
On the Role of the Objective Function in BarrierMethods�Florian Jarreyand Stephen WrightzDecember 7, 1994
PREPRINT MCS-P485-1294, MCS DIVISION, ARGONNE NATIONAL LABORATORY

AbstractTo simplify the analysis of interior-point methods, one commonly formulates theproblem so that the objective function is linear, by introducing a single extra variableif necessary. Here we show that a linear objective function makes the Newton directionfor a barrier function a useful search direction if the current iterate is su�ciently closeto the central path. Hence, there are two advantages to using a linear objective andstaying close to the central path. First, the Newton direction (which coincides withthe a�ne scaling direction on the central path) gives a very accurate approximationto the direction to the minimum. Second, a long step along the Newton direction ispossible without violating the inequality constraints.1 IntroductionWe consider logarithmic barrier methods applied to the nonlinear programming problemmin f(x) subject to c(x) � 0; (1)where f : IRn ! IR and c : IRn ! IRm are smooth (three times continuously di�erentiable)functions. We are particularly interested in the case of linear f , that is,f(x) = gTx: (2)�This research was supported by Obermann Fellowships in the Center for Advanced Studies at the Uni-versity of Iowa and by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38.yInstitute of Statistical Mathematics, Tokyo, Japan (Oct. 1994 { March 1995) and Institut f�ur Ange-wandte Mathematik und Statistik, Universit�at W�urzburg, am Hubland, 97074 W�urzburg, Germanyjarre@vax.rz.uni-wuerzburg.d400.dezMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439. wright@mcs.anl.gov 1



The logarithmic barrier function for (1) isP (x;�) = f(x)� � mXi=1 ln ci(x): (3)We denote by x(�) a minimizer of P (:;�) for � > 0 and assume that x(�) exists for allsu�ciently small �. Methods based on (3) approximate x(�) for a sequence of small, de-creasing values of � > 0. Under certain conditions (see Fiacco and McCormick [1]), we havelim�#0 x(�) = x�. After x(�) has been approximated for a particular value of � > 0, anobvious way to proceed is to decrease � to some new value �+ and then take a Newton stepfor minimizing the barrier function P (x;�+). It has recently been observed (see, for example,Wright [3]) that the resulting direction is generally a poor one, and some specialized directiongeneration and line search strategies have been proposed to remedy the situation. Below, weillustrate the bad behavior of these steps by means of a simple example. Then, in the mainpart of this article, we show that these di�culties do not arise when the objective functionf is linear and the current iterate is close to the central path de�ned by fx(�) j� > 0g.� Example: Consider the problemmin x1 + 12(x2 � 1)2; subject to (x1; x2) � 0; (4)for which the solution is obviously x� = (0; 1)T . Let us assume that the barrier param-eter � is small, and writeP (x;�) = x1 + 12(x2 � 1)2 � � ln x1 � � ln x2:The derivatives of P (�;�) arerxP (x;�) = " 1� �=x1(x2 � 1) � �=x2 # ; rxxP (x;�) = " �=x21 00 1 + �=x22 # :By equating rxP (x;�) to zero, we �nd that x(�) � (�; 1 + �). Suppose the barrierparameter is decreased to �+ 2 (0; �). ThenrxP (x(�);�+) � " (� � �+)=�(� � �+) # ; rxxP (x;�+) � " �+=�2 00 1 # :The Newton step starting at x(�) for �nding x(�+) is thereforep = � [rxxP (x(�);�+)]�1rxP (x(�);�+) � � " (�=�+)(�� �+)(� � �+) # ;while the actual di�erence between the two points isx(�+)� x(�) � � " � � �+� � �+ # :2



