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1. Introduction

In this paper we introduce tensor-Krylov methods for solving the sparse nonlinear equations
problem
given F : R" — R", find 2z, € R” such that F(z.) = 0, (1.1)

where it is assumed that n is large (say, » > 100) and F(z) is a least once continuously dif-
ferentiable. Large systems of nonlinear equations arise frequently in many practical applica-
tions including various network-flow problems and equations produced by finite-difference or
finite-element discretizations of boundary values problems for ordinary and partial differential
equations. In many situations, F’(z,) is ill-conditioned or singular. In such situations, tensor
methods are especially intended to improve upon the efficiency of standard algorithms based on
Newton’s method.

Tensor methods for large, sparse systems of nonlinear equations were introduced in Bouaricha
and Schnabel [3]. These methods base each iteration on a quadratic model of F'(z) that has the
form

1
M{z. + d) = F(z.) + Flad + 5 T.dd. (1.2)

where z. is the current iterate, and 7, € R™ ™" is the tensor term at z.. The notation 7.dd
is defined as follows.

Definition 1.1. Let T € R™*™*™, Then T is composed of n horizontal faces H; € R" ", i =
1,-+-,n, where H;[j, k] = T[i,j, k]. For v,w € R",Tow € R" with

n n

Towli] = vT Hw = > Y T[4, j, klv[j]w[k].

7=1 k=1

The tensor term is selected so that the model interpolates a very small number, p, of function
values from previous iterations. This interpolation process results in 7T, being a rank p tensor,
which is crucial to the efficiency of the tensor method. After the model (1.2) is formed, the
problem

find d € R" that minimizes || M (2, + d) ||2 (1.3)

is solved; that is, at each iteration of tensor methods, a minimizer of the model is used if no root
exists. Methods for forming the tensor term and solving the tensor model for sparse systems of
nonlinear equations are reviewed in more detail in the next section. The tensor method requires
no more derivative or function information per iteration than Newton’s method, and its storage
requirement is not appreciably more than for Newton’s method.

In tests reported in [3], the tensor method virtually never is less efficient than a standard
method based upon a linear (Newton) model, and usually is more efficient.

One of the major contributions of tensor methods has been its great robustness. Experi-
mental results in [2], [3] have shown that the tensor method solves a considerable number of
problems that the standard Newton method does not, and the reverse is virtually never true.

The tensor methods for large, sparse nonlinear equations described in Bouaricha [1] use sparse
direct methods for solving the linear systems of equations that arise in each tensor iteration.
Unfortunately, for problems where the factorization of the Jacobian matrix is too expensive,
the slow asymptotic performance and large storage requirements of direct methods make them



impractical. Thus, for these systems robust and fast iterative solvers such as Krylov algorithms
must be used.

Newton-Krylov methods for nonlinear equations have been studied by Brown and Saad
([5], [4]). They show that their methods are remarkably effective on large systems of partial
differential equations. Their success has motivated us to use Krylov subspace algorithms in
conjunction with the tensor methods developed in [1].

The tensor methods developed in [1] require at least p+ 1 back solves, where p is the number
of interpolated function values from previous iterations. Usually, the cost of these solves is
relatively small compared with the cost of the Jacobian factorization. Unfortunately, this is
not the case when iterative methods are used. If p = 1, say, then it appears that the cost of a
tensor-Krylov iteration will be approximately twice that of a Newton-Krylov iteration. However,
by reformulating the tensor step computation in [1], we show in §5 that the cost of one of the
two solves can be made cheaper, as a result of a good initial estimate of the solution.

The aim of this paper is to show that tensor-Krylov methods are much more robust than
Newton-Krylov methods in solving large and complex systems of nonlinear equations and that
it may still be preferable to use Newton-Krylov methods when the nonlinear equations problem
is not too difficult to solve.

The remainder of this paper is organized as follows. In §2 we review tensor methods for
large, sparse nonlinear equations that were introduced in [1]. In §3 we review Krylov subspace
methods and their main properties. In particular, we review the generalized minimum residual
method (GMRES) [10], which will be used in conjunction with our tensor methods. In §4 we
review the Newton-Krylov methods for large nonlinear equations that were described in [5].
In §5 we introduce tensor-Krylov algorithms for large nonlinear equations. We present some
numerical results in §6. Finally, in §7 we make some concluding remarks.

