
PARALLEL IMPLEMENTATION, VALIDATION, ANDPERFORMANCE OF MM5J. Michalakes, T. Can�eld, R. Nanjundiah, and S. HammondMathematics and Computer Science Division,Argonne National Laboratory,9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.G. GrellNOAA Forecast Systems Laboratory,325 Broadway, Boulder, Colorado 80303, U.S.A.AbstractWe describe a parallel implementation of the nonhydrostatic ver-sion of the Penn State/NCAR Mesoscale Model, MM5, that includesnesting capabilities. This version of the model can run on many di�er-ent massively parallel computers (including a cluster of workstations).The model has been implemented and run on the IBM SP and Intelmultiprocessors using a columnwise decomposition that supports ir-regularly shaped allocations of the problem to processors. This stategywill facilitate dynamic load balancing for improved parallel e�ciencyand promotes a modular design that simpli�es the nesting problem.All data communication for �nite di�erencing, inter-domain exchangeof data, and I/O is encapsulated within a parallel library, RSL. Hence,there are no sends or receives in the parallel model itself. The libraryis generalizable to other, similar �nite di�erence approximation codes.The code is validated by comparing the rate of growth in error betweenthe sequential and parallel models with the error growth rate when thesequential model input is perturbed to simulate oating point round-ing error. Series of runs on increasing numbers of parallel processorsdemonstrate that the parallel implementation is e�cient and scalableto large numbers of processors. 1

1. IntroductionComputer simulation for weather forecasting is computationally demand-ing, especially at very �ne resolutions and over very large domains. Massivelyparallel processors and networks of high-performance RISC-based worksta-tions are a cost-e�ective and scalable alternative to vector/shared-memorysupercomputing technology for weather forecasting. This paper describes thedistributed-memory parallel implementation of the Fifth-Generation PennState/NCAR Mesoscale Model (MM5) for use as a real time weather fore-casting system for the United States Air Force. We �rst discuss requirementsfor the model and modeling system. Next, we describe the approach to im-plement the parallel model. This approach employs RSL, a parallel librarypackage designed to hide low-level details of the parallel implementation andthat is tailored to regular-grid �nite-di�erence codes with mesh re�nement.The parallelized model is validated with respect to the source model by com-paring model output data plots and by measuring error growth rates in thesource and parallel models. Performance results obtained running the paral-lel model on an IBM Scalable POWERparallel system are presented.2. Model and System RequirementsMM5 is a regional weather model for prediction on domains ranging fromseveral thousand kilometers down to several hundred (or fewer) kilometers.The model may be run at a resolution of as low as 1 km. Domains are uniformrectangular grids representing three-dimensional regions of the atmosphere.The horizontal coordinate system is equally spaced geographically and themodel uses the Arakawa-B gridding scheme. The vertical coordinate systemis � surfaces, with layers distributed more closely nearer the surface (23 layersin the current model). For this implementation, atmospheric dynamics isnonhydrostatic and uses �nite-di�erence approximation. Physics includesthe Blackadar high-resolution planetary boundary layer scheme, the Grellcumulus scheme, explicit moisture with treatment of mixed-phase processes(ice), shallow convection, dry convective adjustment, and the Dudhia long-and short-wave radiation scheme [1].�This work was supported by the Applied Mathematical Sciences subprogram of theO�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38. Corresponding author: John Michalakes, MCS Division, Argonne National Laboratory,Argonne, Illinois 60439, U.S.A. Email: michalak@mcs.anl.gov.2