The Newton step provides an excellent estimate of the second component of this dif-ference, but it overestimates the �rst component by a factor of �=�+. If, as is usual,we conduct a line search along the Newton direction p, the line search parameter �can be at most �+=� because of the requirement x � 0. This small value of � slowsconvergence in the second component; the error in this component is decreased onlyby a factor of about (1� �+=�).We use the following notation in the rest of the paper. For related positive quantities �and �, we say � = O(�) if there is a constant M such that � � M� for all � su�cientlysmall. We say � = o(�) if �=�! 0 as �! 0, and � = �(�) if � = O(�) and � = O(�).2 Assumptions and Basic FactsSuppose that for some value of � we have found an approximation to the minimizer x(�) ofP (x;�). We quantify the inexactness in this approximation by de�ning a vector w byw = 1�rxP (x;�);so that �w = rf(x)� mXi=1 �ci(x)rci(x): (5)We use the notation xw(�) to denote the approximate minimizer, to emphasize its relation-ship to w. We note in passing that xw(�) is the exact minimizer of the modi�ed log barrierfunction Pw(x;�) = f(x)� � mXi=1 ln ci(x)� �wTx (6)and that x(�) = x0(�).As the next section indicates, our results depend on an assumption that �kwk is su�-ciently small. This implies that xw(�) is not too far from the central path traced by theexact minimizers of P (x;�) for � > 0.Before proceeding, we de�ne terminology and optimality conditions and specify someadditional assumptions. The Lagrangian function for (1) isL(x; �) = f(x)� �T c(x); (7)where � is the vector of Lagrange multipliers. A point x� satis�es the �rst-order conditionsfor optimality if c(x�) � 0 and there is a vector �� � 0 such that (��)Tc(x�) = 0 andrxL(x�; ��) = 0, that is, rf(x�) = A(x�)��; (8)where A(x) = [rc1(x);rc2(x); : : : ;rcm(x)]3



is the transpose of the Jacobian of c. The active constraints are the components of c forwhich ci(x�) = 0. Without loss of generality we assume these to be the �rst p componentsof c, and de�ne �A(x) = [rc1(x);rc2(x); : : : ;rcp(x)]; �� = [�1; �2; : : : ; �p]: (9)We assume nondegeneracy, that is, �A(x�) has full column rank p, and strict complementarity,that is, �� + c(x�) > 0. A consequence of nondegeneracy is that p � n. We assume furtherthat x� satis�es the second-order su�cient conditions for optimality, namely,yTrxxL(x�; ��)y > 0 for all y with �A(x�)Ty = 0, y 6= 0. (10)The derivatives of the barrier function (3) arerxP (x;�) = rf(x)� mXi=1 �ci(x)rci(x); (11a)rxxP (x;�) = r2f(x) + � mXi=1 " 1c2i (x)rci(x)rci(x)T � 1ci(x)r2ci(x)# : (11b)Given any strictly feasible approximate solution xw(�), we can de�ne Lagrange multiplierestimates �w(�) by�w(�) = �C(xw(�))�1e = " �c1(xw(�)) ; : : : ; �cm(xw(�))#T ; (12)where C(x) = diag(c(x)). Combining (12) with (5), we haverf(xw(�)) = A(xw(�))�w(�) + �w: (13)Naturally, we use the notation �(�) for the Lagrange multipliers associated with the exactminimizer x(�).Let us return to the case of linear f . Setting (x; �) = (xw(�); �w(�)) and choosing a newvalue �+ 2 (0; �), we have from (2), (11), and (12) thatrxP (x;�+) = g � (�+=�)A(x)� = (1 � �+=�)g + �+w;rxxP (x;�+) = (�+=�2) "A(x)�2A(x)T � � mXi=1 �ir2ci(x)# ;where � = diag(�). For the Newton direction p, we havep = �rxxP (x;�+)�1rxP (x;�+)= �� "A(x)�2A(x)T � � mXi=1 �ir2ci(x)#�1 [(�=�+ � 1)g + �w]: (14)4



