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1. IntroductionIn this paper we introduce tensor-Krylov methods for solving the sparse nonlinear equationsproblem given F : <n ! <n; �nd x� 2 <n such that F (x�) = 0; (1:1)where it is assumed that n is large (say, n > 100) and F (x) is a least once continuously dif-ferentiable. Large systems of nonlinear equations arise frequently in many practical applica-tions including various network-
ow problems and equations produced by �nite-di�erence or�nite-element discretizations of boundary values problems for ordinary and partial di�erentialequations. In many situations, F 0(x�) is ill-conditioned or singular. In such situations, tensormethods are especially intended to improve upon the e�ciency of standard algorithms based onNewton's method.Tensor methods for large, sparse systems of nonlinear equations were introduced in Bouarichaand Schnabel [3]. These methods base each iteration on a quadratic model of F (x) that has theform M(xc + d) = F (xc) + F 0(xc)d + 12 Tcdd; (1:2)where xc is the current iterate, and Tc 2 Rn�n�n is the tensor term at xc. The notation Tcddis de�ned as follows.De�nition 1.1. Let T 2 Rn�n�n . Then T is composed of n horizontal faces Hi 2 Rn�n; i =1; � � � ; n, where Hi[j; k] = T [i; j; k]. For v; w 2 Rn; Tvw 2 Rn withTvw[i] = vTHiw = nXj=1 nXk=1T [i; j; k]v[j]w[k]:The tensor term is selected so that the model interpolates a very small number, p, of functionvalues from previous iterations. This interpolation process results in Tc being a rank p tensor,which is crucial to the e�ciency of the tensor method. After the model (1.2) is formed, theproblem �nd d 2 Rn that minimizes jj M(xc + d) jj2 (1:3)is solved; that is, at each iteration of tensor methods, a minimizer of the model is used if no rootexists. Methods for forming the tensor term and solving the tensor model for sparse systems ofnonlinear equations are reviewed in more detail in the next section. The tensor method requiresno more derivative or function information per iteration than Newton's method, and its storagerequirement is not appreciably more than for Newton's method.In tests reported in [3], the tensor method virtually never is less e�cient than a standardmethod based upon a linear (Newton) model, and usually is more e�cient.One of the major contributions of tensor methods has been its great robustness. Experi-mental results in [2], [3] have shown that the tensor method solves a considerable number ofproblems that the standard Newton method does not, and the reverse is virtually never true.The tensor methods for large, sparse nonlinear equations described in Bouaricha [1] use sparsedirect methods for solving the linear systems of equations that arise in each tensor iteration.Unfortunately, for problems where the factorization of the Jacobian matrix is too expensive,the slow asymptotic performance and large storage requirements of direct methods make them2



impractical. Thus, for these systems robust and fast iterative solvers such as Krylov algorithmsmust be used.Newton-Krylov methods for nonlinear equations have been studied by Brown and Saad([5], [4]). They show that their methods are remarkably e�ective on large systems of partialdi�erential equations. Their success has motivated us to use Krylov subspace algorithms inconjunction with the tensor methods developed in [1].The tensor methods developed in [1] require at least p+1 back solves, where p is the numberof interpolated function values from previous iterations. Usually, the cost of these solves isrelatively small compared with the cost of the Jacobian factorization. Unfortunately, this isnot the case when iterative methods are used. If p = 1, say, then it appears that the cost of atensor-Krylov iteration will be approximately twice that of a Newton-Krylov iteration. However,by reformulating the tensor step computation in [1], we show in x5 that the cost of one of thetwo solves can be made cheaper, as a result of a good initial estimate of the solution.The aim of this paper is to show that tensor-Krylov methods are much more robust thanNewton-Krylov methods in solving large and complex systems of nonlinear equations and thatit may still be preferable to use Newton-Krylov methods when the nonlinear equations problemis not too di�cult to solve.The remainder of this paper is organized as follows. In x2 we review tensor methods forlarge, sparse nonlinear equations that were introduced in [1]. In x3 we review Krylov subspacemethods and their main properties. In particular, we review the generalized minimum residualmethod (GMRES) [10], which will be used in conjunction with our tensor methods. In x4 wereview the Newton-Krylov methods for large nonlinear equations that were described in [5].In x5 we introduce tensor-Krylov algorithms for large nonlinear equations. We present somenumerical results in x6. Finally, in x7 we make some concluding remarks.2. Overview of Tensor Methods for Large, Sparse Nonlinear EquationsTensor methods are general{purpose methods intended especially for problems where the Jaco-bian at the solution is singular or ill{conditioned. Each iteration is based on a quadratic modelof the nonlinear function (1.2). The choice of Tc causes the second{order term Tcdd in (1.2) tohave a simple and useful form. We use the tensor term to allow the local model M(xc + d) tointerpolate values of the function F (x) at past iterates; that is, the model should satisfyF (x�k) = F (xc) + F 0(xc)sk + 12Tcsksk; k = 1; � � � ; p;where sk = x�k � xc; k = 1; � � � ; p:The past points x�1; � � � ; x�p are selected so that the set of directions sk from xc to the selectedpoints must be strongly linearly independent; we require that each direction sk make an angleof at least 45 degrees with the subspace spanned by the previously selected past directions.In practice, p is usually 1 or 2. The procedure of �nding linearly independent directions isimplemented easily by using a modi�ed Gram-Schmidt method.After selecting the linearly independent past directions, we form the tensor term. Schnabeland Frank [11] choose Tc to be the smallest matrix that satis�es the interpolation conditions;3



