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We have identi�ed three basic issues that arise in the computation ofderivatives, which can be viewed as the criteria for comparing the relativee�ectiveness of various methods of di�erentiation:� Compute Time: the runtime of the derivative code;� Reliability: the correctness and numerical accuracy of the derivativeresults; and� Development Time: the time it takes to design, implement, andverify the derivative code, beyond the time to implement the codefor the computation of the underlying function.There are four main approaches to computing derivatives:By Hand: One can di�erentiate the code for F by hand and thus arrive ata code that also computes the derivatives. Hand-coding of derivativesfor a large code is a tedious and error-prone process, in particular as\real" codes are often not well documented. In fact, the e�ort cantake months or years, and in some cases may even be consideredprohibitive [6]. However, depending on the skill of the implementer,hand-coding may lead to the most e�cient code possible.Divided Di�erences: One can approximate the derivative of F with re-spect to the ith component of x at a particular point x0 by di�erenc-ing, for example by a one-sided di�erence,@ F (x)@ xi ���x=x0 � F (x0 � h � ei)� F (x0)�h ; (1)where ei is the ith Cartesian basis vector. This approach leads toan approximation of the desired derivatives and has the advantage ofhaving a minimal development time, since all that is needed for theimplementation of (1) is the \black box" application of F . However,the accuracy of divided di�erences is hard to assess, and numericalerrors tend to grow with problem complexity (see, e.g., [17]). Fur-ther, the computational complexity of the method has a lower boundof n times the time to compute F . These factors make divided dif-ferences impractical for the computation of large derivative matricesand gradients. 2
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Figure 1: Comparing Di�erentiation Methods by Various CriteriaSymbolic Di�erentiation: Symbolicmanipulators likeMaple, Macsyma,or Reduce provide powerful capabilities for manipulating algebraicexpressions but are, in general, unable to deal with constructs such asbranches, loops, or subroutines that are inherent in computer codes.Therefore, di�erentiation using a symbolic manipulator still requiresconsiderable human e�ort to break down an existing computer codeinto pieces digestible by a symbolic manipulator and to reassemblethe resulting pieces into a usable derivative code.Automatic Di�erentiation: Automatic di�erentiation techniques relyon the fact that every function, no matter how complicated, is ex-ecuted on a computer as a (potentially very long) sequence of ele-mentary operations such as additions, multiplications, and elemen-tary functions such as sin and cos (see, for example, [19, 25]). Byrepeated application of the chain rule of derivative calculus to thecomposition of those elementary operations, one can compute, in acompletely mechanical fashion, derivatives of F that are correct upto machine precision [22]. The techniques of automatic di�erentia-tion are directly applicable to computer programs of arbitrary lengthcontaining branches, loops, and subroutines.Figure 1 shows a schematic comparison of the methods of di�erenti-ation along the previously mentioned criteria for the case of computing3



the gradient of a scalar-valued function. Note that we have grouped sym-bolic di�erentiation with hand-coding, as the postprocessing manipulationperformed on codes generated by symbolic di�erentiators often amountsto nontrivial hand-coding. E�ectively, this makes symbolic di�erentiationvery similar to hand-coding in terms of the development time and reli-ability criteria. Note also that in Figure 1 we have labeled the shadingrepresenting these two methods with a \?" to emphasize that both cor-rectness and e�ciency are contingent upon the code designer's skill andnot guaranteed by virtue of the methodology.We have expressed compute time as a ratio of gradient to functionruntimes. Provided memory constraints are not exceeded, a hand-codedgradient can be computed in a constant multiple of the function run-time [20], whereas a straightforward implementation of divided di�erenceswould have a linear dependency on n. In contrast to these, there is a largerange for runtimes of derivative codes generated by automatic di�erentia-tion. This variance is due to a number of factors which will be discussedin the ensuing sections.In summary, automatic di�erentiation addresses the need for computingderivatives of large codes accurately, irrespective of the complexity of themodel. In fact, the intent behind the title of this paper is to convey that,based on the three criteria identi�ed in Figure 1, automatic di�erentiationis often the best-of-all-worlds solution to the problem of computing deriva-tives. In cases where derivatives are infeasible or too expensive to code byhand, automatic di�erentiation is the most viable alternative, since boththe numerical reliability of its results and its runtime e�ciency surpassthose of divided di�erences.In the next section, we review the forward and reverse modes of auto-matic di�erentiation. In Section 3, we brie
y describe the ADIFOR tool forautomatic di�erentiation of Fortran 77 programs, and provide a brief ac-count of recent experiences with ADIFOR applications. Section 4 containsa discussion of sparsity in this context and an introduction to SparsLinC, alibrary for the exploitation of sparsity in automatic di�erentiation. Lastly,we summarize our discussion.2 Automatic Di�erentiationTraditionally, two approaches to automatic di�erentiation have been de-veloped: the so-called forward and reverse modes. These modes are dis-tinguished by how the chain rule is used to propagate derivatives through4



