
Parallel Molecular Dynamics: Communication Requirements forMassively Parallel MachinesValerie E. Taylor Rick L. Stevens Kathryn E. ArnoldEECS Department MCS DivisionNorthwestern University Argonne National LaboratoryEvanston, IL 60208 Argonne, IL 60439AbstractMolecular mechanics and dynamics are becomingwidely used to perform simulations of molecular sys-tems, from large-scale computations of materials to thedesign and modeling of drug compounds. In this paperwe address two major issues: a good decompositionmethod that can take advantage of future massivelyparallel processing systems for modest-sized problemsin the range of 50,000 atoms and the communicationrequirements needed to achieve 30 to 40% e�ciencyon MPPs. We analyzed a scalable benchmark molec-ular dynamics program executing on the Intel Touch-stone Delta parallelized with an interaction decomposi-tion method. Using a validated analytical performancemodel of the code, we determined that for an MPPwith a four-dimensional mesh topology and 400 MHzprocessors the communication startup time must be atmost 30 clock cycles and the network bandwidth mustbe at least 2.3 GB/s. This con�guration results in30 to 40% e�ciency of the MPP for a problem with50,000 atoms executing on 50,000 processors.1 IntroductionMolecular mechanics and dynamics are becomingwidely used to perform simulations of molecular sys-tems, from large-scale computations of materials tothe design and modeling of drug compounds. Whilesome small problems can be analyzed on high-endworkstations, and in some cases on personal comput-ers, important classes of problems require large paral-lel computers.Classical molecular dynamics involve solving New-ton's equations of motion for each atom in the systemwith respect to every other atom. The forces acting oneach atom are a combination of forces due to bonds,

Coulomb forces, and van der Waals forces. The cal-culation of the Coulomb forces is typically the mostcomputationally intensive because each atom interactselectrostatically with all the atoms in the system. Asan approximation many computational models com-pute interactions only within a certain radius of eachatom; the cuto� radius reduces the number of interac-tions calculated so that the work scales linearly withthe number of atoms. These short-range models havebeen shown to be very accurate for molecular dynam-ics. Other approximation techniques for N-body sys-tems, such as the fast multipole method [8] and cellmultipole method [5], show great promise for improv-ing the run time of very large scale problems; however,they do little to help with small to modest-sized sys-tems with at most 50,000 atoms, which is the focus ofthis paper.We address two major issues: a good decompositionmethod that can take advantage of future massivelyparallel processing (MPP) systems and the communi-cation requirements needed to achieve good e�ciency.These issues are important to drug design and proteininteractions, where researchers want to reduce the ex-ecution time of each time step for �xed-size problems.In these simulations the molecule of interest|oftenonly a few thousands atoms|is modeled in a solutionof water with many thousands of atoms. Reductionin execution time is important also in nonequilibriummolecular dynamics, where macroscopic changes maytake signi�cant time to evolve, requiring millions oftime steps to model. Thus, for some problems, it ismore signi�cant to be able to execute many time stepson a modest-size problem than few time steps on alarge-size problem. We analyze the use of current andfuture MPPs for these modest-sized problems.We believe that computers designed and built inthe next ten to twenty years will most likely fall intothree general design families [14]. These three families



Reprinted from Frontiers 1995 2comprise Cray-like systems with around 1000 proces-sors, where each processor is roughly a teraop in per-formance; mid-range systems with 10,000 to 100,000processors, each with a performance of 10 to 100 gi-gaops (an extrapolation from current MPP systems);and systems with up to 1,000,000 processors, eachslightly faster than today's microprocessors and to-gether reaching the petaop level of performance. Weare particularly interested in the last class of futuremachines because many believe it will be the �rst typeto achieve petaop performance. This class of ma-chines is likely to be memory limited because of cost.Molecular dynamics is a good application to examinebecause it has modest memory requirements.Many implementations of parallel molecular dy-namics have been developed for the �rst two classesof MPPs [3, 4, 6, 7, 11, 16, 17], but few groups haveaddressed issues related to the use of the third class,particularly for small to modest-sized problems. Inthis paper we focus on a �ne-grained decompositionof the molecular dynamics algorithm that parallelizesbeyond the number of atoms in the systems. Tradi-tional approaches use decompositions that partitionthe problem either in space or by particle (or atom).The parallelism available with these methods is lim-ited by the number of atoms, excluding parallelizingover time. In contrast, we use an interaction decom-position method that assigns unique atom pairs to dif-ferent processors; the pairs represent the interactions.This method is limited by the number of interactions,which is much greater than the number of atoms forshort-range models.Speci�cally, we extend the work of Plimpton [16] toconsider the case of the number of processors greaterthan or equal to the number of atoms. We presentan analytical performance model of real code, whichallows us to understand the performance on existingmachines and identify the features needed to achievegood performance on future machines. Our analysisindicates that for an MPP with a four-dimensionalmesh topology and 400 MHz processors, the commu-nication startup time must be at most 30 clock cy-cles and the network bandwidth at least 2.3 GB/s.This con�guration results in 30 to 40% e�ciency ofthe MPP for a problem with 50,000 atoms executingon 50,000 processors.In the following section we provide details aboutthe sequential benchmark program. In Section 3 wediscuss our interaction decomposition scheme and an-alyze the communication and computation require-ments for the parallel code. The analytical model isvalidated in Section 4. This model is extended in Sec-