2. Overview of Tensor Methods for Large, Sparse Nonlinear Equations

Tensor methods are general-purpose methods intended especially for problems where the Jaco-
bian at the solution is singular or ill-conditioned. Each iteration is based on a quadratic model
of the nonlinear function (1.2). The choice of T, causes the second-order term T.dd in (1.2) to
have a simple and useful form. We use the tensor term to allow the local model M(z, + d) to
interpolate values of the function F(z) at past iterates; that is, the model should satisfy

1
F($_k) = F($c) + F’(xc)sk + §Tc8k8k, kE = 17 ceep,
where
Sp = T_p — Z, E=1,---,p.
The past points z_q,---,2_, are selected so that the set of directions s; from z. to the selected

points must be strongly linearly independent; we require that each direction sp make an angle
of at least 45 degrees with the subspace spanned by the previously selected past directions.
In practice, p is usually 1 or 2. The procedure of finding linearly independent directions is
implemented easily by using a modified Gram-Schmidt method.

After selecting the linearly independent past directions, we form the tensor term. Schnabel
and Frank [11] choose T, to be the smallest matrix that satisfies the interpolation conditions;



that is,

i T, 2.1
o T le (2.1)

subject to Te.spsp = 2 (F(az_r) — F(z.) — F'(z:)st),
where || T. ||, the Frobenius norm of T is defined by

S (L, g, k)

1 k=1

I T llr* =

K3

n
:1]

n

The solution to (2.1) is the sum of p rank-one tensors whose horizontal faces are symmetric,

p
T. = > arsesy,
k=1

where aj, is the k—th column of A € R"™*P, A defined by A = ZM~1, Z is an (n X p) matrix
whose columns are Z; = 2(F(z_;) — F(z.) — F'(2.)s;) and M is a (p X p) matrix defined by
M(i,j) = (siTs5)%, 1<, j <p.

If we use the tensor term derived above, the tensor model (1.2) becomes

p

Mz + d) = F(e.) + Fl(z)d + % S ap {d s (2.2)
k=1

The simple form of the second term in (2.2) is the key to being able to efficiently form, store,

and solve the tensor model. The cost of forming the tensor term and the tensor model is O(n?p)

arithmetic operations. The additional storage required is 4p n-vectors. In the remainder of this

paper, we will denote F(z.) and F'(z.) by F and J, respectively, for simplicity.

Once the tensor model is formed, a step d € " is computed such that

1 P
M(z. + d) = F + Jd + 3 Z ap {d¥sp}? = 0. (2.3)
k=1

Bouaricha and Schnabel [3] show that the solution of (2.3) can be reduced to the solution of
a system of p quadratic equations in p unknowns, plus the solution of p + 1 systems of linear
equations that all involve the same matrix. This matrix is either .J(z.) if it is nonsingular

and well conditioned, or J(z.) augmented by p dense rows and columns if J(z.) is singular or
ill-conditioned. They also show that their algorithm efficiently solves the generalization of (2.3),

find d € R" that minimizes || M (2. + d) ||2. (2.4)

The basic approach is illustrated by the case when the Jacobian matrix is nonsingular and
the tensor model has a root. In this case, premultiplying (2.3) by s;7J~!,i = 1,---,p, gives the
p quadratic equations in the p unknowns 3; = s;7d,

1 P
SZ'TJ_IF—I— 8; + 52 (SiTJ_lak)ﬁkz =0, +=1,---,p. (2.5)
k=1



These equations can be solved for §;,¢ = 1,---,p, and then from (2.3) the equation

1]?
F d _2’ 2 _
+ J —I—QkZIGkﬂk 0

can be solved for d. The entire process requires the solution of p+ 1 systems of linear equations in
the matrix J to compute J™'F and J tay, k = 1,-- -, p (or, alternatively, J =1 (F+ % S h_y apBi?)
and J~Ts;,i =1,---,p) and the solution of the small system of quadratics (2.5).