that is, minTc2Rn�n�n jj Tc jjF (2:1)subject to Tcsksk = 2 (F (x�k) � F (xc) � F 0(xc)sk);where jj Tc jjF , the Frobenius norm of Tc is de�ned byjj Tc jjF 2 = nXi=1 nXj=1 nXk=1 (Tc[i; j; k])2:The solution to (2.1) is the sum of p rank{one tensors whose horizontal faces are symmetric,Tc = pXk=1 aksksk ;where ak is the k�th column of A 2 Rn�p, A de�ned by A = ZM�1, Z is an (n � p) matrixwhose columns are Zj = 2(F (x�j) � F (xc) � F 0(xc)sj) and M is a (p � p) matrix de�ned byM(i; j) = (siT sj)2, 1 � i; j � p.If we use the tensor term derived above, the tensor model (1.2) becomesM(xc + d) = F (xc) + F 0(xc)d + 12 pXk=1 ak fdTskg2: (2:2)The simple form of the second term in (2.2) is the key to being able to e�ciently form, store,and solve the tensor model. The cost of forming the tensor term and the tensor model is O(n2p)arithmetic operations. The additional storage required is 4p n-vectors. In the remainder of thispaper, we will denote F (xc) and F 0(xc) by F and J , respectively, for simplicity.Once the tensor model is formed, a step d 2 <n is computed such thatM(xc + d) = F + Jd + 12 pXk=1 ak fdTskg2 = 0: (2:3)Bouaricha and Schnabel [3] show that the solution of (2.3) can be reduced to the solution ofa system of p quadratic equations in p unknowns, plus the solution of p + 1 systems of linearequations that all involve the same matrix. This matrix is either J(xc) if it is nonsingularand well conditioned, or J(xc) augmented by p dense rows and columns if J(xc) is singular orill{conditioned. They also show that their algorithm e�ciently solves the generalization of (2.3),�nd d 2 Rn that minimizes jj M(xc + d) jj2: (2:4)The basic approach is illustrated by the case when the Jacobian matrix is nonsingular andthe tensor model has a root. In this case, premultiplying (2.3) by siTJ�1; i = 1; � � � ; p, gives thep quadratic equations in the p unknowns �i = siTd,siTJ�1F + �i + 12 pXk=1 (siTJ�1ak)�k2 = 0; i = 1; � � � ; p: (2:5)4



These equations can be solved for �i; i = 1; � � � ; p, and then from (2.3) the equationF + Jd + 12 pXk=1 ak�k2 = 0can be solved for d. The entire process requires the solution of p+1 systems of linear equations inthe matrix J to compute J�1F and J�1ak; k = 1; � � � ; p (or, alternatively, J�1(F+ 12Ppk=1 ak�k2)and J�T si; i = 1; � � � ; p) and the solution of the small system of quadratics (2.5).The preceding paragraph indicated how to solve (2.4) e�ciently when the Jacobian matrixis nonsingular and the tensor model has a root. Now we address the more general problemof solving (2.4) e�ciently whether or not the model has a root, when the Jacobian matrix isnonsingular. We do this by considering the equivalent minimization problem to (2.4),mind2 Rn jj Q M(xc + d) jj2; (2:6)where Q is an n � n orthogonal matrix that has the structureQ = " UTZT # ;with U 2 <n�p; U = J�TS[ST(JTJ)�1S]� 12 , S an (n� p) matrixwhose columns are si; i = 1; � � � ; pZ 2 <n�(n�p) is an orthonormal basis for the orthogonal complementof the subspace spanned by the columns of J�TS.Note that ZTJ�TS = 0. If we de�ne W = [ST (JTJ)�1S], � = STd, andq(�) = STJ�1F + � + 12STJ�1A�2; (2:7)where �2 denotes the vector in <p whose i-th component is (�i)2, thenQM(xc + d) = " W� 12 q(�)ZT M(xc + d) # : (2:8)The following lemma is the key to showing that (2.6) can be solved e�ciently through (2.8).Lemma 2.1. For any � 2 <p, there exists a d 2 <n such that ZTM(xc + d) = 0 and STd = �.Proof. Let d = (JTJ)�1SW�1� + J�1Z t; (2:9)where t is arbitrary vector 2 <n�p. ThenSTd = ST (JTJ)�1SW�1� + STJ�1Z t = �;5