tion 5 to consider systems of up to 50,000 atoms exe-cuting on future MPPs with up to 40,000 Intel Delta-type processors and network. In Section 6 we inves-tigate the communication requirements necessary toachieve good performance on MPPs. We summarizethe paper in Section 7.2 BackgroundThe benchmark problem used in this work is a sim-ulation of helium atoms at room temperature (300 K).The basic quantities associated with the molecularmodel are the number of molecules per unit volumeand the mass, size, and velocity of each molecule. Thee�ect of the molecules' interacting with each other at aparticular temperature and pressure can be calculatedfrom knowledge of the intermolecular force �eld. Theforce is e�ectively zero at large distances; it becomesweakly attractive when the molecules are su�cientlyclose, but decreases again to be strongly repulsive atshort distances. Thus, the short-range model is ap-propriate for the gaseous class of problems.The benchmark program uses a cuto� radius of6.44 Angstroms, or 2.5�, where � is the distance atwhich the potential energy is equal to zero using theLennard-Jones potential model. Intermolecular col-lisions in dilute gases, such as helium gases, are verylikely to be collisions involving only two atoms. Hence,the actual force computations are executed only onatom pairs with a distance less than the cuto� radius;these computations comprise less than 4% of the totalpossible interactions. This value was derived by tak-ing the ratio of the volume of the sphere with radius6.44 Angstroms to the volume of the cube. This valuewas also validated by experimental results involvingthe counting of calculated interactions.The sequential molecular dynamics algorithm isgiven in Table 1. The velocities are initialized to ran-dom values. The potential energy between pairs of he-lium atoms is calculated by using the Lennard-Jones(12-6) potential model. The derivative of the energywith respect to the distance is equal to the force be-tween the atoms. Hence, the potential energy is thenused to calculate the attractive and repulsive forces foreach atom. The result is an N � N force matrix, F,where N is the total number of atoms and Fij is theforce on atom i due to atom j. This matrix is sparsebecause of the short-range model and skew-symmetric(Fij = �Fji) because of Newton's third law. Basedupon these forces, the atoms move within the cube.We estimated the sequential computation cost bycounting the number of di�erent operations and ex-



Reprinted from Frontiers 1995 3Table 1: Molecular Dynamics Algorithm1. Predict coordinates and velocities2. Compute particle interactions3. Calculate potential energy4. Correct coordinates and velocities5. Sum all velocities6. Calculate kinetic and total energies7. Determine temperature and scale velocities,if necessaryRepeat steps 1 through 7 for I time stepsperimentally determining the execution time of thedi�erent operations. The result of this count is givenbelow. Serial Computation CostItabs + Itsqrt + texp + (I + 1)tlog+[3 3pN + (63I + 7)(2N ) + (2I + 3)(3N )+5I N(N�1)2 + 11I + 1]tadd+[3 3pN + (51I + 15)(2N ) + (3I + 3)(3N )+16I N(N�1)2 + 40I + 39]tmultiply+[22N + I N(N�1)2 + 4I + 32]tdivide+[(17I + 15)(2N ) + 3N + 8I N(N�1)2 ]tsubtract+[(16I + 21)(2N ) + (2I + 1)(3N ) + 23I + 29]tequalThe term I represents the number of time steps andtop the execution time of the speci�c operation. Theterm N(N�1)2 corresponds to the total number of pos-sible interactions, where only half of the interactionsare calculated (because of Newton's third law).The benchmark program does not use any tech-niques to reduce the number of atoms that mustbe checked for possible interactions; all atoms arechecked. However, when we explore the case in whichthe number of processors is approximately equal to thenumber of atoms, we consider the reduction in compu-tation that results from using such techniques. As wewill see in Section 6, this reduction a�ects the com-munication requirements. We consider also the casein which the lattice increases with larger systems.3 Interaction DecompositionConventional decomposition methods for molecu-lar dynamics problems consist of assigning a parti-tion of the particles or the physical space to the dif-