The preceding paragraph indicated how to solve (2.4) efficiently when the Jacobian matrix
is nonsingular and the tensor model has a root. Now we address the more general problem
of solving (2.4) efficiently whether or not the model has a root, when the Jacobian matrix is
nonsingular. We do this by considering the equivalent minimization problem to (2.4),

oin 1@ M(ze + d) |l2, (2.6)

where () is an n X n orthogonal matrix that has the structure

UT
Q = l ZT ] ’
with 1
Ucfmxre, U = J-TS[ST(JTJ)~18]72, S an (n x p) matrix
whose columns are s;,¢e=1,---,p

7 € R7*("=P) is an orthonormal basis for the orthogonal complement
of the subspace spanned by the columns of J=715.

Note that ZTJ=1 S = 0. If we define W = [ST(JTJ)~15], 8 = STd, and
1
a(B)= STITE + 5 4+ SSTITIAR (2.7)
where 3? denotes the vector in %7 whose i-th component is (/3;)?, then

The following lemma is the key to showing that (2.6) can be solved efficiently through (2.8).

Lemma 2.1. For any 3 € R?, there exists a d € R" such that ZT M (z. +d) =0 and STd = 3.
Proof. Let

d= (JTNH7'swlg + J1 7, (2.9)

where ¢ is arbitrary vector € ®%7P. Then

5Td= STJTnHtswip + sTytz ¢t = 3,



from the definitions of W and Z, and
ZTM(z.+ d) = ZTF + ZTJ[(JT)T'SWIB + J71Z 4] + LzT Ap?
=7Z'F + t + JZTAB%

Thus the choice )
t= —ZT[F + §Aﬁ2]

in (2.9) yields a value of d for which ZT M (2.4 d) = 0 and STd = 3 are both satisfied.O

Since for any 3, we are able to find a step d such that ZTM'(QUC +d) =0 and sTd = p,
Lemma 2.1 and (2.8) show that problem (2.6) can be reduced to the minimization problem in p
variables

. _1
min || W72g(5) [l2- (2.10)

Furthermore, once the value of 3 that solves (2.10) is determined, we can obtain the solution d
to (2.6) efficiently as follows. From (2.8) and Lemma 2.1, d. must satisfy

M(ze+ dy) = QT[W_?(@]
= UW 3g(p).

From this equation and the definition of U we have
1
F+ Jd, + §Aﬂ2 = JTswl¢(B)
and, hence,
1
de= —J7F + §Aﬁ2 — JTSWw¢(3)]. (2.11)

Therefore, once we know 3, we simply calculate the value of ¢(3) and substitute these two values
into Equation (2.11) to obtain the value of d,.
An algorithm that solves (2.4) is summarized as follows.

Algorithm 2.2. Solving the Sparse Tensor Model

Let J € R™™ be sparse, F' € R", §, A € R"*P,

1. Form the ¢(3) equation (i.e, Equation (2.7)) by calculating J =75 as follows: factor J, and
solve JTyj =s55,7=1,---,p.

2. Form the positive definite matrix W € RP*P, where W;; = [s;7(JTJ)71s;], 1 < i,j < p,
as follows: W;; = (J = Ts;)T(J7Ts;) = Ty,

3. Perform a Cholesky decomposition of W (i.e., W = LLT) resulting in L € RP*?, a lower
triangular matrix.



4. Use UNCMIN [12], an unconstrained minimization software package, to solve

' L1 2 2.12
min I q( B2, (2.12)

or solve (2.12) in closed form if p = 1.

5. Substitute the value of the solution to Equation (2.12), 8., and ¢(3.) into the following
equation for d,

e A VU T VER)

to obtain the tensor step d; this involves one additional solve, since the factorization of J
is already calculated.

The total cost of this process is the factorization of the sparse matrix J, p + 1 back solves
using this factorization, the unconstrained minimization of a function of p variables, and some
lower-order (O(n)) costs.

For further information we refer to [1].

3. Krylov Subspace Methods

The underlying idea of Krylov subspace methods when applied to a linear system of equations,
Az = b, is to generate an approximate solution to the original problem from the Krylov subspace
Span{b, Ab,---, A™71b}. Therefore, the original problem of size N is approximated by one of
dimension m, typically much smaller that V.

