),e(y,e(z,x)))))

f these seven deduced steps (in the circle 1 proofs), 5 and 6 are identical. The first of the seven is
f

P
present in the proof of XHN from P8, and in the proof of PYM from P5. The second is in the proof o

7 from XHK, and in the proof of P3 from P7. The third occurs twice in the proof of PYM from P5,

p
because of the dynamic hot list strategy. The fourth occurs in the proof of P7 from XHK, and in the
roof of P3 from P7. The fifth (and hence the sixth which is identical) occurs in three proofs: of XHK

d
i
from P9, of P7 from XHK, and of P3 from P7. The seventh occurs in the proof of P9 from PYO, an
n the proof of P3 from P7. Therefore, only 5 steps of the 265 deduced steps (of which the thirteen

6
b
proofs of the first circle consist) are shared by more than one proof; OTTER (in effect) announces 26
ecause of a duplicate in one proof, resulting from the use of the dynamic hot list strategy.

-
f

With the aid of Unix, regarding the thirteen proofs of the second circle, one finds that, on the sur
ace, twelve deduced steps are shared by more than one proof, the following.

P
P(e(e(e(x,e(y,e(z,x))),z),y)).

(e(e(e(x,y),x),y)).
.

P
P(e(e(e(x,y),y),x))

(e(e(e(x,y),y),x)).
.

P
P(e(e(e(x,y),y),x))

(e(e(x,e(x,y)),y)).
.

P
P(e(e(x,y),e(y,x)))

(e(e(x,y),e(y,x))).
.

P
P(e(x,e(e(y,z),e(y,e(z,x)))))

(e(x,x)).
.

P
P(e(x,x))

(e(x,x)).

Of the twelve deduced steps, 3 and 4 and 5 are identical, as are 7 and 8, and are 10 and 11 and 12
,

a
identical. Therefore, only seven distinct steps occur. The first occurs in the proof of XHN from P8
nd also in the proof of PYM from P5. The second occurs twice in the proof of P2 from XHK, because

e
p
of the dynamic hot list strategy. The third (and fourth and fifth which are identical) occur twice in th
roof of PYM from P5, and twice in the proof of P2 from XHK; duplicate deduced steps can be present

,
a
in a proof when the dynamic hot list strategy is used. The sixth occurs in the proof of P9 from PYO
nd occurs in the proof of P2 from XHK. The seventh (and hence eighth) occurs in the proof of P8

.
T
from P7, and occurs twice in the proof of P2 from XHK (because of the dynamic hot list strategy)

he ninth occurs in the proof of P8 from P7, and occurs in the proof of P9 from PYO. The tenth (and

X
hence eleventh and twelfth) occurs in three proofs: P9 from PYO, XHK from P3, and twice in P2 from

HK (because of the dynamic hot list strategy). Therefore, only 6 steps of the 284 deduced steps (of

e
which the thirteen proofs of the second circle consist) are shared by more than one proof; OTTER (in
ffect) announces 289, because of the dynamic hot list strategy.

n
d

As for the third circle of pure proofs, they behave far less well in the sense that fifty-seve
educed steps are shared by more than one proof. Because of using the dynamic hot list strategy,

d
which can cause a deduced step to appear more than once in a proof, OTTER announces a total of 517
educed steps; actually, the number is 505. With respect to the property under discussion, which one

-
t
might think of as a proof intersection property, the thirteen proofs of the third circle are far from pris
ine.

5. Persuasions and Challenges

Our persuasions (or beliefs) naturally lead us to offer challenges. We have always held that an
rattempt to meet a challenge is often met with intrigue and with the eventual advance of some type fo
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the field. We are so attracted to this position that we sometimes offer to ourselves a challenge—in the
e

a
case of this article—the challenge of finding a circle of pure proofs for the thirteen shortest singl
xioms of equivalential calculus.

The significance of the material that has resulted and that we have presented here rests with three
s

o
factors. First, the pristine quality of the proofs that OTTER has produced for each of the three circle
f pure proofs offers charm and even beauty, from the viewpoint of mathematics and logic (see the bul-

r
leted items in Sections 2.4, 2.5, 3, and 4). Second, the reported successes powerfully illustrate how
esearch is facilitated when one’s assistant is McCune’s automated reasoning program OTTER, sharply

t
t
reducing real time, CPU time, and the likelihood of error. Third, the methodology developed to mee
he challenge offers techniques for attacking a wide variety of questions and problems from areas hav-

ing no relation to equivalential calculus.

Regarding concrete challenges, one might attempt to find a subterm-pure proof of PYM from P5
e

o
to replace the corresponding proof that is not subterm pure and that is used in the first and second circl
f proofs; our attempts have failed so far. One might attempt to find a circle of pure proofs such that

p
no deduced step is common to two or more proofs; we have not studied this problem. Without losing
urity, one might attempt to find replacement proofs for each of the given three circles of pure proofs,

d
where the goal is to decrease their length, individually and collectively. Instead, one might seek a
ifferent circle of pure proofs whose collective proof length is ‘‘small’’.

6. Finale and Future Research

In this article, we have presented a methodology for attacking the question of finding a circle of
t

t
pure proofs for the thirteen shortest single axioms for equivalential calculus. For an example of wha
he methodology has produced, we consider the following (circle) ordering of the thirteen shortest single

,
P
axioms, an ordering that is the first we were given in the late 1970s. The ordering is P1, P2, P3, P4

5, P7, P8, P9, PYM, PYO, XGK, XHK, XHN, P1. With indispensable aid from McCune’s automated
y

a
reasoning program OTTER, thirteen proofs were produced: the first deducing P2 from P1 (as the onl
xiom and with condensed detachment as the inference rule), the second deducing P3 from P2 (as the

,
O
only axiom), ..., and the thirteenth deducing P1 from XHN (as the only axiom). In other words

TTER produced the needed proofs for the circle under study. Regarding purity, each of the thirteen
n

n
proofs relies on its hypothesis (shortest single) axiom and its conclusion (shortest single) axiom and o
one of the other eleven shortest single axioms. (We note that, although purity places no restrictions on

e
a
proper instances and on proper subterms of any of the other eleven axioms, the research reported her
lso addresses those aspects.) For one indication of the difficulty of obtaining the desired pure proofs, to

e
d
obtain any proof with XHN as hypothesis can prove most challenging. For a second indication of th
ifficulty, many approaches to deducing one shortest single axiom from another result in the completion

of a proof that is not pure, that relies on the use of a third shortest single axiom.

As but one indication of the power offered by OTTER and by some of the strategies we used,

t
which we shall touch upon almost immediately, the entire study (with the exception of the smallest por-
ion borrowed from earlier research and the added experiment on August 12, 1994, that we reported in

.
I
Section 2.4) was completed in three days, starting on July 18, 1994, and concluding on July 21, 1994
ndeed, in contrast to so much of research, the preparation of this article required far more time and,

r
more significant, far more effort than did the study itself. Moreover, we note that the CPU time
equired to complete the circle of proofs was dramatically less than we would have estimated, given the

-
c
complexity of the problem. In particular, only 98,000 CPU-seconds were needed to find the (first) cir
le of pure proofs. Finally, we note that we found three circles of pure proofs for the thirteen shortest

i
single axioms, and, though not our original goal, the proofs are also instance pure, free of proper
nstances of the axioms whose use is to be avoided. Further, if none of the deduced steps of a proof

.
W
contains as a proper subterm an instance of an unwanted axiom, we say the proof is subterm pure

ith one exception, with OTTER, we were able to find subterm pure proofs. Unaided, a researcher
r

s
would find it at least troublesome and at worst most difficult to test proofs for instance purity and fo
ubterm purity, again illustrating the value of reliance on an automated reasoning program.

o
M

Regarding strategy, both the hot list strategy and the dynamic hot list strategy (the latter due t
cCune) played a key role. The hot list strategy enables the researcher to designate various input



c

17

lauses as meriting repeated immediate visiting, and even immediate revisiting, to complete the applica-
,

c
tions of the chosen inference rules, rather than to initiate such applications. One might, for example
onjecture that an added axiom (such as the cube of x is x) should be immediately used with each new

,
t
clause that is retained, even before the new clause is placed in, say, list(sos). If that is the conjecture
hen one places the corresponding clause in list(hot). The heat parameter governs the level (or depth)

p
of the use of the hot list strategy. The dynamic hot list strategy enables the researcher to instruct the
rogram to adjoin during a run new members to the hot list. The parameter dynamiciheatiweight pro-

vides the threshold for deciding which clauses to adjoin during the run.

