
The ADIFOR 2.0 System for the AutomaticDi�erentiation of Fortran 77 Programs�Christian BischofyAlan CarlezPeyvand KhademiyAndrew MaueryArgonne Preprint ANL-MCS-P481-1194CRPC Technical Report CRPC-TR94491Abstract. Automatic Di�erentiation is a technique for augmenting computer programs with statements for the computationof derivatives based on the chain rule of di�erential calculus. The ADIFOR 2.0 system provides automatic di�erentiation ofFortran 77 programs for �rst-order derivatives. The ADIFOR 2.0 system consists of three main components: The ADIFOR 2.0preprocessor, the ADIntrinsics Fortran 77 exception-handling system, and the SparsLinC library. The combination of these toolsprovides the ability to deal with arbitrary Fortran 77 syntax, to handle codes containing single- and double-precision real- orcomplex-valued data, to fully support and easily customize the translation of Fortran 77 intrinsics, and to transparently exploitsparsity in derivative computations. ADIFOR 2.0 has been successfully applied to a 60,000-line code, which we believe to be anew record in automatic di�erentiation.Key words. Automatic di�erentiation, ADIFOR, derivative, gradient, Jacobian, chain rule, source transformation andoptimization, ADIntrinsics, ParaScope, SparsLinC.1 IntroductionLet f be a computer model, and denote by f(x) its output produced for a particular input x. Employing theTaylor expansion of f around a reference state xo, we havef(xo +4x) = f(xo) + @ f(xo)@ x 4x+ 12(4x)T @2f(xo)@x2 4x+HO(xo;4x); (1)where the higher-order terms HO(xo;4x) satisfy jjHO(xo;4x)jj = O(jj4xjj3). Hence, the value of the �rst-and second-order derivatives (we also interchangeably use the terms �rst- and second-order sensitivities) allowsus to derive a linear �rst-order or quadratic second-order approximation of f around the base state xo.Derivatives provide a way for computing a relatively simple approximation of f , and thus allow one to inex-pensively explore the behavior of f in the neighborhood of xo. Hence, derivatives are ubiquitous in numerical�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D and Cooperative Agreement No. NCCW-0027, and bythe National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative Agreement No.CCR-9120008.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4844,fbischof,khademi,mauerg@mcs.anl.gov.zCenter for Research on Parallel Computation, Rice University, 6100 S. Main Street, Houston, TX 77251-1892,carle@cs.rice.edu. 1

computing. Examples are methods for minimization or the solution of nonlinear systems of equations [31, 59],or the numerical solution of sti� ordinary di�erential equations [24], partial di�erential equations [70], anddi�erential-algebraic equations [22].During the past decade, large computer models have become common, as a consequence of the tremendousexpansion of computational capabilities. For such models, the computation of derivatives becomes even moreimportant, as it may be the most compute-intensive part of the overall computation. We mention threeexamples.Sensitivity Analysis: Here one tries to assess the sensitivity of a computational model to perturbationsin its parameters or initial conditions. Sensitivity analysis usually takes place in the model validationstage, to verify robustness with respect to empirically determined parameters or to verify that the modelbehaves as suggested by experimental data.Inverse Problems: The goal here is to calibrate the initial state of a computer model such that its behaviorbest matches a series of experimentally acquired data. The solution process usually employs some variantof Newton's method. A collection of articles related to this subject can be found, for example, in [33].(Multidisciplinary) Design Optimization: Here one tries to �nd the optimal setting of input parametersof a computer model with respect to a cost function that quanti�es the quality of the overall design. Thisapproach constitutes probably the most rapidly expanding application area of numerical optimization,since engineers are moving from a \repeated simulation" paradigm for computer-assisted design to onewhere numerical optimization techniques are employed to explore the design space in a goal-orientedfashion. A collection of articles related to this subject can be found, for example, in [1, 33].For purposes of illustration, assume that we have a code for the computation of a function f andf : x 2 Rn 7! y 2 Rm, and we wish to compute the derivatives of y with respect to x. We call x theindependent variable and y the dependent variable. While the terms \dependent," \independent," and \vari-able" are used in many di�erent contexts, this terminology corresponds to the mathematical use of derivatives.There are four approaches to computing derivatives:By Hand: One can di�erentiate the code by hand and thus arrive at a code that also computes derivatives.However, handcoding of derivatives for a large code is a tedious and error-prone process; moreover,for nonlinear functions, the derivatives are generally more complicated than the function itself. Hence,developing a derivative-code by hand is liable to be a considerable amount of work in comparison withthe development of the original code, although it is likely to result in the most e�cient code.Divided Di�erences: We approximate the derivative of f with respect to the ith component of x at aparticular point x0 by either one-sided di�erences@ f(x)@ xi ���x=x0 � f(x0 � h � ei) � f(x0)�h (2)or central di�erences @ f(x)@ xi ���x=x0 � f(x0 + h � ei)� f(x0 � h � ei)2h : (3)Here ei is the ith Cartesian basis vector. From (1) it can be easily seen that this approach leads toa �rst- or second-order approximation of the desired derivatives. Computing derivatives by divided2

di�erences has the advantage that we need only the function as a \black box." The main drawback ofdivided di�erences is that their accuracy is hard to assess. A small step size h is needed to minimize thetruncation error resulting from the omission of higher-order terms in (1), but the resulting subtraction oftwo almost equal oating-point numbers may lead to signi�cant cancellation error (see, for example [39]).At the very best, approach (2), for example, results in a derivative approximation that has half thesigni�cant digits of f . These issues, as well as sensible ways of choosing the stepsize, are discussed, forexample, in [38].Symbolic Di�erentiation: Symbolic manipulators like Maple, Macsyma, or Reduce provide powerful capa-bilities for manipulating algebraic expressions but are, in general, unable to deal with constructs suchas branches, loops, or subroutines that are inherent in computer codes. In addition, for every binaryoperator (except + or -), the string describing the derivative expression in essence doubles, leading toa combinatorial explosion e�ect (although some e�ciency can be recouped by back-end optimizationtechniques [28, 40]). Therefore, di�erentiation using a symbolic manipulator still requires considerablehuman e�ort to break down an existing computer code into pieces digestible by a symbolic manipulatorand to assemble the resulting pieces into a usable derivative code.Automatic Di�erentiation: Automatic di�erentiation techniques rely on the fact that every function, nomatter how complicated, is executed on a computer as a (potentially very long) sequence of elementaryoperations such as additions, multiplications, and elementary functions such as sin and cos (see, forexample, [42, 63]. By applying the chain rule@@t f(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@t g(t)���t=t0� (4)over and over again to the composition of those elementary operations, one can compute, in a com-pletely mechanical fashion, derivatives of f that are correct up to machine precision [46]. The techniquesof automatic di�erentiation are directly applicable to computer programs of arbitrary length contain-ing branches, loops, and subroutines. We also note that, unlike handcoding or symbolically assistedapproaches, automatic di�erentiation enables derivatives to be updated easily when the original codechanges.The ADIFOR (Automatic Di�erentiation of Fortran) system provides automatic di�erentiation for pro-grams written in Fortran 77. Given a Fortran subroutine (or collection of subroutines) for a function f ,ADIFOR produces Fortran 77 subroutines for the computation of the derivatives of this function. The ADI-FOR approach provides four bene�ts:Ease of Use: ADIFOR requires only that the user supply the Fortran source code and indicate the variablesthat correspond to the independent and dependent variables.Portability: ADIFOR produces vanilla Fortran 77 code, which also helps greatly with code veri�cation.E�ciency: ADIFOR-generated derivative code usually outperforms divided-di�erence approximations.Extensibility: ADIFOR employs a consistent subroutine-naming scheme that makes it easy to exploit domain-speci�c knowledge. 3