Consider the linear system

Az = b, (3.1)
where A € ®"*™ and b € R”. Let 2o be an initial guess of the solution z, of (3.1), and let ry be
the initial residual 1o = b — Axg. If the unknown z is decomposed as * = x¢ + z, then it

is immediate that the new unknown z must satisfy
Az — 19 = 0. (3.2)

A Krylov subspace method obtains an approximation z(™) to the system (3.2) by applying a
projection process to the system onto the Krylov subspace K,, = Span{rg, Arg, ..., A" rg}.
That is, the approximation (™) must be satisfy

Am e K

and
(Az(m) —r9) L ovj, 5 =1,---,m,

where v;, 7 = 1,---,m form a basis for K,,. If V;,, = [vq, -, 0] is any basis of K,,, then
2(m) can be expressed as z(™ = V, . y™ where y(™) is the solution to the m x m system

VmTAVm : y(m) - mTTO = 07 (33)

and the approximate solution (™) of the system (3.1) is related to 2m) by 2(m) = g 4 2(m),
For further information we refer to [8], [10], and [9].



3.1. GMRES Method

We first review Arnoldi’s algorithm for building an orthonormal basis of the Krylov subspace
K,,, on which the GMRES method is based.

Arnoldi’s algorithm builds an orthonormal basis vy, - - -, v,, of K,,, = Span{rg, Arg,---, A" 1rg}
by the recurrence

k
Mg ktrgr = Avg — Y higo; (3.4)
=1
starting with vy = ro/|| 7o || and choosing h;z, ¢ = 1,---,k+ 1, in such a way that vy is
orthogonal to vy, -, vg and || vg1 || = 1. The algorithm is as follows.

Algorithm 3.1. Arnoldi’s Method
1. Start: Compute 1o = b — Az, and take v1 = ro/|| ro ||.

2. Iterate: For j = 1,2,---,m, do
hi,j = (A?J]‘, vi)v 7/ = 1727"'7j
b = Av; = iy higvi
hivi; = 1l 941 ]2
vit1 = B [ Byt

It is clear that after m steps of Arnoldi’s algorithm we have an orthonormal basis of K,,,
[v1,+,vm], and an (m + 1) x m Hessenberg matrix H,, whose nonzero elements are the h;;
defined by Step 2 of Algorithm 3.1. Furthermore, the vector v; and the matrix Hj, satisfy the
important relation

AV, = Vi Hy. (3.5)
The GMRES method seeks a solution of the least squares problem

mip 110 = Aotz Il = min v — Al (3.6)
If we set z,, = Vi, v1 = rof||rol] and 3 = || ro ||, then the least squares problem (3.6) is
equivalent to
minger,, || Bv1 — AVipy ||
= minger, || Vmpi(Ber — Hpy) || (3.7)
= minger,, |[Ber — Huyll.

Hence, the solution of the least squares problem (3.6) is given by

where y,,, minimizes problem (3.7).
We now give the following structure of the method.



Algorithm 3.2. GMRES Method
1. Start: Choose zg, and compute ro = b — Axgand vy = ro /|| 70 |-

2. Iterate: For j = 1,2,---,k,---,until satisfied, do
hij = (Avj, o), 1 = 1,2,
b = Av; = iy hivi
hjv; = Il 54 ||
vjit1 = Bip1 /[ hjtay

3. Form the approximate solution:
rr = o + Viyk, where y; minimizes (3.7).

A typical implementation of the GMRES method limits m to a fixed value m,,,, to minimize
the storage allocation. It is possible that m = 1,4, in the Arnoldi process, and yet || b— Az, ||2
is still greater than €,, where €, is a stopping criterion. One way to deal with this case is to set
2o equal to (™ and restart the Arnoldi process, effectively restarting the Krylov method. This
procedure does not always guarantee convergence but does appear to work well in practice.

4. Newton-Krylov Methods

In this section we review the nonlinear version of the GMRES method described in Brown and
Saad [5], which combines it with a Newton iteration, for solving nonlinear systems of equations.
A method in this class is referred to as a Newton-Krylov algorithm.

