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Abstract

Molecular mechanics and dynamics are becoming
widely used to perform simulations of molecular sys-
tems, from large-scale computations of materials to the
destgn and modeling of drug compounds. In this paper
we address two major issues: a good decomposition
method that can take advantage of future massively
parallel processing systems for modest-sized problems
wn the range of 50,000 atoms and the communication
requirements needed to achieve 30 to J0% efficiency
on MPPs. We analyzed a scalable benchmark molec-
wlar dynamics program executing on the Intel Touch-
stone Delta parallelized with an interaction decomposi-
tion method. Using a validated analytical performance
model of the code, we determined that for an MPP
with a four-dimensional mesh topology and 400 MHz
processors the communication startup time must be at
most 30 clock cycles and the network bandwidth must
be at least 2.3 GB/s. This configuration resulls in
30 to 40% efficiency of the MPP for a problem with
50,000 atoms executing on 50,000 processors.

1 Introduction

Molecular mechanics and dynamics are becoming
widely used to perform simulations of molecular sys-
tems, from large-scale computations of materials to
the design and modeling of drug compounds. While
some small problems can be analyzed on high-end
workstations, and in some cases on personal comput-
ers, important classes of problems require large paral-
lel computers.

Classical molecular dynamics involve solving New-
ton’s equations of motion for each atom in the system
with respect to every other atom. The forces acting on
each atom are a combination of forces due to bonds,
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Coulomb forces, and van der Waals forces. The cal-
culation of the Coulomb forces is typically the most
computationally intensive because each atom interacts
electrostatically with all the atoms in the system. As
an approximation many computational models com-
pute interactions only within a certain radius of each
atom; the cutoff radius reduces the number of interac-
tions calculated so that the work scales linearly with
the number of atoms. These short-range models have
been shown to be very accurate for molecular dynam-
ics. Other approximation techniques for N-body sys-
tems, such as the fast multipole method [8] and cell
multipole method [5], show great promise for improv-
ing the run time of very large scale problems; however,
they do little to help with small to modest-sized sys-
tems with at most 50,000 atoms, which is the focus of
this paper.

We address two major issues: a good decomposition
method that can take advantage of future massively
parallel processing (MPP) systems and the communi-
cation requirements needed to achieve good efficiency.
These issues are important to drug design and protein
interactions, where researchers want to reduce the ex-
ecution time of each time step for fixed-size problems.
In these simulations the molecule of interest—often
only a few thousands atoms—is modeled in a solution
of water with many thousands of atoms. Reduction
in execution time is important also in nonequilibrium
molecular dynamics, where macroscopic changes may
take significant time to evolve, requiring millions of
time steps to model. Thus, for some problems, it is
more significant to be able to execute many time steps
on a modest-size problem than few time steps on a
large-size problem. We analyze the use of current and
future MPPs for these modest-sized problems.

We believe that computers designed and built in
the next ten to twenty years will most likely fall into
three general design families [14]. These three families
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comprise Cray-like systems with around 1000 proces-
sors, where each processor is roughly a teraflop in per-
formance; mid-range systems with 10,000 to 100,000
processors, each with a performance of 10 to 100 gi-
gaflops (an extrapolation from current MPP systems);
and systems with up to 1,000,000 processors, each
slightly faster than today’s microprocessors and to-
gether reaching the petaflop level of performance. We
are particularly interested in the last class of future
machines because many believe it will be the first type
to achieve petaflop performance. This class of ma-
chines is likely to be memory limited because of cost.
Molecular dynamics is a good application to examine
because it has modest memory requirements.

Many implementations of parallel molecular dy-
namics have been developed for the first two classes
of MPPs [3, 4, 6, 7, 11, 16, 17], but few groups have
addressed issues related to the use of the third class,
particularly for small to modest-sized problems. In
this paper we focus on a fine-grained decomposition
of the molecular dynamics algorithm that parallelizes
beyond the number of atoms in the systems. Tradi-
tional approaches use decompositions that partition
the problem either in space or by particle (or atom).
The parallelism available with these methods is lim-
ited by the number of atoms, excluding parallelizing
over time. In contrast, we use an interaction decom-
posttion method that assigns unique atom pairs to dif-
ferent processors; the pairs represent the interactions.
This method is limited by the number of interactions,
which 1s much greater than the number of atoms for
short-range models.