The ADIFOR project began in the summer of 1991. A prototype version of ADIFOR was operational andin use in late 1991 and is described in [6]. Two major revisions of the system were subsequently completed;the June 1993 version is called ADIFOR 1.0. ADIFOR 1.0 was successfully employed in very di�erent areas ofscience of engineering: aeronautical multidisciplinary design optimization [5, 68], aeronautical computationaluid dynamics [9, 13, 27, 41, 56, 57], weather modeling [19, 25, 61, 62], groundwater contaminant transport [18,69], aquifer modeling [30, 50], structural engineering [29], statistics [23], mechanical system design [49], powernetworks [52], reactor modeling [60], and large-scale numerical optimization [4, 14, 64]. The largest of thesecodes was 25,000 lines long and described 3-D turbulent ow over an airplane wing. The experiences withADIFOR 1.0 demonstrated that automatic di�erentiation, properly implemented, is useful for scientists froma wide variety of �elds, and applicable to codes of arbitrary length and complexity.The focus of this paper is on the ADIFOR 2.0 system, which constitutes a major redevelopment e�ort andprovides signi�cantly more functionality. The ADIFOR 2.0 system o�ers the following new features:Full Fortran 77 Support: ADIFOR 1.0 did not, for example, support COMPLEX arithmetic, FUNCTIONs (ver-sus SUBROUTINEs), statement functions, or procedure parameters. In addition to these features, theADIFOR 2.0 preprocessor also supports common extensions such as DOUBLE COMPLEX, INCLUDE state-ments, and IMPLICIT NONE.Flexible Intrinsic Handler: The ADIntrinsics 1.0 system provides for various reporting levels in responseto exceptions such as the di�erentiation of sqrt(x) when x is zero, and can easily be customized throughthe use of template �les.Transparent Sparsity Support: Code generated with ADIFOR 2.0 can perform derivative computationsusing the SparsLinC (Sparse Linear Combination) library, thus transparently exploiting sparsity arisingin large sparse Jacobian computations or gradients of functions that have a sparse Hessian.Code Customization: ADIFOR 2.0 provides mechanisms to generate code that is particularly suited forthe computation of Jacobian�vector products.The paper is structured as follows. In the next section we motivate the classical forward and reverse modeof automatic di�erentiation, viewing automatic di�erentiation as a source translation problem, and describethe approach taken by ADIFOR. In Section 3, we describe the new ADIFOR 2.0 system. In Subsection 3.1,we describe the capabilities of the ADIFOR 2.0 preprocessor, which transforms Fortran code into a canonicalform suitable for automatic di�erentiation, determines which variables must be augmented with derivativeobjects, and generates the derivative code, with templates at call sites of Fortran intrinsics. Subsection 3.2describes the ADIntrinsics system, which translates the templates into Fortran 77 code, governed by user-customizable prototype �les describing the action to be taken, and the desired level of error reporting. TheSparsLinC library is described in Subsection 3.3; we present scenarios that suggest its use, and we give someexperimental results. Lastly, we summarize our contributions and discuss directions of future work.2 Automatic Di�erentiation as a Source Transformation and theADIFOR ApproachThe fact that the chain rule can be applied in a mechanical fashion has been rediscovered several times since the1960s (see, for example, the papers in Part I of [44] and the references therein). Traditionally, two approaches4

y(1) = 1.0y(2) = 1.0do i = 1,nif (x(i) > 0.0) theny(1) = x(i) 3 y(1) 3 y(1)elsey(2) = x(i) 3 y(2) 3 y(2)endifenddoFigure 1: Sample Code Fragmentto AD have been developed: the so-called forward and reverse modes. These modes are distinguished by howthe chain rule is used to propagate derivatives through the computation. The forward mode accumulatesthe derivatives of intermediate variables with respect to the independent variables, whereas the reverse modepropagates the derivatives of the �nal values with respect to intermediate variables. ADIFOR takes anapproach that employs both the forward and the reverse mode. In either case, automatic di�erentiationproduces code that, in the absence of oating-point exceptions, computes the values of the analytical derivativesaccurate up to machine precision.We illustrate the di�erences between these approaches by deriving code for computing @ y@ x(1 : n) fromthe code fragment shown in Figure 1, considering the cases where \3" is either \�" or \+." We take asource transformation approach, rewriting the original code into one that also provides for the computationof derivatives.2.1 The Forward ModeTo apply the forward mode of automatic di�erentiation, we �rst break down the code into elementary unaryand binary operations and arrive at the code shown in Figure 2. Now we can compute derivatives as shown inFigure 3, much in the way that the chain rule of di�erential calculus is usually taught. We use the notationrs to denote the derivative object associated with the program variable s. We can easily convince ourselvesthat by initializing rx(i) to the ith canonical unit vector of length n, on exit ry(i) contains the gradient@ y(i)@ x(1 : n) ; i = 1; 2. In this case, each statement involving a derivative object is really a vector instructioninvolving n-vectors. On the other hand, if we are interested only in sensitivities with respect to x(3), say,then each rx(i) becomes a scalar rather than a vector, and we initialize rx(i) = 0.0 for i 6= 3 and rx(3)= 1.0. In this case, then, each statement involving a derivative object is a scalar instruction, and we emergewith ry(i) = @ y(i)@ x(3) ; i = 1; 2. In general, if we view the derivative vectors r as row vectors, the linearity ofdi�erentiation implies that the forward mode allows us to compute arbitrary linear combinations of columns5

y(1) = 1.0y(2) = 1.0do i = 1,nif (x(i) > 0.0) thentemp = x(i) 3 y(1)y(1) = temp 3 y(1)elsetemp = x(i) 3 y(2)y(2) = temp 3 y(2)endifenddoFigure 2: Sample Code Fragment of Figure 1 Modi�ed in Preparation for Forward-Mode Code Generationry(1) = 0y(1) = 1.0ry(2) = 0y(2) = 1.0do i = 1,nif (x(i) > 0.0) thenrtemp = rx(i) + ry(1)temp = x(i) + y(1)ry(1) = rtemp + ry(1)y(1) = temp + y(1)elsertemp = rx(i) + ry(2)temp = x(i) + y(2)ry(2) = rtemp + ry(2)y(2) = temp + y(2)endifenddo Forward Mode for 3 = +
ry(1) = 0y(1) = 1.0ry(2) = 0y(2) = 1.0do i = 1,nif (x(i) > 0.0) thenrtemp = y(1)*rx(i) + x(i)*ry(1)temp = x(i) * y(1)ry(1) = y(1)*rtemp + temp*ry(1)y(1) = temp * y(1)elsertemp = y(2)*rx(i) + x(i)*ry(2)temp = x(i) * y(2)ry(2) = y(2)*rtemp + temp*ry(2)y(2) = temp * y(2)endifenddo Forward Mode for 3 = �Figure 3: Derivative Code Generated from the Code Fragment of Figure 2 by Using the Forward-ModeApproach 6

of the Jacobian d yd x = 0BB@ @ y(1)@ x(1) � � � @ y(1)@ x(n)@ y(2)@ x(1) � � � @ y(2)@ x(n) 1CCA ; (5)in that � ry(1)ry(2) � = d yd x �0B@ rx(1)...rx(n) 1CA : (6)In particular, if, for some n-vector d, we initialize rx(i) = d(i), we compute the directional derivatived yd x � d = limh!0 y(x + h � d)� y(x)h : (7)Forward mode code is easy to generate, logically preserves parallelizable or vectorizable structures within theoriginal code, and is readily generalized to higher-order derivatives [12]x. If we wish to compute p directionalderivatives, then running forward-mode code requires at most on the order of p times as much time andmemory as the original code.2.2 The Reverse ModeIn contrast, the so-called reverse mode of automatic di�erentiation computes adjoint quantities | the deriva-tive of the �nal result with respect to an intermediate quantity. To propagate adjoints, we have to be able toreverse the ow of the program, and remember or recompute any intermediate value that nonlinearly impactsthe �nal result.Let s denote the adjoint of a particular variable s. As a consequence of the chain rule it can be shown(see, for example, [46]) that the statement s = f(v; w) in the original code implies that code of the formv + = @ s@ v sw + = @ s@ ws (8)should be generated in the reverse mode code. The notation a += b is shorthand for a = a + b. When fis a linear elementary operation such as addition, @ s@ v = @ s@ w = 1, and hence @ s@ v and @ s@ w do not depend onthe values of their operands. On the other hand, when f is a nonlinear operation such as a multiplication,both @ s@ v and @ s@ w do depend on the values of their operands, and one must remember either these derivativevalues or the values of the operands. To be able to reverse the ow of the program, one must also rememberintermediate values that were overwritten, and trace how branches were taken.Once we have transformed the code to consist only of elementary unary and binary operations (Figure 2),we introduce trace arrays to record the branch history in the \jump" array, and save intermediate values of thexAlthough forward-mode code preserves vectorizable structures within the code, since it inserts additional vectorizable loopsinto the code, vectorizing compilers may have a di�cult time choosing the proper loop level to vectorize.7

