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Abstract

In this paper, we introduce automatic differentiation as a method
for computing derivatives of large computer codes. After a brief
discussion of methods of differentiating codes, we review automatic
differentiation and introduce the ADIFOR automatic differentiation
tool. We highlight some applications of ADIFOR to large industrial
and scientific codes, and discuss the effectiveness and performance
of our approach. Finally, we discuss sparsity in automatic differen-
tiation and introduce the SparsLinC library.

1 Introduction

The computation of derivatives plays an essential role in many numerical
methods, such as sensitivity analysis, inverse problems, data assimilation,
and the emerging field of multidisciplinary design optimization. Typically,
one has a model, say I, expressed as a computer code, with a Vector—gz%l(u()ed

input # € R”, and output F'(z) and one is interested in evaluating —5*.
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We have identified three basic issues that arise in the computation of
derivatives, which can be viewed as the criteria for comparing the relative
effectiveness of various methods of differentiation:

e Compute Time: the runtime of the derivative code;

e Reliability: the correctness and numerical accuracy of the derivative
results; and

¢ Development Time: the time it takes to design, implement, and
verify the derivative code, beyond the time to implement the code
for the computation of the underlying function.

There are four main approaches to computing derivatives:

By Hand: One can differentiate the code for F' by hand and thus arrive at
a code that also computes the derivatives. Hand-coding of derivatives
for a large code is a tedious and error-prone process, in particular as
“real” codes are often not well documented. In fact, the effort can
take months or years, and in some cases may even be considered
prohibitive [6]. However, depending on the skill of the implementer,
hand-coding may lead to the most efficient code possible.

Divided Differences: One can approximate the derivative of F' with re-
spect to the 1th component of x at a particular point xq by differenc-
ing, for example by a one-sided difference,
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where €; is the :th Cartesian basis vector. This approach leads to
an approximation of the desired derivatives and has the advantage of
having a minimal development time, since all that is needed for the
implementation of (1) is the “black box” application of F'. However,
the accuracy of divided differences is hard to assess, and numerical
errors tend to grow with problem complexity (see, e.g., [17]). Fur-
ther, the computational complexity of the method has a lower bound
of n times the time to compute F'. These factors make divided dif-
ferences impractical for the computation of large derivative matrices
and gradients.
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Figure 1: Comparing Differentiation Methods by Various Criteria

Symbolic Differentiation: Symbolic manipulators like Maple, Macsyma,
or Reduce provide powerful capabilities for manipulating algebraic
expressions but are, in general, unable to deal with constructs such as
branches, loops, or subroutines that are inherent in computer codes.
Therefore, differentiation using a symbolic manipulator still requires
considerable human effort to break down an existing computer code
into pieces digestible by a symbolic manipulator and to reassemble
the resulting pieces into a usable derivative code.

Automatic Differentiation: Automatic differentiation techniques rely
on the fact that every function, no matter how complicated, is ex-
ecuted on a computer as a (potentially very long) sequence of ele-
mentary operations such as additions, multiplications, and elemen-
tary functions such as sin and cos (see, for example, [19, 25]). By
repeated application of the chain rule of derivative calculus to the
composition of those elementary operations, one can compute, in a
completely mechanical fashion, derivatives of F' that are correct up
to machine precision [22]. The techniques of automatic differentia-
tion are directly applicable to computer programs of arbitrary length
containing branches, loops, and subroutines.

Figure 1 shows a schematic comparison of the methods of differenti-
ation along the previously mentioned criteria for the case of computing



the gradient of a scalar-valued function. Note that we have grouped sym-
bolic differentiation with hand-coding, as the postprocessing manipulation
performed on codes generated by symbolic differentiators often amounts
to nontrivial hand-coding. Effectively, this makes symbolic differentiation
very similar to hand-coding in terms of the development time and reli-
ability criteria. Note also that in Figure 1 we have labeled the shading
representing these two methods with a “?” to emphasize that both cor-
rectness and efficiency are contingent upon the code designer’s skill and
not guaranteed by virtue of the methodology.

We have expressed compute time as a ratio of gradient to function
runtimes. Provided memory constraints are not exceeded, a hand-coded
gradient can be computed in a constant multiple of the function run-
time [20], whereas a straightforward implementation of divided differences
would have a linear dependency on n. In contrast to these, there is a large
range for runtimes of derivative codes generated by automatic differentia-
tion. This variance is due to a number of factors which will be discussed
in the ensuing sections.