In addition, some experiments relied on the use of level saturation (breadth first or first come first

t
serve) to direct the choice of where next to focus the program’s attention, and some used the ratio stra-
egy (the latter due to McCune). Regarding the ratio strategy, its actions are governed by the parameter

t
pickigiveniratio. If, for example, this parameter is assigned the value 4, then OTTER will choose (as
he focus of attention) four clauses by conclusion complexity, one by first come first serve, then four,

p
then one, and the like. We also made occasional use of the subtautology strategy, which instructs the
rogram to immediately purge on generation clauses containing terms of the form e(x,x), where the

e
m
function e (in this study) denotes equivalent and where x is a variable that, because demodulation is th

echanism that is used, captures terms.

Among the other techniques on which the methodology rests, two merit mention. First, to
a

s
prevent OTTER from retaining the clause equivalent of some unwanted axiom, we used weighting (
trategy formulated by Overbeek) by including its pattern with an assignment of complexity that

f
exceeds the chosen maximum weight allowed. This action has the risk of purging formulas that differ
rom the unwanted formula only in the choice of particular variables. This risk exists because, with

s
f
OTTER, a weight template treats all of its variables as indistinguishable; nevertheless, this treatment i
ortunate as shown in this article. Second, when we wished to block consideration of all but the

hypothesis axiom and its target, we used demodulation (see Section 2.5) in a rather complex manner.

For future research, we suggest the study of other circles of pure proofs. We suggest that this
s

f
avenue is of interest in contexts totally unrelated to equivalential calculus, as well as other circle
ocusing on the thirteen shortest single axioms. For example, perhaps the question of whether a circle

-
g
of pure proofs exists for the three Moufang identities is still open. For related research, McCune sug
ests seeking an algorithm for transforming proofs that are not pure into proofs that are. For distantly

e
p
related research, we suggest a study to determine why the methodology used to obtain the results w
resent here seems to promote purity of proof. Of a different nature entirely, we suggest for research a

study of shortest proofs for various pairs of shortest single axioms.

For the researcher interested in practical applications, we suggest extracting from the methodol-

d
ogy various techniques that are of general use. For example, one might apply the VAR option (with
emodulation) of Section 2.5 to design an efficient circuit that avoids certain undesirable subcircuits.

For another example, one might apply some of the techniques to algorithm synthesis.

For researchers interested in attacking problems whose solution might directly advance the field
-

g
of automated reasoning, the following seem most appropriate. Of a global nature, for research we sug
est a study of metarules for wisely choosing from among the options offered by OTTER, especially

d
i
choosing from among the strategies this program offers. (Although each of the strategies is indee
ndependent of any reasoning program, OTTER is, from what we know, currently the only program that

l
l
offers the entire menu.) Equally complicated is the research topic that focuses on what we call globa
inearity, in contrast to local linearity. The latter concerns the drawing of conclusions at a more or less

p
constant rate per CPU-second. The former concerns choosing as the focus of attention (to drive the
rogram’s reasoning) conclusions at a more or less constant rate. McCune’s use of discrimination trees

r
a
enables OTTER to perform at nearly local linear speed. As yet, we only have a faint notion fo
ddressing the problem of global linearity. Were a program to offer global linearity comparable to

d
r
OTTER’s offering of local linearity, (we conjecture that) a most significant increase in power woul
esult.

We close by noting that the data presented in this article strongly suggests that obtaining the
.

C
answers to deep questions and the solution to hard problems virtually require the use of strategy

learly (we believe), no single strategy suffices, nor will such an all-encompassing strategy ever exist.
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owever, the advances in automated reasoning witnessed in just the past five years are far beyond what
t

o
we would have predicted. Indeed, we feel certain that the results presented here would have been ou
f reach but five years ago, and, further, these results would have been difficult or impossible to obtain

without McCune’s program OTTER.

Remark. Although during the entire study reported here we had totally forgotten about some

w
earlier joint research with our colleague McCune [McCune92], we note that in that paper we presented

hat might be called a near circle of proofs; purity had not yet been coined and was, almost certainly,
lacking in the vast majority of the proofs.
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Appendix

To aid and stimulate research, we present here a sample input file and the proofs of which the
e

l
first circle consists. When a line contains a ‘‘%’’, the characters from the first ‘‘%’’ to the end of th
ine are treated by the program as a comment. In the following, ‘‘-’’ denotes logical not and ‘‘ e ’’

,
o
denotes logical or. In the proofs, two copies of an input clause denotes its presence in two input lists

ne of which is the hot list. Also, as an example, [hyper,16,17,18] says that clause (16) is the nucleus,
clause (17) is unified with the first literal of (16), and clause (18) is unified with the second literal.

A Sample Input File

a
set(hyperires).
ssign(maxiweight,32).

.
a
% assign(maxigiven,1)
ssign(maxiproofs,-1).

%
clear(printikept).

set(ancestorisubsume).

%
% set(backisub).

assign(maxiseconds,1200).

a
assign(maximem,80000).
ssign(report,1800).

.
%
% assign(maxidistinctivars,4)

assign(pickigiveniratio,4).

a
assign(changeilimitiafter,50).
ssign(newimaxiweight,24).

%
assign(heat,1).

assign(dynamiciheatiweight,8).

s
set(orderihistory).
et(inputisosifirst).

%

set(sosiqueue).

weightilist(pickiandipurge).
.

%
% Following are to block all but P3 and P7

weight(P(e(e(x,y),e(e(z,y),e(x,z)))),200). % P1iYQL
F

%
% weight(P(e(e(x,y),e(e(x,z),e(z,y)))),200). % P2iYQ

weight(P(e(e(e(x,y),z),e(y,e(z,x)))),200). % P4iUM
F

%
% weight(P(e(x,e(e(y,e(x,z)),e(z,y)))),200). % P5iXG

weight(P(e(e(x,y),e(z,e(e(y,z),x)))),200). % P8iYRM
O

%
% weight(P(e(e(x,y),e(z,e(e(z,y),x)))),200). % P9iYR

weight(P(e(e(e(x,e(y,z)),z),e(y,x))),200). % PYO
M

%
% weight(P(e(e(e(x,e(y,z)),y),e(z,x))),200). % PY

weight(P(e(x,e(e(y,e(z,x)),e(z,y)))),200). % XGK
K

%
% weight(P(e(x,e(e(y,z),e(e(x,z),y)))),200). % XH

weight(P(e(x,e(e(y,z),e(e(z,x),y)))),200). % XHN

%
% Following is for tail strategy.

weight(e($(1),$(2)),1).

l

% endiofilist.

ist(usable).
% Following clause is for condensed detachment.

e
-P(e(x,y)) e -P(x) e P(y).
ndiofilist.

list(sos).
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.
%
% Following are all of the shortest single axioms for equiv calc

P(e(e(x,y),e(e(z,y),e(x,z)))). % P1iYQL
F

%
% P(e(e(x,y),e(e(x,z),e(z,y)))). % P2iYQ

P(e(e(x,y),e(e(z,x),e(y,z)))). % P3iYQJ

%
% P(e(e(e(x,y),z),e(y,e(z,x)))). % P4iUM

P(e(x,e(e(y,e(x,z)),e(z,y)))). % P5iXGF

%
P(e(e(x,e(y,z)),e(z,e(x,y)))). % P7iWN

P(e(e(x,y),e(z,e(e(y,z),x)))). % P8iYRM
O

%
% P(e(e(x,y),e(z,e(e(z,y),x)))). % P9iYR

P(e(e(e(x,e(y,z)),z),e(y,x))). % PYO
M

%
% P(e(e(e(x,e(y,z)),y),e(z,x))). % PY

P(e(x,e(e(y,e(z,x)),e(z,y)))). % XGK
K

%
% P(e(x,e(e(y,z),e(e(x,z),y)))). % XH

P(e(x,e(e(y,z),e(e(z,x),y)))). % XHN

l

endiofilist.

ist(passive).
% Here are negations of the thirteen shortest single

-
% axioms for equivalential calculus.
P(e(e(a,b),e(e(c,b),e(a,c)))) e $ANSWER(P1iYQL).

-
-P(e(e(a,b),e(e(a,c),e(c,b)))) e $ANSWER(P2iYQF).
P(e(e(a,b),e(e(c,a),e(b,c)))) e $ANSWER(P3iYQJ).