Specifically, we extend the work of Plimpton [16] to
consider the case of the number of processors greater
than or equal to the number of atoms. We present
an analytical performance model of real code, which
allows us to understand the performance on existing
machines and identify the features needed to achieve
good performance on future machines. Our analysis
indicates that for an MPP with a four-dimensional
mesh topology and 400 MHz processors, the commu-
nication startup time must be at most 30 clock cy-
cles and the network bandwidth at least 2.3 GB/s.
This configuration results in 30 to 40% efficiency of
the MPP for a problem with 50,000 atoms executing
on 50,000 processors.

In the following section we provide details about
the sequential benchmark program. In Section 3 we
discuss our interaction decomposition scheme and an-
alyze the communication and computation require-
ments for the parallel code. The analytical model is
validated in Section 4. This model is extended in Sec-

tion b to consider systems of up to 50,000 atoms exe-
cuting on future MPPs with up to 40,000 Intel Delta-
type processors and network. In Section 6 we inves-
tigate the communication requirements necessary to
achieve good performance on MPPs. We summarize
the paper in Section 7.

2 Background

The benchmark problem used in this work is a sim-
ulation of helium atoms at room temperature (300 K).
The basic quantities associated with the molecular
model are the number of molecules per unit volume
and the mass, size, and velocity of each molecule. The
effect of the molecules’ interacting with each other at a
particular temperature and pressure can be calculated
from knowledge of the intermolecular force field. The
force is effectively zero at large distances; it becomes
weakly attractive when the molecules are sufficiently
close, but decreases again to be strongly repulsive at
short distances. Thus, the short-range model is ap-
propriate for the gaseous class of problems.

The benchmark program uses a cutoff radius of
6.44 Angstroms, or 2.50, where ¢ is the distance at
which the potential energy is equal to zero using the
Lennard-Jones potential model. Intermolecular col-
lisions in dilute gases, such as helium gases, are very
likely to be collisions involving only two atoms. Hence,
the actual force computations are executed only on
atom pairs with a distance less than the cutoff radius;
these computations comprise less than 4% of the total
possible interactions. This value was derived by tak-
ing the ratio of the volume of the sphere with radius
6.44 Angstroms to the volume of the cube. This value
was also validated by experimental results involving
the counting of calculated interactions.

The sequential molecular dynamics algorithm is
given in Table 1. The velocities are initialized to ran-
dom values. The potential energy between pairs of he-
lium atoms is calculated by using the Lennard-Jones
(12-6) potential model. The derivative of the energy
with respect to the distance is equal to the force be-
tween the atoms. Hence, the potential energy is then
used to calculate the attractive and repulsive forces for
each atom. The result is an N x N force matrix, F,
where N is the total number of atoms and Fj; is the
force on atom i due to atom j. This matrix is sparse
because of the short-range model and skew-symmetric
(Fi; = —Fj;) because of Newton’s third law. Based
upon these forces, the atoms move within the cube.

We estimated the sequential computation cost by
counting the number of different operations and ex-
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Table 1: Molecular Dynamics Algorithm

Predict coordinates and velocities

Compute particle interactions

Calculate potential energy

Correct coordinates and velocities

Sum all velocities

Calculate kinetic and total energies

Determine temperature and scale velocities,
if necessary

Repeat steps 1 through 7 for I time steps

=1 O O i W N

perimentally determining the execution time of the
different operations. The result of this count is given
below.

Serial Computation Cost

Ttaps + Itsgry +tewp + (1 + 1)ty

+[3V/N + (631 +7)(2N) + (21 + 3)(3N)
AT AL 4 11T 4 1]t g4

+[3VN + (511 +15)(2N) + (31 + 3)(3N)
167NN 4 407 + 39T muatsipty

+[22N + Iﬂw + 4T + 32t divide

H[(171 4+ 15)(2N) 4+ 3N + 8T X E=DYs e

2
FI(161 + 21)(2N) + (21 + 1)(3N) + 231 + 29]¢ e gual

The term I represents the number of time steps and
t,p the execution time of the specific operation. The
term 21 corresponds to the total number of pos-
sible interactions, where only half of the interactions
are calculated (because of Newton’s third law).

