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Abstract. Automatic Differentiation is a technique for augmenting computer programs with statements for the computation
of derivatives based on the chain rule of differential calculus. The ADIFOR 2.0 system provides automatic differentiation of
Fortran 77 programs for first-order derivatives. The ADIFOR 2.0 system consists of three main components: The ADIFOR 2.0
preprocessor, the ADIntrinsics Fortran 77 exception-handling system, and the SparsLinC library. The combination of these tools
provides the ability to deal with arbitrary Fortran 77 syntax, to handle codes containing single- and double-precision real- or
complex-valued data, to fully support and easily customize the translation of Fortran 77 intrinsics, and to transparently exploit
sparsity in derivative computations. ADIFOR 2.0 has been successfully applied to a 60,000-line code, which we believe to be a
new record in automatic differentiation.
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1 Introduction

Let f be a computer model, and denote by f(#) its output produced for a particular input . Employing the
Taylor expansion of f around a reference state x,, we have

fle, + Ax) = flx,) + 61;93 )A + Q(A )Ta 5(2 )A + HO(z,, Aw), (1)
where the higher-order terms HO(z,, Ax) satisfy ||[HO(z,, Az)|| = O(]|Az||?). Hence, the value of the first-
and second-order derivatives (we also interchangeably use the terms first- and second-order sensitivities) allows
us to derive a linear first-order or quadratic second-order approximation of f around the base state z,.

Derivatives provide a way for computing a relatively simple approximation of f, and thus allow one to inex-
pensively explore the behavior of f in the neighborhood of x,. Hence, derivatives are ubiquitous in numerical
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computing. Examples are methods for minimization or the solution of nonlinear systems of equations [31, 59],
or the numerical solution of stiff ordinary differential equations [24], partial differential equations [70], and
differential-algebraic equations [22].

During the past decade, large computer models have become common, as a consequence of the tremendous
expansion of computational capabilities. For such models, the computation of derivatives becomes even more
important, as it may be the most compute-intensive part of the overall computation. We mention three
examples.

Sensitivity Analysis: Here one tries to assess the sensitivity of a computational model to perturbations
in its parameters or initial conditions. Sensitivity analysis usually takes place in the model validation
stage, to verify robustness with respect to empirically determined parameters or to verify that the model
behaves as suggested by experimental data.

Inverse Problems: The goal here is to calibrate the initial state of a computer model such that its behavior
best matches a series of experimentally acquired data. The solution process usually employs some variant
of Newton’s method. A collection of articles related to this subject can be found, for example, in [33].

(Multidisciplinary) Design Optimization: Here one tries to find the optimal setting of input parameters
of a computer model with respect to a cost function that quantifies the quality of the overall design. This
approach constitutes probably the most rapidly expanding application area of numerical optimization,
since engineers are moving from a “repeated simulation” paradigm for computer-assisted design to one
where numerical optimization techniques are employed to explore the design space in a goal-oriented
fashion. A collection of articles related to this subject can be found, for example, in [1, 33].

For purposes of illustration, assume that we have a code for the computation of a function f and
f:z € R” — y e R™, and we wish to compute the derivatives of y with respect to &. We call = the
wndependent variable and y the dependent variable. While the terms “dependent,” “independent,” and “vari-
able” are used in many different contexts, this terminology corresponds to the mathematical use of derivatives.
There are four approaches to computing derivatives:

By Hand: One can differentiate the code by hand and thus arrive at a code that also computes derivatives.
However, handcoding of derivatives for a large code is a tedious and error-prone process; moreover,
for nonlinear functions, the derivatives are generally more complicated than the function itself. Hence,
developing a derivative-code by hand is liable to be a considerable amount of work in comparison with
the development of the original code, although it is likely to result in the most efficient code.

Divided Differences: We approximate the derivative of f with respect to the ith component of z at a
particular point zg by either one-sided differences
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Here e; is the ¢th Cartesian basis vector. From (1) it can be easily seen that this approach leads to
a first- or second-order approximation of the desired derivatives. Computing derivatives by divided



differences has the advantage that we need only the function as a “black box.” The main drawback of
divided differences is that their accuracy is hard to assess. A small step size h is needed to minimize the
truncation errorresulting from the omission of higher-order terms in (1), but the resulting subtraction of
two almost equal floating-point numbers may lead to significant cancellation error (see, for example [39]).
At the very best, approach (2), for example, results in a derivative approximation that has half the
significant digits of f. These issues, as well as sensible ways of choosing the stepsize, are discussed, for
example, in [38].

Symbolic Differentiation: Symbolic manipulators like Maple, Macsyma, or Reduce provide powerful capa-
bilities for manipulating algebraic expressions but are, in general, unable to deal with constructs such
as branches, loops, or subroutines that are inherent in computer codes. In addition, for every binary
operator (except + or -), the string describing the derivative expression in essence doubles, leading to
a combinatorial explosion effect (although some efficiency can be recouped by back-end optimization
techniques [28, 40]). Therefore, differentiation using a symbolic manipulator still requires considerable
human effort to break down an existing computer code into pieces digestible by a symbolic manipulator
and to assemble the resulting pieces into a usable derivative code.

Automatic Differentiation: Automatic differentiation techniques rely on the fact that every function, no
matter how complicated, is executed on a computer as a (potentially very long) sequence of elementary
operations such as additions, multiplications, and elementary functions such as sin and cos (see, for

example, [42, 63]. By applying the chain rule
0
—q(t 4
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over and over again to the composition of those elementary operations, one can compute, in a com-
pletely mechanical fashion, derivatives of f that are correct up to machine precision [46]. The techniques
of automatic differentiation are directly applicable to computer programs of arbitrary length contain-
ing branches, loops, and subroutines. We also note that, unlike handcoding or symbolically assisted
approaches, automatic differentiation enables derivatives to be updated easily when the original code
changes.

2 ot

The ADIFOR (Automatic Differentiation of Fortran) system provides automatic differentiation for pro-
grams written in Fortran 77. Given a Fortran subroutine (or collection of subroutines) for a function f,
ADIFOR produces Fortran 77 subroutines for the computation of the derivatives of this function. The ADI-
FOR approach provides four benefits:

Ease of Use: ADIFOR requires only that the user supply the Fortran source code and indicate the variables
that correspond to the independent and dependent variables.

Portability: ADIFOR produces vanilla Fortran 77 code, which also helps greatly with code verification.
Efficiency: ADIFOR-generated derivative code usually outperforms divided-difference approximations.

Extensibility: ADIFOR employs a consistent subroutine-naming scheme that makes it easy to exploit domain-
specific knowledge.