In summary, automatic differentiation addresses the need for computing
derivatives of large codes accurately, irrespective of the complexity of the
model. In fact, the intent behind the title of this paper is to convey that,
based on the three criteria identified in Figure 1, automatic differentiation
is often the best-of-all-worlds solution to the problem of computing deriva-
tives. In cases where derivatives are infeasible or too expensive to code by
hand, automatic differentiation is the most viable alternative, since both
the numerical reliability of its results and its runtime efficiency surpass
those of divided differences.

In the next section, we review the forward and reverse modes of auto-
matic differentiation. In Section 3, we briefly describe the ADIFOR tool for
automatic differentiation of Fortran 77 programs, and provide a brief ac-
count of recent experiences with ADIFOR applications. Section 4 contains
a discussion of sparsity in this context and an introduction to SparsLinC, a
library for the exploitation of sparsity in automatic differentiation. Lastly,
we summarize our discussion.

2 Automatic Differentiation

Traditionally, two approaches to automatic differentiation have been de-
veloped: the so-called forward and reverse modes. These modes are dis-
tinguished by how the chain rule is used to propagate derivatives through



the computation. In either case, automatic differentiation produces code
that computes the values of the derivatives accurate to machine precision.
Here, we discuss briefly issues impacting the computational complexity of
each mode, and refer the reader to [3, 12] for a detailed treatment of both
these modes.

The Forward Mode: The forward mode accumulates the derivatives
of intermediate variables with respect to the independent variables, corre-
sponding to the forward sensitivity formalism [14, 15]. Here, derivatives
are computed much in the way that the chain rule of differential calculus
is usually taught.

Let us consider a code with variables x, an array of size n and y, an ar-

ray of size m, and say we are interested in computing the Jacobian g—i

(i.e., x contains the inputs, and y the outputs). Let us also introduce th(oe
notation Vs to denote the derivative object associated with the program
variable s. The forward mode generates a derivative code that essentially
mirrors the control structure and flow of the original code, and augments
it with additional statements derived from the application of the chain rule

to each assignment or expression.

For example, the short code segment

doi1=1,n
y(1) = 2*x(i) + 6
y(2) = x(L)*y(1)
enddo

could be augmented as follows in the forward mode.

doi1=1,n
Vy(1) = 2xVx(i)
y(1) = 2%x(i) + 5
Vy(2) = x(1)*Vy(1) + y(1)*Vx(1i)
y(2) = x(1)*y(1)
enddo

One can easily convince oneself that by initializing Vx (1) to the z-th
canonical unit vector of length n, on exit each Vy (i) contains the gradient

81(/ 7 )
dx(ln)”
Forward-mode code is easy to generate, for the most part preserves any

parallelizable or vectorizable structures within the original code, and is



readily generalized to higher-order derivatives [7] (in this paper, however,
our discussions are restricted to first-order derivatives). If we wish to com-
pute n directional derivatives, then running forward-mode code requires at
most on the order of n times as much time and memory as the original code.

The Reverse Mode: In contrast to the forward mode, the reverse
mode propagates adjoints, that is, the derivatives of the final values with
respect to intermediate variables, corresponding to the adjoint sensitivity
formalism [14, 15]. To propagate adjoints, we have to be able to reverse the
flow of the program and remember or recompute any intermediate value
that nonlinearly impacts the final result.

The reverse mode is difficult to implement owing to memory require-
ments. In extreme cases, a reverse-mode implementation can require mem-
ory proportional to the number of floating-point operations executed during
the run of the original program for the tracing of intermediate values and
branches. However, the derivative runtime is roughly m times that of the
function when computing m linear combinations of the rows of the Jaco-
bian. This is particularly advantageous for gradients, since then m = 1.
Hence, in the case of gradient computations, the reverse mode provides a
lower bound on runtime complexity.

3 The ADIFOR (Automatic DIfferentiation
of FORtran) Tool

There have been various implementations of automatic differentiation, an
extensive survey of which can be found in [24]. In this section, we briefly
introduce the ADIFOR tool and highlight three applications.

A “source transformation” approach to automatic differentiation has
been explored in the ADIFOR [3, 5], ADIC [10], and Odyssee [26, 27] tools.
ADIFOR and Odyssee transtorm Fortran 77 code and ADIC transforms
ANSI-C code. By applying the rules of automatic differentiation, these
tools generate new code that, when executed, computes derivatives without
the overhead associated with trace interpretation schemes. ADIFOR and
ADIC mainly use the forward mode. In contrast, Odyssee employs the
reverse mode.