from the de�nitions of W and Z, andZTM(xc + d) = ZTF + ZTJ [(JTJ)�1SW�1� + J�1Z t] + 12ZTA�2= ZTF + t + 12ZTA�2:Thus the choice t = �ZT [F + 12A�2]in (2.9) yields a value of d for which ZTM(xc + d) = 0 and STd = � are both satis�ed.2Since for any �, we are able to �nd a step d such that ZTM(xc + d) = 0 and STd = �,Lemma 2.1 and (2.8) show that problem (2.6) can be reduced to the minimization problem in pvariables min�2<p jj W� 12 q(�) jj2: (2:10)Furthermore, once the value of � that solves (2.10) is determined, we can obtain the solution dto (2.6) e�ciently as follows. From (2.8) and Lemma 2.1, d� must satisfyM(xc + d�) = QT " W� 12 q(�)0 #= UW� 12 q(�):From this equation and the de�nition of U we haveF + Jd� + 12A�2 = J�TSW�1q(�)and, hence, d� = �J�1[ F + 12A�2 � J�TSW�1q(�)]: (2:11)Therefore, once we know �, we simply calculate the value of q(�) and substitute these two valuesinto Equation (2.11) to obtain the value of d�.An algorithm that solves (2.4) is summarized as follows.Algorithm 2.2. Solving the Sparse Tensor ModelLet J 2 Rn�n be sparse, F 2 Rn, S, A 2 Rn�p.1. Form the q(�) equation (i.e, Equation (2.7)) by calculating J�TS as follows: factor J , andsolve JT yj = sj ; j = 1; � � � ; p.2. Form the positive de�nite matrix W 2 Rp�p, where Wij = [siT (JTJ)�1sj ], 1 � i; j � p,as follows: Wij = (J�T si)T (J�T sj) = yiT yj .3. Perform a Cholesky decomposition of W (i.e., W = LLT ) resulting in L 2 Rp�p, a lowertriangular matrix. 6



4. Use UNCMIN [12], an unconstrained minimization software package, to solvemin�2Rp jj L�1 q( � )jj22; (2:12)or solve (2.12) in closed form if p = 1.5. Substitute the value of the solution to Equation (2.12), ��, and q(��) into the followingequation for d, d = �J�1[F + 12A��2 � J�TSW�1q(��)]to obtain the tensor step d; this involves one additional solve, since the factorization of Jis already calculated.The total cost of this process is the factorization of the sparse matrix J , p + 1 back solvesusing this factorization, the unconstrained minimization of a function of p variables, and somelower-order (O(n)) costs.For further information we refer to [1].3. Krylov Subspace MethodsThe underlying idea of Krylov subspace methods when applied to a linear system of equations,Ax = b, is to generate an approximate solution to the original problem from the Krylov subspaceSpanfb; Ab; � � � ; Am�1bg. Therefore, the original problem of size N is approximated by one ofdimension m, typically much smaller that N .Consider the linear system Ax = b; (3:1)where A 2 <n�n and b 2 <n. Let x0 be an initial guess of the solution x� of (3.1), and let r0 bethe initial residual r0 = b � Ax0. If the unknown x is decomposed as x = x0 + z, then itis immediate that the new unknown z must satisfyAz � r0 = 0: (3:2)A Krylov subspace method obtains an approximation z(m) to the system (3.2) by applying aprojection process to the system onto the Krylov subspace Km = Spanfr0; Ar0; :::; Am�1r0g:That is, the approximation z(m) must be satisfyz(m) 2 Kmand (Az(m) � r0) ? vj ; j = 1; � � � ; m;where vj ; j = 1; � � � ; m form a basis for Km. If Vm = [v1; � � � ; vm] is any basis of Km, thenz(m) can be expressed as z(m) = Vm � y(m), where y(m) is the solution to the m�m systemVmTAVm � y(m) � VmT r0 = 0; (3:3)and the approximate solution x(m) of the system (3.1) is related to z(m) by x(m) = x0 + z(m).For further information we refer to [8], [10], and [9].7