The Newton-GMRIES method has the following general form:

Algorithm 4.1. Newton-GMRES Method
1. Choose zg, and an initial guess for z..
2. For k=0,1,---, until convergence,
e Choose n; € 0,1).
e Compute a vector 6y satisfying
J(xp)op = —F(zk) + 7, (4.1)

7 |l
| F (k) |
o Compute a next iterate zp4q using a backtracking line search global strategy, i.e.,
Tr+1 = Tk + A, where A is the line search damping parameter.

with < g, using a GMRES method.

The residual 74, represents the amount by which §y, fails to satisfy the Newton equation J(z)d; =
—F(zy). The forcing sequence n € [0,1) is used to control the level of accuracy. Brown and
Saad [4] show that if the sequence 1, — 0, then if J(2.) is nonsingular and 7 < e < 1, the
iterates generated by Algorithm 4.1 converge to the solution superlinearly; the convergence is
quadratic if nr = O(||F(z)||).



5. Tensor-Krylov Methods

In this section, we describe how we construct tensor-Krylov algorithms for nonlinear equations
problems. In particular, we emphasize the key differences between tensor-Krylov methods and
the tensor methods reviewed in §2.

In tensor-Krylov methods, we form the ¢(3) equation by only forming J7 1A, where J, is
the Jacobian at the current iterate, as follows. Let a;, ¢ = 1,---,p denote the columns of
the tensor matrix A. Thus, to calculate J71 A, we need to solve the linear systems of equations
Jeyi = a0 =1,---,p, for y;. Note, however, that each column a; is a linear combination of
F., J.s_;, and F_;, where F, is the function value at the current iterate z., s_;, = x_; — x. is
the direction from z. to the past iterate x_;, and F_; is the function value at z_;. If p = 1 for

example, then
2

(sTys-1)”

Therefore, to compute J ta;, we need to compute J71F_; and J-'F., where J-'F, is the
Newton direction. In computing J7!F_;, an advantage of using iterative methods is that if
we have a good starting guess, the cost of solving the system of linear equations will be a lot
less. Therefore, if we start with the vector J:llF_l, which was computed approximately at
the previous iteration, as an initial guess to solve the system of equations J.z = F_q, then an
iterative method such as Krylov method might eliminate most of the cost of that calculation.

The other key difference between the tensor-Krylov methods presented in this paper and
the tensor methods reviewed in §2 is in the way the tensor step is computed. In tensor-Krylov
methods, we omit the expression —(JI.J.)"'SW~1¢(3) from the tensor step calculation (2.13),
in the case where the ¢(3) equation has a minimizer. Leaving this expression in would require
another linear system of equations to be solved, thereby making the cost of a tensor-Krylov
iteration prohibitive. It can be proven that this new way of computing the tensor step will
retain the same convergence properties of the tensor method because, in the neighborhood of
the solution z,, the above expression is negligible and therefore has no effect on the tensor
method. In our experiments, omitting this term generally has a negligible effect on the number
of iterations required by the tensor method.

An iteration of tensor-Krylov algorithms for large nonlinear equations is given in Algorithm
5.1. For simplicity, we assume throughout the remainder of this paper that p = 1.

[F_l - Fc - JCS_l].

a =

Algorithm 5.1. Tensor-Krylov Methods for Large Nonlinear Equations

Let J. € R™ "™ be the Jacobian at the current iterate z., F. € R™ the function value at z.,
F_i € R™ the function value at the previous iterate x_1, s_1 € R" the step from z. to z_4
(s-1 = -1 — 2.), a1 € R" the tensor term (a1 = (521%1)2[17_1 — F. — J:s5_4]), and d,, and d;

the Newton and tensor steps, respectively.

1. Form the ¢(/) equation

1
552J;1a1ﬁ2 + 8+ sLJE = 0.

10



e Solve J.d, = F,, using a preconditioned (restarted) GMRES method starting from d, = 0.

e Solve J.y = F_q, using a preconditioned (restarted) GMRES method starting from y, =
J:llF_l, where J_q is the Jacobian at z_1.