The ADIFOR project began in the summer of 1991. A prototype version of ADIFOR was operational and
in use in late 1991 and is described in [6]. Two major revisions of the system were subsequently completed;
the June 1993 version is called ADIFOR 1.0. ADIFOR, 1.0 was successfully employed in very different areas of
science of engineering: aeronautical multidisciplinary design optimization [5, 68], aeronautical computational
fluid dynamics [9, 13, 27, 41, 56, 57], weather modeling [19, 25, 61, 62], groundwater contaminant transport [18,
69], aquifer modeling [30, 50], structural engineering [29], statistics [23], mechanical system design [49], power
networks [52], reactor modeling [60], and large-scale numerical optimization [4, 14, 64]. The largest of these
codes was 25,000 lines long and described 3-D turbulent flow over an airplane wing. The experiences with
ADIFOR 1.0 demonstrated that automatic differentiation, properly implemented, is useful for scientists from
a wide variety of fields, and applicable to codes of arbitrary length and complexity.

The focus of this paper is on the ADIFOR, 2.0 system, which constitutes a major redevelopment effort and
provides significantly more functionality. The ADIFOR 2.0 system offers the following new features:

Full Fortran 77 Support: ADIFOR 1.0 did not, for example, support COMPLEX arithmetic, FUNCTIONs (ver-
sus SUBROUTINESs), statement functions, or procedure parameters. In addition to these features, the
ADIFOR 2.0 preprocessor also supports common extensions such as DOUBLE COMPLEX, INCLUDE state-
ments, and IMPLICIT NONE.

Flexible Intrinsic Handler: The ADIntrinsics 1.0 system provides for various reporting levels in response
to exceptions such as the differentiation of sqrt (x) when x is zero, and can easily be customized through
the use of template files.

Transparent Sparsity Support: Code generated with ADIFOR 2.0 can perform derivative computations
using the SparsLinC (Sparse Linear Combination) library, thus transparently exploiting sparsity arising
in large sparse Jacobian computations or gradients of functions that have a sparse Hessian.

Code Customization: ADIFOR 2.0 provides mechanisms to generate code that is particularly suited for
the computation of Jacobiankvector products.

The paper is structured as follows. In the next section we motivate the classical forward and reverse mode
of automatic differentiation, viewing automatic differentiation as a source translation problem, and describe
the approach taken by ADIFOR. In Section 3, we describe the new ADIFOR 2.0 system. In Subsection 3.1,
we describe the capabilities of the ADIFOR 2.0 preprocessor, which transforms Fortran code into a canonical
form suitable for automatic differentiation, determines which variables must be augmented with derivative
objects, and generates the derivative code, with templates at call sites of Fortran intrinsics. Subsection 3.2
describes the ADIntrinsics system, which translates the templates into Fortran 77 code, governed by user-
customizable prototype files describing the action to be taken, and the desired level of error reporting. The
SparsLinC library is described in Subsection 3.3; we present scenarios that suggest its use, and we give some
experimental results. Lastly, we summarize our contributions and discuss directions of future work.

2 Automatic Differentiation as a Source Transformation and the
ADIFOR Approach

The fact that the chain rule can be applied in a mechanical fashion has been rediscovered several times since the
1960s (see, for example, the papers in Part T of [44] and the references therein). Traditionally, two approaches



y(1) 1.0
y(2) 1.0
doi=1,n
if (x(i) > 0.0) then
y(1) = x(i) © y(1) O y(1)
else
y(2) = x(i) © y(2) © y(2)
endif
enddo

Figure 1: Sample Code Fragment

to AD have been developed: the so-called forward and reverse modes. These modes are distinguished by how
the chain rule is used to propagate derivatives through the computation. The forward mode accumulates
the derivatives of intermediate variables with respect to the independent variables, whereas the reverse mode
propagates the derivatives of the final values with respect to intermediate variables. ADIFOR, takes an
approach that employs both the forward and the reverse mode. In either case, automatic differentiation
produces code that, in the absence of floating-point exceptions, computes the values of the analytical derivatives
accurate up to machine precision.

. . . . 0
We illustrate the differences between these approaches by deriving code for computing 3 i from
x

(1:n)
the code fragment shown in Figure 1, considering the cases where “O7 is either “¥” or “4.” We take a
source transformation approach, rewriting the original code into one that also provides for the computation

of derivatives.

2.1 The Forward Mode

To apply the forward mode of automatic differentiation, we first break down the code into elementary unary
and binary operations and arrive at the code shown in Figure 2. Now we can compute derivatives as shown in
Figure 3, much in the way that the chain rule of differential calculus is usually taught. We use the notation
Vs to denote the derivative object associated with the program variable s. We can easily convince ourselves
that by initializing Vx (i) to the ith canonical unit vector of length n, on exit Vy(i) contains the gradient
dy(i)
dx(l:n)’
involving n-vectors. On the other hand, if we are interested only in sensitivities with respect to x(3), say,
then each Vx (i) becomes a scalar rather than a vector, and we initialize Vx(i) = 0.0 for ¢ # 3 and Vx(3)
= 1.0. In this case, then, each statement involving a derivative object is a scalar instruction, and we emerge

¢t = 1,2. In this case, each statement involving a derivative object is really a vector instruction

with Vy(i) = 3 yE;) ;2 = 1,2. In general, if we view the derivative vectors V as row vectors, the linearity of
x

differentiation implies that the forward mode allows us to compute arbitrary linear combinations of columns



Figure 2: Sample Code Fragment of Figure 1 Modified in Preparation for Forward-Mode Code Generation

y(1) = 1.0
y(2) = 1.0
doi=1,n
if (x(i) > 0.0) then
temp = x(1i) < y(1)
y(1) = temp < y(1)
else
temp = x(1) < y(2)
y(2) = temp < y(2)
endif
enddo

Vy(@) =0
y(1) = 1.0
Vy(2) =0
y(2) = 1.0
doi=1,n

enddo

if (x(i) > 0.0) then
Vtemp = Vx(i) + Vy(1)
temp = x(i) + y(1)
Vy(1) = Vtemp + Vy(1)
y(1) temp + y(1)

else
Vtemp = Vx(i) + Vy(2)
temp = x(i) + y(2)
Vy(2) = Vtemp + Vy(2)
y(2) temp + y(2)

endif

Forward Mode for & = +

Vy(1
y(1)
Vy(2
y(2)
do i

if

el

en
enddo

TR

0
.0
0
.0

i,n

(x(1) > 0.0) then

Vtemp = y(1)*Vx(i) + x(1)*Vy(1)
temp = x(i) * y(1)

Vy(1) = y(1)*Vtemp + temp*xVy(1)
y(1) = temp * y(1)

se

Vtemp = y(2)*Vx (i) + x(1)*Vy(2)
temp = x(i) * y(2)

Vy(2) = y(2)*Vtemp + temp*xVy(2)
y(2) = temp * y(2)

dif

Forward Mode for & = #

Figure 3: Derivative Code Generated from the Code Fragment of Figure 2 by Using the Forward-Mode

Approach




of the Jacobian

dy())  dy(l)

dy _ (1) Jx(n) (5)
dz dy(2) dy(2) ’
(1) Jx(n)
in that

V(1)

( N ) v | (6)
dzx :
Y V(n)

In particular, if, for some n-vector d, we initialize Vx(i) = d(i), we compute the directional derivative
dy

AY g =l YEFxd) —y(@)
dl‘ h—0 h

(7)

Forward mode code is easy to generate, logically preserves parallelizable or vectorizable structures within the
original code, and is readily generalized to higher-order derivatives [12]%. If we wish to compute p directional
derivatives, then running forward-mode code requires at most on the order of p times as much time and
memory as the original code.