3.1. GMRES MethodWe �rst review Arnoldi's algorithm for building an orthonormal basis of the Krylov subspaceKm, on which the GMRES method is based.Arnoldi's algorithm builds an orthonormal basis v1; � � � ; vm ofKm = Spanfr0; Ar0; � � � ; Am�1r0gby the recurrence hk+1;kvk+1 = Avk � kXi=1 hikvi (3:4)starting with v1 = r0=jj r0 jj and choosing hik; i = 1; � � � ; k + 1, in such a way that vk+1 isorthogonal to v1; � � � ; vk and jj vk+1 jj = 1. The algorithm is as follows.Algorithm 3.1. Arnoldi's Method1. Start: Compute r0 = b � Ax0, and take v1 = r0=jj r0 jj.2. Iterate: For j = 1; 2; � � � ; m, dohi;j = (Avj ; vi); i = 1; 2; � � � ; jv̂j+1 = Avj � Pji=1 hi;jvihj+1;j = jj v̂j+1 jj2vj+1 = v̂j+1 = hj+1;j .It is clear that after m steps of Arnoldi's algorithm we have an orthonormal basis of Km,[v1; � � � ; vm], and an (m + 1) � m Hessenberg matrix �Hm whose nonzero elements are the hijde�ned by Step 2 of Algorithm 3.1. Furthermore, the vector vi and the matrix �Hk satisfy theimportant relation AVk = Vk+1 �Hk: (3:5)The GMRES method seeks a solution of the least squares problemminzm2Km jj b � A(x0 + zm) jj = minzm2Km jj r0 � Azm jj: (3:6)If we set zm = Vmy, v1 = r0=jjr0jj and � = jj r0 jj, then the least squares problem (3.6) isequivalent to miny2Rm jj �v1 � AVmy jj= miny2Rm jj Vm+1(�e1 � �Hmy) jj= miny2Rm jj �e1 � �Hmy jj: (3:7)Hence, the solution of the least squares problem (3.6) is given byxm = x0 + Vmym; (3:8)where ym minimizes problem (3.7).We now give the following structure of the method.8



Algorithm 3.2. GMRES Method1. Start: Choose x0, and compute r0 = b � Ax0 and v1 = r0 = jj r0 jj.2. Iterate: For j = 1; 2; � � � ; k; � � � ;until satis�ed, dohi;j = (Avj ; vi); i = 1; 2; � � � ; jv̂j+1 = Avj = Pji=1 hi;jvihj+1;j = jj v̂j+1 jjvj+1 = v̂j+1 = hj+1;j .3. Form the approximate solution:xk = x0 + Vkyk , where yk minimizes (3.7).A typical implementation of the GMRES method limits m to a �xed value mmax to minimizethe storage allocation. It is possible thatm = mmax in the Arnoldi process, and yet jj b�Axm jj2is still greater than �n, where �n is a stopping criterion. One way to deal with this case is to setx0 equal to x(m) and restart the Arnoldi process, e�ectively restarting the Krylov method. Thisprocedure does not always guarantee convergence but does appear to work well in practice.4. Newton-Krylov MethodsIn this section we review the nonlinear version of the GMRES method described in Brown andSaad [5], which combines it with a Newton iteration, for solving nonlinear systems of equations.A method in this class is referred to as a Newton-Krylov algorithm.The Newton-GMRES method has the following general form:Algorithm 4.1. Newton-GMRES Method1. Choose x0, and an initial guess for x�.2. For k = 0; 1; � � � ; until convergence,� Choose �k 2 [0; 1).� Compute a vector �k satisfyingJ(xk)�k = �F (xk) + rk; (4:1)with jj rk jjjj F (xk) jj � �k, using a GMRES method.� Compute a next iterate xk+1 using a backtracking line search global strategy, i.e.,xk+1 = xk + ��k, where � is the line search damping parameter.The residual rk represents the amount by which �k fails to satisfy the Newton equation J(xk)�k =�F (xk). The forcing sequence �k 2 [0; 1) is used to control the level of accuracy. Brown andSaad [4] show that if the sequence �k ! 0, then if J(x�) is nonsingular and �k � �max < 1, theiterates generated by Algorithm 4.1 converge to the solution superlinearly; the convergence isquadratic if �k = O(jjF (xk)jj). 9