2
e Calculate J lay = m[g —dy, — s5_1].
2. Solve ¢(3) = 0, for .
3. Calculate d; as follows:
dt = _Jc_lFC - %Jc_lalﬁ*zv

where f3, is the solution obtained in Step 2.
4. Select the next iterate x, using a line search global strategy as follows:

Fze) = 3l F ()13
acfl_ =x.+ d;
(24) = 3l F(z} )13
810])6 = _||Fc||2 - %FcTalﬁ*Q

if (slope < 0) then
if f(2!) < f(z:)+ 107" slope then
ry =l
else
Find an acceptable 27 in the Newton direction d,,
using a line search algorithm (Algorithm A6.3.1, page 325 [6])

Find an acceptable acfl_ in the tensor direction d;,
using a line search algorithm (Algorithm A6.3.1, page 325 [6])

if f(27) < f(2%) then

ry =l
else
Ty =l
endif
endif
else

Find an acceptable 2z} in the Newton direction d,,
using a line search algorithm (Algorithm A6.3.1, page 325 [6])

)
$+—$+

endif

6. Numerical Testing

In this section, we present some results of testing tensor-Krylov methods on a set of nonlinear
partial differential equations. We also compare these results with those obtained by Newton-
Krylov methods [5] on the same problems.
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All our computations were performed on a Sun SPARCstation 10, using double—precision
arithmetic.

The tensor-Krylov and Newton-Krylov programs terminate successfully if || F'(z4) || is less
than 107%. The test . .

S E
P max{les [, 117
is used to determine whether the algorithms have converged or stalled at z. The iteration limit
is set to 500.

We ran the tensor-Krylov method with p = 1. The reasons for this choice are that previous
computational results obtained in [1] showed that the tensor method with p = 1 is generally
about as effective as the tensor method that allows p > 1, and that the method is considerably
simpler and cheaper to implement in this case. Note that the tensor method will have the same
convergence properties whether p =1 or p > 1.

In the test results of the remainder of this section, the following notations are used:

e Kjim - dimension of the Krylov subspace
e precond - type of preconditioner used

itns - number of nonlinear iterations

fevals - number of function evaluations

e nli - number of linear iterations within the Krylov method

nb - number of backtracks within the line search algorithm

o I' - line search method cannot locate a point lower than the current one — algorithm fails
to converge

o IL - iteration limit exceeded

We use two stopping criteria for the linear Krylov method at iteration k of the nonlinear equa-
tions algorithm. We require that the /, norm of the residual be at least as small as 1.0e — 3 and
that the residual reduction be at least 1.0e — 2, that is,

|| residual at current Krylov iterate ||

< 1.0e — 2.
|| residual at initial Krylov iterate || — ‘

The maximum linear solve iterations, M., is set to 50. If m,,.. is reached, but either the [y
norm of the residual is bigger than 1.0e — 3 or the residual reduction is bigger than 1.0e — 2, we
use the last computed Krylov step. The default size of the Krylov subspace is set to 10.

Test Problem 1. The Bratu problem [5]

—Au + au, + Ae* = f (6.1)

We solve (6.1) over the unit square of R? with Dirichlet boundary conditions. We discretize this
problem using a five-point finite differencing and obtain a large system of nonlinear equations

12



of size N, where N = n2 and n, is the number of meshpoints in each direction. We choose f
so that the solution of the discretized problem is the constant unity. We run this problem with
N = 1024 (n, = 32), with @ = 10.0, and with different values of A ranging from -5.0 to 10'2.

Test Problem 2. The driven cavity problem (given in stream-vorticity formulation)

[5]
VAw + (Ypwsy — pwy,) = 0 in Q (6.2)
—AY = w in Q (6.3)
lb =0 on 89 (6.4)
_ 8_n(961,962) laq { 0 if0<ay<1 (6.5)

Here @ = {(z1,22) : 0 < 21 < 1,0 < 22 < 1}, and the viscosity v is the reciprocal of the
Reynolds number R.. After discretization by five-point finite differencing, we obtain a system
of nonlinear equations. In this test we chose N = 3969 (n, = 63). We tried six different values
for R.: 500, 1000, 1500, 2000, 3000, and 5000.

