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Abstract

To simplify the analysis of interior-point methods, one commonly formulates the
problem so that the objective function is linear, by introducing a single extra variable
if necessary. Here we show that a linear objective function makes the Newton direction
for a barrier function a useful search direction if the current iterate is sufficiently close
to the central path. Hence, there are two advantages to using a linear objective and
staying close to the central path. First, the Newton direction (which coincides with
the affine scaling direction on the central path) gives a very accurate approximation
to the direction to the minimum. Second, a long step along the Newton direction is
possible without violating the inequality constraints.

1 Introduction
We consider logarithmic barrier methods applied to the nonlinear programming problem
min f(x) subject to e(x) >0, (1)

where f: R" — R and ¢ : R" — R™ are smooth (three times continuously differentiable)
functions. We are particularly interested in the case of linear f, that is,

f(z) =gz (2)
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The logarithmic barrier function for (1) is
P(zip) = f(z) —p)_Inci(e). (3)
=1

We denote by x(r) a minimizer of P(.;u) for ¢ > 0 and assume that x(u) exists for all
sufficiently small g. Methods based on (3) approximate x(p) for a sequence of small, de-
creasing values of p > 0. Under certain conditions (see Fiacco and McCormick [1]), we have
limy o x(p) = «*. After x(p) has been approximated for a particular value of g > 0, an
obvious way to proceed is to decrease p to some new value gy and then take a Newton step
for minimizing the barrier function P(x; p4). It has recently been observed (see, for example,
Wright [3]) that the resulting direction is generally a poor one, and some specialized direction
generation and line search strategies have been proposed to remedy the situation. Below, we
illustrate the bad behavior of these steps by means of a simple example. Then, in the main
part of this article, we show that these difficulties do not arise when the objective function
f is linear and the current iterate is close to the central path defined by {x(x)|ux > 0}.

¢ Example: Consider the problem

min 1 + %(:1;2 —1)%, subject to (z1,24) >0, (4)

for which the solution is obviously = = (0,1)7. Let us assume that the barrier param-
eter p is small, and write

Plasp) =a1 4+ %(:1;2 — 1) —plnzy — plnzy,

The derivatives of P(-;p) are

YV, P(e;p) = [ (o 1_—1)/{51?;/% ] . VaPlaip) = [ #/Oilff 1+2/x§ ] .

By equating V,P(x; i) to zero, we find that «(u) ~ (p,1 + g). Suppose the barrier
parameter is decreased to py € (0, ). Then

Vo P(x(p); py) & [ (/zﬂ__”;y)ﬂ ] o VaP(rpg) = [ “*é“2 (1) ] :

The Newton step starting at a(u) for finding x(u4) is therefore
p = = Vac Pl aPlauisps) = = | W00

while the actual difference between the two points is

xw—x(m—[ﬁi,’jj]-



The Newton step provides an excellent estimate of the second component of this dif-
ference, but it overestimates the first component by a factor of p/py. If; as is usual,
we conduct a line search along the Newton direction p, the line search parameter «
can be at most uy /p because of the requirement > 0. This small value of a slows
convergence in the second component; the error in this component is decreased only
by a factor of about (1 — uy/p).

We use the following notation in the rest of the paper. For related positive quantities «
and 3, we say [ = O(«) if there is a constant M such that 3 < Ma for all a sufficiently
small. We say 8 = o(a) if f/a — 0 as o — 0, and § = O(«a) if = O(a) and o = O(3).

2 Assumptions and Basic Facts

Suppose that for some value of y we have found an approximation to the minimizer x(y) of
P(x; ). We quantify the inexactness in this approximation by defining a vector w by

1
w=—V,P(x;pu),
7

so that

m

i
pw =V f(z)=> ——Ve;(). (5)
= alx)
We use the notation x,(¢) to denote the approximate minimizer, to emphasize its relation-
ship to w. We note in passing that x,,(p) is the exact minimizer of the modified log barrier
function

Pl ) = f() = p 3 ne(e) = e (6)

and that x(g) = xo(p).