2.2 The Reverse Mode

In contrast, the so-called reverse mode of automatic differentiation computes adjoint quantities — the deriva-
tive of the final result with respect to an intermediate quantity. To propagate adjoints, we have to be able to
reverse the flow of the program, and remember or recompute any intermediate value that nonlinearly impacts
the final result.

Let 5 denote the adjoint of a particular variable s. As a consequence of the chain rule it can be shown
(see, for example, [46]) that the statement s = f(v, w) in the original code implies that code of the form

_— ds_
v = —S3
8 v (8)
— Js _
w = —
ow
should be generated in the reverse mode code. The notation a += b is shorthand for a = a + b. When f
. . . .. 0 0 0 0
is a linear elementary operation such as addition, e 3_5 = 1, and hence 3_5 and 22 do not depend on
v w v w
the values of their operands. On the other hand, when f i1s a nonlinear operation such as a multiplication,
0 . . .
both 3_5 and 22 do depend on the values of their operands, and one must remember either these derivative
v w

values or the values of the operands. To be able to reverse the flow of the program, one must also remember
intermediate values that were overwritten, and trace how branches were taken.

Once we have transformed the code to consist only of elementary unary and binary operations (Figure 2),
we introduce trace arrays to record the branch history in the “jump” array, and save intermediate values of the

§ Although forward-mode code preserves vectorizable structures within the code, since it inserts additional vectorizable loops
into the code, vectorizing compilers may have a difficult time choosing the proper loop level to vectorize.



y(1) = 1.0; y(2) = 1.0;
yivalue(0) = y(1); ci
y2value(0) = y(2); c2
doi=1,n
if (x(i) > 0.0) then
jump(i) = ’left’; ci1 = cl + 1;
tempvaluel(cl) = x(i) < yilvalue(ci-1)
ylvalue(cl) = tempvaluel(cl) & yivalue(ci-1)
else
jump(i) = ’right’; c2 = c2 + 1;
tempvalue2(c2) = x(i) < y2value(c2-1)
y2value(c2) = tempvalue2(c2) < y2value(c2-1)
endif
enddo
y(1) = yivalue(cl); y(2) = y2value(c2);

0;
0;

Figure 4: Code Fragment of Figure 2 Modified in Preparation for Reverse-Mode Code Generation

variables y(1), y(2), and temp in yivalue(:), y2value(:), tempvaluel(:) and tempvalue2(:). Counters
cl and c2 are used to point to the last value set in each of the branches of the if-statement inside the loop.
The resulting code 1s shown in Figure 4. We are now in a position to automatically generate reverse mode
code for this computation, employing the recipe described in (8). The result is shown in Figure 5. We use the
notation § to denote the adjoint object associated with the program variable s.

We can easily convince ourselves that when we initialize y(1) = 1.0, y(2) = 0.0 and all other adjoint objects

to zero, then by running the codes in Figures 4 and 5, we emerge with x(i) = 3 x((i)) Similarly, initializing
)

— — . . Qi . .

y(1) = 0.0, y(2) = 1.0, and all other adjoint objects to zero, we compute x(i) = 3 x((;; In general, if we view
)

the adjoint vector associated with a program variable as column vector, the linearity of differentiation implies
that

(0. @) = (30, 7@ )« 5L ©)

dy . . . . . .
where d—y is as defined in Equation (5). That is, reverse mode code allows us to compute arbitrary linear
x

combinations of the rows of the Jacobian. If, for some vector d, we initialize y(i) = d(i), we compute the
derivative

9 (d" * y(x))
e (10)

Note that it is a much more involved process to generate reverse mode code. While the complexity of the
forward-mode code generation in Figure 3 changed minimally when we considered an addition instead of a



y2value(c2) = y(2); yivalue(cl) = y(1);

do i =n to 1 step -1
if (jump(i) = ’left’) then
yivalue(cl— 1) += yilvalue(cl)
tempvaluel(cl) += yilvalue(cl)
x(i) += tempvaluel(cl)
yilvalue(cl— 1) += tempvaluel(cl)
cl=cl -1
else
y2value(c2— 1) += y2value(c2)
tempvalue2(c2) += y2value(c2)
x(i) += tempvalue2(c2)
y2value(c2— 1) += tempvalue2(c2)
c2 =c2-1
endif
enddo

Reverse Mode for & = +

y2value(c2) = y(2); yivalue(cl) = y(1);

do i =n to 1 step -1
if (jump(i) = ’left’) then
yivalue(cl— 1) += tempvaluel(cl)*ylvalue(cl)
tempvaluel(cl) += yivalue(ci-1)*ylvalue(cl)
x(i) += yilvalue(ci-1)*tempvaluei(cl)
yivalue(cl— 1) += x(i)*tempvaluel(cl)
cl =c¢c1 -1
else
y2value(c2 — 1) += tempvalue2(c2)*y2value(c2)
tempvalue2(c2) += y2value(c2-1)*y2value(c2)
x(i) += y2value(c2-1)*tempvalue2(c2)
y2value(c2— 1) += x(i)*tempvalue2(c2)
c2 =¢2 -1
endif
enddo

Reverse Mode for & = *

Figure 5: Derivative Code Generated from Code in Figure 4 by Using the Reverse-Mode Approach




multiplication, the reverse mode code is very sensitive to this change: there is no need to save the intermediate
values of y(1), y(2), or temp when & = 4, but we must save them when & = #, at the expense of an extra
O(n) memory locations. Extra storage is required to remember the way the branches were taken, regardless
of whether the loop computed a multiplication or an addition. Hence, the reverse mode can, in extreme
cases, require as much memory for the tracing of intermediate values and branches as there are floating-point
operations being executed during the run of the program. However, its running time is roughly m times
that of the function when computing m linear combinations of the rows of the Jacobian. This is particularly
advantageous for gradients, since then m = 1.

2.3 The ADIFOR Approach

There have been various implementations of automatic differentiation; an extensive survey can be found in [54].
We are mainly interested in “black-box” tools for automatic differentiation—tools that, given the source code
and an indication of which variables correspond to the independent and dependent variables with respect to
differentiation, generate derivative code without further user intervention. Black-box tools in this sense are
GRESS [51], PADRE-2 [58] and Odyssee [65, 66] for Fortran programs and ADOL-C [45] and ADIC [16] for
C programs. AMC [37], on the other hand, is a tool that supports, in an interactive fashion, the generation
of reverse mode code.

GRESS, PADRE-2, and ADOL-C implement both the forward and reverse mode. To save control flow
information and intermediate values, these tools generate a “trace” of the computation by writing down the
particulars of every operation performed in the code. The interpretation overhead associated with using
this trace for the purposes of automatic differentiation and its potentially very large size can be a serious
computational bottleneck [67].