Test Problem 3. The incompressible Navier-Stokes and thermal energy problem
(given in stream-vorticity formulation) [13]

9*Q 5, 0*Q 0P 0P
0*v ,0* U — Az?
IV 0P PV re 90 , 020

Equations (6.6)—(6.8) describe buoyancy induced natural convection in an inclined two—dimensional
rectangular cavity over the computational domain (—1,1) x (=1,1). In the above equations

R, cosO®
T ?
2

o Ry 5in0©

HlE—A 9 9

II; = (Az)
Az is the aspect ratio of a rectangular cavity, © is the angle of inclination, and R, is the Raleigh
number. In this formulation the Prandtl number has been assumed to be infinite so that the
inertial terms in the momentum equation can be neglected. We took Az = 1,0 = 7/2, and
R, = 10%,10%,10%, and 10°. We used Dirichlet boundary conditions for the stream function, ¥: a
mixed Dirichlet/Neumann condition for temperature, ®; and a first—order approximation of the
stream function-vorticity relationship at the boundary for the vorticity boundary conditions,
where the vorticity is represented by € in equations (6.6)—(6.8). We used central difference
approximations to obtain a system of nonlinear equations. We ran this problem with N = 1024.

Since the tensor method requires two solves per iteration, the use of block iterative algorithms
(see e.g., [15, 14]) may be preferable than standard iterative methods in this case. A clear
advantage is that under certain conditions of the residual block and the Jacobian matrix, block
iterative methods achieve finite termination in [n/2] iterations in solving the two tensor solves.
This makes block iterative algorithms mathematically attractive. Block iterative methods can
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also help reduce the effect of the sequential inner products in parallel environments. Thus, they
are of a great practical value in applications involving several right sides but they are not as well
studied from the theoretical point of view. Consequently, we used standard iterative methods
in this paper.

We experimented with three Krylov solvers: the generalized minimum residual (GMRES)
[10], conjugate gradient squared (CGS) [16] , and the Bi-CGSTAB [17] methods. There appears
to be no significant difference in performance among the three methods on the test problems
described above. As a result, we discuss the test results only when the GMRES method was used
in conjunction with the tensor and Newton methods. Furthermore, we have tested a wide variety
of standard preconditioners which include Jacobi, red-black Gauss-Seidel, polynomial (Neumann
series expansion to approximate the inverse of a matrix), incomplete Cholesky, incomplete LU,
and multigrid (one “V” cycle) preconditioners. The multigrid preconditioner, mg, appears to be
the most effective and the most robust one. Therefore, we report only the multigrid test results.

We tested both the Newton-GMRES and tensor-GMRES methods on the test problems
above. Tables 1, 2, and 3 show the test results for problems 1, 2, and 3, respectively. Figures
1-12 show the contour plots of the streamlines and equivorticities for different values of the
Reynolds number. The contour levels plotted for the streamlines are

¢ = —0.1,-0.08,—0.06,—0.04, —0.02,0.0,
0.00005, 0.0001, 0.0005,0.001,0.0025.

The contour levels plotted for the equivorticities are

w = —5.0,-3.0,—1.0,1.0,3.0, 5.0.

Figures 13-20 show the streamlines for different values of the Raleigh number. The contour
levels plotted for the streamlines are

¢ = —1.0,-0.9,-0.8,-0.7,—0.6,—-0.5,0.0,0.5,0.6,0.7,0.8,0.9, 1.0.

On the basis of Tables 1-3, the following observations can be made. Table 1 shows that if we
pick A to be a very large value, then the Jacobian at the solution becomes nearly singular. This
is exactly the case in which the tensor method is intended to improve upon the performance
of Newton’s method due to the faster local convergence properties of the tensor method [1,
7]. Clearly, the tensor-GMRES method outperforms the Newton-GMRES method on this test
problem for large values of A in nonlinear iterations, function evaluations, and GMRES iterations.

When the default Krylov subspace is used, both methods have failed to solve test problems
2 and 3 for high Reynolds and Raleigh numbers. A possible reason for the convergence failures
of Newton’s method is that the Krylov subspace dimension is not large enough to generate a
good approximate solution 2™ to effectively restart the Arnoldi process. This results in the
GMRES method not generating sufficiently good descent directions for the nonlinear iteration.
The convergence failures of the tensor-Krylov method, however, are due to the fact that the coef-
ficients of the ¢(8) equation, J-'F. and/or J 1aq, are not solved within the required accuracies
in the early nonlinear iterations. As a result, the tensor-Krylov method generates poor tensor
directions, which cause the line search to fail in locating a next iterate at some point of the
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Table 1: Test results for problem 1