ferent processors. With these methods two atomsthat are within the cuto� radius may be assigned todi�erent processors. Particle decomposition requiresglobal communication of particle coordinates amongall processors to identify interactions to be calculated.Spatial decomposition requires local communicationof particle coordinates among processors with adja-cent physical regions; additional communication is re-quired for atoms that move beyond the physical regionassigned to a given processor.In contrast to the conventional methods, our in-teraction decomposition method assigns unique par-ticle pairs to di�erent processors. The pair lists arethe potential interactions to be calculated during thesimulation. All possible interactions are assigned toprocessors. Hence, no interprocessor communicationis needed to calculate any interactions.In our code, the interactions are mapped to a two-dimensional mesh of processors in the following man-ner. Recall that each entry of the N�N force matrix,Fij, represents the force on atom i from j. Dividethis matrix into pP � pP equal-sized blocks. Eachblock has NpP � N�1pP or N(N�1)P interactions. Also re-call that the force matrix is skew symmetric, for whichonly the interactions in either the upper or lower trian-gular part of the matrix need to be calculated. The re-maining entries are known because Fij = �Fji. Con-sider the interactions in the upper triangular section.We assign half of the interactions in each block of agiven processor in this section to its transpose proces-sor; each processor is assigned N(N�1)2P interactions.Hence, each interaction is mapped to a unique proces-sor; the mapping is similar to that of Plimpton [16].An example of this mapping is illustrated in Fig-ure 1 for a 4 � 4 array of processors with 16 atoms,numbered 1 to 16. Each box corresponds to a proces-sor; the processor is identi�ed by the (i; j) coordinateof the grid. The assigned interactions are given withineach box. Consider dividing the particle list into pPsections (or, in this case, four sections). The diagonalprocessors are assigned the interactions between theatoms in the respective sections. For example, proces-sor (2,2) is assigned the interactions between atomsin section 2|atoms 5, 6, 7, and 8. The interactionsbetween two sections of the atom list are split acrosstwo transpose processors. Consider processors (1,3)and (3,1). These two processors split the interactioncalculations between section 1 and section 3 of theatom list. Processor (1,3) is assigned the interactionsbetween atoms 1, 2, 3, 4 (section 1) and atoms 11, 12(one half of section 3); processor (3,1) is assigned theinteractions between atoms 1, 2, 3, 4 (section 1) and
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16Figure 1: An example of mapping interactions for 16atoms to 16 processorsatoms 9, 10 (the �rst half of section 3).The communication pattern required for the forceupdates consists of communication in a row of proces-sors, in a column of processors, and between transposeprocessors. This pattern results because each proces-sor, Pij, has atoms in common with the processors inthe same row, row i, same column, column j, and theprocessors in the same row and column of the trans-pose processor, row j and column i. Hence each pro-cessor �rst communicates with the processors in thesame row, then communicates with the processors inthe same column. During these two communications,each processor keeps a list of information that is tobe used by its transpose processor. After complet-ing the two ring communications, this information isexchanged with the transpose processor. In this wayprocessor Pij has information from row i, row j, col-umn i, and column j of processors.The following is the cost associated with communi-cating the force updates between processors and up-dating the corresponding data structures.Interprocessor Communication Cost[6I(32 NpP ) + 12I(32 NpP )(pP � 1)]tadd+[(6I + 2)(pP � 1)]tmultiply+[9I(32 NpP ) + (6I + 2)(pP � 1)]tdivide+[6I(32 NpP )(pP � 1) + (20I + 1)(pP � 1)]tequal+[2(I + 1)(pP � 1) + 2I(pP � 1) + I]tcomm+[I]tgsum