the computation. In either case, automatic di�erentiation produces codethat computes the values of the derivatives accurate to machine precision.Here, we discuss brie
y issues impacting the computational complexity ofeach mode, and refer the reader to [3, 12] for a detailed treatment of boththese modes.The Forward Mode: The forward mode accumulates the derivativesof intermediate variables with respect to the independent variables, corre-sponding to the forward sensitivity formalism [14, 15]. Here, derivativesare computed much in the way that the chain rule of di�erential calculusis usually taught.Let us consider a code with variables x, an array of size n and y, an ar-ray of size m, and say we are interested in computing the Jacobian @ y@ x ���x=x0(i.e., x contains the inputs, and y the outputs). Let us also introduce thenotation rs to denote the derivative object associated with the programvariable s. The forward mode generates a derivative code that essentiallymirrors the control structure and 
ow of the original code, and augmentsit with additional statements derived from the application of the chain ruleto each assignment or expression.For example, the short code segmentdo i = 1, ny(1) = 2*x(i) + 5y(2) = x(i)*y(1)enddocould be augmented as follows in the forward mode.do i = 1, nry(1) = 2*rx(i)y(1) = 2*x(i) + 5ry(2) = x(i)*ry(1) + y(1)*rx(i)y(2) = x(i)*y(1)enddoOne can easily convince oneself that by initializing rx(i) to the i-thcanonical unit vector of length n, on exit each ry(i) contains the gradient@ y(i)@ x(1:n) .Forward-mode code is easy to generate, for the most part preserves anyparallelizable or vectorizable structures within the original code, and is5



readily generalized to higher-order derivatives [7] (in this paper, however,our discussions are restricted to �rst-order derivatives). If we wish to com-pute n directional derivatives, then running forward-mode code requires atmost on the order of n times as much time and memory as the original code.The Reverse Mode: In contrast to the forward mode, the reversemode propagates adjoints, that is, the derivatives of the �nal values withrespect to intermediate variables, corresponding to the adjoint sensitivityformalism [14, 15]. To propagate adjoints, we have to be able to reverse the
ow of the program and remember or recompute any intermediate valuethat nonlinearly impacts the �nal result.The reverse mode is di�cult to implement owing to memory require-ments. In extreme cases, a reverse-mode implementation can require mem-ory proportional to the number of 
oating-point operations executed duringthe run of the original program for the tracing of intermediate values andbranches. However, the derivative runtime is roughly m times that of thefunction when computing m linear combinations of the rows of the Jaco-bian. This is particularly advantageous for gradients, since then m = 1.Hence, in the case of gradient computations, the reverse mode provides alower bound on runtime complexity.3 The ADIFOR (Automatic DI�erentiationof FORtran) ToolThere have been various implementations of automatic di�erentiation, anextensive survey of which can be found in [24]. In this section, we brie
yintroduce the ADIFOR tool and highlight three applications.A \source transformation" approach to automatic di�erentiation hasbeen explored in the ADIFOR [3, 5], ADIC [10], and Odyssee [26, 27] tools.ADIFOR and Odyssee transform Fortran 77 code and ADIC transformsANSI-C code. By applying the rules of automatic di�erentiation, thesetools generate new code that, when executed, computes derivatives withoutthe overhead associated with trace interpretation schemes. ADIFOR andADIC mainly use the forward mode. In contrast, Odyssee employs thereverse mode.Given a Fortran subroutine (or collection of subroutines) describing a\function," and an indication which variables in parameter lists or com-mon blocks correspond to \independent" and \dependent" variables with6