The requirements of the modeling system are that it provide high resolu-tion over a very large domain with fast time to solution. A simple model ofcomputational cost is S = 1tsol � tsim3 seckm � r � c � Fwhere S is the required oating-point operations per second, tsol is the timeto solution in seconds, tsim is the length of the simulation in seconds, r is theresolution in kilometers, c is the number of cells in the domain, and F is thenumber of oating-point operations to compute one time step for one cell.The desired resolution is 10 km over a square geographical domain that is1500 nautical miles (approximately 2700 km) on an edge. The desired timeto solution for a 36-hour simulation is one hour. Based on a measured 8420oating-point operations per three-dimensional grid point per time step, theproblem as speci�ed is essentially intractable, requiring a sustained compu-tational rate of 17 billion oating-point operations per second. Therefore, weemploy mesh re�nement in the parallel model to focus the more costly 10 kmresolution over a much smaller area of interest. Within the larger 2700 kmby 2700 km domain, we instantiate a 10 km nested domain covering an areaabout 500 km on an edge. The rest of the larger domain is calculated at 30km resolution, reducing the computational requirements for the large domainby a factor of 27 (9-fold fewer cells, and a 3-fold increase in the length of thetime step, based on the MM5's nesting ratio of 3). This sacri�ce of resolutionover some of the original domain reduces the performance requirement to 760million oating-point operations per second, a considerable savings.3. ParallelizationParallel e�ciency is the degree to which a program achieves ideal speedup:an increase in computational speed proportional to the number of processors.A number of factors including load imbalance and communication overheada�ect parallel e�ciency. Load imbalance is an uneven distribution of workbetween processors, which causes less heavily loaded processors to reach asynchronization point in the code sooner and then wait for more heavilyloaded processors. Load imbalance can be corrected by moving work be-tween processors, as long as the cost to redistribute the work and the cost ofpossibly increased communication do not outweigh the bene�ts of the moree�cient distribution. Communication overhead is the cost in time of sending3

and receiving messages between processors. Typically, the cost to initiate amessage is equivalent to the cost to send hundreds of four-byte words oncestartup has occurred. This is fairly high latency. Therefore, there is anadvantage to sending messages that are as large as possible, by blocking(aggregating) into single messages smaller messages that can be sent at thesame time. Communication cost can also be improved by using asynchronouscommunication. Processors need stop only to initiate a send or a receive andmay then go forward with computation that does not depend on the datathat is being communicated. Thus, at least some of the cost is hidden bydoing useful work at the same time.Message-passing code and the additional code required to block messagesinto large bu�ers, to hide communication cost with asynchronous messages,and to redistribute work for load balancing increase the complexity of writ-ing parallel codes. Compilers that can automatically parallelize codes fordistributed-memory computers are a potentially important future technology,but not one that is workable at the present time. Therefore, data movementbetween processors in an massively parallel processor (MPP) or a cluster ofworkstations must, at some level, be explicitly coded using send, receive, andother system calls that implement message passing on the parallel machine.The coding process is manual and therefore more prone to error; it may alsointroduce machine dependencies that hinder portability; and it certainly in-troduces distributed-memory-speci�c code. The RSL library on which theparallel MM5 is implemented addresses these problems by encapsulating low-level messaging operations within higher-level functions that are speci�c tothe application.3.1 RSLRSL is a run-time system and library to support parallelization of grid-based �nite-di�erence weather models with a large nondynamic computa-tional component (physics) and supporting mesh re�nement. The RSL in-terface to the parallel machine is abstract and high level, thereby simpli-fying the programming task. All details of the underlying message passing| bu�er allocation, copying, routing, and more complicated tasks such asasynchronous communication | are encapsulated within high-level routinesfor stencil exchange or moving forcing data between domains for nesting.By focusing on a type of application, RSL can be lightweight and e�-4

cient, imposing little additional overhead or wasted capability. Intra-domaincommunication (messages required to satisfy data dependencies arising fromstencils for �nite di�erencing and interpolation on a horizontally decomposeddomain) and inter-domain communication (messages required to communica-tion forcing data between domains, i.e., between a parent domain and a nest)are speci�ed abstractly as stencils and broadcast/merges, which RSL convertsto the appropriate low-level communications between processors. RSL em-ploys a technique called run-time compilation of communication schedules.Once a stencil is de�ned by specifying the model variables and stencil pointsinvolved for a transfer, the stencil is then compiled. During stencil com-pilation, RSL precomputes the interprocessor communication schedule (i.e.,the sequence and contents of messages) to satisfy the stencil. Thus, whenthe exchange occurs during the model run, very little additional overhead isrequired to pack and deterministically exchange messages between the pro-cessors.RSL supports a logical view of the model domain as an aggregation ofcolumn processes, each of which is a one-dimensional (vertical) expression ofthe model code for a single i; j mesh point. Expressed in this way, the modelis said to be column callable. The columnwise expression of the model ismore natural with respect to model column-physics, and it supports a moremodular approach to mesh re�nement via nesting. It also provides for smallunits of work (single columns) and allows for irregularly shaped allocationsof work to processors, thereby facilitating load balancing.Additional information on RSL can be found in [3].3.2 Parallel MM5Figure 1 illustrates the top-level structure of the parallel model once thecode has been converted so that the model may be called separately for eachcolumn of the grid. At the start of a new time step, data is exchanged inthe call to RSL EXCH STENCIL using the communication schedule thatwas previously de�ned and run-time-compiled for the stencil sten a. Thissatis�es the horizontal data dependencies by updating ghost regions aroundthe processor's local partition of data, which may be irregularly shaped.Next, RSL COMPUTE CELLS is called and applies the �rst phase (solve a)of the model computation to each locally stored grid cell. The RSL exchangeand compute cells are called in pairs for each phase in the computation5