ADIFOR, Odyssee, and ADIC take a “source transformation” approach to automatic differentiation. By
applying the rules of automatic differentiation, these tools rewrite the original code, inserting statements for
the computation of first-order derivatives. Odyssee is the only tool that generates full reverse mode code,
and it has been used successfully for the adjoint generation of weather models [65, 66]. It imposes certain
restrictions on the Fortran input and on the Fortran runtime environment (e.g., the support of “automatic
arrays”). The potential storage explosion associated with applying the reverse mode to highly nonlinear codes
has not been addressed in Odyssee yet, but the snapshotting approach suggested in [43] has great potential.

ADIFOR and, more recently, ADIC employ a hybrid forward/reverse mode scheme, and the basic approach
taken in ADIFOR 2.0 is unchanged from that of previous versions of ADIFOR. In essence, for each statement,
we accumulate the partial derivatives of the variable on the left-hand side with respect to the variables on the
right-hand side, and then apply the forward mode to propagate the total derivatives according to the chain
rule. The results of this approach for the code of Figure 1 are shown in Figure 6. For example, the code
fragment

xibar = y(1) * y(1)
yilbar = temp + y(1) * x(i)

dy(1 dy(1

y( )T.Lew and y( )new I
. . . Ow() — Oyloa
which is shown in Figure 7. Note that the cost of computing these “statement derivatives” is amortized over
all the derivatives being computed, and hence this approach is more efficient than the normal forward mode or

r & = %

is a “cleaned-up” version of the vanilla reverse mode code to compute

10



Vy() =0
y(1) = 1.0
Vy(2) =0
Vy(1) =0 y(2) = 1.0
y(1) = 1.0 doi=1,n
Vy(2) =0 if (x(i) > 0.0) then
y(2) = 1.0 temp = x(i) * y(1)
doi=1,n res = temp*y(1)
if (x(i) > 0.0) then xibar = y(1) * y(1)
yilbar = 1.0 + 1.0 yilbar = temp + y(1) * x(i)
Vy(1) = yibar*Vy(1) + Vx(i) Vy(1) = yibar*Vy(1) + xibar*Vx(i)
y(1) = y(1) + x(i) + y(1) y(1) = res
else else
y2bar = 1.0 + 1.0 temp = x(i) * y(2)
Vy(2) = y2bar*xVy(2) + Vx(i) res = temp*y(2)
y(2) = y(2) + x(i) + y(2) xibar = y(2) * y(2)
endif y2bar = temp + y(2) * x(i)
enddo Vy(2) = y2bar*Vy(2) + xibar*Vx(i)
y(2) = res
ADIFOR Approach for & =+ endif
enddo
ADIFOR Approach for & =«

Figure 6: Derivative Code for the Code Fragment of Figure 1 Generated by Using the ADIFOR Approach
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a divided-difference approximation when more than a few derivatives are computed at the same time. Unlike
the reverse mode, which is optimal for gradients, but not for general Jacobians, this approach performs well
(compared with divided-difference approximations) for a wide variety of problems, and, like the forward mode,
it has predictable storage and runtime requirements.

We also see that, from a user’s perspective, the ADIFOR-generated code provides the directional derivative
computation possibilities associated with the forward mode of automatic differentiation [15]. Instead of simply
producing code to compute the Jacobian J, ADIFOR produces code to compute J*S, where the “seed matrix”
S 1s initialized by the user. Thus, if S is the identity, ADIFOR computes the full Jacobian; whereas if S is
just a vector, ADIFOR, computes the product of the Jacobian by a vector. A derivative object Vy(1), say,
contains the derivatives of the scalar y(1) with respect to all directions specified in the seed matrix. We call
such a vector a directional gradient vector, and such a vector is associated with every scalar variable for which
we propagate derivatives.

The cost of derivative computation 1s more or less proportional to the number p of directional derivatives
(equal to the number of columns of S) that are computed in one run. Hence, computing a Jacobian-vector
product is much less expensive than computing the Jacobian itself. Typically (see the references mentioned
in Section 1), ADIFOR-generated code runs two to four times faster than one-sided divided difference ap-
proximations when one computes more than 5-10 derivatives at one time. The explanation lies in the hybrid
approach and a dependence analysis that tries to avoid computing derivatives of expressions that do not affect
the dependent variables (see Subsection 3.1).

The seed matrix mechanism allows for flexible use of ADIFOR-generated code. For example, it can be
employed to compute compressed versions of large sparse Jacobians [4], to chain derivatives generated by
programs running on different platforms [9, 27], or to decrease turnaround time for derivative computations
through a parallel stripmining approach [13].

3 The ADIFOR 2.0 System

The ADIFOR 2.0 system has three major components:

ADIFOR 2.0 preprocessor: The ADIFOR 2.0 preprocessor parses the code, performs certain code nor-
malizations, determines which variables have to be augmented with derivative objects, and generates
derivative code with templates at call sites of Fortran 77 intrinsics and, if desired, calls to SparsLinC
routines.

ADIntrinsics system: The ADIntrinsics system expands calls to Fortran 77 intrinsic templates to Fortran
77 code guided by a template library defining how each intrinsic is to be translated.

SparsLinC library: The SparsLinC library provides transparent support of sparsity in derivative computa-
tions.

The relationship among these components is shown pictorially in Figure 8, and they are described in
detail in the following subsections. We point out beforehand that the new ADIFOR, 2.0 preprocessor and
ADIntrinsics system have correctly handled the 60,000-line CAMRAD helicopter hover code [53] at NASA
Langley. Researchers at Langley have verified the derivatives, and we believe this to be a new record in
automatic differentiation.

12



3.1 The ADIFOR 2.0 Preprocessor

ADIFOR takes a source transformation approach to automatic differentiation. That is, in order to augment
a given code with derivative computation, we rewrite it, using the principle outlined in the preceding section,
generating a new Fortran code that, when compiled and executed, computes derivatives. Compared with
implementing automatic differentiation with operator overloading (see, for example, [54]) a source translation
approach allows one to view the problem of generating derivative code in a context that is larger than one
arithmetic operation, and is the conceptual key to the development of hybrid modes like the one employed in
ADIFOR.

In order to be in a position to rewrite “real life” Fortran codes, it is advantageous to base an automatic
differentiation tool on existing compiler infrastructure. In this fashion, one can quickly gain access to means for
constructing and manipulating an abstract representation of the program. Moreover, one is able to “logically
retarget” techniques developed in the compiler community to reason about Fortran programs and generate
efficient derivative code. ADIFOR, employs compiler infrastructure provided in the ParaScope programming
environment [26], which was developed primarily for the semi-automatic parallelization of Fortran programs,
and the D system [2], a collection of tools for programming in the Fortran D data parallel language. While
our primary goal is not the parallelization of Fortran programs, this compiler infrastructure provides us
with a Fortran parser, data abstractions for representing Fortran programs, and tools for constructing and
manipulating those representations and for gathering a variety of data flow facts for scalars and arrays, as well
as control flow information.