The benchmark program does not use any tech-
niques to reduce the number of atoms that must
be checked for possible interactions; all atoms are
checked. However, when we explore the case in which
the number of processors is approximately equal to the
number of atoms, we consider the reduction in compu-
tation that results from using such techniques. As we
will see in Section 6, this reduction affects the com-
munication requirements. We consider also the case
in which the lattice increases with larger systems.

3 Interaction Decomposition

Conventional decomposition methods for molecu-
lar dynamics problems consist of assigning a parti-
tion of the particles or the physical space to the dif-

ferent processors. With these methods two atoms
that are within the cutoff radius may be assigned to
different processors. Particle decomposition requires
global communication of particle coordinates among
all processors to identify interactions to be calculated.
Spatial decomposition requires local communication
of particle coordinates among processors with adja-
cent physical regions; additional communication is re-
quired for atoms that move beyond the physical region
assigned to a given processor.

In contrast to the conventional methods, our in-
teraction decomposition method assigns unique par-
ticle pairs to different processors. The pair lists are
the potential interactions to be calculated during the
simulation. All possible interactions are assigned to
processors. Hence, no interprocessor communication
is needed to calculate any interactions.

In our code, the interactions are mapped to a two-
dimensional mesh of processors in the following man-
ner. Recall that each entry of the N x N force matrix,
Fi;, represents the force on atom ¢ from j. Divide
this matrix into VP x /P equal-sized blocks. Each
block has % X % or w interactions. Also re-
call that the force matrix is skew symmetric, for which
only the interactions in either the upper or lower trian-
gular part of the matrix need to be calculated. The re-
maining entries are known because Fy; = —Fj;. Con-
sider the interactions in the upper triangular section.
We assign half of the interactions in each block of a
given processor in this section to its transpose proces-
sor; each processor is assigned M%l interactions.
Hence, each interaction is mapped to a unique proces-
sor; the mapping is similar to that of Plimpton [16].

An example of this mapping is illustrated in Fig-
ure 1 for a 4 x 4 array of processors with 16 atoms,
numbered 1 to 16. Each box corresponds to a proces-
sor; the processor is identified by the (¢, j) coordinate
of the grid. The assigned interactions are given within
each box. Consider dividing the particle list into VP
sections (or, in this case, four sections). The diagonal
processors are assigned the interactions between the
atoms in the respective sections. For example, proces-
sor (2,2) is assigned the interactions between atoms
in section 2—atoms 5, 6, 7, and 8. The interactions
between two sections of the atom list are split across
two transpose processors. Consider processors (1,3)
and (3,1). These two processors split the interaction
calculations between section 1 and section 3 of the
atom list. Processor (1,3) is assigned the interactions
between atoms 1, 2, 3, 4 (section 1) and atoms 11, 12
(one half of section 3); processor (3,1) is assigned the
interactions between atoms 1, 2, 3, 4 (section 1) and
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Figure 1: An example of mapping interactions for 16
atoms to 16 processors

atoms 9, 10 (the first half of section 3).

The communication pattern required for the force
updates consists of communication in a row of proces-
sors, in a column of processors, and between transpose
processors. This pattern results because each proces-
sor, F;;, has atoms in common with the processors in
the same row, row ¢, same column, column j, and the
processors in the same row and column of the trans-
pose processor, row j and column i. Hence each pro-
cessor first communicates with the processors in the
same row, then communicates with the processors in
the same column. During these two communications,
each processor keeps a list of information that is to
be used by its transpose processor. After complet-
ing the two ring communications, this information is
exchanged with the transpose processor. In this way
processor F;; has information from row ¢, row j, col-
umn ¢, and column j of processors.

The following is the cost associated with communi-
cating the force updates between processors and up-
dating the corresponding data structures.