3 Limiting Behavior of the Newton DirectionsWe now compare the Newton direction (14) with an estimate of the di�erences betweenxw(�), x(�+), and the solution x�. Consider the vector functionF (x; �) = " rxL(x; �)�c(x) # = " g �A(x)��c(x) # ; (15)which maps IRn � IRm to itself, and note that F (x�; ��) = 0. The Jacobian of F isrF (x; �) = " rxxL(x; �) �A(x)�A(x)T C(x) # = " �Pmi=1 �ir2ci(x) �A(x)�A(x)T C(x) # : (16)Nonsingularity of rF (x�; ��) follows from a standard argument, which we now sketch. Lety and z be such that rF (x�; ��) " yz # = 0: (17)Because ci(x�) > 0 and ��i = 0 for i = p + 1; p + 2; : : : ;m, we have by considering the lastm � p rows of (17) that zi = 0, for i = p + 1; p + 2; : : : ;m. Because ci(x�) = 0 and ��i > 0for i = 1; 2; : : : ; p, we have again from (17) and (9) that �A(x�)Ty = 0. Hence,yTrxxL(x�; ��)y = yTA(x�)z = yT �A(x�)2664 z1...zp 3775 = 0: (18)Because of second-order su�ciency, (10) and (18) are consistent only if y = 0. Full rank of�A(x�) then implies that zi = 0, i = 1; : : : ; p. Hence z = 0, and our claim is proved.The following result is a consequence of the implicit function theorem (see, for example,Lang [2, p. 131]).Theorem 3.1 Let the vector pair (x(z; �); �(z; �)) be de�ned implicitly as the solution ofthe nonlinear system F (x; �) = " z�e # ; (19)for given (z; �). Then there are positive constants � > 0 and M > 0 such that the followingstatements hold.(i) (x(z; �); �(z; �)) is a C2 function of (z; �) in the neighborhood de�ned byN� = f(z; �) j kzk+ j�j � �g:(ii) For � > 0 and (z; �) 2 N�, we have �i(z; �) > 0 and ci(z; �) > 0 for i = 1; 2; : : : ;m.5



(iii) For (z1; �1) and (z2; �2) in N�, we have" x1�1 #� " x2�2 # = rF (x1; �1)�1 " z1 � z2(�1 � �2)e #+ r1; (20a)= rF (x2; �2)�1 " z1 � z2(�1 � �2)e #+ r2; (20b)where (x1; �1) = (x(z1; �1); �(z1; �1)) and (x2; �2) = (x(z2; �2); �(z2; �2)), andkr1k � M(kz1 � z2k+ j�1 � �2j)2; (21a)kr2k � M(kz1 � z2k+ j�1 � �2j)2: (21b)Proof. Since rF (x�; ��) is nonsingular and F (�; �) is C2 in a neighborhood of (x�; ��), wehave from the implicit function theorem that there is �1 > 0 such that (x(z; �); �(z; �)) is aC2 function of (z; �) with (x(0; 0); �(0; 0)) = (x�; ��) whenever (z; �) 2 N�1 .For (ii), we can use the strict complementarity condition to choose �2 2 (0; �1] such thatfor (z; �) 2 N�2 we have�i(z; �) > 0; i = 1; : : : ; p; ci(x(z; �)) > 0; i = p + 1; : : : ;m:The condition �ici(x) = � > 0 ensures that the complementary components are also strictlypositive; that is,ci(x(z; �)) > 0; i = 1; : : : ; p; �i(z; �) > 0; i = p + 1; : : : ;m:For (iii), we use the result of (i) to choose �3 2 (0; �2] such that the condition numberof rF (x(z; �); �(z; �)) is uniformly bounded in the neighborhood N�3. By a Taylor seriesargument and Lipschitz continuity of rF in this neighborhood, we haveF (x1; �1)� F (x2; �2) = rF (x1; �1) " x1 � x2�1 � �2 #+O0@




" x1 � x2�1 � �2 #




21A :Therefore, substituting for F (x1; �1) and F (x2; �2) from (19) and multiplying through bythe inverse of rF (x1; �1), we have" x1 � x2�1 � �2 # = rF (x1; �1)�1 " z1 � z2(�1 � �2)e #+O0@krF (x1; �1)�1k 




" x1 � x2�1 � �2 #




21A : (22)Since (x; �) is a C2 function of (z; �) on N�3 , it is certainly Lipschitz C1. Hence we have" x1 � x2�1 � �2 # = " dxdz (z1; �1) dxd� (z1; �1)d�dz (z1; �1) d�d� (z1; �1) # " z1 � z2�1 � �2 #+O0@