In this section, we describe the ADIFOR preprocessor, which, given an indication of independent and
dependent variables, generates a “templatized” Fortran 77 version of the derivative code which will then be
processed by the ADIntrinsics system. The preprocessor accomplishes the following tasks:

Code Canonicalization: The original code is rewritten in a fashion that allows for automatic differentiation.

Variable Nomination: We have to decide which variables need to have an associated derivative object.
Loosely speaking, any variable whose value could depend on the value of an independent variable and
could influence the value of a dependent variable must have a derivative object.

Derivative Code Generation: Derivative code is generated according to the ADIFOR hybrid approach.

We briefly describe these tasks in the next subsections.

3.1.1 Code Canonicalization

In the code canonicalization phase, the Fortran code at hand is, in essence, rewritten to conform to certain
standards. For example, expressions appearing as arguments to function or subroutine calls and function
calls appearing within conditional tests are hoisted into assignments to new temporary variables. Statement
functions are expanded into in-line code. This phase also breaks up long right-hand sides of assignment
statements into smaller pieces, and rewrites them such that all variables appearing on the right-hand side of
an assignment statement are of the same type. The latter transformation is needed for the code to be able to
link in the SparsLinC (see Subsection 3.3) library.

This phase was not present in ADIFOR 1.0, and the occurrence of any of these features in the code
required the user to rewrite the code by hand. The canonicalization phase now also supports common Fortran
extensions, such as INCLUDE, DOUBLE COMPLEX, DO-ENDDO, and IMPLICIT NONE statements. In fact, the only
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Fortran 77 features that are not supported in ADIFOR 2.0 are Fortran 77 intrinsics passed as procedure
parameters, the overriding of Fortran 77 intrinsics by external functions, and I/O statements that contain
function invocations. The occurrence of such a statement is, however, flagged by ADIFOR.

3.1.2 Variable Nomination

We associate a derivative object (denoted by V symbols in Figure 6), with every variable whose value may
depend on the value of a variable considered “independent” with respect to differentiation, and whose value
impacts a variable considered “dependent” with respect to differentiation. Such a variable is called active.
Variables that do not require derivative information are called passive. The easiest solution to this variable
nomination problem is to make all variables active at a possibly large additional space penalty (for storage for
unneeded derivative objects) and time penalty (for computation of derivative objects that do not depend on
the independent variables or which do not impact the values of the dependent variables.)

ADIFOR tries to do better by employing interprocedural analysis techniques. First, it derives a “local
interaction graph” for each subroutine. This is a bipartite graph where input parameters or variables in
common blocks are connected with output parameters or variables in common blocks whose values they
influence. This dependency analysis is also crucial in determining the sets of active/passive variable binding
contexts in which each subroutine may be invoked.

Next, an interprocedural analysis is performed, which determines, in essence, all possible program paths
through which an independent variable can affect a dependent one and identifies intermediate variables that
are involved along such a path. This analysis involves computing a transitive closure of the whole program
graph composed from the local interaction graphs. In the presence of common blocks, equivalences, and
arbitrary control structures, this is a nontrivial and compute-intensive process. Indeed, in our experience, the
transitive closure computation is the most memory- and time-consuming part of the ADIFOR, process.

In the ADIFOR 2.0 preprocessor, the dependency analysis code has been substantially improved compared
with that in ADIFOR, 1.0, In particular, ADIFOR, 2.0 now may prune the local interaction matrix to ignore
variables that are declared but never used (as if often the case when common blocks are defined in include

files).

3.1.3 Code Generation

After active variables have been nominated, derivative code is generated for each statement containing an
active variable, and derivative objects are allocated. For each statement, we first generate derivative code
using the reverse mode approach as illustrated in Figure 7, and then clean up the code by folding constants
and by then eliminating variables that are used only once. In this fashion we eliminate multiplications by 1.0
and additions to 0.0, and we reduce the number of variables that must be allocated. For assignment statements
containing a Fortran intrinsic, a template is generated that will be instantiated by the ADIntrinsics system.

For example, if we designate “x” as an independent variable and “diff” as a dependent one, and if we set
a limit of three on the number of directional derivatives that can be computed, by default the function diff
in Figure 9 is translated into the code shown in Figure 10. In our experience, the code generated by ADIFOR
is usually 2-3 times longer than the original code.

The ADIFOR 2.0 preprocessor now also provides a mechanism for customizing the derivative code. For
example, one can suppress the leading dimensions of derivative objects, declare the number of directional
derivatives to be a constant instead of a runtime parameter, or omit the loops when one is interested only in
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computing one directional derivative, as, for example, a Jacobian*vector product. By judicious use of these
options, one can have ADIFOR generate code that is somewhat less general but may be compiled into faster
code on the computer platform at hand, in particular on vector and superscalar platforms. As an example,
if we are interested only in computing one directional derivative, then by simply setting some of ADIFOR’s
variables (details are described in [8]), the ADIFOR 2.0 preprocessor generates the simpler code shown in
Figure 11.

3.2 The ADIntrinsics System

Automatic differentiation is based on the application of the chain rule. It gives the correct answer, in the ab-
sence of floating-point exceptions, provided that all operators and functions are applied at arguments interior
to their domains, so that the operators and functions are smooth in a neighborhood of the point of applica-
tion. If this assumption is not satisfied, the results computed by an automatic differentiation tool cannot be
guaranteed to constitute a valid derivative value.

Let us consider, for example, the situation that in the course of the execution of a program, we compute
z = max(0.0,x) and the value of x happens to be zero. An automatic differentiation tool requires knowledge

of dmax(0.0, z)

their domain are abs, sign, aint, min, dim, and the power operator **. The ADIntrinsics system provides
a mechanism to

|z=0, which is not defined. Other Fortran77 intrinsics that are not everywhere differentiable in

e define a reasonable default behavior in cases where the derivative of a Fortran 77 intrinsic is not defined,
e provide an error-reporting mechanism that gives various levels of detail for the exceptions that occurred,
e allow the user to easily customize the exception handler, and

e casily extend it to handle new intrinsics.

Tup compute the elementary derivative of a Fortran 77 intrinsic, the ADIFOR, preprocessor inserts a call
to an intrinsic template. For example, the statement z = max(0.0,x), where x and z are declared as REALs,
is translated into

call AD_INTRINSIC FIRSTMAX S(0.0,x,r2v,rl p,r2.p)
do gi_=1,gp_
gz(gi) = r2p * gx(gi)
enddo
zZ =r2yv

The ADIntrinsics system then takes care of translating the AD_INTRINSIC FIRST MAX_S call into legal
Fortran 77 code which provides the value of the intrinsic in r2_v, the value of the partial derivative with

respect to its first argument in r1_p and the value of the partial derivative with respect to its second argument
Jmax(z,y) dmax(z,y)
nor

ox Oy
AD_INTRINSIC FIRST_ABS_S call is inserted to deal with the call to abs(), since

in r2_p. Note that neither are defined when # = y. As another example, the

1s not defined for x = 0.
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The ADIntrinsics system has three main components:

The Purse Preprocessor: Purse translates AD_INTRINSIC calls into legal Fortran 77, governed by the level
of exception handling desired.