Interprocessor Communication Cost

Table 2: Experimental execution times for the Intel
Delta

t; Description Delta (us)
tabs fabs() 0.55289
togre sqrt() 2.56527
tewp exp() 75.5789
g log() 9.63801
tadd addition 0.25123

tultiply multiplication 0.25121
tdivide division 3.89710
Lsubiract subtraction 0.25123
tequal assignment 0.12572
tstartup comm. startup 714.35
tnetiatency | Network latency | 0.425 per byte

The term tgoum = (2 % logy P)teomm 1s the time
to execute a global sum and tcomm = Tstartup +
tnet—latency* Message_size is the communication time.
The term (\/F— 1) represents the number of messages
communicated among a row or column of processors
corresponding to a ring communication structure. The
message size is O(%%), where %% is the number of

atoms assigned to a processor.

4 Model Validation

We analyzed the performance of the benchmark
molecular dynamics simulation executed on the Intel
Touchstone Delta. The original program was rewrit-
ten in C with the p4 message-passing library developed
at Argonne National Laboratory [12]. This library al-
lows the code to be portable to other machines such as
the Paragon, IBM SP, and CM-5. We developed ana-
lytical models of the sequential and parallel execution
time based upon the costs described in the preceding
sections. The parallel execution time is the sequen-
tial time divided by P, plus the communication cost,
which includes the cost to update the additional data
structures. The values of the parameter ¢,, were ob-
tained experimentally and are given in Table 2. The
timings correspond to single-precision operations be-
tween an array and a scalar with the result placed
in an array. This computation is representative of the
computations found in the code. The time for an addi-
tion operation corresponds to 10 clock cycles of the 40
MHz Intel 1860XR processor; this represents memory
latency in addition to computation time. The values
for the f.omm expression were also determined exper-
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Figure 2: Theoretical and experimental throughput

imentally for the p4 library routines by using a least
squares fit.

We considered problem sizes ranging between 64
and 343 atoms executing on 1 to 121 processors. These
problem sizes allow us to explore the case of more pro-
cessors than atoms on available machines. Further,
the sizes fall within the range that is typical for the
benchmark program. The results are given in Figure 2.
The plots are in terms of throughput, or time steps per
second; the throughput is equal to m *400 (for
the 400 time steps, considered as typical for an equi-
librium type computation), where exec_time is the ex-
ecution time in CPU seconds.

In all the plots the analytical model predicts the
overall shape of the curves, especially for the 27- and
64-atom cases where we have more processors than
atoms. There is a small difference between the the-

oretical and experimental results that we attribute
to load balance synchronization, which our analytical
models does not handle. The mapping described in
Section 3 provides a straightforward communication
scheme but does not balance the load among the pro-
cessors; the initial mapping does not differentiate be-
tween interactions that are calculated and those that
are eliminated by the cut off radius. Thus our map-
ping can result in load imbalance.

Given that the analytical model predicts the shape
of the plots, we use this model to explore the commu-
nication requirements necessary to achieve good per-
formance on future MPPs for modest-sized problems.

5 More Processors Than Atoms

We used a slightly modified version of our analyti-
cal model to predict what happens when we have more
processors than atoms. Recall from Section 2 that the
original code checks all atoms to determine the inter-
actions to be calculated. In this section we consider an
optimized code for which the number of computations
is reduced by using techniques such as neighbor lists
[18] and link-cell method [9]. The neighbor list tech-
nique consists of maintaining a list of nearby atoms for
each atom. This list is examined for possible interac-
tions instead of checking all atoms in the system; the
list is rebuilt every few time steps. With the link-cell
method, during each time step the atoms are binned
into three-dimensional cells with side length equal to
the cutoff radius. This reduces the task of finding
neighbors to checking the atoms in 27 bins—the bin
the atom is in and the 26 surrounding bins. Combined
methods consist of keeping a neighbor list and using
the link-cell method to update the neighbor list every
few time steps.