Newton-GMRES Tensor-GMRES

A Kiim | precond | itns | fevals | nli | nb | itns | fevals | nli | nb
-5.0 10 mg 5 6 510 5 6 231 0
1.0 10 mg 5 6 14 10 5 6 211 0
1.0e+3 10 mg 11 12 7710 9 10 95 | 0
1.0e+6 10 mg 20 21 84 | 0 | 13 14 821 0
1.0e4+9 10 mg 32 43 118 | 10 | 16 29 89 | 9
1.0e+12 | 10 mg 30 32 186 | 1 9 20 84 | 8

Table 2: Test results for problem 2

Newton-GMRES Tensor-GMRES

R. | Kgm | precond | itns | fevals | nli nb | itns | fevals | nli nb
500 10 mg 10 14 166 3 11 19 281 5
1000 10 mg 11 16 198 4 15 33 415 | 11
1500 10 mg 12 17 335 4 15 33 642 | 11
2000 15 mg F - - - 36 55 2075 | 12
3000 20 mg 72 193 | 3459 | 120 | 35 122 | 2563 | 59
5000 50 mg 1L - - — | 100 | 498 | 8814 | 308

algorithm execution. To overcome this problem, we increased the Krylov subspace dimensions
between 10 and 50, which yielded the results in Tables 2 and 3.

It can be concluded from these two tables that as the Reynolds and Raleigh numbers grow
larger, both Newton-GMRES and tensor-GMRES methods produce poor descent directions, as is
clearly indicated by the high number of line search backtracks. Nevertheless, the tensor-GMRES
method converges for all R, and R,, whereas the Newton-GMRES method fails to solve test
problem 2 for R, = 2000 and R. = 5000 and test problem 3 for R, = 1.0e¢ + 6. These results
suggest that a poor tensor-GMRES step is in general better that a poor Newton-GMRES step.
An important observation that can be made from Tables 1, 2, and 3 is that the average cost of a
tensor-GMRES iteration is approximately 1.5 that of a Newton-Krylov iteration. This is due to
the fact that the J.y = F_; solve required by the tensor iteration generally converges in about
half of the number of GMRES iterations required by the J.d,, = F, solve. This result is likely
attributed to the good starting guess J_; 1 F_;.

Over the three test problems, the Newton-Krylov method is very competitive up to the
values of A = 1.0e + 3, R, = 1500, and R, = 1.0e + 5. Then, the tensor-Krylov method
becomes much more efficient and robust than the Newton-Krylov method as the test problems
become increasingly harder to solve. These results are consistent with those obtained in [1]. We
anticipate that similar conclusions would be obtained on other test problems as well. Therefore,
our recommendation is to use tensor-Krylov methods for difficult problems to solve, and Newton-
Krylov methods otherwise.
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7. Conclusions

We have developed tensor methods for large systems of nonlinear equations based on Krylov
subspace projection methods for approximately solving the linear systems that are required.
The numerical test results show that tensor-Krylov methods are much more efficient and robust
than Newton-Krylov methods on nonlinear equations problems that are difficult to solve.

In order to firmly establish the conclusion above, additional testing is required, including
rank-deficient test problems. We expect the efficiency advantage of tensor-Krylov methods to be
much larger on such problems [1]. Several issues remain to be investigated. Among them is the
possibility of combining tensor-Krylov and Newton-Krylov methods with the two-dimensional
trust region global strategy developed in [2]. This global approach was shown to be much
more robust than line search methods [2]. Thus, its integration with tensor-Krylov methods
is expected to make these methods even more robust. Finally, we intend to implement the
algorithms discussed in this paper in a software package.

Table 3: Test results for problem 3

Newton-GMRES Tensor-GMRES
R, Kiim | precond | itns | fevals | nli | nb | itns | fevals | nli nb
1.0e+3 10 mg 9 14 74 | 4 7 12 95 3
1.0e+4 10 mg 17 30 215 | 12| 13 40 270 | 19
1.0e+5 15 mg 35 81 482 | 45| 27 121 615 | 73
1.0e+6 25 mg F - - -1 90 555 | 3867 | 382
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