Template files for all Fortran 77 intrinsics: Purse uses template files as blueprints for how to expand
AD_INTRINSIC calls. These files can be easily be customized by the user.

The Error Handler library: A collection of Fortran 77 routines is used to record and report runtime errors
and to change certain default values.

To illustrate the workings of the ADIntrinsics system, we demonstrate the expansion of the template call
AD_INTRINSIC FIRST MAX.S. A more detailed description can be found in [8].

The translation of an AD_INTRINSIC call into Fortran 77 is governed by a template file. The template file
provided as a default for max is shown in Figure 12. The template specifies how the function value is to be
computed (z = max(x,y)) and how the first-order partials £x and £y or the second-order partials fxx, fxy,
and fyy are computed. It also defines the behavior in “performance mode” and identifies when to invoke
an error handler in the other error-reporting modes. While ADIFOR 2.0 does not generate second-order
derivative code yet, we expect to add this capability soon; we have already provided for it in the ADIntrinsics
system.

Purse uses this file when translating the AD_INTRINSIC FIRST MAX_S call, governed by the level of er-
ror reporting desired. The ADIntrinsics system currently provides terse, counting, and verbose modes:

Performance Mode: Points of nondifferentiability are not checked. AD_INTRINSIC FIRST MAX_ S is translated
into

r2v = max (0.0, x)

if (0.0 .gt. x) then
rip = 1.0e0
r2p = 0.0e0

else if (0.0 .1t. x) then
rip = 0.0e0

r2p = 1.0e0
else

rip = 0.5e0

r2p = 0.5e0
endif

Note that the constants were instantiated with the right type, and no code was generated for evaluating
the second-order partial derivatives. At the point of nondifferentiability, both partials are set to 0.5, and
no warning is generated. This “tie value” constitutes a subgradient. The rationale for choosing default
values for the different intrinsics is provided in [10] and [17].

Terse Mode: At the point of nondifferentiability, an exception handler is called:
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r2.v = max (0.0, x)
if (0.0 .gt. x) then
rip = 1.0e0

r2p = 0.0e0

else if (0.0 .1t. x) then
rip = 0.0e0
r2p = 1.0e0

else

call ehbfST (7,0.0, x, r2v, rip, r2.p)
r2p = 1.0e0 - r1p
endif

When & = 0, the terse error handler is invoked, which sets a flag that an exception for the max intrinsic
occurred (exception no. 7) and returns exceptional values for this occurrence. If, after executing the
ADIFOR-generated code, the user calls the ehrpt error handler reporting subroutine, and ehbfST had
been invoked at some point, the message

Exception(s) occurred evaluating MIN

is generated.

Counting Mode: The translation is like in terse mode, except that the error handler call is now
call ehbfsSC (7,0.0, x, r2v, rip, r2.p)

If max was evaluated seven times, say, with both its arguments being equal in the course of the evaluation
of the ADIFOR-generated code, then a call to ehrpt would result in the message

Exception(s) occurred evaluating MIN: 7 times

We have both a terse and a counting mode because the counter recurrence required for determining the
number of occurrences of each exception inhibits vectorization.

Verbose Mode: The call to the error handler is now something like
call ehbfSV (7,0.0, x, r2v, rip, r2.p,’gmain.f’,133)

where gmain.f is the name of the file containing this call on line 133. When this subroutine is called,

it results in a message

Exception: MAX ( 0. 0.)
Occurred in gmain.f at line # 133

While verbose mode provides the most detailed information, we found that the string handling associated
with the file name inhibited compiler optimization on some platforms.
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The ADIntrinsics error handler library provides routines for keeping track of and reporting errors as well
as changing the default error values, or the error reporting unit.

We are also working on a “report-once” mode. Instead of printing a message every time an exception
occurs, this mode will provide summary information about how often the exception at line 133 in file g main. £
occurred.

The template mechanism also makes it easy to specify a different way for handling exceptional situations.
Say, for example, that the reason for inserting the max(0.0,x) call was to ensure that floating-point roundoff
errors did not result in a small negative value for a quantity that physically cannot be negative, for example,
some energy value. Then we might like to specify that, when the first argument of max is zero, we always would
like to set the partial of max with respect to the second argument to 1. We can easily do this by copying the
max template above into a file mymax.T, say (the . T extension denotes template files), and adding the branch

if (x .eq. TYPE(0.0)) then
fx = TYPE(0.0)
fy = TYPE(1.0)

elseif (x .gt. y) then

at the beginning of the if-statements. By adding the comment
C AD EXCEPTION OVERRIDE INTRINSIC(MAX,MYMAX)

before the call to max in the user’s code, Purse will then substitute the modified exception handler for dealing
with exceptions of this call.

A new intrinsic can be easily supported by adding the name of the new intrinsic to Purse and providing
a template file for 1t. In this fashion, a user of ADIFOR 2.0 has complete control over the handling and
reporting of exceptional derivative occurrences. We also note that in the ADIFOR 2.0 system, both the
ADIFOR preprocessor and Purse are called in a fashion that is transparent to the user.

3.3 The SparsLinC (Sparse Linear Combination) Library

The workhorse of ADIFOR-generated code (or any other mainly forward-mode first-order automatic differenti-
ation approach) is a “vector linear combination” (e.g., Vy(1) = yibar*Vy(1) + xibar*Vx(i) in Figure 6).
Here Vy (1) is a vector of length p, where, as in Subsection 2.3, p denotes the number of directional derivatives
to be computed, and yibar is a scalar. This operation is a particular instantiation of

3
w:Zai*vi, (11)
i=1

where w and v; are vectors of length p, the «; are scalar multipliers, and k is referred to as the “arity.” If we
choose AD FLAVOR = dense, which is the default, this vector operation is expressed as a Fortran vector loop,

e.g.,

do gi_ =1, gp_
gy(gi_, 1) = ylbar * gy(gi_,1) + xibar * g x(g-i_,i)
enddo
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As long as p is moderate, this is an efficient way of expressing a vector linear combination.
The SparsLinC (Sparse Linear Combination) Library addresses the scenario where p is large and most of
the vectors involved in vector linear combination are sparse, that is, for the most part they contain zero entries.

This situation arises, for example, in the computation of large sparse Jacobians, J := T " gradients of
x

so-called partially separable functions [47], which are functions f that can be represented in the form

f@) =3 fila). (12)

where each of the component functions f; has limited support. Hence, the gradients V f; are sparse, even
though the final gradient V f is dense. Partially separable functions play a key role in large-scale optimization
(for example, all minimization examples in [3] belong to that class), and, in particular, any function with a
sparse Hessian is a partially separable one [47].