c computation on coarse domain

 call rsl_exch_stencil(domain(1), sten_a)

 call rsl_compute_cells(domain(1), solve_a)

 call rsl_exch_stencil(domain(1), sten_b)

 call rsl_compute_cells(domain(1), solve_b)

c force nested boundaries

 call rsl_exch_stencil(domain(1), sten_interp)

 call rsl_bcast(domain(1), domain(2), mask,
 cd_fcn, nd_fcn)

c computation on nested domain

 do istep = 1, 3

 call rsl_exch_stencil(domain(2), sten_a)

 call rsl_compute_cells(domain(2), solve_a)

 ...etc...

 enddo

c force c.d. from nest

 call rsl_merge(domain(1), domain(2), mask,
 cd_fcn, nd_fcn)

computation on a domain

broadcast
from c.d. to
associated
cells of
the nest

merge from
nest back
onto assoc−
iated cell
in c.d.

Top level of parallel model
using RSL

Figure 1: Top level parallel driver for an MM5 time step with nest interac-tions 6

for a coarse domain, domain(1), until it is time to provide forcing data toa nested domain, domain(2). This is accomplished using RSL BCAST andappropriate masking and interpolation routines that are passed as arguments.Data for the nested domain cells is transferred, across processor boundarieswhen necessary, and the computation of the time step on the nest begins.The same sequence RSL of stencil exchanges and compute calls occur, butwith a di�erent domain descriptor. Finally, data is merged back onto thecoarse domain and the computation of the next time step begins.The example in Figure 1 is simpli�ed to show the relationship between aparent and a nest. In the actual parallel MM5 code, a stack is maintained tosupport a pseudo-recursive approach that permits nesting to arbitrary depth.4. ValidationThe validation e�ort for the parallel model involved determining that themodel is correct with respect to the original version of the code. The sourcemodel has undergone validation with respect to observed phenomena and is,for this e�ort, assumed a priori to be correct.Side-by-side plots of instantaneous model output �elds provide a �rstindication of correctness. Figure 2 shows a comparison of the U/V streamlineplot at ground level between the parallel code and the original model afterthree hours. All gross structure of the function within the original model isreproduced in the parallel code.A more rigorous veri�cation of correctness with respect to the originalmodel is being conducted using the error-growth analysis technique of Rosin-ski and Williamson [4]. The technique involves measuring the growth in errorin selected output �elds between two runs of the sequential model, in whichthe second run has been initialized with data that has been perturbed byipping the lowest-order bit in each oating-point value, thereby simulatingthe e�ect of rounding error. This measurement is compared with the errorgrowth measured between the unperturbed sequential model and the paral-lel model. If the deviation with the parallel model is similar to that of theperturbed sequential model, the di�erence is no worse than what is expectedfrom oating-point roundo�.5. PerformanceFigure 3 and Table 1 shows the result of a series of runs on the large IBM7

Figure 2: Plots of horizontal wind streamline plot three hours into the simu-lation (120 time steps) for a parallel MM5 run on a cluster of IBM RS/6000workstations (left) and the original code run on a single RS/6000 workstation(right)Scalable POWERparallel system at Argonne and on a 14-processor SP2. Thelarger machine is an SP1 with SP2 communication hardware (upgrade of themachine with SP2 processors is anticipated). It consists of 128 processors,each the equivalent of an IBM RS/6000 model 370 workstation with a 62.5MHz clock, a 32-kilobyte data cache and a 32-kilobyte instruction cache.Theoretical peak performance of each workstation is 125 Mop/second (one64-bit oating-point add and one oating-point multiply in each clock cycle).In practice, each processor can achieve between 15 and 70 Mop/second onFortran codes. Each processor has 128 Mbytes of memory and 1 Gbyte oflocal disk. The message-passing hardware is a high-speed Omega switch pro-viding 70�sec latency and 35 Mbytes/second bandwidth [2][5]. The smallermachine, an SP2 acquired speci�cally for this project, consists of 14 pro-cessors, each equivalent to an RS/6000 model 390 workstation, which has8