5. Tensor-Krylov MethodsIn this section, we describe how we construct tensor-Krylov algorithms for nonlinear equationsproblems. In particular, we emphasize the key di�erences between tensor-Krylov methods andthe tensor methods reviewed in x2.In tensor-Krylov methods, we form the q(�) equation by only forming J�1c A, where Jc isthe Jacobian at the current iterate, as follows. Let ai; i = 1; � � � ; p denote the columns ofthe tensor matrix A. Thus, to calculate J�1c A, we need to solve the linear systems of equationsJcyi = ai; i = 1; � � � ; p, for yi. Note, however, that each column ai is a linear combination ofFc, Jcs�i, and F�i, where Fc is the function value at the current iterate xc, s�i = x�i � xc isthe direction from xc to the past iterate x�i, and F�i is the function value at x�i. If p = 1 forexample, then a1 = 2(sT�1s�1)2 [F�1 � Fc � Jcs�1]:Therefore, to compute J�1c a1, we need to compute J�1c F�1 and J�1c Fc, where J�1c Fc is theNewton direction. In computing J�1c F�1, an advantage of using iterative methods is that ifwe have a good starting guess, the cost of solving the system of linear equations will be a lotless. Therefore, if we start with the vector J�1�1F�1, which was computed approximately atthe previous iteration, as an initial guess to solve the system of equations Jcx = F�1, then aniterative method such as Krylov method might eliminate most of the cost of that calculation.The other key di�erence between the tensor-Krylov methods presented in this paper andthe tensor methods reviewed in x2 is in the way the tensor step is computed. In tensor-Krylovmethods, we omit the expression �(JTc Jc)�1SW�1q(�) from the tensor step calculation (2.13),in the case where the q(�) equation has a minimizer. Leaving this expression in would requireanother linear system of equations to be solved, thereby making the cost of a tensor-Kryloviteration prohibitive. It can be proven that this new way of computing the tensor step willretain the same convergence properties of the tensor method because, in the neighborhood ofthe solution x�, the above expression is negligible and therefore has no e�ect on the tensormethod. In our experiments, omitting this term generally has a negligible e�ect on the numberof iterations required by the tensor method.An iteration of tensor-Krylov algorithms for large nonlinear equations is given in Algorithm5.1. For simplicity, we assume throughout the remainder of this paper that p = 1.Algorithm 5.1. Tensor-Krylov Methods for Large Nonlinear EquationsLet Jc 2 Rn�n be the Jacobian at the current iterate xc, Fc 2 Rn the function value at xc,F�1 2 Rn the function value at the previous iterate x�1, s�1 2 Rn the step from xc to x�1(s�1 = x�1 � xc), a1 2 Rn the tensor term (a1 = 2(sT�1s�1)2 [F�1 � Fc � Jcs�1]), and dn and dtthe Newton and tensor steps, respectively.1. Form the q(�) equation 12sT�1J�1c a1�2 + � + sT�1J�1c Fc = 0:10



� Solve Jcdn = Fc, using a preconditioned (restarted) GMRES method starting from ds = 0.� Solve Jcy = F�1, using a preconditioned (restarted) GMRES method starting from ys =J�1�1F�1, where J�1 is the Jacobian at x�1.� Calculate J�1c a1 = 2(sT�1s�1)2 [y � dn � s�1].2. Solve q(�) = 0, for �.3. Calculate dt as follows: dt = �J�1c Fc � 12J�1c a1��2;where �� is the solution obtained in Step 2.4. Select the next iterate x+, using a line search global strategy as follows:f(xc) = 12 jjF (xc)jj22xt+ = xc + dtf(xt+) = 12 jjF (xt+)jj22slope = �jjFcjj2 � 12FcTa1��2if (slope < 0) thenif f(xt+) < f(xc) + 10�4 � slope thenx+ = xt+elseFind an acceptable xn+ in the Newton direction dn,using a line search algorithm (Algorithm A6.3.1, page 325 [6])Find an acceptable xt+ in the tensor direction dt,using a line search algorithm (Algorithm A6.3.1, page 325 [6])if f(xn+) < f(xt+) thenx+ = xn+elsex+ = xt+endifendifelseFind an acceptable xn+ in the Newton direction dn,using a line search algorithm (Algorithm A6.3.1, page 325 [6])x+ = xn+endif6. Numerical TestingIn this section, we present some results of testing tensor-Krylov methods on a set of nonlinearpartial di�erential equations. We also compare these results with those obtained by Newton-Krylov methods [5] on the same problems. 11