-
-P(e(e(e(a,b),c),e(b,e(c,a)))) e $ANSWER(P4iUM).
P(e(a,e(e(b,e(a,c)),e(c,b)))) e $ANSWER(P5iXGF).

-
-P(e(e(a,e(b,c)),e(c,e(a,b)))) e $ANSWER(P7iWN).
P(e(e(a,b),e(c,e(e(b,c),a)))) e $ANSWER(P8iYRM).

-
-P(e(e(a,b),e(c,e(e(c,b),a)))) e $ANSWER(P9iYRO).
P(e(e(e(a,e(b,c)),c),e(b,a))) e $ANSWER(PYO).

.
-
-P(e(e(e(a,e(b,c)),b),e(c,a))) e $ANSWER(PYM)
P(e(a,e(e(b,e(c,a)),e(c,b)))) e $ANSWER(XGK).

.
-
-P(e(a,e(e(b,c),e(e(a,c),b)))) e $ANSWER(XHK)
P(e(a,e(e(b,c),e(e(c,a),b)))) e $ANSWER(XHN).

%

endiofilist.

Following blocks unwanted formulas of EC, excluding P7 and P3.

l
makeievaluable(i&i, $AND(i,i)).
ist(demodulators).

($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(e(z,y),e(x,z)))) = $T. % P1iYQL
F

%
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(e(x,z),e(z,y)))) = $T. % P2iYQ

($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(e(z,x),e(y,z)))) = $T. % P3iYQJ

(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(e(x,y),z),e(y,e(z,x)))) = $T. % P4iUM
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,e(x,z)),e(z,y)))) = $T. % P5iXGF

N
(
% ($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,e(y,z)),e(z,e(x,y)))) = $T. % P7iW
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(z,e(e(y,z),x)))) = $T. % P8iYRM

O
(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(x,y),e(z,e(e(z,y),x)))) = $T. % P9iYR
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(e(x,e(y,z)),z),e(y,x))) = $T. % PYO

M
(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(e(e(x,e(y,z)),y),e(z,x))) = $T. % PY
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,e(z,x)),e(z,y)))) = $T. % XGK

K
(
($VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,z),e(e(x,z),y)))) = $T. % XH
$VAR(x) & $VAR(y) & $VAR(z)) -> P(e(x,e(e(y,z),e(e(z,x),y)))) = $T. % XHN

l

endiofilist.

ist(hot).
% Following clause is for condensed detachment.
-P(e(x,y)) e -P(x) e P(y).
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P
% Following is hypothesis, P7

(e(e(x,e(y,z)),e(z,e(x,y)))). % P7iWN
endiofilist.

Thirteen Proofs for the First Circle, in Order

.
L
----> UNIT CONFLICT at 100.56 sec ----> 6583 [binary,6582.1,4.1] $ANSWER(P2iYQF)

ength of proof is 8. Level of proof is 6.

1
---------------- PROOF ----------------

[] -P(e(x,y)) e -P(x) e P(y).
.

4
2 [] P(e(e(x,y),e(e(z,x),e(y,z))))

[] -P(e(e(a,b),e(e(a,c),e(c,b)))) e $ANSWER(P2iYQF).

1
16 [] -P(e(x,y)) e -P(x) e P(y).
7 [] P(e(e(x,y),e(e(z,x),e(y,z)))).

1
----------------------------
8 [hyper,1,2,2] P(e(e(x,e(y,z)),e(e(e(u,y),e(z,u)),x))).

.
2
19 (heat=1) [hyper,16,17,18] P(e(e(x,e(y,e(z,u))),e(e(e(e(v,z),e(u,v)),y),x)))
4 [hyper,1,19,19] P(e(e(e(e(x,y),e(z,x)),e(e(e(u,v),e(w,u)),v6)),e(e(y,z),e(v6,e(v,w))))).

2
26 [hyper,1,2,19] P(e(e(x,e(y,e(z,e(u,v)))),e(e(e(e(e(w,u),e(v,w)),z),y),x))).
9 (heat=1) [hyper,16,24,17] P(e(e(x,y),e(e(e(y,z),e(x,u)),e(u,z)))).

.
1
152 [hyper,1,26,29] P(e(e(e(e(e(x,y),e(z,x)),u),e(e(v,e(y,z)),e(w,u))),e(w,v)))
59 [hyper,1,2,29] P(e(e(x,e(y,z)),e(e(e(e(z,u),e(y,v)),e(v,u)),x))).

6
6582 [hyper,1,152,159] P(e(e(x,y),e(e(x,z),e(z,y)))).
583 [binary,6582.1,4.1] $ANSWER(P2iYQF).

.
L
----> UNIT CONFLICT at 13.17 sec ----> 1560 [binary,1559.1,3.1] $ANSWER(P1iYQL)

ength of proof is 7. Level of proof is 5.

1
---------------- PROOF ----------------

[] -P(e(x,y)) e -P(x) e P(y).
.

3
2 [] P(e(e(x,y),e(e(x,z),e(z,y))))

[] -P(e(e(a,b),e(e(c,b),e(a,c)))) e $ANSWER(P1iYQL).

1
16 [] -P(e(x,y)) e -P(x) e P(y).
7 [] P(e(e(x,y),e(e(x,z),e(z,y)))).

1
----------------------------
8 [hyper,1,2,2] P(e(e(e(x,y),z),e(z,e(e(x,u),e(u,y))))).

.
2
20 (heat=1) [hyper,16,18,17] P(e(e(e(x,y),e(y,z)),e(e(x,u),e(u,z))))
1 [hyper,1,18,18] P(e(e(x,e(e(y,z),e(z,u))),e(e(e(y,u),v),e(v,x)))).

5
52 [hyper,1,20,21] P(e(e(x,y),e(y,e(e(z,z),x)))).
6 [hyper,1,21,18] P(e(e(e(x,e(y,z)),u),e(u,e(e(v,z),e(x,e(v,y)))))).

.
1
1502 [hyper,1,56,52] P(e(e(e(x,y),e(e(z,z),u)),e(e(v,y),e(u,e(v,x)))))
559 (heat=1) [hyper,16,1502,17] P(e(e(x,y),e(e(z,y),e(x,z)))).

-

1560 [binary,1559.1,3.1] $ANSWER(P1iYQL).

---> UNIT CONFLICT at 1208.41 sec ----> 27183 [binary,27182.1,9.1] $ANSWER(P8iYRM).

-
Length of proof is 10. Level of proof is 6.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(e(x,y),e(e(z,y),e(x,z)))).
.

1
9 [] -P(e(e(a,b),e(c,e(e(b,c),a)))) e $ANSWER(P8iYRM)

6 [] -P(e(x,y)) e -P(x) e P(y).
.

-
17 [] P(e(e(x,y),e(e(z,y),e(x,z))))
---------------------------

18 [hyper,1,2,2] P(e(e(x,e(e(y,z),e(u,y))),e(e(u,z),x))).
.

2
19 (heat=1) [hyper,16,17,18] P(e(e(x,e(e(y,z),u)),e(e(u,e(e(v,z),e(y,v))),x)))
1 [hyper,1,18,18] P(e(e(x,y),e(e(x,z),e(e(u,y),e(z,u))))).
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.
3
26 [hyper,1,2,19] P(e(e(x,e(e(y,e(e(z,u),e(v,z))),w)),e(e(w,e(e(v,u),y)),x)))
7 [hyper,1,19,21] P(e(e(e(e(x,y),e(z,x)),e(e(u,z),e(v,u))),e(v,y))).

4
38 [hyper,1,18,21] P(e(e(e(x,y),z),e(e(z,x),y))).
22 [hyper,1,26,38] P(e(e(x,e(e(y,z),u)),e(e(e(e(v,z),e(y,v)),x),u))).

.
4
430 [hyper,1,38,37] P(e(e(e(x,y),e(e(z,y),e(u,z))),e(e(v,u),e(x,v))))
53 (heat=1) [hyper,16,422,17] P(e(e(e(e(x,y),e(z,x)),e(u,y)),e(u,z))).

2
27182 [hyper,1,453,430] P(e(e(x,y),e(z,e(e(y,z),x)))).
7183 [binary,27182.1,9.1] $ANSWER(P8iYRM).

.
L
----> UNIT CONFLICT at 32.77 sec ----> 1930 [binary,1929.1,15.1] $ANSWER(XHN)

ength of proof is 19. Level of proof is 10.

1
---------------- PROOF ----------------

[] -P(e(x,y)) e -P(x) e P(y).
.