Given a Fortran subroutine (or collection of subroutines) describing a
“function,” and an indication which variables in parameter lists or com-
mon blocks correspond to “independent” and “dependent” variables with



r$1 = x(1) * x(2)

igg ; ig; I igi; Reverse Mode for computing axa(yi) :

r$4 = x(5) * x(4)

195 = 1$4 * x(3) r$jbar = ai(yi), i=1,...,4

r$lbar = r$5 * x(2)

r$2bar = r$5 * x(1) r$3 — dy

r$3bar = r$4 * r$1 dx(5)

r$4bar = x(5) * r§2

do g$i$ = 1, g$p$

g¥y(g8i$) = r$lbar * g¥x(g$is,1)

+ r$2bar * g$x(g$i$,2) Forward Mode: ,
+ r$3bar * g$x(g$i$,3) Assembling Vy from ﬁ
+ r84bar * g8x(g$i$,4) and Va(i),e=1,...,5.
+ r$3 * gSx(g%is, 5)

enddo

y = 133 * x(5) } Computing function value

Figure 2: Sample Segment of an ADIFOR-generated Code

respect to differentiation, ADIFOR analyzes the program to determine
which statements in the code have to be augmented with derivative compu-
tations, and then produces Fortran 77 code that computes the derivatives
of the dependent variables with respect to the independent ones. ADIFOR
produces portable Fortran 77 code and accepts almost all of Fortran 77; in
particular, it can deal with arbitrary calling sequences, nested subroutines,
common blocks, and equivalences. The ADIFOR-generated code tries to
preserve vectorization and parallelism in the original code, and employs
a consistent subroutine-naming scheme which allows for code tuning, the
exploitation of domain-specific knowledge, and the use of vendor-supplied
libraries.

ADIFOR employs a hybrid forward-/reverse-mode approach to gen-
erating derivatives. For each assignment statement, it uses the reverse
mode to generate code that computes the partial derivatives of the result
with respect to the variables on the right-hand side, and then employs the
forward mode to propagate overall derivatives. For example, the single
Fortran statement

y =x(1)*x(2) *x(3) * x(4) * x(5)

gets transformed into the code segment shown in Figure 2. Note that none
of the common subexpressions (¢) * x(j) are recomputed in the reverse
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The variable g$p$ denotes the number of (directional) derivatives being
computed. For example, if g§p$ = 5, and g$x(1:5,1:5) is initialized to
equal 2;5_((;; (which is a 5 x 5 identity matrix), then upon execution of
these statements, g§y (1:5) equals %. On the other hand, assume that we

mode section for

wished only to compute derivatives with respect to a scalar parameter s,

so g$p$ = 1, and, on entry to this code segment, g$x(1,1) = %ﬁ, 1 =

1,....5. Then the do-loop in Figure 2 implicitly computes i—z = %j—i

without ever forming g—i explicitly. Note that the cost of computing y is
amortized over all the derivatives being computed, and hence the ADIFOR
approach is more efficient than the normal forward mode or a divided-
difference approximation when more than a few derivatives are computed
at the same time.

We see that ADIFOR-generated code provides a directional derivative
computation capability [8]: Instead of simply producing code to compute
the Jacobian J, ADIFOR produces code to compute J x S, where the
“seed matrix” S is initialized by the user. Hence, if S is the identity,
ADIFOR computes the full Jacobian; whereas if S'is just a vector, ADIFOR
computes the product of the Jacobian by a vector.

The running time and storage requirements of the ADIFOR-generated
code are proportional to the number of columns of S, which equals the
g$p$ variable in the sample code above. However, ADIFOR-generated code
typically runs two to four times faster than one-sided divided-differences
approximation when one computes more than 5-10 derivatives at one time.
This is due to the reverse/forward hybrid mode, and also the dependence
analysis that tries to avoid computing derivatives of expressions that do
not affect the dependent variables. We also note that in order to take full
advantage of reduced complexity of ADIFOR-generated code, it is advan-
tageous to compute several directional derivatives at the same time—so
the ADIFOR-generated code may require significantly more memory than
the original simulation code.

ADIFOR has been successfully applied to codes from various domains
of science and engineering, an extensive list of which can be found in [5].

We highlight three of them here.

Groundwater Transport Models: In order to evaluate the accuracy
and runtime performance of ADIFOR-generated derivative codes in
comparison with divided differences and hand-coded derivatives, a
comparative study was done on two groundwater codes developed



at Cornell University: ISOQUAD, a two-dimensional finite-element
model of groundwater transient flow and transport, and TLS3D, a
three-dimensional advection/diffusion model [11]. Each code was
over 2,000 lines long. The hand-derived derivative code of ISOQUAD
took several months to develop; no hand-coded derivative of TLS3D
was available for comparison.