y(1) = 1.0; y(2) = 1.0;y1value(0) = y(1); c1 = 0;y2value(0) = y(2); c2 = 0;do i = 1,nif (x(i) > 0.0) thenjump(i) = 'left'; c1 = c1 + 1;tempvalue1(c1) = x(i) 3 y1value(c1-1)y1value(c1) = tempvalue1(c1) 3 y1value(c1-1)elsejump(i) = 'right'; c2 = c2 + 1;tempvalue2(c2) = x(i) 3 y2value(c2-1)y2value(c2) = tempvalue2(c2) 3 y2value(c2-1)endifenddoy(1) = y1value(c1); y(2) = y2value(c2);Figure 4: Code Fragment of Figure 2 Modi�ed in Preparation for Reverse-Mode Code Generationvariables y(1), y(2), and temp in y1value(:), y2value(:), tempvalue1(:) and tempvalue2(:). Countersc1 and c2 are used to point to the last value set in each of the branches of the if-statement inside the loop.The resulting code is shown in Figure 4. We are now in a position to automatically generate reverse modecode for this computation, employing the recipe described in (8). The result is shown in Figure 5. We use thenotation s to denote the adjoint object associated with the program variable s.We can easily convince ourselves that when we initialize y(1) = 1:0, y(2) = 0:0 and all other adjoint objectsto zero, then by running the codes in Figures 4 and 5, we emerge with x(i) = @ x(i)@ y(1) . Similarly, initializingy(1) = 0:0, y(2) = 1:0, and all other adjoint objects to zero, we compute x(i) = @ x(i)@ y(2) . In general, if we viewthe adjoint vector associated with a program variable as column vector, the linearity of di�erentiation impliesthat �x(1); � � � ; x(n)� = � y(1) ; y(2) � � d yd x; (9)where d yd x is as de�ned in Equation (5). That is, reverse mode code allows us to compute arbitrary linearcombinations of the rows of the Jacobian. If, for some vector d, we initialize y(i) = d(i), we compute thederivative @ (dT � y(x))@ x : (10)Note that it is a much more involved process to generate reverse mode code. While the complexity of theforward-mode code generation in Figure 3 changed minimally when we considered an addition instead of a8

y2value(c2) = y(2); y1value(c1) = y(1);do i = n to 1 step -1if (jump(i) = 'left') theny1value(c1� 1) += y1value(c1)tempvalue1(c1) += y1value(c1)x(i) += tempvalue1(c1)y1value(c1� 1) += tempvalue1(c1)c1 = c1 - 1elsey2value(c2� 1) += y2value(c2)tempvalue2(c2) += y2value(c2)x(i) += tempvalue2(c2)y2value(c2� 1) += tempvalue2(c2)c2 = c2 - 1endifenddo Reverse Mode for 3 = +
y2value(c2) = y(2); y1value(c1) = y(1);do i = n to 1 step -1if (jump(i) = 'left') theny1value(c1� 1) += tempvalue1(c1)*y1value(c1)tempvalue1(c1) += y1value(c1-1)*y1value(c1)x(i) += y1value(c1-1)*tempvalue1(c1)y1value(c1� 1) += x(i)*tempvalue1(c1)c1 = c1 - 1elsey2value(c2� 1) += tempvalue2(c2)*y2value(c2)tempvalue2(c2) += y2value(c2-1)*y2value(c2)x(i) += y2value(c2-1)*tempvalue2(c2)y2value(c2� 1) += x(i)*tempvalue2(c2)c2 = c2 - 1endifenddo Reverse Mode for 3 = �Figure 5: Derivative Code Generated from Code in Figure 4 by Using the Reverse-Mode Approach

9

multiplication, the reverse mode code is very sensitive to this change: there is no need to save the intermediatevalues of y(1), y(2), or temp when 3 = +, but we must save them when 3 = �, at the expense of an extraO(n) memory locations. Extra storage is required to remember the way the branches were taken, regardlessof whether the loop computed a multiplication or an addition. Hence, the reverse mode can, in extremecases, require as much memory for the tracing of intermediate values and branches as there are oating-pointoperations being executed during the run of the program. However, its running time is roughly m timesthat of the function when computing m linear combinations of the rows of the Jacobian. This is particularlyadvantageous for gradients, since then m = 1.2.3 The ADIFOR ApproachThere have been various implementations of automatic di�erentiation; an extensive survey can be found in [54].We are mainly interested in \black-box" tools for automatic di�erentiation|tools that, given the source codeand an indication of which variables correspond to the independent and dependent variables with respect todi�erentiation, generate derivative code without further user intervention. Black-box tools in this sense areGRESS [51], PADRE-2 [58] and Odyssee [65, 66] for Fortran programs and ADOL-C [45] and ADIC [16] forC programs. AMC [37], on the other hand, is a tool that supports, in an interactive fashion, the generationof reverse mode code.GRESS, PADRE-2, and ADOL-C implement both the forward and reverse mode. To save control owinformation and intermediate values, these tools generate a \trace" of the computation by writing down theparticulars of every operation performed in the code. The interpretation overhead associated with usingthis trace for the purposes of automatic di�erentiation and its potentially very large size can be a seriouscomputational bottleneck [67].ADIFOR, Odyssee, and ADIC take a \source transformation" approach to automatic di�erentiation. Byapplying the rules of automatic di�erentiation, these tools rewrite the original code, inserting statements forthe computation of �rst-order derivatives. Odyssee is the only tool that generates full reverse mode code,and it has been used successfully for the adjoint generation of weather models [65, 66]. It imposes certainrestrictions on the Fortran input and on the Fortran runtime environment (e.g., the support of \automaticarrays"). The potential storage explosion associated with applying the reverse mode to highly nonlinear codeshas not been addressed in Odyssee yet, but the snapshotting approach suggested in [43] has great potential.ADIFOR and, more recently, ADIC employ a hybrid forward/reverse mode scheme, and the basic approachtaken in ADIFOR 2.0 is unchanged from that of previous versions of ADIFOR. In essence, for each statement,we accumulate the partial derivatives of the variable on the left-hand side with respect to the variables on theright-hand side, and then apply the forward mode to propagate the total derivatives according to the chainrule. The results of this approach for the code of Figure 1 are shown in Figure 6. For example, the codefragment xibar = y(1) * y(1)y1bar = temp + y(1) * x(i)is a \cleaned-up" version of the vanilla reverse mode code to compute @ y(1)new@ x(i) and @ y(1)new@ y(1)old for 3 = �which is shown in Figure 7. Note that the cost of computing these \statement derivatives" is amortized overall the derivatives being computed, and hence this approach is more e�cient than the normal forward mode or10

ry(1) = 0y(1) = 1.0ry(2) = 0y(2) = 1.0do i = 1,nif (x(i) > 0.0) theny1bar = 1.0 + 1.0ry(1) = y1bar*ry(1) + rx(i)y(1) = y(1) + x(i) + y(1)elsey2bar = 1.0 + 1.0ry(2) = y2bar*ry(2) + rx(i)y(2) = y(2) + x(i) + y(2)endifenddo ADIFOR Approach for 3 = +
ry(1) = 0y(1) = 1.0ry(2) = 0y(2) = 1.0do i = 1,nif (x(i) > 0.0) thentemp = x(i) * y(1)res = temp*y(1)xibar = y(1) * y(1)y1bar = temp + y(1) * x(i)ry(1) = y1bar*ry(1) + xibar*rx(i)y(1) = reselsetemp = x(i) * y(2)res = temp*y(2)xibar = y(2) * y(2)y2bar = temp + y(2) * x(i)ry(2) = y2bar*ry(2) + xibar*rx(i)y(2) = resendifenddo ADIFOR Approach for 3 = �Figure 6: Derivative Code for the Code Fragment of Figure 1 Generated by Using the ADIFOR Approach
11

a divided-di�erence approximation when more than a few derivatives are computed at the same time. Unlikethe reverse mode, which is optimal for gradients, but not for general Jacobians, this approach performs well(compared with divided-di�erence approximations) for a wide variety of problems, and, like the forward mode,it has predictable storage and runtime requirements.We also see that, from a user's perspective, the ADIFOR-generated code provides the directional derivativecomputation possibilities associated with the forward mode of automatic di�erentiation [15]. Instead of simplyproducing code to compute the Jacobian J , ADIFOR produces code to compute J �S, where the \seed matrix"S is initialized by the user. Thus, if S is the identity, ADIFOR computes the full Jacobian; whereas if S isjust a vector, ADIFOR computes the product of the Jacobian by a vector. A derivative object ry(1), say,contains the derivatives of the scalar y(1) with respect to all directions speci�ed in the seed matrix. We callsuch a vector a directional gradient vector, and such a vector is associated with every scalar variable for whichwe propagate derivatives.The cost of derivative computation is more or less proportional to the number p of directional derivatives(equal to the number of columns of S) that are computed in one run. Hence, computing a Jacobian-vectorproduct is much less expensive than computing the Jacobian itself. Typically (see the references mentionedin Section 1), ADIFOR-generated code runs two to four times faster than one-sided divided di�erence ap-proximations when one computes more than 5{10 derivatives at one time. The explanation lies in the hybridapproach and a dependence analysis that tries to avoid computing derivatives of expressions that do not a�ectthe dependent variables (see Subsection 3.1).The seed matrix mechanism allows for exible use of ADIFOR-generated code. For example, it can beemployed to compute compressed versions of large sparse Jacobians [4], to chain derivatives generated byprograms running on di�erent platforms [9, 27], or to decrease turnaround time for derivative computationsthrough a parallel stripmining approach [13].3 The ADIFOR 2.0 SystemThe ADIFOR 2.0 system has three major components:ADIFOR 2.0 preprocessor: The ADIFOR 2.0 preprocessor parses the code, performs certain code nor-malizations, determines which variables have to be augmented with derivative objects, and generatesderivative code with templates at call sites of Fortran 77 intrinsics and, if desired, calls to SparsLinCroutines.ADIntrinsics system: The ADIntrinsics system expands calls to Fortran 77 intrinsic templates to Fortran77 code guided by a template library de�ning how each intrinsic is to be translated.SparsLinC library: The SparsLinC library provides transparent support of sparsity in derivative computa-tions.The relationship among these components is shown pictorially in Figure 8, and they are described indetail in the following subsections. We point out beforehand that the new ADIFOR 2.0 preprocessor andADIntrinsics system have correctly handled the 60,000-line CAMRAD helicopter hover code [53] at NASALangley. Researchers at Langley have veri�ed the derivatives, and we believe this to be a new record inautomatic di�erentiation. 12