Our modified model incorporates the combined
method to reduce the calculations to check for possible
interactions. We assume the neighbor list is updated
every 20 times steps. In this way the cost of binning
and checking the 27 bins is amortized over the time
steps and is negligible, since it is only done 5% of the
time. We considered problems where the lattice in-
creases in size with an increase in the number of atoms
but the cutoff radius remains the same; the number of
neighboring particles remains a constant with differ-
ent problem sizes. We assume the average size of the
neighbor list is 78 atoms. This is consistent with the
problems analyzed in [16].

Figure 3 provides the theoretical throughput for
systems with 17,576 to 50,653 atoms executed on up
to 40,000 processors. For systems in the range of
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Figure 3: Theoretical performance on future MPPs

18,000 particles we see the throughput reaches a max-
imum with fewer than 500 processors; for systems in
the range of 50,000 particles we see the maximum oc-
curs around 1000 processors. Beyond this point the
throughput begins to decrease significantly, and the ef-
ficiency drops down to approximately 0.1% for 40,000
processors. This analysis applies to the Intel Delta
machine that has a clock frequency of 40 MHz and
the network bandwidth for p4 messages of 2.3 MB/s.

6 Communication Requirements

In this section we explore the communication re-
quirements necessary for future massively parallel ma-
chines to achieve efficiencies in the range of 30 to 40%
when P > N. We consider the base machine with a
clock that is an order of magnitude faster than the
Delta processors, or 400 MHz. This results in the ex-
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Figure 4: Efficiency plot for a 3-D mesh MPP for
50653 atoms

ecution times of the various operations being an order
of magnitude less, but the ratios between the vari-
ous times remain the same. Hence all the values in
Table 2 are reduced by an order of magnitude; the
startup time is now 714e-Ts and the network band-
width is 23 MB/s. For illustrative purposes, we use the
50,653-atom problem and explore future MPPs with
40,000 to 60,000 processors.

The communication requirements are affected by
the communication startup time, the network band-
width, and the machine topology. We explore the
effects of all three parameters on performance. We
assume the algorithm remains fixed. Figure 4 is the
efficiency plot with varying startup times (identified
by t_s) and network bandwidth (identified by n_b) for
a three-dimensional mesh topology. The efficiency of
the base machine (t-s=714e-7, n_b=23MB/s) is not
shown on the graph because it is very small, close to
zero. The point at which we achieve 30 to 40% effi-
ciency 18 when the startup time is 714e-11s and the
network bandwidth is equal to 230 GB/s. Further
analysis indicate that 30 to 40% efficiency can also be
achieved with the same startup time, 7T14e-11s, but
a network bandwidth of only 2.3 GB/s. The startup
time of 714e-11s corresponds to approximately 3 clock
cycles for the 400 MHz processors. To achieve this
startup time on future MPPs, we believe that a type of
“active” message with significant hardware assistance
is needed, similar to that found in the J-Machine [15].

Next we consider a four-dimensional mesh topol-
ogy. Figure 5 is the efficiency plot with varying startup
times and network bandwidth for this topology. The
point at which we achieve 30 to 40% efficiency is when
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Figure 5: Efficiency plot for a 4-D mesh MPP for
50,653 atoms

the startup time is 714e-10 and the network band-
width is 23 GB/s. Further analysis indicate that a
2.3 GB/s network suffices. This startup time corre-
sponds to 30 clock cycles for the 400 MHz processors.
We believe that this reduction can be achieved with
a high-level language in the next ten to twenty years
with little problem.

7 Summary

In this paper we addressed two main issues: a good
decomposition method that can take advantage of a
massively parallel system and the communication re-
quirements needed to achieve good performance. In-
teraction decomposition, in contrast to partical and
spatial methods, allows the scaling of processors be-
yond the number of atoms. Using a validated analyti-
cal performance model of some real code, we analyzed
the use of MPPs for molecular dynamics applications.
The analysis indicated that for an MPP arranged as a
four-dimensional mesh with 400 MHz processors, the
communication startup time must be at most 30 clock
cycles and the network bandwidth at least 2.3 GB/s.
We believe that the 30-clock-cycle startup time will be
available to the user in a high-level language within a
decade. This configuration achieves 30 to 40% effi-
ciency of the MPP for a system with 50,000 atoms
executing on 50,000 processors.
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