1
2 [] P(e(e(x,y),e(z,e(e(y,z),x))))
5 [] -P(e(a,e(e(b,c),e(e(c,a),b)))) e $ANSWER(XHN).

1
16 [] -P(e(x,y)) e -P(x) e P(y).

7 [] P(e(e(x,y),e(z,e(e(y,z),x)))).

1
----------------------------
8 [hyper,1,2,2] P(e(x,e(e(e(y,e(e(z,y),u)),x),e(u,z)))).

.
2
20 (heat=1) [hyper,16,18,17] P(e(e(e(x,e(e(y,x),z)),e(e(u,v),e(w,e(e(v,w),u)))),e(z,y)))
1 [hyper,1,18,18] P(e(e(e(x,e(e(y,x),z)),e(u,e(e(e(v,e(e(w,v),v6)),u),e(v6,w)))),e(z,y))).

2
22 (heat=1) [hyper,16,21,17] P(e(e(e(x,e(y,e(z,x))),z),y)).
6 [hyper,1,20,20] P(e(e(x,e(e(e(y,e(e(e(z,e(e(u,z),v)),y),e(v,u))),x),w)),w)).

.
3
29 (heat=1) [hyper,16,26,17] P(e(e(x,e(e(y,e(e(e(z,e(e(u,z),v)),y),e(v,u))),e(w,x))),w))
4 [hyper,1,2,22] P(e(x,e(e(y,x),e(e(z,e(y,e(u,z))),u)))).

.
6
37 (heat=1) [hyper,16,34,17] P(e(e(x,e(e(y,z),e(u,e(e(z,u),y)))),e(e(v,e(x,e(w,v))),w)))
2 [hyper,1,34,34] P(e(e(x,e(y,e(e(z,y),e(e(u,e(z,e(v,u))),v)))),e(e(w,e(x,e(v6,w))),v6))).

6
64 [hyper,1,29,34] P(e(x,e(y,e(e(e(e(z,e(e(u,z),v)),y),e(v,u)),x)))).
6 [hyper,1,34,22] P(e(e(x,e(e(e(y,e(z,e(u,y))),u),z)),e(e(v,e(x,e(w,v))),w))).

.
7
68 (heat=1) [hyper,16,62,17] P(e(e(x,e(e(e(e(y,e(z,e(u,y))),u),z),e(v,x))),v))
0 (heat=1) [hyper,16,17,64] P(e(x,e(e(e(y,e(e(e(e(z,e(e(u,z),v)),y),e(v,u)),w)),x),w))).

1
135 [hyper,1,68,34] P(e(x,e(e(e(y,e(z,e(u,y))),u),e(z,x)))).
43 [hyper,1,66,70] P(e(e(x,e(e(e(y,e(e(z,y),u)),e(u,z)),e(v,x))),v)).

.
3
301 [hyper,1,37,135] P(e(e(x,e(e(e(y,z),e(u,e(z,e(y,u)))),e(v,x))),v))
30 [hyper,1,143,64] P(e(e(e(x,e(e(y,x),z)),e(e(u,e(e(v,u),w)),e(w,v))),e(z,y))).

.
1
1905 [hyper,1,330,301] P(e(e(e(e(x,e(e(y,x),z)),e(z,y)),e(u,e(v,e(w,u)))),e(w,v)))
929 (heat=1) [hyper,16,1905,17] P(e(x,e(e(y,z),e(e(z,x),y)))).

-

1930 [binary,1929.1,15.1] $ANSWER(XHN).

---> UNIT CONFLICT at 770.69 sec ----> 9778 [binary,9777.1,6.1] $ANSWER(P4iUM).

-
Length of proof is 20. Level of proof is 14.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(x,e(e(y,z),e(e(z,x),y)))).
.

1
6 [] -P(e(e(e(a,b),c),e(b,e(c,a)))) e $ANSWER(P4iUM)

6 [] -P(e(x,y)) e -P(x) e P(y).
.

-
17 [] P(e(x,e(e(y,z),e(e(z,x),y))))
---------------------------

18 [hyper,1,2,2] P(e(e(x,y),e(e(y,e(z,e(e(u,v),e(e(v,z),u)))),x))).
.

2
20 (heat=1) [hyper,16,18,17] P(e(e(e(e(x,y),e(e(y,z),x)),e(u,e(e(v,w),e(e(w,u),v)))),z))
1 [hyper,1,18,18] P(e(e(e(e(x,e(y,e(e(z,u),e(e(u,y),z)))),v),e(w,e(e(v6,v7),e(e(v7,w),v6)))),e(v,x))).

.24 [hyper,1,18,20] P(e(e(x,e(y,e(e(z,u),e(e(u,y),z)))),e(e(e(v,w),e(e(w,x),v)),e(v6,e(e(v7,v8),e(e(v8,v6),v7))))))
27 [hyper,1,21,20] P(e(e(x,e(e(y,z),e(e(z,x),y))),e(e(e(u,v),e(e(v,e(w,e(v6,e(e(v7,v8),e(e(v8,v6),v7))))),u)),w))).

3
30 (heat=1) [hyper,16,27,17] P(e(e(e(x,y),e(e(y,e(z,e(u,e(e(v,w),e(e(w,u),v))))),x)),z)).
7 [hyper,1,2,30] P(e(e(x,y),e(e(y,e(e(e(z,u),e(e(u,e(v,e(w,e(e(v6,v7),e(e(v7,w),v6))))),z)),v)),x))).
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2 (heat=1) [hyper,16,37,17] P(e(e(e(e(x,y),e(e(y,z),x)),e(e(e(u,v),e(e(v,e(w,e(v6,e(e(v7,v8),

5
e(e(v8,v6),v7))))),u)),w)),z)).

8 [hyper,1,20,42] P(e(e(x,e(e(x,y),e(z,e(e(u,v),e(e(v,z),u))))),e(y,e(w,e(e(v6,v7),e(e(v7,w),v6)))))).

7
69 [hyper,1,58,24] P(e(e(e(e(x,e(e(y,z),e(e(z,x),y))),u),u),e(v,e(e(w,v6),e(e(v6,v),w))))).
0 (heat=1) [hyper,16,17,69] P(e(e(x,y),e(e(y,e(e(e(e(z,e(e(u,v),e(e(v,z),u))),w),w),

7
e(v6,e(e(v7,v8),e(e(v8,v6),v7))))),x))).

7 [hyper,1,24,69] P(e(e(e(x,y),e(e(y,e(e(e(z,e(e(u,v),e(e(v,z),u))),w),w)),x)),e(v6,e(e(v7,v8),e(e(v8,v6),v7))))).

1
78 [hyper,1,30,70] P(e(e(e(x,e(e(y,z),e(e(z,x),y))),u),u)).
02 [hyper,1,21,77] P(e(e(e(e(x,e(e(y,z),e(e(z,x),y))),e(e(e(u,e(e(v,w),e(e(w,u),v))),v6),v6)),v7),v7)).

103 (heat=1) [hyper,16,102,17] P(e(e(x,y),e(e(y,e(e(z,e(e(u,v),e(e(v,z),u))),e(e(e(w,e(e(v6,v7),
e(e(v7,w),v6))),v8),v8))),x))).

105 [hyper,1,42,78] P(e(e(e(e(x,y),z),e(y,e(u,e(e(v,w),e(e(w,u),v))))),e(z,x))).

2
202 [hyper,1,20,105] P(e(e(x,e(e(y,z),e(e(z,e(u,x)),y))),u)).
04 [hyper,1,105,103] P(e(e(e(e(e(x,e(e(y,z),e(e(z,x),y))),u),u),v),e(e(w,v6),e(e(v6,v),w)))).

.
9
871 [hyper,1,105,204] P(e(x,e(e(y,e(e(z,u),e(e(u,y),z))),e(e(e(v,w),e(e(w,e(v6,x)),v)),v6))))
777 [hyper,1,202,871] P(e(e(e(x,y),z),e(y,e(z,x)))).

-

9778 [binary,9777.1,6.1] $ANSWER(P4iUM).

---> UNIT CONFLICT at 0.31 sec ----> 19 [binary,18.1,7.1] $ANSWER(P5iXGF).

-
Length of proof is 1. Level of proof is 1.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(e(e(x,y),z),e(y,e(z,x)))).
.

-
7 [] -P(e(a,e(e(b,e(a,c)),e(c,b)))) e $ANSWER(P5iXGF)
---------------------------

18 [hyper,1,2,2] P(e(x,e(e(y,e(x,z)),e(z,y)))).