Table 2: Experimental execution times for the IntelDelta ti Description Delta (�s)tabs fabs() 0.55289tsqrt sqrt() 2.56527texp exp() 75.5789tlog log() 9.63801tadd addition 0.25123tmultiply multiplication 0.25121tdivide division 3.89710tsubtract subtraction 0.25123tequal assignment 0.12572tstartup comm. startup 714.35tnetlatency network latency 0.425 per byteThe term tgsum = (2 � log2 P )tcomm is the timeto execute a global sum and tcomm = tstartup +tnet�latency�message size is the communication time.The term (pP �1) represents the number of messagescommunicated among a row or column of processorscorresponding to a ring communication structure. Themessage size is O(32 NpP ), where 32 NpP is the number ofatoms assigned to a processor.4 Model ValidationWe analyzed the performance of the benchmarkmolecular dynamics simulation executed on the IntelTouchstone Delta. The original program was rewrit-ten in C with the p4 message-passing library developedat Argonne National Laboratory [12]. This library al-lows the code to be portable to other machines such asthe Paragon, IBM SP, and CM-5. We developed ana-lytical models of the sequential and parallel executiontime based upon the costs described in the precedingsections. The parallel execution time is the sequen-tial time divided by P , plus the communication cost,which includes the cost to update the additional datastructures. The values of the parameter top were ob-tained experimentally and are given in Table 2. Thetimings correspond to single-precision operations be-tween an array and a scalar with the result placedin an array. This computation is representative of thecomputations found in the code. The time for an addi-tion operation corresponds to 10 clock cycles of the 40MHz Intel i860XR processor; this represents memorylatency in addition to computation time. The valuesfor the tcomm expression were also determined exper-
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Figure 2: Theoretical and experimental throughputimentally for the p4 library routines by using a leastsquares �t.We considered problem sizes ranging between 64and 343 atoms executing on 1 to 121 processors. Theseproblem sizes allow us to explore the case of more pro-cessors than atoms on available machines. Further,the sizes fall within the range that is typical for thebenchmark program. The results are given in Figure 2.The plots are in terms of throughput, or time steps persecond; the throughput is equal to 1exec time � 400 (forthe 400 time steps, considered as typical for an equi-librium type computation), where exec time is the ex-ecution time in CPU seconds.In all the plots the analytical model predicts theoverall shape of the curves, especially for the 27- and64-atom cases where we have more processors thanatoms. There is a small di�erence between the the-

oretical and experimental results that we attributeto load balance synchronization, which our analyticalmodels does not handle. The mapping described inSection 3 provides a straightforward communicationscheme but does not balance the load among the pro-cessors; the initial mapping does not di�erentiate be-tween interactions that are calculated and those thatare eliminated by the cut o� radius. Thus our map-ping can result in load imbalance.Given that the analytical model predicts the shapeof the plots, we use this model to explore the commu-nication requirements necessary to achieve good per-formance on future MPPs for modest-sized problems.5 More Processors Than AtomsWe used a slightly modi�ed version of our analyti-cal model to predict what happens when we have moreprocessors than atoms. Recall from Section 2 that theoriginal code checks all atoms to determine the inter-actions to be calculated. In this section we consider anoptimized code for which the number of computationsis reduced by using techniques such as neighbor lists[18] and link-cell method [9]. The neighbor list tech-nique consists of maintaining a list of nearby atoms foreach atom. This list is examined for possible interac-tions instead of checking all atoms in the system; thelist is rebuilt every few time steps. With the link-cellmethod, during each time step the atoms are binnedinto three-dimensional cells with side length equal tothe cuto� radius. This reduces the task of �ndingneighbors to checking the atoms in 27 bins|the binthe atom is in and the 26 surrounding bins. Combinedmethods consist of keeping a neighbor list and usingthe link-cell method to update the neighbor list everyfew time steps.Our modi�ed model incorporates the combinedmethod to reduce the calculations to check for possibleinteractions. We assume the neighbor list is updatedevery 20 times steps. In this way the cost of binningand checking the 27 bins is amortized over the timesteps and is negligible, since it is only done 5% of thetime. We considered problems where the lattice in-creases in size with an increase in the number of atomsbut the cuto� radius remains the same; the number ofneighboring particles remains a constant with di�er-ent problem sizes. We assume the average size of theneighbor list is 78 atoms. This is consistent with theproblems analyzed in [16].Figure 3 provides the theoretical throughput forsystems with 17,576 to 50,653 atoms executed on upto 40,000 processors. For systems in the range of
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Figure 3: Theoretical performance on future MPPs18,000 particles we see the throughput reaches a max-imum with fewer than 500 processors; for systems inthe range of 50,000 particles we see the maximum oc-curs around 1000 processors. Beyond this point thethroughput begins to decrease signi�cantly, and the ef-�ciency drops down to approximately 0.1% for 40,000processors. This analysis applies to the Intel Deltamachine that has a clock frequency of 40 MHz andthe network bandwidth for p4 messages of 2.3 MB/s.6 Communication RequirementsIn this section we explore the communication re-quirements necessary for future massively parallel ma-chines to achieve e�ciencies in the range of 30 to 40%when P > N . We consider the base machine with aclock that is an order of magnitude faster than theDelta processors, or 400 MHz. This results in the ex-
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