3.1 The ADIFOR 2.0 PreprocessorADIFOR takes a source transformation approach to automatic di�erentiation. That is, in order to augmenta given code with derivative computation, we rewrite it, using the principle outlined in the preceding section,generating a new Fortran code that, when compiled and executed, computes derivatives. Compared withimplementing automatic di�erentiation with operator overloading (see, for example, [54]) a source translationapproach allows one to view the problem of generating derivative code in a context that is larger than onearithmetic operation, and is the conceptual key to the development of hybrid modes like the one employed inADIFOR.In order to be in a position to rewrite \real life" Fortran codes, it is advantageous to base an automaticdi�erentiation tool on existing compiler infrastructure. In this fashion, one can quickly gain access to means forconstructing and manipulating an abstract representation of the program. Moreover, one is able to \logicallyretarget" techniques developed in the compiler community to reason about Fortran programs and generatee�cient derivative code. ADIFOR employs compiler infrastructure provided in the ParaScope programmingenvironment [26], which was developed primarily for the semi-automatic parallelization of Fortran programs,and the D system [2], a collection of tools for programming in the Fortran D data parallel language. Whileour primary goal is not the parallelization of Fortran programs, this compiler infrastructure provides uswith a Fortran parser, data abstractions for representing Fortran programs, and tools for constructing andmanipulating those representations and for gathering a variety of data ow facts for scalars and arrays, as wellas control ow information.In this section, we describe the ADIFOR preprocessor, which, given an indication of independent anddependent variables, generates a \templatized" Fortran 77 version of the derivative code which will then beprocessed by the ADIntrinsics system. The preprocessor accomplishes the following tasks:Code Canonicalization: The original code is rewritten in a fashion that allows for automatic di�erentiation.Variable Nomination: We have to decide which variables need to have an associated derivative object.Loosely speaking, any variable whose value could depend on the value of an independent variable andcould inuence the value of a dependent variable must have a derivative object.Derivative Code Generation: Derivative code is generated according to the ADIFOR hybrid approach.We briey describe these tasks in the next subsections.3.1.1 Code CanonicalizationIn the code canonicalization phase, the Fortran code at hand is, in essence, rewritten to conform to certainstandards. For example, expressions appearing as arguments to function or subroutine calls and functioncalls appearing within conditional tests are hoisted into assignments to new temporary variables. Statementfunctions are expanded into in-line code. This phase also breaks up long right-hand sides of assignmentstatements into smaller pieces, and rewrites them such that all variables appearing on the right-hand side ofan assignment statement are of the same type. The latter transformation is needed for the code to be able tolink in the SparsLinC (see Subsection 3.3) library.This phase was not present in ADIFOR 1.0, and the occurrence of any of these features in the coderequired the user to rewrite the code by hand. The canonicalization phase now also supports common Fortranextensions, such as INCLUDE, DOUBLE COMPLEX, DO-ENDDO, and IMPLICIT NONE statements. In fact, the only13

Fortran 77 features that are not supported in ADIFOR 2.0 are Fortran 77 intrinsics passed as procedureparameters, the overriding of Fortran 77 intrinsics by external functions, and I/O statements that containfunction invocations. The occurrence of such a statement is, however, agged by ADIFOR.3.1.2 Variable NominationWe associate a derivative object (denoted by r symbols in Figure 6), with every variable whose value maydepend on the value of a variable considered \independent" with respect to di�erentiation, and whose valueimpacts a variable considered \dependent" with respect to di�erentiation. Such a variable is called active.Variables that do not require derivative information are called passive. The easiest solution to this variablenomination problem is to make all variables active at a possibly large additional space penalty (for storage forunneeded derivative objects) and time penalty (for computation of derivative objects that do not depend onthe independent variables or which do not impact the values of the dependent variables.)ADIFOR tries to do better by employing interprocedural analysis techniques. First, it derives a \localinteraction graph" for each subroutine. This is a bipartite graph where input parameters or variables incommon blocks are connected with output parameters or variables in common blocks whose values theyinuence. This dependency analysis is also crucial in determining the sets of active/passive variable bindingcontexts in which each subroutine may be invoked.Next, an interprocedural analysis is performed, which determines, in essence, all possible program pathsthrough which an independent variable can a�ect a dependent one and identi�es intermediate variables thatare involved along such a path. This analysis involves computing a transitive closure of the whole programgraph composed from the local interaction graphs. In the presence of common blocks, equivalences, andarbitrary control structures, this is a nontrivial and compute-intensive process. Indeed, in our experience, thetransitive closure computation is the most memory- and time-consuming part of the ADIFOR process.In the ADIFOR 2.0 preprocessor, the dependency analysis code has been substantially improved comparedwith that in ADIFOR 1.0, In particular, ADIFOR 2.0 now may prune the local interaction matrix to ignorevariables that are declared but never used (as if often the case when common blocks are de�ned in include�les).3.1.3 Code GenerationAfter active variables have been nominated, derivative code is generated for each statement containing anactive variable, and derivative objects are allocated. For each statement, we �rst generate derivative codeusing the reverse mode approach as illustrated in Figure 7, and then clean up the code by folding constantsand by then eliminating variables that are used only once. In this fashion we eliminate multiplications by 1.0and additions to 0.0, and we reduce the number of variables that must be allocated. For assignment statementscontaining a Fortran intrinsic, a template is generated that will be instantiated by the ADIntrinsics system.For example, if we designate \x" as an independent variable and \di�" as a dependent one, and if we seta limit of three on the number of directional derivatives that can be computed, by default the function diffin Figure 9 is translated into the code shown in Figure 10. In our experience, the code generated by ADIFORis usually 2-3 times longer than the original code.The ADIFOR 2.0 preprocessor now also provides a mechanism for customizing the derivative code. Forexample, one can suppress the leading dimensions of derivative objects, declare the number of directionalderivatives to be a constant instead of a runtime parameter, or omit the loops when one is interested only in14

computing one directional derivative, as, for example, a Jacobian*vector product. By judicious use of theseoptions, one can have ADIFOR generate code that is somewhat less general but may be compiled into fastercode on the computer platform at hand, in particular on vector and superscalar platforms. As an example,if we are interested only in computing one directional derivative, then by simply setting some of ADIFOR'svariables (details are described in [8]), the ADIFOR 2.0 preprocessor generates the simpler code shown inFigure 11.3.2 The ADIntrinsics SystemAutomatic di�erentiation is based on the application of the chain rule. It gives the correct answer, in the ab-sence of oating-point exceptions, provided that all operators and functions are applied at arguments interiorto their domains, so that the operators and functions are smooth in a neighborhood of the point of applica-tion. If this assumption is not satis�ed, the results computed by an automatic di�erentiation tool cannot beguaranteed to constitute a valid derivative value.Let us consider, for example, the situation that in the course of the execution of a program, we computez = max(0.0,x) and the value of x happens to be zero. An automatic di�erentiation tool requires knowledgeof dmax(0:0; x)d x jx=0, which is not de�ned. Other Fortran77 intrinsics that are not everywhere di�erentiable intheir domain are abs, sign, aint, min, dim, and the power operator **. The ADIntrinsics system providesa mechanism to� de�ne a reasonable default behavior in cases where the derivative of a Fortran 77 intrinsic is not de�ned,� provide an error-reporting mechanism that gives various levels of detail for the exceptions that occurred,� allow the user to easily customize the exception handler, and� easily extend it to handle new intrinsics.Tup compute the elementary derivative of a Fortran 77 intrinsic, the ADIFOR preprocessor inserts a callto an intrinsic template. For example, the statement z = max(0.0,x), where x and z are declared as REALs,is translated into call AD INTRINSIC FIRST MAX S(0.0,x,r2 v,r1 p,r2 p)do g i = 1,g pg z(g i) = r2 p * g x(g i)enddoz = r2 vThe ADIntrinsics system then takes care of translating the AD INTRINSIC FIRST MAX S call into legalFortran 77 code which provides the value of the intrinsic in r2 v, the value of the partial derivative withrespect to its �rst argument in r1 p and the value of the partial derivative with respect to its second argumentin r2 p. Note that neither @max(x; y)@ x nor @max(x; y)@ y are de�ned when x = y. As another example, theAD INTRINSIC FIRST ABS S call is inserted to deal with the call to abs(), since d jxjd x is not de�ned for x = 0.15