-

19 [binary,18.1,7.1] $ANSWER(P5iXGF).

---> UNIT CONFLICT at 350.31 sec ----> 10267 [binary,10266.1,12.1] $ANSWER(PYM).

-
Length of proof is 32. Level of proof is 14.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(x,e(e(y,e(x,z)),e(z,y)))).
.

1
12 [] -P(e(e(e(a,e(b,c)),b),e(c,a))) e $ANSWER(PYM)

6 [] -P(e(x,y)) e -P(x) e P(y).
.

-
17 [] P(e(x,e(e(y,e(x,z)),e(z,y))))
---------------------------

18 [hyper,1,2,2] P(e(e(x,e(e(y,e(e(z,e(y,u)),e(u,z))),v)),e(v,x))).
.

2
19 (heat=1) [hyper,16,17,18] P(e(e(x,e(e(e(y,e(e(z,e(e(u,e(z,v)),e(v,u))),w)),e(w,y)),v6)),e(v6,x)))
0 [hyper,1,18,18] P(e(x,e(x,e(e(y,e(e(z,e(y,u)),e(u,z))),e(v,e(e(w,e(v,v6)),e(v6,w))))))).

,21 (heat=1) [hyper,16,17,20] P(e(e(x,e(e(y,e(y,e(e(z,e(e(u,e(z,v)),e(v,u))),e(w,e(e(v6,e(w,v7))
e(v7,v6)))))),v8)),e(v8,x))).

26 [hyper,1,19,2] P(e(e(x,e(x,e(e(y,e(e(z,e(y,u)),e(u,z))),v))),v)).
.29 [hyper,1,18,20] P(e(e(e(x,e(e(y,e(x,z)),e(z,y))),e(u,e(e(v,e(u,w)),e(w,v)))),e(v6,e(e(v7,e(v6,v8)),e(v8,v7)))))

30 [hyper,1,21,2] P(e(e(e(e(x,e(e(y,e(x,z)),e(z,y))),e(u,e(e(v,e(u,w)),e(w,v)))),v6),v6)).
.32 (heat=1) [hyper,16,30,17] P(e(e(x,e(e(e(y,e(e(z,e(y,u)),e(u,z))),e(v,e(e(w,e(v,v6)),e(v6,w)))),v7)),e(v7,x)))

35 [hyper,1,18,26] P(e(x,e(y,e(y,e(e(z,e(e(u,e(z,v)),e(v,u))),e(e(w,e(e(v6,e(w,v7)),e(v7,v6))),x)))))).
36 (heat=1) [hyper,16,17,35] P(e(e(x,e(e(y,e(z,e(z,e(e(u,e(e(v,e(u,w)),e(w,v))),

e(e(v6,e(e(v7,e(v6,v8)),e(v8,v7))),y))))),v9)),e(v9,x))).
.

5
48 [hyper,1,26,29] P(e(e(e(e(x,e(y,z)),e(z,x)),e(u,e(e(v,e(u,w)),e(w,v)))),y))
0 [hyper,1,18,30] P(e(x,e(e(e(y,e(e(z,e(y,u)),e(u,z))),e(v,e(e(w,e(v,v6)),e(v6,w)))),

6
e(e(v7,e(e(v8,e(v7,v9)),e(v9,v8))),x)))).

0 [hyper,1,18,35] P(e(e(e(x,e(e(y,e(x,z)),e(z,y))),e(e(u,e(e(v,e(u,w)),e(w,v))),

6
e(e(v6,e(e(v7,e(v6,v8)),e(v8,v7))),v9))),v9)).

2 [hyper,1,36,2] P(e(e(e(x,e(e(y,e(e(z,e(y,u)),e(u,z))),e(e(v,e(e(w,e(v,v6)),e(v6,w))),v7))),v7),x)).
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,63 (heat=1) [hyper,16,17,62] P(e(e(x,e(e(e(e(y,e(e(z,e(e(u,e(z,v)),e(v,u))),e(e(w
e(e(v6,e(w,v7)),e(v7,v6))),v8))),v8),y),v9)),e(v9,x))).

1
95 [hyper,1,32,50] P(e(e(e(x,e(e(y,e(x,z)),e(z,y))),u),u)).
04 [hyper,1,60,18] P(e(e(e(x,e(e(y,e(z,e(e(u,e(z,v)),e(v,u)))),w)),e(w,x)),y)).

1
124 [hyper,1,62,48] P(e(e(x,e(e(e(e(y,z),u),e(z,e(u,y))),v)),e(v,x))).
26 (heat=1) [hyper,16,124,17] P(e(e(e(x,y),e(e(y,z),x)),z)).

.127 [hyper,1,63,2] P(e(e(x,e(e(e(y,x),e(e(z,e(e(u,e(z,v)),e(v,u))),e(e(w,e(e(v6,e(w,v7)),e(v7,v6))),v8))),v8)),y))
143 [hyper,1,95,126] P(e(e(e(x,y),y),x)).

.
1
148 [hyper,1,2,126] P(e(e(x,e(e(e(e(y,z),e(e(z,u),y)),u),v)),e(v,x)))
54 [hyper,1,104,127] P(e(e(e(e(e(x,y),z),e(y,e(z,x))),u),u)).

.
2
177 [hyper,1,124,143] P(e(x,e(e(e(e(e(e(y,z),u),e(z,e(u,y))),x),v),v)))
22 [hyper,1,60,154] P(e(e(e(x,y),y),x)).

.
3
230 (heat=1) [hyper,16,17,222] P(e(e(x,e(e(e(e(y,z),z),y),u)),e(u,x)))
38 [hyper,1,148,177] P(e(x,e(e(e(y,e(z,u)),x),e(e(u,y),z)))).

.
1
345 (heat=1) [hyper,16,17,338] P(e(e(x,e(e(y,e(e(e(z,e(u,v)),y),e(e(v,z),u))),w)),e(w,x)))
206 [hyper,1,230,338] P(e(e(e(x,e(y,e(z,x))),z),y)).

.
1
1227 (heat=1) [hyper,16,17,1206] P(e(e(x,e(e(e(e(y,e(z,e(u,y))),u),z),v)),e(v,x)))
280 [hyper,1,345,222] P(e(x,e(e(e(e(y,e(e(e(z,e(u,v)),y),e(e(v,z),u))),x),w),w))).

1
10266 [hyper,1,1227,1280] P(e(e(e(x,e(y,z)),y),e(z,x))).
0267 [binary,10266.1,12.1] $ANSWER(PYM).

.
L
----> UNIT CONFLICT at 81.43 sec ----> 3562 [binary,3561.1,13.1] $ANSWER(XGK)

ength of proof is 23. Level of proof is 11.

1
---------------- PROOF ----------------

[] -P(e(x,y)) e -P(x) e P(y).
.

1
2 [] P(e(e(e(x,e(y,z)),y),e(z,x)))
3 [] -P(e(a,e(e(b,e(c,a)),e(c,b)))) e $ANSWER(XGK).

1
16 [] -P(e(x,y)) e -P(x) e P(y).

7 [] P(e(e(e(x,e(y,z)),y),e(z,x))).

1
----------------------------
8 [hyper,1,2,2] P(e(x,e(y,e(e(e(z,y),x),z)))).

.
2
19 (heat=1) [hyper,16,18,17] P(e(x,e(e(e(y,x),e(e(e(z,e(u,v)),u),e(v,z))),y)))
3 [hyper,1,19,18] P(e(e(e(x,e(y,e(z,e(e(e(u,z),y),u)))),e(e(e(v,e(w,v6)),w),e(v6,v))),x)).

2
24 [hyper,1,19,2] P(e(e(e(x,e(e(e(y,e(z,u)),z),e(u,y))),e(e(e(v,e(w,v6)),w),e(v6,v))),x)).
6 (heat=1) [hyper,16,23,17] P(e(e(x,y),e(e(z,e(u,e(e(e(v,u),z),v))),e(e(y,e(w,x)),w)))).

.
4
27 (heat=1) [hyper,16,17,24] P(e(e(x,y),e(e(e(y,e(z,x)),z),e(e(e(u,e(v,w)),v),e(w,u)))))
1 [hyper,1,24,23] P(e(e(e(e(x,e(y,z)),y),e(z,x)),e(u,e(v,e(e(e(w,v),u),w))))).