In the case of ISOQUAD, ADIFOR-generated code produced deriva-
tives that agreed with the validated handwritten code to the order
of the machine precision, but executed in much less time than the
(imprecise) divided-differences method. In particular, for a version
of the problem with 126 independent variables, the ratio of runtime
of the divided differences to the runtime of the original function was
126; for the ADIFOR-generated code, the ratio was 17; for the hand-

coded code, it was 5.

Likewise, in the case of TLS3D, ADIFOR-generated derivatives took
5 to 7 times less time to compute than divided differences. The
speedy construction of derivative-computing codes through automatic
differentiation was considered significant because this would greatly
accelerate the transfer of general techniques developed for using water
resource computer models such as optimal design, sensitivity analy-
sis, and inverse modeling problems to field problems.

CFD Airfoil Design: A joint project with NASA Langley Research Cen-
ter involved the augmentation of coupled codes with sensitivity deriva-
tives. Automated multidisciplinary design of aircraft requires the
optimization of complex performance objectives with respect to a
number of design parameters and constraints. The effect of these
independent design variables on the system performance criteria can
be quantified in terms of sensitivity derivatives of the individual dis-
cipline simulation codes. The NASA Langley design involves the
coupling of the CFD code TLNS3D (a 3-D thin-layer Navier-Stokes
code with a multigrid solver) with the WTCO grid generator.

Neither of these codes provide hand-coded derivatives—the code be-
ing deemed too complicated to differentiate by hand—and divided
differences were shown to be numerically inaccurate, despite several
attempts with different perturbation sizes; hence ADIFOR was used
to generate the desired sensitivities [16]. In the case of the itera-
tive solver, a post-ADIFOR modification to the derivative code was
needed in order for the stopping criterion in the sensitivity code to



monitor not only function convergence, but also sensitivity conver-
gence [21]. Sensitivities computed by ADIFOR were validated, thus
showing the effectiveness of automatic differentiation in computing
derivatives of iterative solvers.

Sensitivity-Enhanced MM5 Mesoscale Weather Model: The Fifth-
Generation PSU/NCAR mesoscale weather model (MM5) [18] incor-
porates most processes known to be relevant in meteorology. We are
working on the development of a sensitivity-enhanced version of the
code, which may be used to investigate, for example, the sensitivity
of model behavior with respect to sensor placement, data coverage,
or model resolution. The ability to compute derivatives then allows
us to develop a linear approximation to the model (typically referred
to by the weather community as the tangent linear model, or TLM)
and to use this as a predictor of change.

ADIFOR expects code that complies with the Fortran 77 standard.
MM5 does not comply with this standard; in particular, it makes
much use of “pointer variables.” We circumvented this difficulty
by developing an MM5-specific tool to map the pointer handling to
standard-conforming Fortran77 code acceptable to ADIFOR, and to

remap ADIFOR’s output to obtain the desired sensitivity-enhanced
code [9].

Given the size and complexity of the code, automatic differentiation
is the only viable approach for doing this sensitivity study. Our work
has demonstrated that automatic differentiation can generate results
equivalent to a tangent linear model for sophisticated weather mod-
els, with minimal recourse to laborious and error-prone hand-coding.
We have compared the derivatives computed by ADIFOR-generated
code with those computed by divided differences and find good agree-
ment everywhere except in intense thunderstorm regions. This result
was expected, since storms involve strong nonlinear effects.

4 Exploiting Sparsity in Automatic Differ-
entiation
Computationally, the most expensive kernel of derivative codes generated

by forward-mode approaches is the linear combination of vectors opera-
tion (for an ADIFOR example, note the do-loop implementation of this
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operation in Figure 2). We can define the operation as follows:

k
w = Zozivi, (2)
=1

where w and the v; are gradient vectors, the o, are the scalar multipliers,
and k is the arity. The length of the vectors, which we denote as p, is equal
to the number of directional derivatives being computed. In Figure 2, g$p$
is the runtime value of p.