The ADIntrinsics system has three main components:The Purse Preprocessor: Purse translates AD INTRINSIC calls into legal Fortran 77, governed by the levelof exception handling desired.Template �les for all Fortran 77 intrinsics: Purse uses template �les as blueprints for how to expandAD INTRINSIC calls. These �les can be easily be customized by the user.The Error Handler library: A collection of Fortran 77 routines is used to record and report runtime errorsand to change certain default values.To illustrate the workings of the ADIntrinsics system, we demonstrate the expansion of the template callAD INTRINSIC FIRST MAX S. A more detailed description can be found in [8].The translation of an AD INTRINSIC call into Fortran 77 is governed by a template �le. The template �leprovided as a default for max is shown in Figure 12. The template speci�es how the function value is to becomputed (z = max(x,y)) and how the �rst-order partials fx and fy or the second-order partials fxx, fxy,and fyy are computed. It also de�nes the behavior in \performance mode" and identi�es when to invokean error handler in the other error-reporting modes. While ADIFOR 2.0 does not generate second-orderderivative code yet, we expect to add this capability soon; we have already provided for it in the ADIntrinsicssystem.Purse uses this �le when translating the AD INTRINSIC FIRST MAX S call, governed by the level of er-ror reporting desired. The ADIntrinsics system currently provides terse, counting, and verbose modes:Performance Mode: Points of nondi�erentiability are not checked. AD INTRINSIC FIRST MAX S is translatedinto r2 v = max (0.0, x)if (0.0 .gt. x) thenr1 p = 1.0e0r2 p = 0.0e0else if (0.0 .lt. x) thenr1 p = 0.0e0r2 p = 1.0e0elser1 p = 0.5e0r2 p = 0.5e0endifNote that the constants were instantiated with the right type, and no code was generated for evaluatingthe second-order partial derivatives. At the point of nondi�erentiability, both partials are set to 0.5, andno warning is generated. This \tie value" constitutes a subgradient. The rationale for choosing defaultvalues for the di�erent intrinsics is provided in [10] and [17].Terse Mode: At the point of nondi�erentiability, an exception handler is called:16

r2 v = max (0.0, x)if (0.0 .gt. x) thenr1 p = 1.0e0r2 p = 0.0e0else if (0.0 .lt. x) thenr1 p = 0.0e0r2 p = 1.0e0elsecall ehbfST (7,0.0, x, r2 v, r1 p, r2 p)r2 p = 1.0e0 - r1 pendifWhen x = 0, the terse error handler is invoked, which sets a ag that an exception for the max intrinsicoccurred (exception no. 7) and returns exceptional values for this occurrence. If, after executing theADIFOR-generated code, the user calls the ehrpt error handler reporting subroutine, and ehbfST hadbeen invoked at some point, the messageException(s) occurred evaluating MINis generated.Counting Mode: The translation is like in terse mode, except that the error handler call is nowcall ehbfSC (7,0.0, x, r2 v, r1 p, r2 p)If max was evaluated seven times, say, with both its arguments being equal in the course of the evaluationof the ADIFOR-generated code, then a call to ehrpt would result in the messageException(s) occurred evaluating MIN: 7 timesWe have both a terse and a counting mode because the counter recurrence required for determining thenumber of occurrences of each exception inhibits vectorization.Verbose Mode: The call to the error handler is now something likecall ehbfSV (7,0.0, x, r2 v, r1 p, r2 p,'g main.f',133)where g main.f is the name of the �le containing this call on line 133. When this subroutine is called,it results in a messageException: MAX (0. 0.)Occurred in g main.f at line # 133While verbose mode provides the most detailed information, we found that the string handling associatedwith the �le name inhibited compiler optimization on some platforms.17

The ADIntrinsics error handler library provides routines for keeping track of and reporting errors as wellas changing the default error values, or the error reporting unit.We are also working on a \report-once" mode. Instead of printing a message every time an exceptionoccurs, this mode will provide summary information about how often the exception at line 133 in �le g main.foccurred.The template mechanism also makes it easy to specify a di�erent way for handling exceptional situations.Say, for example, that the reason for inserting the max(0.0,x) call was to ensure that oating-point roundo�errors did not result in a small negative value for a quantity that physically cannot be negative, for example,some energy value. Then we might like to specify that, when the �rst argument of max is zero, we always wouldlike to set the partial of max with respect to the second argument to 1. We can easily do this by copying themax template above into a �le mymax.T, say (the .T extension denotes template �les), and adding the branchif (x .eq. TYPE(0.0)) thenfx = TYPE(0.0)fy = TYPE(1.0)elseif (x .gt. y) then...at the beginning of the if-statements. By adding the commentC AD EXCEPTION OVERRIDE INTRINSIC(MAX,MYMAX)before the call to max in the user's code, Purse will then substitute the modi�ed exception handler for dealingwith exceptions of this call.A new intrinsic can be easily supported by adding the name of the new intrinsic to Purse and providinga template �le for it. In this fashion, a user of ADIFOR 2.0 has complete control over the handling andreporting of exceptional derivative occurrences. We also note that in the ADIFOR 2.0 system, both theADIFOR preprocessor and Purse are called in a fashion that is transparent to the user.3.3 The SparsLinC (Sparse Linear Combination) LibraryThe workhorse of ADIFOR-generated code (or any other mainly forward-mode �rst-order automatic di�erenti-ation approach) is a \vector linear combination" (e.g., ry(1) = y1bar*ry(1) + xibar*rx(i) in Figure 6).Here ry(1) is a vector of length p, where, as in Subsection 2.3, p denotes the number of directional derivativesto be computed, and y1bar is a scalar. This operation is a particular instantiation ofw = kXi=1 �i � vi; (11)where w and vi are vectors of length p, the �i are scalar multipliers, and k is referred to as the \arity." If wechoose AD FLAVOR = dense, which is the default, this vector operation is expressed as a Fortran vector loop,e.g., do g i = 1, g pg y(g i , 1) = y1bar * g y(g i ,1) + xibar * g x(g i ,i)enddo 18

As long as p is moderate, this is an e�cient way of expressing a vector linear combination.The SparsLinC (Sparse Linear Combination) Library addresses the scenario where p is large and most ofthe vectors involved in vector linear combination are sparse, that is, for the most part they contain zero entries.This situation arises, for example, in the computation of large sparse Jacobians, J := dFdx , or gradients ofso-called partially separable functions [47], which are functions f that can be represented in the formf(x) = npXi=1 fi(x); (12)where each of the component functions fi has limited support. Hence, the gradients rfi are sparse, eventhough the �nal gradient rf is dense. Partially separable functions play a key role in large-scale optimization(for example, all minimization examples in [3] belong to that class), and, in particular, any function with asparse Hessian is a partially separable one [47].If the sparsity pattern of J is known, coloring techniques together with the seed matrix mechanism can beemployed advantageously to compute a compressed Jacobian matrix e�ciently [4]. The computation of thegradient of a partially separable function can be reduced to the problem of computing a sparse Jacobian [20]by realizing that the gradient of f can easily be obtained by summing the rows of the sparse Jacobian dGdx ,where G(x) = 0B@ f1(x)...fnp(x) 1CA : (13)The compressed Jacobian approach works well for sparse Jacobians under the following assumptions:� The sparsity pattern of the Jacobian is known.� The chromatic number of the Jacobian is close to the maximal number of nonzeros in any row, inparticular, the Jacobian does not contain a row that can be considered dense.� The component functions fi of f are readily accessible.Note, however, that sparsity is inherent in those problems, no matter how the code is actually formulated.If the initial seed matrix is sparse (e.g., the identity), then, ignoring exact numerical cancellation, the lefthand side vector w in (11) has no fewer nonzeros than any of the vectors on the right hand side. Hence, if the�nal derivative objects, which correspond to a row of the Jacobian J or a component gradient rfi, are sparse,it is very likely that all intermediate vectors are sparse as well. That is, by replacing the dense vector loop asa way of expressing the derivative linear combinations with algorithms and data structures tailored towardsexploiting sparsity, we can exploit sparsity in a transparent fashion, even if none of the assumptions for thecoloring approach are met. Also note that the sparsity structure of J or rfi is computed as a byproduct ofthe derivative computation.The SparsLinC library provides this support for sparse vector linear combination, in a fashion that is wellsuited to the use of this operation in the context of automatic di�erentiation. SparsLinC, which is written inANSI C, includes the following features: 19