.
5
49 [hyper,1,26,18] P(e(e(x,e(y,e(e(e(z,y),x),z))),e(e(e(u,e(e(e(v,u),w),v)),e(v6,w)),v6)))
1 (heat=1) [hyper,16,17,49] P(e(e(e(e(x,e(e(e(y,e(e(e(z,y),u),z)),e(v,u)),v)),w),x),w)).

5
53 [hyper,1,24,27] P(e(e(e(x,y),e(z,e(e(y,e(u,x)),u))),z)).
4 [hyper,1,23,27] P(e(e(e(x,e(e(e(y,x),z),y)),e(u,z)),u)).

.
5
55 [hyper,1,27,18] P(e(e(e(e(x,e(e(e(y,x),z),y)),e(u,z)),u),e(e(e(v,e(w,v6)),w),e(v6,v))))
6 [hyper,1,27,2] P(e(e(e(e(x,y),e(z,e(e(y,e(u,x)),u))),z),e(e(e(v,e(w,v6)),w),e(v6,v)))).

8
84 [hyper,1,51,54] P(e(e(e(e(x,y),z),x),e(y,z))).
9 [hyper,1,53,55] P(e(e(x,e(y,e(z,e(x,e(e(u,e(e(e(v,u),w),v)),e(z,w)))))),y)).

.
9
90 (heat=1) [hyper,16,17,89] P(e(e(x,e(y,e(e(z,e(e(e(u,z),v),u)),e(x,v)))),y))
1 [hyper,1,53,56] P(e(e(x,e(y,e(z,e(x,e(e(u,v),e(z,e(e(v,e(w,u)),w))))))),y)).

3
118 [hyper,1,84,41] P(e(x,e(e(e(e(y,x),z),y),z))).
07 [hyper,1,91,118] P(e(e(e(x,y),e(z,e(y,e(e(u,v),e(z,e(e(v,e(w,u)),w)))))),x)).

3
308 [hyper,1,90,118] P(e(e(e(x,y),e(e(z,e(e(e(u,z),v),u)),e(y,v))),x)).
22 (heat=1) [hyper,16,17,307] P(e(e(x,e(e(y,z),e(u,e(e(z,e(v,y)),v)))),e(u,x))).

3
325 (heat=1) [hyper,16,308,17] P(e(e(x,y),e(x,e(z,e(e(e(u,z),y),u))))).
561 [hyper,1,322,325] P(e(x,e(e(y,e(z,x)),e(z,y)))).

3562 [binary,3561.1,13.1] $ANSWER(XGK).
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----> UNIT CONFLICT at 205.36 sec ----> 3496 [binary,3495.1,11.1] $ANSWER(PYO).

-
Length of proof is 10. Level of proof is 8.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(x,e(e(y,e(z,x)),e(z,y)))).
.

1
11 [] -P(e(e(e(a,e(b,c)),c),e(b,a))) e $ANSWER(PYO)

6 [] -P(e(x,y)) e -P(x) e P(y).
.

-
17 [] P(e(x,e(e(y,e(z,x)),e(z,y))))
---------------------------

18 [hyper,1,2,2] P(e(e(x,e(y,e(z,e(e(u,e(v,z)),e(v,u))))),e(y,x))).
.

2
20 (heat=1) [hyper,16,18,17] P(e(e(e(e(x,e(y,z)),e(y,x)),e(z,u)),u))
4 [hyper,1,18,20] P(e(x,e(e(e(y,e(z,u)),e(z,y)),e(u,e(x,e(v,e(e(w,e(v6,v)),e(v6,w)))))))).

3
27 [hyper,1,20,18] P(e(e(x,e(e(y,e(z,x)),e(z,y))),e(u,u))).
0 (heat=1) [hyper,16,17,27] P(e(e(x,e(y,e(e(z,e(e(u,e(v,z)),e(v,u))),e(w,w)))),e(y,x))).

8
38 [hyper,1,18,24] P(e(e(e(x,e(y,z)),e(y,x)),e(e(e(u,e(v,w)),e(v,u)),e(w,z)))).
6 [hyper,1,30,2] P(e(e(e(x,x),e(e(y,e(e(z,e(u,y)),e(u,z))),v)),v)).

.
5
89 (heat=1) [hyper,16,17,86] P(e(e(x,e(y,e(e(e(z,z),e(e(u,e(e(v,e(w,u)),e(w,v))),v6)),v6))),e(y,x)))
42 [hyper,1,89,2] P(e(e(x,e(e(e(y,y),e(e(z,e(e(u,e(v,z)),e(v,u))),x)),w)),w)).

3
3495 [hyper,1,542,38] P(e(e(e(x,e(y,z)),z),e(y,x))).
496 [binary,3495.1,11.1] $ANSWER(PYO).

----> UNIT CONFLICT at 3442.39 sec ----> 79194 [binary,79193.1,10.1] $ANSWER(P9iYRO).

-
Length of proof is 50. Level of proof is 23.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(e(e(x,e(y,z)),z),e(y,x))).
.

1
10 [] -P(e(e(a,b),e(c,e(e(c,b),a)))) e $ANSWER(P9iYRO)

6 [] -P(e(x,y)) e -P(x) e P(y).
.

-
17 [] P(e(e(e(x,e(y,z)),z),e(y,x)))
---------------------------

18 [hyper,1,2,2] P(e(x,e(y,e(z,e(x,e(z,y)))))).
.

2
19 (heat=1) [hyper,16,18,17] P(e(x,e(y,e(e(e(e(z,e(u,v)),v),e(u,z)),e(y,x)))))
0 [hyper,1,18,18] P(e(x,e(y,e(e(z,e(u,e(v,e(z,e(v,u))))),e(y,x))))).

.
2
21 (heat=1) [hyper,16,20,17] P(e(x,e(e(y,e(z,e(u,e(y,e(u,z))))),e(x,e(e(e(v,e(w,v6)),v6),e(w,v))))))
5 [hyper,1,19,2] P(e(x,e(e(e(e(y,e(z,u)),u),e(z,y)),e(x,e(e(e(v,e(w,v6)),v6),e(w,v)))))).

.37 [hyper,1,21,18] P(e(e(x,e(y,e(z,e(x,e(z,y))))),e(e(u,e(v,e(w,e(u,e(w,v))))),e(e(e(v6,e(v7,v8)),v8),e(v7,v6)))))
39 (heat=1) [hyper,16,17,37] P(e(x,e(e(x,e(e(y,e(z,e(u,e(y,e(u,z))))),v)),v))).

.
5
47 [hyper,1,39,18] P(e(e(e(x,e(y,e(z,e(x,e(z,y))))),e(e(u,e(v,e(w,e(u,e(w,v))))),v6)),v6))
3 (heat=1) [hyper,16,17,47] P(e(e(x,e(y,e(z,e(x,e(z,y))))),e(u,e(v,e(w,e(u,e(w,v))))))).

7
74 [hyper,1,2,53] P(e(e(x,e(x,y)),y)).
5 (heat=1) [hyper,16,17,74] P(e(x,x)).

.
1
103 [hyper,1,74,18] P(e(x,e(y,e(x,y))))
11 [hyper,1,103,103] P(e(x,e(e(y,e(z,e(y,z))),x))).

1
119 [hyper,1,103,75] P(e(x,e(e(y,y),x))).
28 [hyper,1,103,18] P(e(x,e(e(y,e(z,e(u,e(y,e(u,z))))),x))).

1
152 [hyper,1,119,103] P(e(e(x,x),e(y,e(z,e(y,z))))).
53 [hyper,1,119,75] P(e(e(x,x),e(y,y))).

.
1
154 [hyper,1,119,74] P(e(e(x,x),e(e(y,e(y,z)),z)))
70 (heat=1) [hyper,16,17,152] P(e(x,e(x,e(y,e(z,e(y,z)))))).

1
171 (heat=1) [hyper,16,17,153] P(e(x,e(x,e(y,y)))).
72 (heat=1) [hyper,16,17,154] P(e(x,e(x,e(e(y,e(y,z)),z)))).

.
3
357 [hyper,1,111,171] P(e(e(x,e(y,e(x,y))),e(z,e(z,e(u,u)))))
63 [hyper,1,111,74] P(e(e(x,e(y,e(x,y))),e(e(z,e(z,u)),u))).

3
384 (heat=1) [hyper,16,17,357] P(e(e(x,e(y,y)),x)).
89 (heat=1) [hyper,16,17,363] P(e(x,e(y,e(y,x)))).
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.
5
441 [hyper,1,384,25] P(e(e(e(x,y),e(e(e(y,e(x,z)),z),u)),u))
11 [hyper,1,389,389] P(e(x,e(x,e(y,e(z,e(z,y)))))).