r$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; Reverse Mode for computing @ y@x(i):r$jbar = @ y@ x(i); i = 1; : : : ; 4r$3 = @ y@ x(5)do g$i$ = 1, g$p$g$y(g$i$) = r$1bar * g$x(g$i$,1)+ r$2bar * g$x(g$i$,2)+ r$3bar * g$x(g$i$,3)+ r$4bar * g$x(g$i$,4)+ r$3 * g$x(g$i$, 5)enddo 9>>>>>>>>>>=>>>>>>>>>>; Forward Mode:Assembling ry from @ y@x(i)and rx(i), i = 1; : : : ; 5.y = r$3 * x(5) o Computing function valueFigure 2: Sample Segment of an ADIFOR-generated Coderespect to di�erentiation, ADIFOR analyzes the program to determinewhich statements in the code have to be augmented with derivative compu-tations, and then produces Fortran 77 code that computes the derivativesof the dependent variables with respect to the independent ones. ADIFORproduces portable Fortran 77 code and accepts almost all of Fortran 77; inparticular, it can deal with arbitrary calling sequences, nested subroutines,common blocks, and equivalences. The ADIFOR-generated code tries topreserve vectorization and parallelism in the original code, and employsa consistent subroutine-naming scheme which allows for code tuning, theexploitation of domain-speci�c knowledge, and the use of vendor-suppliedlibraries.ADIFOR employs a hybrid forward-/reverse-mode approach to gen-erating derivatives. For each assignment statement, it uses the reversemode to generate code that computes the partial derivatives of the resultwith respect to the variables on the right-hand side, and then employs theforward mode to propagate overall derivatives. For example, the singleFortran statement y = x(1) � x(2) � x(3) � x(4) � x(5)gets transformed into the code segment shown in Figure 2. Note that noneof the common subexpressions x(i) � x(j) are recomputed in the reverse7



mode section for @ y@x(i).The variable g$p$ denotes the number of (directional) derivatives beingcomputed. For example, if g$p$ = 5, and g$x(1:5,1:5) is initialized toequal @ x(i)@ x(j) (which is a 5 � 5 identity matrix), then upon execution ofthese statements, g$y(1:5) equals dydx . On the other hand, assume that wewished only to compute derivatives with respect to a scalar parameter s,so g$p$ = 1, and, on entry to this code segment, g$x(1,i) = @ x(i)@ s ; i =1; : : : ; 5. Then the do-loop in Figure 2 implicitly computes dyds = dydx dxdswithout ever forming @ y@ x explicitly. Note that the cost of computing y isamortized over all the derivatives being computed, and hence the ADIFORapproach is more e�cient than the normal forward mode or a divided-di�erence approximation when more than a few derivatives are computedat the same time.We see that ADIFOR-generated code provides a directional derivativecomputation capability [8]: Instead of simply producing code to computethe Jacobian J , ADIFOR produces code to compute J � S, where the\seed matrix" S is initialized by the user. Hence, if S is the identity,ADIFOR computes the full Jacobian; whereas if S is just a vector, ADIFORcomputes the product of the Jacobian by a vector.The running time and storage requirements of the ADIFOR-generatedcode are proportional to the number of columns of S, which equals theg$p$ variable in the sample code above. However, ADIFOR-generated codetypically runs two to four times faster than one-sided divided-di�erencesapproximation when one computes more than 5{10 derivatives at one time.This is due to the reverse/forward hybrid mode, and also the dependenceanalysis that tries to avoid computing derivatives of expressions that donot a�ect the dependent variables. We also note that in order to take fulladvantage of reduced complexity of ADIFOR-generated code, it is advan-tageous to compute several directional derivatives at the same time|sothe ADIFOR-generated code may require signi�cantly more memory thanthe original simulation code.ADIFOR has been successfully applied to codes from various domainsof science and engineering, an extensive list of which can be found in [5].We highlight three of them here.Groundwater Transport Models: In order to evaluate the accuracyand runtime performance of ADIFOR-generated derivative codes incomparison with divided di�erences and hand-coded derivatives, acomparative study was done on two groundwater codes developed8