Three data structures for sparse vectors: SparsLinC has di�erent data structures for a vector containingonly one nonzero, a few nonzeros, or several nonzeros. In the numerical Linear algebra literature, thelatter two data structures are usually referred to as the \single-subscript" and \compressed subscript"representation of a sparse vector (see, for example, [32, 36]).E�cient Memory Allocation Scheme: SparsLinC employs a \bucket" memory allocation scheme, whichin e�ect provides a bu�ered memory allocation mechanism, supporting the dynamic nature of the sparsevectors while avoiding the need for system calls most of the time.Polyalgorithms: SparsLinC switches between vector representations in a transparent fashion and providesspecial support for the \+=" operation w = �1 �w + �2 � v, which occurs frequently when computinggradients of partially separable functions, as suggested by (12).Full-Precision Support: single- and double-precision routines are provided for both real- and complex-valued computations.In this fashion, SparsLinC can adapt to the dynamic nature of the derivative vectors, e�ciently representingderivative vectors that grow from a column of the identity matrix (often occurring in the ADIFOR seed matrix)to a dense vector, such as rf in (12). We also mention that almost no memory is allocated for derivativeobjects that are all zeros. Hence, SparsLinC e�ectively complements the ADIFOR dependence analysis, whichhas to make conservative assumptions about what variables are considered active and may, as a result, activatea variable that is not on the computational path from independent to dependent variables. This situation mayarise, for example, for large arrays where di�erent portions of the array represent logically di�erent entities.When invoked with the AD FLAVOR = sparse option, ADIFOR allocates an integer, instead of a vector, foreach derivative object, and generates calls to the SparsLinC library to perform the vector linear combinations,for example, call sspg2q(g y(1),y1bar,g x(i),xibar,g y(1))The Fortran interface of SparsLinC is described in [7]. The routines needed for initialization or extraction ofdata, as well as examples of the use of SparsLinC in the context of ADIFOR 2.0, are provided in [8].In addition to ease of use, SparsLinC can result in signi�cant performance improvement. For example,we computed gradients for problems from the MINPACK-2 optimization test set [3] where the function waspartially separable but was not speci�ed in partially separable form (13). The four codes were� DGL2: 2-D Ginzburg-Landau model for homogeneous superconductors,� DMSA: minimal surface area problem,� DSSC: steady-state combustion model, and� DEPT: elastic-plastic torsion problem.We computed derivatives using both the dense and SparsLinC-supported approach. The improvement inrun time achieved on an IBM RS 6000-370 workstation through SparsLinC is shown in Figure 13. Theexecution time of the \dense" routines was extrapolated from the largest problem that we could actually �tonto the machine before running out of memory. We also mention that the derivatives computed with both20

the \dense" and SparsLinC-supported ADIFOR-generated derivative code agreed with the values producedby the handcoded routines up to machine precision.We see that, on some problems, we have achieved almost three orders of magnitude improvement overthe \dense do-loop" version of the derivative code. We also note that SparsLinC greatly reduces the memoryrequirements of the code. Instead of requiring n times as much memory for computing a gradient of size n,SparsLinC will allocate only as much memory as is needed, which, in our examples, involves at most threedense vectors of length n into which gradients are accumulated, and only short vectors with at most ninenonzeros for all other derivative objects.In summary, SparsLinC provides a mechanism for exploiting sparsity in derivative computations in a veryeasy fashion. The user need not have any knowledge about the particular sparsity structure of the problem.The SparsLinC routines e�ciently adapt to the particular situation at hand, providing e�cient support fora wide variety of sparsity scenarios. We also mention that, since the sparsity structure of the Jacobian is abyproduct of the derivative computation, we are now in a position to develop, for example, a novel kind oflarge-scale optimization environment for nonlinear equations, where the user need supply code only for \thefunction," and automatic di�erentiation provides both the derivative values and the location of the nonzerosof the Jacobian for a sparse solver, without any user intervention [21].4 Conclusions and Future WorkThe use of ADIFOR in various application domains has demonstrated that automatic di�erentation� is applicable to arbitrary codes,� provides reliable derivatives, and� can result in considerable speedups with respect to divided-di�erence approximations.While these points were always clear to \automatic di�erentiation believers" and had to some extent beenborne out by applications in limited domains, the lack of tools that provided fast automatic di�erentiationcapabilities for general Fortran 77 codes e�ectively prohibited automatic di�erentiation from becoming partof the mainstream of scienti�c computing. The ADIFOR project has begun to change this by� supporting almost all of Fortran 77, thereby lowering the technology accessibility threshold, as the needfor code rewriting is reduced;� employing advanced source transformation infrastructure and algorithms to handle and reason aboutlarge and not necessarily well-structured codes;� employing an approach that resulted in lower complexity than divided di�erences, and expressing thecode in a fashion such that computer run times bore out this complexity advantage;� providing, through the use of Fortran 77 as an output language, the possibilities for users to becomefamiliar with automatic di�erentiation through inspection of the generated code and to \tune" thegenerated code according to their needs; and� actively promoting and supporting the use of automatic di�erentiation in applications.21

The ADIFOR 2.0 system now goes a step beyond establishing the usefulness of the technology. By providing� the capability to support all of Fortran 77 as well as common extensions,� a runtime library for transparent exploitation of sparsity in derivative computations, and� a completely customizable exception handler,the ADIFOR 2.0 system a�ords a new level of ease and exibility of use in a �rst-order automatic di�erenti-ation tool. While ADIFOR 1.0 was made available mainly through ADIFOR accounts at Argonne NationalLaboratory, the ADIFOR 2.0 system is intended to be widely distributed.However, much remains to be done. We are working on extending the capabilities of ADIFOR to directlycompute second-order derivatives. While automatic di�erentiation can easily be extended to arbitrary-orderderivatives (see, for example, the ADOL-C [45] system), it is not clear which approach, or combination ofapproaches, results in the most e�cient code. Some of these issues are discussed in [11] and [12].We are also working on decreasing the complexity of computing �rst-order derivatives. While ADIFOR-generated code usually beats �nite di�erences, it is usually not yet a match for a derivative code carefullyderived by hand, in particular with respect to adjoint codes. To address this issue, we are beginning toinvestigate how advanced compiler techniques could be employed to generate e�cient adjoint code. As thesmall example in Figures 4 and 5 suggests, adjoint mode generation requires rather radical code restructuringand advanced analysis capabilities to avoid tracing of unneeded quantities. We are also investigating higher-level hybrid-mode approaches such as \pseudo-adjoints" [19] and the exploitation of parallel derivative codesfrom serial simulation codes by exploiting chain rule associativity.To understand the latter idea, consider the situation shown in Figure 14: G cannot start before F hasbeen computed, and H has to wait for the completion of G. That is, none of these processes may execute inparallel. This is not the case in derivative computations, however, because of the associativity of the derivativechain rule. For example, we could proceed as in Figure 15. That is, at the same time that we spawn a processto compute F , we spawn a process to compute d yd x , and at the same time that we start with computation ofG, we spawn a process to compute d zd y . Lastly, the computation of dwd z is initiated. Under the assumptionthat the computation of derivatives takes signi�cantly longer than the simulation itself, we will, in the end,have the three derivative processes running in parallel. When they have �nished, we simply accumulate theiroutputs to arrive at the desired result, dwdx . Thus, if we are willing to duplicate the computation of y and z, wecan in this fashion arrive at a coarse-grained parallel schedule that, as a result of its minimal synchronizationrequirements, could ideally be mapped to a network of workstations.We are also investigating the extension of automatic di�erentiation to parallel communicationmechanisms,including MPI [48] and PVM [35], parallel languages such as HPF [55] and Fortran-M [34], and languagessuch as C++ and Fortran 90. While there is no di�culty in principle in providing automatic di�erentiationcapability for these languages, it is not yet clear to what extent the capabilities of these languages impact (ina positive or negative way) the e�cient generation of derivative codes.Lastly, we remark that the ADIFOR project is, in our view, a good example of the power of interdisciplinaryresearch. The techniques employed in ADIFOR are motivated by classical di�erential calculus, the theory ofautomatic di�erentiation, and discrete complexity theory. The various components of the ADIFOR 2.0 system(the ADIFOR preprocessor, the ADIntrinsics-f77 Fortran system, and the SparsLinC library) draw on compiler22