If the sparsity pattern of J is known, coloring techniques together with the seed matrix mechanism can be
employed advantageously to compute a compressed Jacobian matrix efficiently [4]. The computation of the
gradient of a partially separable function can be reduced to the problem of computing a sparse Jacobian [20]

d
by realizing that the gradient of f can easily be obtained by summing the rows of the sparse Jacobian e
x

where
fi(x)
Sap(T)

The compressed Jacobian approach works well for sparse Jacobians under the following assumptions:
e The sparsity pattern of the Jacobian is known.

e The chromatic number of the Jacobian is close to the maximal number of nonzeros in any row, in
particular, the Jacobian does not contain a row that can be considered dense.

e The component functions f; of f are readily accessible.

Note, however, that sparsity is inherent in those problems, no matter how the code is actually formulated.
If the initial seed matrix is sparse (e.g., the identity), then, ignoring exact numerical cancellation, the left
hand side vector w in (11) has no fewer nonzeros than any of the vectors on the right hand side. Hence, if the
final derivative objects, which correspond to a row of the Jacobian J or a component gradient V f;, are sparse,
it 1s very likely that all intermediate vectors are sparse as well. That is, by replacing the dense vector loop as
a way of expressing the derivative linear combinations with algorithms and data structures tailored towards
exploiting sparsity, we can exploit sparsity in a transparent fashion, even if none of the assumptions for the
coloring approach are met. Also note that the sparsity structure of J or Vf; is computed as a byproduct of
the derivative computation.

The SparsLinC library provides this support for sparse vector linear combination, in a fashion that is well
suited to the use of this operation in the context of automatic differentiation. SparsLinC, which is written in
ANSI C, includes the following features:
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Three data structures for sparse vectors: SparsLinC has different data structures for a vector containing
only one nonzero, a few nonzeros, or several nonzeros. In the numerical Linear algebra literature, the
latter two data structures are usually referred to as the “single-subscript” and “compressed subscript”
representation of a sparse vector (see, for example, [32, 36]).

Efficient Memory Allocation Scheme: SparsLinC employs a “bucket” memory allocation scheme, which
in effect provides a buffered memory allocation mechanism, supporting the dynamic nature of the sparse
vectors while avoiding the need for system calls most of the time.

Polyalgorithms: SparsLinC switches between vector representations in a transparent fashion and provides
special support for the “+=" operation w = a7 * w + a» * v, which occurs frequently when computing
gradients of partially separable functions, as suggested by (12).

Full-Precision Support: single- and double-precision routines are provided for both real- and complex-
valued computations.

In this fashion, SparsLinC can adapt to the dynamic nature of the derivative vectors, efficiently representing
derivative vectors that grow from a column of the identity matrix (often occurring in the ADIFOR seed matrix)
to a dense vector, such as Vf in (12). We also mention that almost no memory is allocated for derivative
objects that are all zeros. Hence, SparsLinC effectively complements the ADIFOR, dependence analysis, which
has to make conservative assumptions about what variables are considered active and may, as a result, activate
a variable that is not on the computational path from independent to dependent variables. This situation may
arise, for example, for large arrays where different portions of the array represent logically different entities.

When invoked with the AD_ FLAVOR = sparse option, ADIFOR allocates an integer, instead of a vector, for
each derivative object, and generates calls to the SparsLinC library to perform the vector linear combinations,
for example,

call sspg2q(gy(1),ylbar,gx(i),xibar,gy(1))

The Fortran interface of SparsLinC is described in [7]. The routines needed for initialization or extraction of
data, as well as examples of the use of SparsLinC in the context of ADIFOR 2.0, are provided in [8].

In addition to ease of use, SparsLinC can result in significant performance improvement. For example,
we computed gradients for problems from the MINPACK-2 optimization test set [3] where the function was
partially separable but was not specified in partially separable form (13). The four codes were

e DGL2: 2-D Ginzburg-Landau model for homogeneous superconductors,
e DMSA: minimal surface area problem,

e DSSC: steady-state combustion model, and

e DEPT: elastic-plastic torsion problem.

We computed derivatives using both the dense and SparsLinC-supported approach. The improvement in
run time achieved on an IBM RS 6000-370 workstation through SparsLinC is shown in Figure 13. The
execution time of the “dense” routines was extrapolated from the largest problem that we could actually fit
onto the machine before running out of memory. We also mention that the derivatives computed with both
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the “dense” and SparsLinC-supported ADIFOR-generated derivative code agreed with the values produced
by the handcoded routines up to machine precision.

We see that, on some problems, we have achieved almost three orders of magnitude improvement over
the “dense do-loop” version of the derivative code. We also note that SparsLinC greatly reduces the memory
requirements of the code. Instead of requiring n times as much memory for computing a gradient of size n,
SparsLinC will allocate only as much memory as is needed, which, in our examples, involves at most three
dense vectors of length n into which gradients are accumulated, and only short vectors with at most nine
nonzeros for all other derivative objects.

In summary, SparsLinC provides a mechanism for exploiting sparsity in derivative computations in a very
easy fashion. The user need not have any knowledge about the particular sparsity structure of the problem.
The SparsLinC routines efficiently adapt to the particular situation at hand, providing efficient support for
a wide variety of sparsity scenarios. We also mention that, since the sparsity structure of the Jacobian is a
byproduct of the derivative computation, we are now in a position to develop, for example, a novel kind of
large-scale optimization environment for nonlinear equations, where the user need supply code only for “the
function,” and automatic differentiation provides both the derivative values and the location of the nonzeros
of the Jacobian for a sparse solver, without any user intervention [21].

4 Conclusions and Future Work

The use of ADIFOR in various application domains has demonstrated that automatic differentation
e is applicable to arbitrary codes,
e provides reliable derivatives, and
e can result in considerable speedups with respect to divided-difference approximations.

While these points were always clear to “automatic differentiation believers” and had to some extent been
borne out by applications in limited domains, the lack of tools that provided fast automatic differentiation
capabilities for general Fortran 77 codes effectively prohibited automatic differentiation from becoming part
of the mainstream of scientific computing. The ADIFOR, project has begun to change this by

e supporting almost all of Fortran 77, thereby lowering the technology accessibility threshold, as the need
for code rewriting is reduced,;

e employing advanced source transformation infrastructure and algorithms to handle and reason about
large and not necessarily well-structured codes;

e employing an approach that resulted in lower complexity than divided differences, and expressing the
code in a fashion such that computer run times bore out this complexity advantage;

e providing, through the use of Fortran 77 as an output language, the possibilities for users to become
familiar with automatic differentiation through inspection of the generated code and to “tune” the
generated code according to their needs; and

e actively promoting and supporting the use of automatic differentiation in applications.
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The ADIFOR 2.0 system now goes a step beyond establishing the usefulness of the technology. By providing
e the capability to support all of Fortran 77 as well as common extensions,

e a runtime library for transparent exploitation of sparsity in derivative computations, and

e a completely customizable exception handler,

the ADIFOR 2.0 system affords a new level of ease and flexibility of use in a first-order automatic differenti-
ation tool. While ADIFOR 1.0 was made available mainly through ADIFOR accounts at Argonne National
Laboratory, the ADIFOR 2.0 system 1s intended to be widely distributed.