" z1 � z2�1 � �2 #




21A : (23)6



The Jacobian term in (23) is bounded, so we can combine (22) and (23) to obtain the result(20a) for r1 satisfying (21a), for some M > 0. The remaining result (20b), (21b) followsidentically.The choice � = �3 > 0 is su�cient for all of (i), (ii), and (iii).It is not di�cult to show that x(0; �) de�ned from (19) is an isolated local minimizer ofP (�;�) for su�ciently small �. In fact, x(�w; �) is an isolated local minimizer of the modi�edlog barrier function Pw(�;�) provided that w is not too large. (The claim certainly holdswhen kwk = o(��1=2), as we assume below in (29).)Uniform nonsingularity of rF in a neighborhood of (x�; ��) implies that the �rst termsin the right-hand side of (20a) and (20b) dominate the second terms for � su�ciently small;that is, 




" x1�1 #� " x2�2 #




 = � 




" z1 � z2(�1 � �2)e #




! = �(kz1 � z2k+ j�1 � �2j): (24)Let � be the quantity in Theorem 3.1, and suppose that � and w are such that�(kwk + 1) � �:Then for any �+ 2 [0; �], the vector pairs (z; �) = (��w; �) and (z; �) = (0; �+) both lie inthe neighborhood N�. It is easy to verify that(z; �) = (�w; �) ) (x; �) = (xw(�); �w(�));(z; �) = (0; �+) ) (x; �) = (x(�+); �(�+)):Hence, Theorem 3.1 (iii) implies that" x(�+)�(�+) #� " xw(�)�w(�) # = rF (xw(�); �w(�))�1 " ��w�(�� �+)e #+ r; (25)where krk �M �(�kwk + j�� �+j)2� �M(�2(kwk+ 1)2):Returning to (14), using (x; �) = (xw(�); �w(�)), and noting that c(x) > 0, we can de�nea vector �� 2 IRm implicitly by the equation�A(x)T(�+=�)p + C(x)�� = �(�� �+)e: (26)We now show that (14) and (26) together imply that ((�+=�)p; ��) satis�esrF (x; �) " (�+=�)p�� # = " rxxL(x; �) �A(x)�A(x)T C(x) # " (�+=�)p�� # = " ��w�(�� �+)e # : (27)The second block row of (27) follows immediately from (26). To recover the Newton equations(14), multiply the second block row from the left by A(x)C(x)�1, add it to the �rst blockrow, and use the identitiesC(x)�1 = 1��; A(x)�e = g � �w:7



This manipulation yields"1�A(x)�2A(x)T � mXi=1 �ir2ci(x)# �+� p = ��w + �+ � �� A(x)� =  �+� � 1! g � �+w;which is identical to (14).It follows from (25) and (27) that" x(�+)� xw(�)�(�+)� �w(�) # = " (�+=�)p�� # +O(�2(kwk+ 1)2);and consequently (�+=�)p = x(�+)� xw(�) +O(�2(kwk+ 1)2): (28)The result we are most interested in | that (�+=�)p and x(�+)� xw(�) are asymptoticallythe same direction | will follow from (28) if we can show that the O(�2(kwk+1)2) remainderterm is eventually dominated by either (hence both) of these two vectors. To show this, weneed additional conditions on w and �+, namely,kwk = o(��1=2) and �+ � ��; for some � 2 (0; 1). (29)The �rst condition controls the inexactness that we allow in the calculation of the minimizerof P (x;�) as � # 0. Because of (5), the ratiorxP (xw(�);�)=�1=2should approach zero as � # 0, where xw(�) is, as usual, the approximate minimizer for thisvalue of �. The condition on �+ in (29) simply means that there is a signi�cant decrease in� at each step. If this condition fails to hold, so that �+ � �, we expect the distance evenbetween two successive exact minimizers x(�) and x(�+) to be short; indeed, it might beswallowed up in the remainder term in (28).Next, we show that (29) implies �2(kwk+1)2 = o(jj(�+=�)pjj). Given (29) and su�cientlysmall �, we have from (28) that(�+=�)p = x(�+)� xw(�) + o(�): (30)Hence, our desired result will hold if we can show that (�+=�)p = �(�). From (27) anduniform nonsingularity of rF (x; �) near (x�; ��), we have" (�+=�)p�� # = O(�(kwk + 1)) = o(�1=2): (31)Applying Theorem 3.1(iii) or, alternatively, Equation (24), with(z1; �1) = (�w; �); that is, (x1; �1) = (xw(�); �w(�));(z2; �2) = (0; 0); that is, (x2; �2) = (x�; ��);8