.
8
824 [hyper,1,111,170] P(e(e(x,e(y,e(x,y))),e(z,e(z,e(u,e(v,e(u,v)))))))
63 (heat=1) [hyper,16,17,824] P(e(e(x,e(y,e(z,e(y,z)))),x)).

.
9
887 [hyper,1,111,172] P(e(e(x,e(y,e(x,y))),e(z,e(z,e(e(u,e(u,v)),v)))))
27 (heat=1) [hyper,16,17,887] P(e(e(x,e(e(y,e(y,z)),z)),x)).

.
3
3064 [hyper,1,111,511] P(e(e(x,e(y,e(x,y))),e(z,e(z,e(u,e(v,e(v,u)))))))
116 (heat=1) [hyper,16,17,3064] P(e(e(x,e(y,e(z,e(z,y)))),x)).

3
3420 [hyper,1,863,2] P(e(e(e(x,e(y,x)),e(y,z)),z)).
464 [hyper,1,927,2] P(e(e(x,e(e(y,e(y,x)),z)),z)).

.
4
4424 [hyper,1,3116,2] P(e(e(e(x,e(x,y)),e(y,z)),z))
641 [hyper,1,111,3464] P(e(e(x,e(y,e(x,y))),e(e(z,e(e(u,e(u,z)),v)),v))).

4
4649 [hyper,1,3464,18] P(e(x,e(y,e(x,e(z,e(z,y)))))).
674 (heat=1) [hyper,16,17,4641] P(e(x,e(y,e(e(z,e(z,y)),x)))).

5
5812 [hyper,1,4424,4649] P(e(e(x,e(x,y)),e(z,e(z,y)))).
973 [hyper,1,3420,4674] P(e(e(x,e(x,y)),e(z,e(y,z)))).

.
1
16888 [hyper,1,441,5973] P(e(x,e(e(e(y,x),e(y,z)),z)))
6893 [hyper,1,441,5812] P(e(e(e(e(x,y),e(x,z)),z),y)).

.
1
16926 (heat=1) [hyper,16,17,16893] P(e(x,e(e(y,z),e(y,e(x,z)))))
7658 [hyper,1,128,16888] P(e(e(x,e(y,e(z,e(x,e(z,y))))),e(u,e(e(e(v,u),e(v,w)),w)))).

1
17874 (heat=1) [hyper,16,17,17658] P(e(x,e(e(y,z),e(y,e(z,x))))).
9456 [hyper,1,441,16926] P(e(e(x,e(y,z)),e(e(y,x),z))).

.
3
24676 [hyper,1,441,17874] P(e(e(x,e(y,z)),e(z,e(y,x))))
6056 [hyper,1,19456,16926] P(e(e(e(x,y),z),e(x,e(z,y)))).

.
7
79193 [hyper,1,24676,36056] P(e(e(x,y),e(z,e(e(z,y),x))))
9194 [binary,79193.1,10.1] $ANSWER(P9iYRO).

.
L
----> UNIT CONFLICT at 1469.51 sec ----> 24535 [binary,24534.1,14.1] $ANSWER(XHK)

ength of proof is 19. Level of proof is 10.

1
---------------- PROOF ----------------

[] -P(e(x,y)) e -P(x) e P(y).
.

1
2 [] P(e(e(x,y),e(z,e(e(z,y),x))))
4 [] -P(e(a,e(e(b,c),e(e(a,c),b)))) e $ANSWER(XHK).

1
16 [] -P(e(x,y)) e -P(x) e P(y).

7 [] P(e(e(x,y),e(z,e(e(z,y),x)))).

1
----------------------------
8 [hyper,1,2,2] P(e(x,e(e(x,e(y,e(e(y,z),u))),e(u,z)))).

.
2
19 (heat=1) [hyper,16,17,18] P(e(x,e(e(x,e(e(y,e(z,e(e(z,u),v))),e(v,u))),y)))
0 (heat=1) [hyper,16,18,17] P(e(e(e(e(x,y),e(z,e(e(z,y),x))),e(u,e(e(u,v),w))),e(w,v))).

.
2
23 [hyper,1,19,2] P(e(e(e(e(x,y),e(z,e(e(z,y),x))),e(e(u,e(v,e(e(v,w),v6))),e(v6,w))),u))
5 [hyper,1,20,20] P(e(e(e(e(e(x,y),z),y),x),z)).

.
2
27 (heat=1) [hyper,16,17,25] P(e(x,e(e(x,y),e(e(e(e(z,u),y),u),z))))
9 [hyper,1,18,25] P(e(e(e(e(e(e(e(x,y),z),y),x),z),e(u,e(e(u,v),w))),e(w,v))).

.
3
30 (heat=1) [hyper,16,17,29] P(e(x,e(e(x,e(y,z)),e(e(e(e(e(e(u,v),w),v),u),w),e(v6,e(e(v6,z),y))))))
3 [hyper,1,27,27] P(e(e(e(x,e(e(x,y),e(e(e(e(z,u),y),u),z))),v),e(e(e(e(w,v6),v),v6),w))).

5
47 [hyper,1,23,29] P(e(e(e(e(x,e(e(x,y),z)),u),e(z,y)),u)).
1 [hyper,1,29,30] P(e(e(x,e(e(x,y),e(z,y))),z)).

.
5
52 (heat=1) [hyper,16,17,51] P(e(x,e(e(x,y),e(z,e(e(z,u),e(y,u))))))
7 [hyper,1,33,29] P(e(e(e(e(x,y),e(e(e(e(e(z,u),v),u),z),v)),y),x)).

.
1
155 [hyper,1,52,2] P(e(e(e(e(x,y),e(z,e(e(z,y),x))),u),e(v,e(e(v,w),e(u,w)))))
95 [hyper,1,57,51] P(e(e(x,y),e(y,x))).

.
7
204 (heat=1) [hyper,16,17,195] P(e(x,e(e(x,e(y,z)),e(z,y))))
92 [hyper,1,51,155] P(e(e(e(e(e(x,y),e(z,e(e(z,y),x))),u),e(u,v)),v)).

.
2
1424 [hyper,1,204,47] P(e(e(e(e(e(e(x,e(e(x,y),z)),u),e(z,y)),u),e(v,w)),e(w,v)))
4534 [hyper,1,1424,792] P(e(x,e(e(y,z),e(e(x,z),y)))).
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.

-

24535 [binary,24534.1,14.1] $ANSWER(XHK)

---> UNIT CONFLICT at 78273.10 sec ----> 98394 [binary,98393.1,8.1] $ANSWER(P7iWN).

-
Length of proof is 39. Level of proof is 25.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(x,e(e(y,z),e(e(x,z),y)))).
.

1
8 [] -P(e(e(a,e(b,c)),e(c,e(a,b)))) e $ANSWER(P7iWN)

6 [] -P(e(x,y)) e -P(x) e P(y).
.

-
17 [] P(e(x,e(e(y,z),e(e(x,z),y))))
---------------------------

18 [hyper,1,2,2] P(e(e(x,y),e(e(e(z,e(e(u,v),e(e(z,v),u))),y),x))).
.

2
19 (heat=1) [hyper,16,17,18] P(e(e(x,y),e(e(e(e(z,u),e(e(e(v,e(e(w,v6),e(e(v,v6),w))),u),z)),y),x)))
0 (heat=1) [hyper,16,18,17] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(u,v),e(e(w,v),u))),w)).

.
2
21 [hyper,1,18,18] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(e(u,e(e(v,w),e(e(u,w),v))),v6),v7)),e(v7,v6)))
7 [hyper,1,19,18] P(e(e(e(e(x,y),e(e(e(z,e(e(u,v),e(e(z,v),u))),y),x)),e(e(e(w,e(e(v6,v7),

3
e(e(w,v7),v6))),v8),v9)),e(v9,v8))).

5 (heat=1) [hyper,16,27,17] P(e(e(e(e(e(x,y),e(e(e(z,e(e(u,v),e(e(z,v),u))),y),x)),w),

4
e(v6,e(e(v7,v8),e(e(v6,v8),v7)))),w)).