However, much remains to be done. We are working on extending the capabilities of ADIFOR, to directly
compute second-order derivatives. While automatic differentiation can easily be extended to arbitrary-order
derivatives (see, for example, the ADOL-C [45] system), it is not clear which approach, or combination of
approaches, results in the most efficient code. Some of these issues are discussed in [11] and [12].

We are also working on decreasing the complexity of computing first-order derivatives. While ADIFOR-
generated code usually beats finite differences, it is usually not yet a match for a derivative code carefully
derived by hand, in particular with respect to adjoint codes. To address this issue, we are beginning to
investigate how advanced compiler techniques could be employed to generate efficient adjoint code. As the
small example in Figures 4 and 5 suggests, adjoint mode generation requires rather radical code restructuring
and advanced analysis capabilities to avoid tracing of unneeded quantities. We are also investigating higher-
level hybrid-mode approaches such as “pseudo-adjoints” [19] and the exploitation of parallel derivative codes
from serial simulation codes by exploiting chain rule associativity.

To understand the latter idea, consider the situation shown in Figure 14: G cannot start before F' has
been computed, and H has to wait for the completion of G. That is, none of these processes may execute in
parallel. This is not the case in derivative computations, however, because of the associativity of the derivative
chain rule. For example, we could proceed as in Figure 15. That is; at the same time that we spawn a process

d . . .
to compute F', we spawn a process to compute d—y, and at the same time that we start with computation of
x

dz . dw . . .. .
G, we spawn a process to compute —. Lastly, the computation of — is initiated. Under the assumption

dy dz
that the computation of derivatives takes significantly longer than the simulation itself, we will, in the end,
have the three derivative processes running in parallel. When they have finished, we simply accumulate their

outputs to arrive at the desired result, —. Thus, if we are willing to duplicate the computation of y and z, we

can 1n this fashion arrive at a coarse-grained parallel schedule that, as a result of its minimal synchronization
requirements, could ideally be mapped to a network of workstations.

We are also investigating the extension of automatic differentiation to parallel communication mechanisms,
including MPT [48] and PVM [35], parallel languages such as HPF [55] and Fortran-M [34], and languages
such as C++ and Fortran 90. While there 1s no difficulty in principle in providing automatic differentiation
capability for these languages, it is not yet clear to what extent the capabilities of these languages impact (in
a positive or negative way) the efficient generation of derivative codes.

Lastly, we remark that the ADIFOR project is, in our view, a good example of the power of interdisciplinary
research. The techniques employed in ADIFOR, are motivated by classical differential calculus, the theory of
automatic differentiation, and discrete complexity theory. The various components of the ADIFOR 2.0 system
(the ADIFOR preprocessor, the ADIntrinsics-f77 Fortran system, and the SparsLinC library) draw on compiler

22



and source transformation technology and numerical linear algebra. By combining these approaches, ADIFOR,
allows us to provide a new and, we believe, superior approach to a problem at the heart of numerical computing,
namely, the computation of derivatives.
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resbar = 1.0;

tempbar = ylbar = xibar = 0.0;
ylbar += temp * resbar
tempbar += y1 * resbar

xibar += y1 * tempbar

yibar += x(i) * tempbar

Figure 7: Reverse Mode Code for y(1) = x(i)*y(1)*y(1)
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Figure 8: Overview of ADIFOR 2.0 System

real function diff(x)

real x(3)

square(x) = x*x

diff = abs(x(1)*square(x(2))#*x(3))
end

Figure 9: Sample Fortran Program
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function g diff(gp_, x, gx, ldgx, grres_, ldgrres.)
real x(3)
integer g_pmax_
parameter (g_pmax_ = 3)
integer g_i_, g-p-, ldgrres_, ldgx
real g diff, rip, r6b, grres (ldgrres), rbb, r4b, r3w, rdv, r2.v
real grilw(gpmax_), gx(ldgx, 3)
save griw
if (gp- .gt. g-pmax_) then
print *, ’Parameter g p_ is greater than g_pmax_’

stop
endif
r3v = x(2) * x(2)
ré4v = x(1) * r3v
r4b = x(3) * r3v
r5b = x(3) * x(1)
r6b = r6b * x(2) + r5b * x(2)

do gi_ =1, gp_
griw(gi) = r4b*xgx(gi_,1) + r6 b*xgx(gi_,2) + rd vsgx(gi_,3)
enddo
riw = r4dv * x(3)
call AD_INTRINSIC FIRST_ABS S(riw, r2v, rip)
do gi_ =1, gp_
grres (gi) =rip * griw(gi)
enddo
gdiff = r2wv
end

Figure 10: Derivative Code Generated by ADIFOR 2.0 Preprocessor from the Code in Figure 9 by Using
Default Settings
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function g diff(x, gx, grres.)

real x(3)

real grres_, gdiff, rip, r2v, riw, r2w, r3w, graw, g_x(3), gr3.w
real griw

save gr2w, gr3w, griw

gr2w = (x(2) + x(2)) * gx(2)

2w = x(2) * x(2)

gr3w =1r2w * gx(1) + x(1) * gr2.w

r3w = x(1) * r2.w

griw = x(3) * gr3w + r3.w * gx(3)

riw = r3w * x(3)

call AD_INTRINSIC FIRST_ABS S(riw, r2v, rip)

grres_ =rlp * griw
gdiff = r2wv
end

Figure 11: Derivative Code Generated by ADIFOR 2.0 Preprocessor from the Code in Figure 9 by Using
Settings Appropriate for a Jacobian*Vector Product
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C PERFORMANCE
z = max (x,y)

#ifndef PERFORMANCE
if (x .gt. y) then
fx = TYPE(1.0)
fy = TYPE(0.0)
else if (x .1t. y) then
fx = TYPE(0.0)
fy = TYPE(1.0)
else
call EXCEPTION_HANDLER
fy = TYPE(1.0) - £x
endif
#else
if (x .gt. y) then
fx TYPE(1.0)
fy = TYPE(0.0)
else if (x .1t. y) then

fx = TYPE(0.0)
fy = TYPE(1.0)
else

¢ stop ’ADIFOR Exception: x = y in max(x,y).’
C This is the current value of TieVal
fx = TYPE(0.5)

fy = TYPE(0.5)
endif
#endif
C PERFORMANCE
fxx = TYPE(0.0)
C PERFORMANCE
fxy = TYPE(0.0)
C PERFORMANCE

fyy = TYPE(0.0)

Figure 12: Template File for max Intrinsic
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Orders of Magnitude Improvement

Performance Improvement through ADIFOR-SparsLinC on RS/6000-370
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Figure 15: Parallel Derivative Computation

33