and source transformation technology and numerical linear algebra. By combining these approaches, ADIFORallows us to provide a new and, we believe, superior approach to a problem at the heart of numerical computing,namely, the computation of derivatives.AcknowledgmentsWe thank Andreas Griewank, George Corliss, and Paul Hovland for their instrumental role in getting the AD-IFOR project o� the ground, and for their continued advice. We also thank Gordon Pusch for his contributionto the rationale for the complex exception handler, and Heike Baars for her contribution to the \report-once"mode.References[1] Proceedings of the 5th AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and opti-mization, Panama City, Florida, American Association of Aeronautics and Aerospace Engineers, 1994.[2] Vikram Adve, Alan Carle, Elana Granston, Seema Hiranandani, Ken Kennedy, Charles Koelbel, UlrichKremer, John Mellor-Crummey, Scott Warren, and Chau-Wen Tseng. Requirements for data-parallelprogramming environments. IEEE Transactions on Parallel & Distributed Technology, 2(3):48{58, 1994.[3] B. M. Averick, R. G. Carter, J. J. Mor�e, and G. L. Xue. The MINPACK-2 test problem collection.Technical Report ANL/MCS-TM-150 (Revised), Mathematics and Computer Science Division, ArgonneNational Laboratory, 1992.[4] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank. Computing large sparseJacobian matrices using automatic di�erentiation. SIAM Journal on Scienti�c Computing, 15(2):285{294,1994.[5] J.-F. Barthelemy and L. Hall. Automatic di�erentiation as a tool in engineering design. In Proceedings ofthe 4th AIAA/USAF/NASA/OAI Symp. on Multidisciplinary Analysis and Optimization, AIAA 92-4743,pages 424{432. American Institute of Aeronautics and Astronautics, 1992.[6] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR: Gener-ating derivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[7] Christian Bischof, Alan Carle, and Peyvand Khademi. Fortran 77 interface speci�cation to the SparsLinClibrary. Technical Report ANL/MCS-TM-196, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1995.[8] Christian Bischof, Alan Carle, Peyvand Khademi, Andrew Mauer, and Paul Hovland. ADIFOR 2.0 user'sguide. Technical Report ANL/MCS-TM-192, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1995.[9] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, and Perry Newman.Automatic di�erentiation of advanced CFD codes for multidisciplinary design. Journal on ComputingSystems in Engineering, 3(6):625{638, 1992. 23

[10] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Technical ReportANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne National Laboratory, 1991.[11] Christian Bischof, George Corliss, and Andreas Griewank. Hybrid evaluation of second derivatives inADIFOR. Technical Report ANL/MCS-TM-166, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1992.[12] Christian Bischof, George Corliss, and Andreas Griewank. Structured second- and higher-order derivativesthrough univariate Taylor series. Optimization Methods and Software, 2:211{232, 1993.[13] Christian Bischof, Larry Green, Kitty Haigler, and Tim Knau�. Parallel calculation of sensi-tivity derivatives for aircraft design using automatic di�erentiation. In Proceedings of the 5thAIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 94-4261, pages 73{84. American Institute of Aeronautics and Astronautics, 1994.[14] Christian Bischof and Andreas Griewank. Computational di�erentiation and multidisciplinary design. InH. Engl and J. McLaughlin, editors, Inverse Problems and Optimal Design in Industry, pages 187{211,Stuttgart, 1994. Teubner Verlag.[15] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians. TechnicalReport ANL/MCS-TM-158, Mathematics and Computer Science Division, Argonne National Laboratory,1991.[16] Christian Bischof and Andrew Mauer. Unpublished information, Argonne National Laboratory, 1995.[17] Christian Bischof, Gordon Pusch, and Alan Carle. Unpublished information, Argonne National Labora-tory, 1995.[18] Christian Bischof, Greg Whi�en, Christine Shoemaker, Alan Carle, and Aaron Ross. Application of auto-matic di�erentiation to groundwater transport models. In Alexander Peters et al., editor, ComputationalMethods in Water Resources X, pages 173{182, Dordrecht, 1994. Kluwer Academic Publishers.[19] Christian H. Bischof. Automatic di�erentiation, tangent linear models and pseudo-adjoints. PreprintMCS-P472-1094, Mathematics and Computer Science Division, Argonne National Laboratory, 1994.[20] Christian H. Bischof and Moe El-Khadiri. Extending compile-time reverse mode and exploiting partialseparability in ADIFOR. Technical Report ANL/MCS-TM-163, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1992.[21] Ali Bouaricha and Jorge Mor�e. Unpublished information, Argonne National Laboratory, 1995.[22] Kathy E. Brenan, Stephen L. Campbell, and Linda R. Petzold. Numerical Solution of Initial-ValueProblems in Di�erential-Algebraic Equations. North-Holland, New York, 1989.[23] Barry W. Brown, F. Martin Spears, Lawrence B. Levy, James Lovato, and Kathy Russell. Algorithm LL-DRLF: Log-likelihood and some derivatives for Log-F models. Technical report, Dept. of Biomathematics,The University of Texas M.D. Anderson Cancer Center, Houston, 1994.24

[24] John C. Butcher. The Numerical Analysis of Ordinary Di�erential Equations (Runge-Kutta and GeneralLinear Methods). John Wiley and Sons, New York, 1987.[25] Daewon W. Byun, Robert Dennis, Dongming Hwang, Jr. Carlie Coats, and M. Talat Odman. Compu-tational modelling issues in next generation air quality models. In Proceedings of IMACS'94, Atlanta,Georgia, 1994.[26] D. Callahan, K. Cooper, R. T. Hood, K. Kennedy, and L. M. Torczon. ParaScope: A parallel programmingenvironment. International Journal of Supercomputer Applications, 2(4):84{99, December 1988.[27] Alan Carle, Lawrence Green, Christian Bischof, and Perry Newman. Applications of automatic di�er-entiation in CFD. In Proceedings of the 25th AIAA Fluid Dynamics Conference, AIAA Paper 94-2197.American Institute of Aeronautics and Astronautics, 1994.[28] Bruce W. Char. Computer algebra as a toolbox for program generation and manipulation. In AndreasGriewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementa-tion, and Application, pages 53{60. SIAM, Philadelphia, 1991.[29] Shirish Chinchalkar. The application of automatic di�erentiation to problems in engineering analysis.Computer Methods in Applied Mechanics and Engineering, 118:197{207, 1994.[30] George F. Corliss, Christian Bischof, Andreas Griewank, Steven Wright, and Thomas Robey. Automaticdi�erentiation for PDE's { unsaturated ow case study. In Robert Vichnevetski, Doyle Knight, andGerard Richter, editors, Advances in Computer Methods for Partial Di�erential Equations { VII, pages150{156, New Brunswick, 1992. IMACS.[31] John Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equa-tions. Prentice-Hall, Englewood Cli�s, N.J., 1983.[32] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford Press, London,1987.[33] H. Engl and J. McLaughlin. Proceedings of the symposium on inverse problems and optimal design inindustry, Teubner Verlag, Stuttgart, 1994.[34] Ian Foster, Robert Olson, and Steven Tuecke. Programming in Fortran M. Technical Report ANL{93/26,Rev. 1, Mathematics and Computer Science Division, Argonne National Laboratory, October 1993.[35] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM - Parallel VirtualMachine: A Users' Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, 1994.[36] Alan George and Joseph Liu. Computer Solution of Large Sparse Positive De�nite Systems. Prentice-Hall,Englewood Cli�s, 1981.[37] Ralf Giering. Adjoint model compiler, manual version 0.2, AMC version 2.04. Technical report, Max-Planck Institut f�ur Meteorolgie, August 1992.[38] Phillip E. Gill,Walter Murray, and Margaret H.Wright. Practical Optimization. Academic Press, London,1981. 25

[39] David Goldberg. What every computer scientist should know about oating-point arithmetic. ACMComputing Surveys, 23(1):5{48, 1991.[40] Victor V. Goldman, J. Molenkamp, and J. A. van Hulzen. E�cient numerical program generation andcomputer algebra environments. In Andreas Griewank and George F. Corliss, editors, Automatic Dif-ferentiation of Algorithms: Theory, Implementation, and Application, pages 74{83. SIAM, Philadelphia,1991.[41] Lawrence Green, Perry Newman, and Kara Haigler. Sensitivity derivatives for advanced CFD algorithmand viscous modeling parameters via automatic di�erentiation. In Proceedings of the 11th AIAA Com-putational Fluid Dynamics Conference, AIAA Paper 93-3321. American Institute of Aeronautics andAstronautics, 1993.[42] Andreas Griewank. The chain rule revisited in scienti�c computing. Preprint MCS{P227{0491, Mathe-matics and Computer Science Division, Argonne National Laboratory, 1991.[43] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automaticdi�erentiation. Optimization Methods and Software, 1(1):35{54, 1992.[44] Andreas Griewank and George Corliss. Automatic Di�erentiation of Algorithms. SIAM, Philadelphia,1991.[45] Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the automatic di�erenti-ation of algorithms written in C/C++. Preprint MCS-P180-1190, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1990.[46] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the Markowitz rule.In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application, pages 126{135. SIAM, Philadelphia, 1991.[47] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partially separableobjective functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages 301{312, London,1981. Academic Press.[48] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI { Portable Parallel Programming withthe Message Passing Interface. MIT Press, Cambridge, 1994.[49] Uli H�au�ermann. Automatische Di�erentiation zur Rekursiven Bestimmung von Partiellen Ableitungen.STUD-102, Institut B f�ur Mechanik, Universit�at Stuttgart, 1993.[50] M. Heidari and S. Ranjithan. A hybrid optimization approach to the estimation of distributed parametersin two dimensional con�ned aquifers under steady state conditions. Draft manuscript, 1994.[51] Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs. In AndreasGriewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementa-tion, and Application, pages 243{250. SIAM, Philadelphia, 1991.26