0

100

200

300

400

500

600

700

1 4 8 14 32 64

M
fl

op
/s

ec
on

d

Processors

Performance

SP1 single
SP1 nested
SP2 nested

Y-MP nested

Figure 3: Performance with a 30-kilometer domain (91x91x23) by itself andwith one 10-kilometer nest (52x52x23) on IBM SP1. Also, performance for a14-processor run of the nested code on the IBM SP2 is shown. The horizontalline at 118 Mop/second is the performance of one processor of a Cray Y-MPon the nested problem.additional oating-point hardware for better performance.The model was run with and without a nest. As expected, the nested coderuns less e�ciently because of the additional cost of interpolation betweendomains and because of inter-domain communication in the parallel model.Nevertheless, the nested code is still the most cost-e�ective way to achieve10 km resolution over at least part of the modeled area.6. ConclusionThe ten-month e�ort to produce a scalable parallel implementation of areal-time weather forecasting model has been completed. The model runs ef-�ciently and generates meteorologically valid data; nesting is used to achievehigh resolution. Future work will address dynamic load-balancing strategies9

Table 1: MM5 performance on a single domain and with one nest on the IBMSP1, the SP2, and on 1 processor of a Cray Y-MP (shown for comparison).The performance is shown as seconds per 90-second time step, as the ratio ofsimulated time to real time, and as a oating-point rate. The single-domainproblem seemingly exhibits perfect speedup between 1 and 8 processors onthe SP1. In actuality the single-node performance is likely suppressed |perhaps because of a processor memory/cache e�ect. The oating-point ratesare computed based on 3175 Mop/time-step for the nested code and 1604Mop/time-step for the single domain code.Platform Procs. sec/ts sim:wall Mop/secSingle domain: 91x91x23, 30 kmIBM SP1 1 134.0 0.7 128 16.7 5.4 9616 8.5 11.0 18832 4.5 20.0 35664 2.5 37.0 652IBM SP2 1 82.0 1.1 2014 6.8 13.2 23691x91x23, 30 km domain with 52x52x23 10 km nestIBM SP1 4 72.3 1.2 4414 23.5 3.8 13516 21.0 4.2 15132 11.5 7.8 27664 6.4 14.1 496IBM SP2 14 17.0 5.3 187Cray 1 26.8 3.4 11810

that exploit the ability to migrate columns at run time, other performancetuning to achieve larger percentages of theoretical peak performance on theindividual processors, irregularly shaped and dynamically moving nested do-mains, tools for automated columnwise decomposition of existing models,data assimilation, and scalable parallel I/O.AcknowledgementsWe acknowledge Ying-Hwa Kuo, Jimy Dudhia, David Gill, and Sue Chenof the NCAR Mesoscale and Microscale Meteorology Division for providingthe original model, data sets, and expertise. We also acknowledge the con-tribution of Ian Foster of the Mathematics and Computer Science Divisionat Argonne, whose work formed the basis for the current work.References[1] G. A. Grell, J. Dudhia, and D. R. Stauffer, A Description ofthe Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), Tech.Rep. NCAR/TN-398+STR, National Center for Atmospheric Research,Boulder, Colorado, June 1994.[2] W. Gropp, E. Lusk, and S. Pieper, Users Guide forthe ANL SPx, Tech. Rep. ANL/MCS-TM-198, Mathematics andComputer Science Division, Argonne National Laboratory, 1994.(http://www.mcs.anl.gov/sp1/guide-r2/guide-r2.html).[3] J. Michalakes, RSL: A Parallel Runtime System Library for Reg-ular Grid Finite Di�erence Models Using Multiple Nests, Tech. Rep.ANL/MCS-TM-197, Mathematics and Computer Science Division, Ar-gonne National Laboratory, Argonne, Illinois, 1995 (in press).[4] J. M. Rosinski and D. L. Williamson, On the accumulation ofrounding errors in a global atmospheric model, NCAR preprint, (1994).[5] C. B. Stunkel, D. G. Shea, D. G. Grice, P. H. Hochschild,and M. Tsao, The SP1 High Performance Switch, in Proceedings ofthe Scalable High Performance Computing Conference, IEEE ComputerSociety Press, Los Alamitos, California, 1994, pp. 150{156.11