All our computations were performed on a Sun SPARCstation 10, using double{precisionarithmetic.The tensor-Krylov and Newton-Krylov programs terminate successfully if jj F (x+) jj1 is lessthan 10�9. The test maxi � jx+[i]� xc[i]jmaxfjx+[i]; 1jg � � 10�9is used to determine whether the algorithms have converged or stalled at x+. The iteration limitis set to 500.We ran the tensor-Krylov method with p = 1. The reasons for this choice are that previouscomputational results obtained in [1] showed that the tensor method with p = 1 is generallyabout as e�ective as the tensor method that allows p � 1, and that the method is considerablysimpler and cheaper to implement in this case. Note that the tensor method will have the sameconvergence properties whether p = 1 or p � 1.In the test results of the remainder of this section, the following notations are used:� Kdim - dimension of the Krylov subspace� precond - type of preconditioner used� itns - number of nonlinear iterations� fevals - number of function evaluations� nli - number of linear iterations within the Krylov method� nb - number of backtracks within the line search algorithm� F - line search method cannot locate a point lower than the current one { algorithm failsto converge� IL - iteration limit exceededWe use two stopping criteria for the linear Krylov method at iteration k of the nonlinear equa-tions algorithm. We require that the l2 norm of the residual be at least as small as 1:0e� 3 andthat the residual reduction be at least 1:0e� 2, that is,jj residual at current Krylov iterate jjjj residual at initial Krylov iterate jj � 1:0e� 2:The maximum linear solve iterations, mmax, is set to 50. If mmax is reached, but either the l2norm of the residual is bigger than 1:0e� 3 or the residual reduction is bigger than 1:0e� 2, weuse the last computed Krylov step. The default size of the Krylov subspace is set to 10.Test Problem 1. The Bratu problem [5]��u + �ux + �eu = f (6:1)We solve (6.1) over the unit square of R2 with Dirichlet boundary conditions. We discretize thisproblem using a �ve-point �nite di�erencing and obtain a large system of nonlinear equations12



of size N , where N = n2x and nx is the number of meshpoints in each direction. We choose fso that the solution of the discretized problem is the constant unity. We run this problem withN = 1024 (nx = 32), with � = 10:0, and with di�erent values of � ranging from -5.0 to 1012.Test Problem 2. The driven cavity problem (given in stream-vorticity formulation)[5] ��! + ( x2!x1 �  x1!x2) = 0 in 
 (6:2)�� = ! in 
 (6:3) = 0 on @
 (6:4)� @ @n (x1; x2) j@
 = ( 1 if x2 = 10 if 0 � x2 < 1 (6:5)Here 
 = f(x1; x2) : 0 < x1 < 1; 0 < x2 < 1g, and the viscosity � is the reciprocal of theReynolds number Re. After discretization by �ve-point �nite di�erencing, we obtain a systemof nonlinear equations. In this test we chose N = 3969 (nx = 63). We tried six di�erent valuesfor Re: 500, 1000, 1500, 2000, 3000, and 5000.Test Problem 3. The incompressible Navier-Stokes and thermal energy problem(given in stream-vorticity formulation) [13]@2
@x2 + Ax2@2
@y2 = �1@�@x + �2@�@y (6:6)@2	@x2 + Ax2@2	@y2 = �Ax24 
 (6:7)Ax@	@y @�@x � Ax@2	@x @2�@y = @2�@x2 + Ax2@2�@y2 (6:8)Equations (6.6){(6.8) describe buoyancy induced natural convection in an inclined two{dimensionalrectangular cavity over the computational domain (�1; 1)� (�1; 1). In the above equations�1 � �AxRa cos�2 ; �2 � (Ax)2Ra sin�2 ;Ax is the aspect ratio of a rectangular cavity, � is the angle of inclination, and Ra is the Raleighnumber. In this formulation the Prandtl number has been assumed to be in�nite so that theinertial terms in the momentum equation can be neglected. We took Ax = 1;� = �=2, andRa = 103; 104; 105; and 106. We used Dirichlet boundary conditions for the stream function, 	; amixed Dirichlet/Neumann condition for temperature, �; and a �rst{order approximation of thestream function-vorticity relationship at the boundary for the vorticity boundary conditions,where the vorticity is represented by 
 in equations (6.6){(6.8). We used central di�erenceapproximations to obtain a system of nonlinear equations. We ran this problem with N = 1024.Since the tensor method requires two solves per iteration, the use of block iterative algorithms(see e.g., [15, 14]) may be preferable than standard iterative methods in this case. A clearadvantage is that under certain conditions of the residual block and the Jacobian matrix, blockiterative methods achieve �nite termination in [n=2] iterations in solving the two tensor solves.This makes block iterative algorithms mathematically attractive. Block iterative methods can13