at Cornell University: ISOQUAD, a two-dimensional �nite-elementmodel of groundwater transient 
ow and transport, and TLS3D, athree-dimensional advection/di�usion model [11]. Each code wasover 2,000 lines long. The hand-derived derivative code of ISOQUADtook several months to develop; no hand-coded derivative of TLS3Dwas available for comparison.In the case of ISOQUAD, ADIFOR-generated code produced deriva-tives that agreed with the validated handwritten code to the orderof the machine precision, but executed in much less time than the(imprecise) divided-di�erences method. In particular, for a versionof the problem with 126 independent variables, the ratio of runtimeof the divided di�erences to the runtime of the original function was126; for the ADIFOR-generated code, the ratio was 17; for the hand-coded code, it was 5.Likewise, in the case of TLS3D, ADIFOR-generated derivatives took5 to 7 times less time to compute than divided di�erences. Thespeedy construction of derivative-computing codes through automaticdi�erentiation was considered signi�cant because this would greatlyaccelerate the transfer of general techniques developed for using waterresource computer models such as optimal design, sensitivity analy-sis, and inverse modeling problems to �eld problems.CFD Airfoil Design: A joint project with NASA Langley Research Cen-ter involved the augmentation of coupled codes with sensitivity deriva-tives. Automated multidisciplinary design of aircraft requires theoptimization of complex performance objectives with respect to anumber of design parameters and constraints. The e�ect of theseindependent design variables on the system performance criteria canbe quanti�ed in terms of sensitivity derivatives of the individual dis-cipline simulation codes. The NASA Langley design involves thecoupling of the CFD code TLNS3D (a 3-D thin-layer Navier-Stokescode with a multigrid solver) with the WTCO grid generator.Neither of these codes provide hand-coded derivatives|the code be-ing deemed too complicated to di�erentiate by hand|and divideddi�erences were shown to be numerically inaccurate, despite severalattempts with di�erent perturbation sizes; hence ADIFOR was usedto generate the desired sensitivities [16]. In the case of the itera-tive solver, a post-ADIFOR modi�cation to the derivative code wasneeded in order for the stopping criterion in the sensitivity code to9



monitor not only function convergence, but also sensitivity conver-gence [21]. Sensitivities computed by ADIFOR were validated, thusshowing the e�ectiveness of automatic di�erentiation in computingderivatives of iterative solvers.Sensitivity-Enhanced MM5 Mesoscale Weather Model: The Fifth-Generation PSU/NCAR mesoscale weather model (MM5) [18] incor-porates most processes known to be relevant in meteorology. We areworking on the development of a sensitivity-enhanced version of thecode, which may be used to investigate, for example, the sensitivityof model behavior with respect to sensor placement, data coverage,or model resolution. The ability to compute derivatives then allowsus to develop a linear approximation to the model (typically referredto by the weather community as the tangent linear model, or TLM)and to use this as a predictor of change.ADIFOR expects code that complies with the Fortran 77 standard.MM5 does not comply with this standard; in particular, it makesmuch use of \pointer variables." We circumvented this di�cultyby developing an MM5-speci�c tool to map the pointer handling tostandard-conforming Fortran77 code acceptable to ADIFOR, and toremap ADIFOR's output to obtain the desired sensitivity-enhancedcode [9].Given the size and complexity of the code, automatic di�erentiationis the only viable approach for doing this sensitivity study. Our workhas demonstrated that automatic di�erentiation can generate resultsequivalent to a tangent linear model for sophisticated weather mod-els, with minimal recourse to laborious and error-prone hand-coding.We have compared the derivatives computed by ADIFOR-generatedcode with those computed by divided di�erences and �nd good agree-ment everywhere except in intense thunderstorm regions. This resultwas expected, since storms involve strong nonlinear e�ects.4 Exploiting Sparsity in Automatic Di�er-entiationComputationally, the most expensive kernel of derivative codes generatedby forward-mode approaches is the linear combination of vectors opera-tion (for an ADIFOR example, note the do-loop implementation of this10