we have 




" xw(�)� x��w(�)� �� #




 = O(�(kwk + 1)) = o(�1=2):Hence, for any active constraint (i = 1; 2; : : : ; p), we haveci(xw(�)) = ci(xw(�))� ci(x�) = o(�1=2): (32)Further, by our strict complementarity assumptions, we can de�ne a constant 
 > 0 suchthat [�w(�)]i � ��i + o(�1=2) � 2��i � 
; i = 1; 2; : : : ; p; (33)for � su�ciently small.Consider now the �rst p components of the equation (26). De�ning �A(x) and �� as in (9),and �c(x), ��, ��� accordingly, we have for (x; �) = (xw(�); �w(�)) that�� �A(x)(�+=�)p + �C(x)��� = �(�� �+)e) �A(x)T (�+=�)p = ����1 h(�� �+)e+ �C(x)���i : (34)Since �C(x)��� = o(�) from (32) and (31), we have���1 h(� � �+)e+ �C(x)���i � 
�1[(1� �)�+ o(�)]e � 
�11� �2 �e; (35)for su�ciently small �, so the right-hand side of (34) is �(�).If we had (�+=�)p = o(�), then the right-hand side of (34) would be o(�), which wouldcontradict (35). Hence (�+=�)p = �(�), and so, from (30), the two directions x(�+)�xw(�)and (�+=�)p are asymptotically identical.We state our main result as a theorem.Theorem 3.2 Assume that the objective function f(x) of problem (1) is linear and x is apoint near the minimizer x(�) of P ( : ; �) in the sense that w de�ned from (5) satis�es (29).If �+ satis�es the second part of (29), then the Newton direction p in (14) for the logarithmicbarrier function P is asymptotically the exact direction to the minimum x(�+) of P ( : ; �+)in the sense that x+ �+� p� x(�+) = o(x� x(�+)):Even if �+ is chosen very small (�+ � �), Theorem 3.2 by itself is not su�cient toguarantee that the Newton direction will bring us close to the optimal solution x� of (1).We need to check that the line segment de�ned byx+ �(�+=�)p; � 2 [0; 1]; (36)lies within the feasible region, except perhaps for values of � close to 1. It su�ces to checkthat the constraints that are active at x� are satis�ed. For any i = 1; : : : ; p, we have from9



(34), the de�nition �i = �=ci(x), and the estimate jci(x)��ij = o(�) thatci(x) + �rci(x)T (�+=�)p = ��i � ��i [(�� �+) + ci(x)��i]= 1�i [(1� �)� + ��+ + o(�)]:Now, using the bound (33), the estimate k(�+=�)pk = �(�), and the smoothness of ci, wehave ci(x+ �(�+=�)p) = ci(x) + �rci(x)T (�+=�)p +O(�2)= 1�i [(1� �)�+ ��+ + o(�)] +O(�2)� 1
 [(1� �)� + o(�)]: (37)Hence, if the segment (36) crosses the i-th constraint, we have ci(x + �(�+=�)p) = 0 forsome � 2 [0; 1]. Because of (37), this is possible only when 1 � � = o(�)=�. (In the caseof w = 0, that is, x = x(�) exactly on the central path, this estimate can be strengthenedto 1 � � = O(�).) Hence, near-unit steps can eventually be taken without violating theconstraints.4 DiscussionIn this paper we have analyzed the �rst Newton step that a logarithmic barrier method takesafter decrementing the barrier parameter. Assuming linearity of the objective (without whichthe direction may be no good at all), we have quanti�ed the accuracy of the direction in termsof the Euclidean norm of the gradient kwk and the barrier parameter �. We conjecture thatcondition kwk = o(��1=2) can be weakened slightly if we use a more appropriate norm, suchas jjwjjr2P (x;�)�1 = (wTr2P (x; �)�1w)1=2. However, our �nal example (below) illustratesthat a rather strong condition on w is necessary indeed to maintain the validity of Theorem3.2.Finally, we point out that the second part of condition (29) can be dropped if we workwith the modi�ed barrier function (6). Having obtained a su�ciently accurate approximationto the minimizer x(�) of P (�;�), we may set w as in (5). Then, updating � to �+, we cantake a Newton step for the modi�ed barrier function Pw(�;�+) toward xw(�+). Theorem 3.2holds for this Newton step, even if the second part of condition (29) does not hold. (TheNewton direction for the modi�ed barrier function generated in the above way coincides withthe primal a�ne scaling direction.) The analysis of the Newton step for the modi�ed barrierfunction is similar to the analysis above. Since the barrier function (3) is more commonlyused, however, we con�ned our main result to this function.10