also help reduce the e�ect of the sequential inner products in parallel environments. Thus, theyare of a great practical value in applications involving several right sides but they are not as wellstudied from the theoretical point of view. Consequently, we used standard iterative methodsin this paper.We experimented with three Krylov solvers: the generalized minimum residual (GMRES)[10], conjugate gradient squared (CGS) [16] , and the Bi-CGSTAB [17] methods. There appearsto be no signi�cant di�erence in performance among the three methods on the test problemsdescribed above. As a result, we discuss the test results only when the GMRES method was usedin conjunction with the tensor and Newton methods. Furthermore, we have tested a wide varietyof standard preconditioners which include Jacobi, red-black Gauss-Seidel, polynomial (Neumannseries expansion to approximate the inverse of a matrix), incomplete Cholesky, incomplete LU,and multigrid (one \V" cycle) preconditioners. The multigrid preconditioner, mg, appears to bethe most e�ective and the most robust one. Therefore, we report only the multigrid test results.We tested both the Newton-GMRES and tensor-GMRES methods on the test problemsabove. Tables 1, 2, and 3 show the test results for problems 1, 2, and 3, respectively. Figures1{12 show the contour plots of the streamlines and equivorticities for di�erent values of theReynolds number. The contour levels plotted for the streamlines are = �0:1;�0:08;�0:06;�0:04;�0:02; 0:0;0:00005; 0:0001; 0:0005; 0:001; 0:0025:The contour levels plotted for the equivorticities are! = �5:0;�3:0;�1:0; 1:0; 3:0; 5:0:Figures 13{20 show the streamlines for di�erent values of the Raleigh number. The contourlevels plotted for the streamlines are = �1:0;�0:9;�0:8;�0:7;�0:6;�0:5; 0:0; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0:On the basis of Tables 1{3, the following observations can be made. Table 1 shows that if wepick � to be a very large value, then the Jacobian at the solution becomes nearly singular. Thisis exactly the case in which the tensor method is intended to improve upon the performanceof Newton's method due to the faster local convergence properties of the tensor method [1,7]. Clearly, the tensor-GMRES method outperforms the Newton-GMRES method on this testproblem for large values of � in nonlinear iterations, function evaluations, and GMRES iterations.When the default Krylov subspace is used, both methods have failed to solve test problems2 and 3 for high Reynolds and Raleigh numbers. A possible reason for the convergence failuresof Newton's method is that the Krylov subspace dimension is not large enough to generate agood approximate solution x(m) to e�ectively restart the Arnoldi process. This results in theGMRES method not generating su�ciently good descent directions for the nonlinear iteration.The convergence failures of the tensor-Krylov method, however, are due to the fact that the coef-�cients of the q(�) equation, J�1c Fc and/or J�1c a1, are not solved within the required accuraciesin the early nonlinear iterations. As a result, the tensor-Krylov method generates poor tensordirections, which cause the line search to fail in locating a next iterate at some point of the14



Table 1: Test results for problem 1Newton-GMRES Tensor-GMRES� Kdim precond itns fevals nli nb itns fevals nli nb-5.0 10 mg 5 6 15 0 5 6 23 01.0 10 mg 5 6 14 0 5 6 21 01.0e+3 10 mg 11 12 77 0 9 10 95 01.0e+6 10 mg 20 21 84 0 13 14 82 01.0e+9 10 mg 32 43 118 10 16 29 89 91.0e+12 10 mg 30 32 186 1 9 20 84 8Table 2: Test results for problem 2Newton-GMRES Tensor-GMRESRe Kdim precond itns fevals nli nb itns fevals nli nb500 10 mg 10 14 166 3 11 19 281 51000 10 mg 11 16 198 4 15 33 415 111500 10 mg 12 17 335 4 15 33 642 112000 15 mg F { { { 36 55 2075 123000 20 mg 72 193 3459 120 35 122 2563 595000 50 mg IL { { { 100 498 8814 308algorithm execution. To overcome this problem, we increased the Krylov subspace dimensionsbetween 10 and 50, which yielded the results in Tables 2 and 3.It can be concluded from these two tables that as the Reynolds and Raleigh numbers growlarger, both Newton-GMRES and tensor-GMRES methods produce poor descent directions, as isclearly indicated by the high number of line search backtracks. Nevertheless, the tensor-GMRESmethod converges for all Re and Ra, whereas the Newton-GMRES method fails to solve testproblem 2 for Re = 2000 and Re = 5000 and test problem 3 for Ra = 1:0e+ 6. These resultssuggest that a poor tensor-GMRES step is in general better that a poor Newton-GMRES step.An important observation that can be made from Tables 1, 2, and 3 is that the average cost of atensor-GMRES iteration is approximately 1.5 that of a Newton-Krylov iteration. This is due tothe fact that the Jcy = F�1 solve required by the tensor iteration generally converges in abouthalf of the number of GMRES iterations required by the Jcdn = Fc solve. This result is likelyattributed to the good starting guess J�1�1F�1.Over the three test problems, the Newton-Krylov method is very competitive up to thevalues of � = 1:0e + 3, Re = 1500, and Ra = 1:0e + 5. Then, the tensor-Krylov methodbecomes much more e�cient and robust than the Newton-Krylov method as the test problemsbecome increasingly harder to solve. These results are consistent with those obtained in [1]. Weanticipate that similar conclusions would be obtained on other test problems as well. Therefore,our recommendation is to use tensor-Krylov methods for di�cult problems to solve, and Newton-Krylov methods otherwise. 15