For problems where the gradient vectors in the above operation are
known to be mostly sparse, approaches that exploit sparsity can dramati-
cally reduce the runtime and memory requirements for the derivative com-
putation. Two classes of such problems that arise in large-scale optimiza-
tion are computing sparse Jacobians and computing gradients of partially
separable functions. Sparse Jacobians, as the name suggests, occur where
many of the dependent variables are expected to have a zero dependency
on the independent variables. Partially separable functions [23] can be
represented in the form

fle) = f;fxx), 3)

where each of the component functions f; has limited support. This implies
that the gradients V f; are sparse even though the final gradient Vf is
dense. It can be shown [23] that any function with a sparse Hessian is
partially separable.

One approach for exploiting sparsity is the “compressed Jacobian” ap-
proach. Given the sparsity pattern of the Jacobian, this approach derives
a graph coloring that identifies which columns of the Jacobian can be
computed with the same directional derivative. The full Jacobian is then
mapped onto a corresponding compressed Jacobian (in ADIFOR this map-
ping is implemented via the initialization of the seed matrix). This effective
reduction of p results in reduced runtimes and memory requirements [2].
Given some code rewriting (which in some cases can be nontrivial), this
approach is also applicable to the computation of gradients of partially
separable functions [13].

An alternative approach exploits sparsity in a transparent fashion, that
is, without the a priori knowledge of the sparsity pattern of the Jacobian
required for graph coloring. If the initial seed matrix is sparse (e.g., the
identity), then if one ignores exact numerical cancellation, the left-hand
side vector w in (2) has no fewer nonzeros than any of the vectors on the
right-hand side. Hence, if the final derivative objects, which correspond
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to a row of the Jacobian J or a component gradient V f;, are sparse, all
intermediate vectors must be sparse. That is, by employing algorithms and
data structures tailored for sparsity, sparsity in derivative calculations can
be exploited transparently. Note that the sparsity structure of J or V f; is
computed as a by-product of the derivative computation.

The SparsLinC (Sparse Linear Combination) library [4, 12] addresses
the case in which p is large, and most of the vectors involved in vector
linear combination are sparse. It provides support for sparse vector linear
combination in a fashion that is well suited to the use of this operation in
the context of automatic differentiation. SparsLinC, which is written in
ANSI C, encompasses the following:

Three Data Structures for Sparse Vectors: SparsLinC has different
data structures for a vector containing only one nonzero, a few nonze-
ros, or several nonzeros.

Efficient Memory Allocation Scheme: SparsLinC employs a “bucket”
memory allocation scheme which (in effect) provides a buffered mem-
ory allocation mechanism.

Polyalgorithm: SparsLinC adapts to the dynamic growth of the deriva-
tive vectors by transparently switching between the three vector rep-
resentations, thus efficiently representing vectors that grow from a
column of the identity matrix (often occurring in the seed matrix) to
a dense vector. Also, special support is provided for the “4+=" oper-
ation, w = ay * w + ay * v, which occurs frequently when computing

gradients of partially separable functions, as suggested by (3).

Full-Precision Support: single- and double-precision computations are
provided for both real- and complex-valued computations.

Figure 3 shows plots contrasting results obtained from ADIFOR-
generated code both with and without SparsLinC support (the plots la-
beled as “Sparse” are from the runs with SparsLinC support). The prob-
lems, DGL2 (2-D Ginsburg-Landau model for homogeneous superconduc-
tors) and DMSA (mininal surface area problem), are taken from the
MINPACK-2 test problem collection [1] of large-scale optimization prob-
lems. Both problems are partially separable functions. We are interested
in computing gradients for a range of grid sizes. Note that in Figure 3,
which is a square “log-log” plot, the nonsparse gradients exhibit linear
behavior with respect to p. Notice also that in the SparsLinC-supported

12
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Figure 3: Sparse vs Non-Sparse Gradient to Function Runtime Ratios

computations the complexity of derivative computation is clearly less than
linear, particularly in the case of DMSA where, for a segment of gradient
sizes, the gradient computation runtime appears as a constant times the
function runtime.

5 Conclusions

In this paper, we gave a brief introduction to automatic differentiation.
We outlined the criteria for comparing methods of differentiating codes
and showed that in many cases automatic differentiation is the method of
choice. We reviewed the forward and reverse modes of automatic differ-
entiation and discussed the ADIFOR automatic differentiation tool. We
presented three examples where the application of ADIFOR for generating
derivative codes has significant scientific and/or engineering impact. Fi-
nally, we reviewed exploitation of sparsity in automatic differentiation and
briefly introduced the SparsLinC library in this connection.

At the time of this writing, we anticipate the forthcoming release of

ADIFOR 2.0 [5], our newest version of ADIFOR in which the SparsLinC
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library is fully integrated.
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