7 [hyper,1,21,20] P(e(e(e(x,y),e(e(e(e(z,e(e(u,v),e(e(z,v),u))),w),y),x)),w)).
,56 [hyper,1,35,47] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(u,e(e(v,w),e(e(u,w),v))))

e(e(e(v6,e(e(v7,v8),e(e(v6,v8),v7))),v9),v10)),e(v10,v9))).
.

7
67 [hyper,1,56,21] P(e(x,e(e(e(e(y,e(e(z,u),e(e(y,u),z))),x),e(e(v,w),e(e(v6,w),v))),v6)))
4 [hyper,1,67,47] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(e(u,v),e(e(e(e(w,e(e(v6,v7),

8
e(e(w,v7),v6))),v8),v),u)),v8)),e(e(v9,v10),e(e(v11,v10),v9))),v11)).

1 [hyper,1,20,74] P(e(e(e(x,y),e(e(z,e(e(u,v),e(e(z,v),u))),x)),y)).
,93 [hyper,1,67,81] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(e(u,v),e(e(w,e(e(v6,v7)

e(e(w,v7),v6))),u)),v)),e(e(v8,v9),e(e(v10,v9),v8))),v10)).
.

1
97 [hyper,1,81,47] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(u,e(e(v,w),e(e(u,w),v))),e(v6,v7))),v7),v6))
07 [hyper,1,20,93] P(e(e(e(x,e(e(y,z),e(e(u,z),y))),u),x)).

.
1
117 [hyper,1,107,107] P(e(x,e(e(y,z),e(e(e(e(u,v),e(e(x,v),u)),z),y))))
36 [hyper,1,18,117] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(u,v),e(e(e(e(w,v6),e(e(v7,v6),w)),v),u))),v7)).

1
156 [hyper,1,97,136] P(e(e(e(x,y),e(e(z,y),x)),e(e(u,v),e(e(z,v),u)))).
75 [hyper,1,107,156] P(e(e(e(e(e(x,y),e(e(z,y),x)),u),z),u)).

1
176 [hyper,1,81,156] P(e(e(x,y),e(x,e(e(z,u),e(e(y,u),z))))).
88 [hyper,1,107,175] P(e(e(e(x,y),e(e(e(e(z,u),e(e(v,u),z)),y),x)),v)).

.
2
279 [hyper,1,176,188] P(e(e(e(x,y),e(e(e(e(z,u),e(e(v,u),z)),y),x)),e(e(w,v6),e(e(v,v6),w))))
80 [hyper,1,175,188] P(e(e(e(e(x,y),e(e(z,y),x)),e(e(z,u),v)),e(v,u))).

3
295 [hyper,1,280,280] P(e(e(e(x,y),x),y)).
04 [hyper,1,280,176] P(e(e(e(x,y),e(e(e(e(z,u),z),y),x)),u)).

3
328 [hyper,1,295,280] P(e(e(x,e(e(x,y),z)),e(z,y))).
80 [hyper,1,107,304] P(e(e(e(x,y),e(e(z,x),z)),y)).

.
3
385 [hyper,1,81,328] P(e(e(x,x),e(y,e(e(z,u),e(e(y,u),z)))))
88 [hyper,1,176,380] P(e(e(e(x,y),e(e(z,x),z)),e(e(u,v),e(e(y,v),u)))).

3
389 [hyper,1,380,328] P(e(e(x,y),e(y,x))).
96 [hyper,1,328,385] P(e(e(e(x,y),e(e(e(e(z,z),u),y),x)),u)).

.
4
402 [hyper,1,389,388] P(e(e(e(x,y),e(e(z,y),x)),e(e(u,z),e(e(v,u),v))))
26 [hyper,1,107,396] P(e(e(e(x,y),e(e(z,z),x)),y)).

.
5
433 [hyper,1,295,402] P(e(e(x,e(e(y,z),y)),e(z,x)))
00 [hyper,1,389,433] P(e(e(x,y),e(y,e(e(z,x),z)))).

.
6
516 [hyper,1,433,280] P(e(x,e(e(e(y,z),e(e(u,z),y)),e(e(u,v),e(v,x)))))
86 [hyper,1,500,500] P(e(e(x,e(e(y,z),y)),e(e(u,e(z,x)),u))).

.
1
5430 [hyper,1,426,279] P(e(e(e(e(x,y),e(e(z,y),x)),u),e(z,u)))
2201 [hyper,1,686,516] P(e(e(x,e(e(e(y,e(z,u)),e(y,z)),u)),x)).

98393 [hyper,1,5430,12201] P(e(e(x,e(y,z)),e(z,e(x,y)))).
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.

-

98394 [binary,98393.1,8.1] $ANSWER(P7iWN)

---> UNIT CONFLICT at 14999.29 sec ----> 176939 [binary,176938.1,5.1] $ANSWER(P3iYQJ).

-
Length of proof is 28. Level of proof is 14.
--------------- PROOF ----------------

2
1 [] -P(e(x,y)) e -P(x) e P(y).

[] P(e(e(x,e(y,z)),e(z,e(x,y)))).
.

2
5 [] -P(e(e(a,b),e(e(c,a),e(b,c)))) e $ANSWER(P3iYQJ)

7 [] -P(e(x,y)) e -P(x) e P(y).
.

-
28 [] P(e(e(x,e(y,z)),e(z,e(x,y))))
---------------------------

29 [hyper,1,2,2] P(e(e(x,y),e(e(x,e(y,z)),z))).
.

3
30 (heat=1) [hyper,27,28,29] P(e(x,e(e(y,z),e(y,e(z,x)))))
2 [hyper,1,29,29] P(e(e(e(x,y),e(e(e(x,e(y,z)),z),u)),u)).

.
3
35 [hyper,1,29,30] P(e(e(x,e(e(e(y,z),e(y,e(z,x))),u)),u))
6 [hyper,1,30,29] P(e(e(x,y),e(x,e(y,e(e(z,u),e(e(z,e(u,v)),v)))))).

.
8
41 (heat=1) [hyper,27,28,36] P(e(e(x,e(e(y,z),e(e(y,e(z,u)),u))),e(e(v,x),v)))
0 [hyper,1,35,29] P(e(x,e(e(y,x),y))).

.
2
87 [hyper,1,80,80] P(e(e(x,e(y,e(e(z,y),z))),x))
01 [hyper,1,29,87] P(e(e(e(x,e(y,e(e(z,y),z))),e(x,u)),u)).

2
216 (heat=1) [hyper,27,201,28] P(e(e(e(x,y),x),y)).
38 [hyper,1,29,216] P(e(e(e(e(x,y),x),e(y,z)),z)).

.
2
241 [hyper,1,216,32] P(e(e(e(x,e(y,z)),z),e(x,y)))
55 (heat=1) [hyper,27,28,241] P(e(x,e(e(e(y,e(x,z)),z),y))).

.
1
1764 [hyper,1,29,41] P(e(e(e(x,e(e(y,z),e(e(y,e(z,u)),u))),e(e(e(v,x),v),w)),w))
799 (heat=1) [hyper,27,1764,28] P(e(e(x,y),e(y,x))).

1
1842 [hyper,1,29,1799] P(e(e(e(x,y),e(e(y,x),z)),z)).
843 [hyper,1,2,1799] P(e(x,e(e(x,y),y))).

.
2
1923 [hyper,1,1843,1799] P(e(e(e(e(x,y),e(y,x)),z),z))
068 [hyper,1,1799,238] P(e(x,e(e(e(y,z),y),e(z,x)))).

.
2
2096 (heat=1) [hyper,27,28,2068] P(e(e(x,y),e(y,e(e(z,x),z))))
935 [hyper,1,1799,255] P(e(e(e(e(x,e(y,z)),z),x),y)).

.
1
17269 [hyper,1,1799,1842] P(e(x,e(e(y,z),e(e(z,y),x))))
7345 (heat=1) [hyper,27,28,17269] P(e(e(e(x,y),z),e(z,e(y,x)))).

2
25963 [hyper,1,1923,2096] P(e(e(x,y),e(e(z,e(y,x)),z))).
8685 [hyper,1,241,2935] P(e(e(e(e(x,y),e(y,z)),z),x)).

.
8
88894 [hyper,1,25963,28685] P(e(e(x,e(y,e(e(e(y,z),e(z,u)),u))),x))
9072 (heat=1) [hyper,27,88894,28] P(e(e(e(x,y),e(y,z)),e(z,x))).

1
176938 [hyper,1,17345,89072] P(e(e(x,y),e(e(z,x),e(y,z)))).
76939 [binary,176938.1,5.1] $ANSWER(P3iYQJ).

[
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