7. ConclusionsWe have developed tensor methods for large systems of nonlinear equations based on Krylovsubspace projection methods for approximately solving the linear systems that are required.The numerical test results show that tensor-Krylov methods are much more e�cient and robustthan Newton-Krylov methods on nonlinear equations problems that are di�cult to solve.In order to �rmly establish the conclusion above, additional testing is required, includingrank-de�cient test problems. We expect the e�ciency advantage of tensor-Krylov methods to bemuch larger on such problems [1]. Several issues remain to be investigated. Among them is thepossibility of combining tensor-Krylov and Newton-Krylov methods with the two-dimensionaltrust region global strategy developed in [2]. This global approach was shown to be muchmore robust than line search methods [2]. Thus, its integration with tensor-Krylov methodsis expected to make these methods even more robust. Finally, we intend to implement thealgorithms discussed in this paper in a software package.Table 3: Test results for problem 3Newton-GMRES Tensor-GMRESRa Kdim precond itns fevals nli nb itns fevals nli nb1.0e+3 10 mg 9 14 74 4 7 12 95 31.0e+4 10 mg 17 30 215 12 13 40 270 191.0e+5 15 mg 35 81 482 45 27 121 615 731.0e+6 25 mg F { { { 90 555 3867 382Acknowledgments. I thank Bobby Schnabel for initiating this research and for his nu-merous suggestions. I am grateful to Ray Tuminaro for discussing several issues related toKrylov methods and their preconditioning. I also thank the referees, and Jorge Mor�e and GailPieper from the Mathematics and Computer Science Division at Argonne National Laboratoryfor criticism that helped me improve the paper.References[1] A. Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear leastsquares problems using tensor methods on sequential and parallel computers. Ph.D. the-sis, Computer Science Department, University of Colorado at Boulder, 1992.[2] A. Bouaricha and R. B. Schnabel. TENSOLVE: A software package for solving systems ofnonlinear equations and nonlinear least squares problems using tensor methods. PreprintMCS-P463-0894, Mathematics and Computer Science Division, Argonne National Labora-tory, 1994.[3] A. Bouaricha and R. B. Schnabel. Tensor methods for large, sparse systems of nonlin-ear equations. Preprint MCS-P473-1094, Mathematics and Computer Science Division,Argonne National Laboratory, 1994. 16
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Figure 1: Streamlines for Reynolds number 500
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Equivorticity for Reynolds number 50017



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Streamlines for Reynolds number 1000
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Figure 4: Equivorticity lines for Reynolds number 100018
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Figure 5: Streamlines for Reynolds number 1500
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Equivorticity for Reynolds number 150019
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Figure 7: Streamlines for Reynolds number 2000
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Figure 8: Equivorticity lines for Reynolds number 200020
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Figure 9: Streamlines for Reynolds number 3000
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Figure 10: Equivorticity lines for Reynolds number 300021
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Figure 11: Streamlines for Reynolds number 5000
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Figure 12: Equivorticity lines for Reynolds number 500022
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Figure 13: Streamlines for Raleigh = 1000
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Figure 14: Streamlines for Raleigh = 10,00023
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Figure 15: Streamlines for Raleigh = 100,000
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Figure 16: Streamlines for Raleigh = 1,000,00024
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