operation in Figure 2). We can de�ne the operation as follows:w = kXi=1�ivi; (2)where w and the vi are gradient vectors, the �i are the scalar multipliers,and k is the arity. The length of the vectors, which we denote as p, is equalto the number of directional derivatives being computed. In Figure 2, g$p$is the runtime value of p.For problems where the gradient vectors in the above operation areknown to be mostly sparse, approaches that exploit sparsity can dramati-cally reduce the runtime and memory requirements for the derivative com-putation. Two classes of such problems that arise in large-scale optimiza-tion are computing sparse Jacobians and computing gradients of partiallyseparable functions. Sparse Jacobians, as the name suggests, occur wheremany of the dependent variables are expected to have a zero dependencyon the independent variables. Partially separable functions [23] can berepresented in the form f(x) = npXi=1 fi(x); (3)where each of the component functions fi has limited support. This impliesthat the gradients rfi are sparse even though the �nal gradient rf isdense. It can be shown [23] that any function with a sparse Hessian ispartially separable.One approach for exploiting sparsity is the \compressed Jacobian" ap-proach. Given the sparsity pattern of the Jacobian, this approach derivesa graph coloring that identi�es which columns of the Jacobian can becomputed with the same directional derivative. The full Jacobian is thenmapped onto a corresponding compressed Jacobian (in ADIFOR this map-ping is implemented via the initialization of the seed matrix). This e�ectivereduction of p results in reduced runtimes and memory requirements [2].Given some code rewriting (which in some cases can be nontrivial), thisapproach is also applicable to the computation of gradients of partiallyseparable functions [13].An alternative approach exploits sparsity in a transparent fashion, thatis, without the a priori knowledge of the sparsity pattern of the Jacobianrequired for graph coloring. If the initial seed matrix is sparse (e.g., theidentity), then if one ignores exact numerical cancellation, the left-handside vector w in (2) has no fewer nonzeros than any of the vectors on theright-hand side. Hence, if the �nal derivative objects, which correspond11



to a row of the Jacobian J or a component gradient rfi, are sparse, allintermediate vectors must be sparse. That is, by employing algorithms anddata structures tailored for sparsity, sparsity in derivative calculations canbe exploited transparently. Note that the sparsity structure of J or rfi iscomputed as a by-product of the derivative computation.The SparsLinC (Sparse Linear Combination) library [4, 12] addressesthe case in which p is large, and most of the vectors involved in vectorlinear combination are sparse. It provides support for sparse vector linearcombination in a fashion that is well suited to the use of this operation inthe context of automatic di�erentiation. SparsLinC, which is written inANSI C, encompasses the following:Three Data Structures for Sparse Vectors: SparsLinC has di�erentdata structures for a vector containing only one nonzero, a few nonze-ros, or several nonzeros.E�cient Memory Allocation Scheme: SparsLinC employs a \bucket"memory allocation scheme which (in e�ect) provides a bu�ered mem-ory allocation mechanism.Polyalgorithm: SparsLinC adapts to the dynamic growth of the deriva-tive vectors by transparently switching between the three vector rep-resentations, thus e�ciently representing vectors that grow from acolumn of the identity matrix (often occurring in the seed matrix) toa dense vector. Also, special support is provided for the \+=" oper-ation, w = �1 �w+ �2 � v, which occurs frequently when computinggradients of partially separable functions, as suggested by (3).Full-Precision Support: single- and double-precision computations areprovided for both real- and complex-valued computations.Figure 3 shows plots contrasting results obtained from ADIFOR-generated code both with and without SparsLinC support (the plots la-beled as \Sparse" are from the runs with SparsLinC support). The prob-lems, DGL2 (2-D Ginsburg-Landau model for homogeneous superconduc-tors) and DMSA (mininal surface area problem), are taken from theMINPACK-2 test problem collection [1] of large-scale optimization prob-lems. Both problems are partially separable functions. We are interestedin computing gradients for a range of grid sizes. Note that in Figure 3,which is a square \log-log" plot, the nonsparse gradients exhibit linearbehavior with respect to p. Notice also that in the SparsLinC-supported12
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Figure 3: Sparse vs Non-Sparse Gradient to Function Runtime Ratioscomputations the complexity of derivative computation is clearly less thanlinear, particularly in the case of DMSA where, for a segment of gradientsizes, the gradient computation runtime appears as a constant times thefunction runtime.5 ConclusionsIn this paper, we gave a brief introduction to automatic di�erentiation.We outlined the criteria for comparing methods of di�erentiating codesand showed that in many cases automatic di�erentiation is the method ofchoice. We reviewed the forward and reverse modes of automatic di�er-entiation and discussed the ADIFOR automatic di�erentiation tool. Wepresented three examples where the application of ADIFOR for generatingderivative codes has signi�cant scienti�c and/or engineering impact. Fi-nally, we reviewed exploitation of sparsity in automatic di�erentiation andbrie
y introduced the SparsLinC library in this connection.At the time of this writing, we anticipate the forthcoming release ofADIFOR 2.0 [5], our newest version of ADIFOR in which the SparsLinC13
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