� Example: Finally, we formulate our introductory example to demonstrate the asymp-totic equivalence (28). By introducing an arti�cial variable, we transform (4) tomin x3 subject to (x1; x2) � 0; x3 � x1 + 12(x2 � 1)2:Then the barrier function P (x;�) isP (x;�) = x3 � � ln(x3 � x1 � 12(x2 � 1)2)� � ln x1 � � ln x2;and we �nd from rP (x(�);�) = 0 thatx(�) = 0B@ �12(1 +p1 + 4�)1 + 4� �p1 + 4� 1CA � 0B@ �1 + �2� 1CA ;so x(�) � x� � �(1; 1; 2)T : (38)A little manipulation shows that for �+ 2 (0; �) and x = x(�), we haverP (x;�+) = 0B@ 001� �+=� 1CA ; r2P (x;�+) � �+�2 264 2 � �1� � ���1 �� 1 375 ;so the Newton step p is approximatelyp � � ��+ (� � �+)0B@ 112 1CA : (39)As claimed, (38) and (39) are consistent with (28).We conclude this example by illustrating the inaccuracy in the direction p for centeredand noncentered points for this particular example. We calculate the direction accuracy




 pkpk � x� x�kx� x�k




for various values of �. For each �, we choose x to be the exactly centered pointx = x(�) and also the noncentered pointx̂(�) = 0B@ �=21 + 2�4� 1CA :Results are shown in Tables 1 and 2. Note that the directions line up as � # 0 in Table1, while Table 2 shows that the noncentrality of x̂(�) introduces a systematic error intothe Newton direction p that does not vanish even when x̂(�) is extremely close to x�.11



Table 1: Direction accuracy from centered points x = x(�)� �+ Relative Accuracy1 10�1 :60 � 10�11 10�2 :73 � 10�110�2 10�3 :39 � 10�210�2 10�4 :43 � 10�210�4 10�5 :41 � 10�410�4 10�6 :45 � 10�4Table 2: Direction accuracy from non-centered points x = x̂(�)� �+ Relative Accuracy10�2 10�3 :83 � 10�110�2 10�4 :97 � 10�110�4 10�5 :88 � 10�110�4 10�6 :1010�6 10�7 :88 � 10�110�6 10�8 :10AcknowledgmentsPart of this work was done while the �rst author was visiting the Institute of StatisticalMathematics in Tokyo, Japan; thanks are due to Shinji Mizuno for his warm hospitality. He isalso grateful to Takashi Tsuchiya for helpful discussions about the a�ne scaling direction andto Professor Kojima for his help with o�ce and computing facilities at the Tokyo Instituteof Technology.References[1] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Uncon-strained Minimization Techniques, Wiley, New York, 1968.[2] S. Lang, Real Analysis (2nd ed.), Addison-Wesley, Reading, Massachusetts, 1983.[3] M. H. Wright, Why a pure primal Newton barrier step may be infeasible, NumericalAnalysis Manuscript 93{02, AT&T Bell Laboratories, March 1993. To appear in SIAMJournal on Optimization. 12