[52] Amin Ibsais and Venkataramana Ajjarapu. The application of automatic di�erentiation in the continu-ation power ow. In Proc. 26th North American Power Symposium, Part I, Manhattan, Kansas, pages329{337, 1994.[53] W. Johnson. Camrad/ja - a comprehensive analytical model of rotorcraft aerodynamics and dynamics -johnson aeronautics version. Technical report, Johnson Aeronautics, 1988.[54] David Juedes. A taxonomy of automatic di�erentiation tools. In Andreas Griewank and George Corliss,editors, Proceedings of the Workshop on Automatic Di�erentiation of Algorithms: Theory, Implementa-tion, and Application, pages 315{330, Philadelphia, 1991. SIAM.[55] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance FortranHandbook. MIT Press, Cambridge, 1994.[56] V. Korivi, L. Sherman, A. Taylor, G. Hou, L. Green, and P. Newman. First- and second-order aerodynamicsensitivity derivatives via automatic di�erentiation with incremental iterative methods. In Proceedings ofthe 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA94-4262, pages 87{120. American Institute of Aeronautics and Astronautics, 1994.[57] V. Korivi, A. Taylor, and P. Newman. Aerodynamic optimization studies using a 3-D super-sonic Euler code with e�cient calculation of sensitivity derivatives. In Proceedings of the 5thAIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 94-4270, pages 170{194. American Institute of Aeronautics and Astronautics, 1994.[58] Koichi Kubota. PADRE2, a FORTRAN precompiler yielding error estimates and second derivatives.In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application, pages 251{262. SIAM, Philadelphia, 1991.[59] Jorge J. Mor�e and Stephen J. Wright. Optimization Software Guide. SIAM, Philadelphia, 1993.[60] Douglas Muir. Description of covariance data in ENDF-6 format. In C. L. Dunford, editor, Proc. onNuclear Data Evaluation Methodology. World Scienti�c, 1993.[61] Seon Ki Park and Kelvin Droegemeier. E�ect of a microphysical parameterization on the evolution oflinear perturbations in a convective cloud model. In Preprints, Conference on Cloud Physics, January1995, Dallas, Texas. American Meteorological Society.[62] Seon Ki Park, Kelvin Droegemeier, Christian Bischof, and TimKnau�. Sensitivity analysis of numerically-simulated convective storms using direct and adjointmethods. In Preprints, 10th Conference on NumericalWeather Prediction, Portland, Oregon, pages 457{459. American Meterological Society, 1994.[63] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of Lecture Notes inComputer Science. Springer Verlag, Berlin, 1981.[64] Marcela Rosemblun. Automatic di�erentiation: Overview and application to systems of parametrizednonlinear equations. Technical Report CRPC-TR92267, Center for Research in Parallel Computation,Rice University, 1992. 27

[65] Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic di�erentiation in Odysee. Tellus,45a(5):558{568, October 1993.[66] Nicole Rostaing-Schmidt and Eric Hassold. Basic functional representation of programs for automaticdi�erentiation in the Odyssee system. In Francois-Xavier Le Dimet, editor, High-Performance Computingin the Geosciences, Dordrecht, 1994. Kluwer Academic Publishers.[67] Edgar Soulie. User's experience with Fortran compilers for least squares problems. In Andreas Griewankand George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation, andApplication, pages 297{306. SIAM, Philadelphia, 1991.[68] E. R. Unger and L. E. Hall. The use of automatic di�erentiation in an aircraft design problem. In Proceed-ings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization,AIAA 94-4260, pages 64{73. American Institute of Aeronautics and Astronautics, 1994.[69] Gregory Whi�en, Christine Shoemaker, Christian Bischof, Aaron Ross, and Alan Carle. Application ofautomatic di�erentiation to groundwater transport codes. Preprint MCS-P441-0594, Mathematics andComputer Science Division, Argonne National Laboratory, 1994.[70] Erich Zauderer. Partial Di�erential Equations of Applied Mathematics. John Wiley & Sons, Somerset,1989.

28

resbar = 1.0;tempbar = y1bar = xibar = 0.0;y1bar += temp * resbartempbar += y1 * resbarxibar += y1 * tempbary1bar += x(i) * tempbarFigure 7: Reverse Mode Code for y(1) = x(i)*y(1)*y(1)
Derivative

Computing

Code

User’s

Derivative

Driver

ADIntrinsics

Fortran

Derivative

CodePreprocessor
Adifor 2.0

and Link

Compile

Fortran

Analysis

Code

ADIntrinsics

Template

Expander

Library

SparsLinC

LibraryFigure 8: Overview of ADIFOR 2.0 Systemreal function diff(x)real x(3)square(x) = x*xdiff = abs(x(1)*square(x(2))*x(3))endFigure 9: Sample Fortran Program29

function g diff(g p , x, g x, ldg x, g rres , ldg rres)real x(3)integer g pmaxparameter (g pmax = 3)integer g i , g p , ldg rres , ldg xreal g diff, r1 p, r6 b, g rres (ldg rres), r5 b, r4 b, r3 w, r4 v, r2 vreal g r1 w(g pmax), g x(ldg x, 3)save g r1 wif (g p .gt. g pmax) thenprint *, 'Parameter g p is greater than g pmax 'stopendifr3 v = x(2) * x(2)r4 v = x(1) * r3 vr4 b = x(3) * r3 vr5 b = x(3) * x(1)r6 b = r5 b * x(2) + r5 b * x(2)do g i = 1, g pg r1 w(g i) = r4 b*g x(g i ,1) + r6 b*g x(g i ,2) + r4 v*g x(g i ,3)enddor1 w = r4 v * x(3)call AD INTRINSIC FIRST ABS S(r1 w, r2 v, r1 p)do g i = 1, g pg rres (g i) = r1 p * g r1 w(g i)enddog diff = r2 vendFigure 10: Derivative Code Generated by ADIFOR 2.0 Preprocessor from the Code in Figure 9 by UsingDefault Settings 30

function g diff(x, g x, g rres)real x(3)real g rres , g diff, r1 p, r2 v, r1 w, r2 w, r3 w, g r2 w, g x(3), g r3 wreal g r1 wsave g r2 w, g r3 w, g r1 wg r2 w = (x(2) + x(2)) * g x(2)r2 w = x(2) * x(2)g r3 w = r2 w * g x(1) + x(1) * g r2 wr3 w = x(1) * r2 wg r1 w = x(3) * g r3 w + r3 w * g x(3)r1 w = r3 w * x(3)call AD INTRINSIC FIRST ABS S(r1 w, r2 v, r1 p)g rres = r1 p * g r1 wg diff = r2 vendFigure 11: Derivative Code Generated by ADIFOR 2.0 Preprocessor from the Code in Figure 9 by UsingSettings Appropriate for a Jacobian*Vector Product
31

C PERFORMANCEz = max (x,y)#ifndef PERFORMANCEif (x .gt. y) thenfx = TYPE(1.0)fy = TYPE(0.0)else if (x .lt. y) thenfx = TYPE(0.0)fy = TYPE(1.0)elsecall EXCEPTION HANDLERfy = TYPE(1.0) - fxendif#else if (x .gt. y) thenfx = TYPE(1.0)fy = TYPE(0.0)else if (x .lt. y) thenfx = TYPE(0.0)fy = TYPE(1.0)elsec stop 'ADIFOR Exception: x = y in max(x,y).'C This is the current value of TieValfx = TYPE(0.5)fy = TYPE(0.5)endif#endifC PERFORMANCEfxx = TYPE(0.0)C PERFORMANCEfxy = TYPE(0.0)C PERFORMANCEfyy = TYPE(0.0)Figure 12: Template File for max Intrinsic32

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.5

1

1.5

2

2.5

3

Gradient Size

O
rd

er
s

of
 M

ag
ni

tu
de

 Im
pr

ov
em

en
t

Performance Improvement through ADIFOR−SparsLinC on RS/6000−370

DGL2

DMSA

DSSC

DEPTFigure 13: Runtime Improvement in Computing MINPACK-2 Gradients by Using SparsLinC
x y z w

G HF Figure 14: Serial Simulation
x y

w

y z

z

x

y

proc. 1

proc. 2

proc. 3

F G

dF/dx dG/dy dH/dz

dw/dxFigure 15: Parallel Derivative Computation33