As the next section indicates, our results depend on an assumption that u||w]|| is suffi-
ciently small. This implies that x,(¢) is not too far from the central path traced by the
exact minimizers of P(x; u) for g > 0.

Before proceeding, we define terminology and optimality conditions and specify some
additional assumptions. The Lagrangian function for (1) is

Ll N) = () = N ea), (7)

where A is the vector of Lagrange multipliers. A point z* satisfies the first-order conditions
for optimality if ¢(x*) > 0 and there is a vector \* > 0 such that (\*)Te(z*) = 0 and
V. L(x*, *) = 0, that is,

Vi(e) = AN, )

where

A(z) = [Va(x),Ve(a), ..., Ve ()]



is the transpose of the Jacobian of ¢. The active constraints are the components of ¢ for
which ¢;(x*) = 0. Without loss of generality we assume these to be the first p components
of ¢, and define

A(z) = [Vei(x), Veg(z), ..., Vey(x)], A=A, A, A 9)

We assume nondegeneracy, that is, A(z*) has full column rank p, and strict complementarity,
that is, A* + ¢(2*) > 0. A consequence of nondegeneracy is that p < n. We assume further
that x* satisfies the second-order sufficient conditions for optimality, namely,

YTV oo £(2™, A )y > 0 for all y with A(z*)Ty =0, y # 0. (10)

The derivatives of the barrier function (3) are

m

V.P(x;p) = Vf(z)— Z; Ci'é;)Vci(x), (11a)
Voo Pxs ) = )+ ,uf: l o Vei(x2)Ve(x ) - x)vzci(x)] ) (11b)

Given any strictly feasible approximate solution x,,(x), we can define Lagrange multiplier
estimates A, (x) by

()’ cm(l’w(ﬂ))] ’ (12

where C'(2) = diag(c(x)). Combining (12) with (5), we have

Vi(zw(p) = Alzw(p)) A (i) + pw. (13)

Naturally, we use the notation A(p) for the Lagrange multipliers associated with the exact

i) = i) e = |t

minimizer x(u).
Let us return to the case of linear f. Setting (2, A\) = (2, (1), Aw(pt)) and choosing a new
value gy € (0, ), we have from (2), (11), and (12) that

VoP(aipy) = g— (pa/pm)A@)A = (1= py/p)g + piw,
VoPlrins) = (nsfi) AN -3 AT 0]

=1

where A = diag()). For the Newton direction p, we have

p = —VuP(z;p4)7 Vo Pla; )
= [ AN ATl - Dok



3 Limiting Behavior of the Newton Directions

We now compare the Newton direction (14) with an estimate of the differences between
Ty(pt), x(py ), and the solution z*. Consider the vector function

Ple)) = [ VQUA,/:C((Z,)A) ] _ [g —Acfégm ] | (15)

which maps R™ x R™ to itself, and note that F(z*, A*) = 0. The Jacobian of F' is

VeeL(z,)) —A(z) ] _ [ — Vi) —A(z) ]

VF(z,\)= l AA(z)T C(z) AA(x)T C(z)

(16)

Nonsingularity of VF(z*, A*) follows from a standard argument, which we now sketch. Let
y and z be such that

VF (2", \%) [ Z ] = 0. (17)
Because ¢;(z*) > 0 and Af = 0 for ¢ = p+1,p+2,...,m, we have by considering the last
m — p rows of (17) that z;, =0, for i =p+ 1,p+2,...,m. Because ¢;(¢*) = 0 and A} > 0
for i = 1,2,...,p, we have again from (17) and (9) that A(z*)Ty = 0. Hence,

21

YTV L(2, )y = yT Az =yTA(™) | ¢ | =0, (18)

Because of second-order sufficiency, (10) and (18) are consistent only if y = 0. Full rank of
A(z*) then implies that z; =0,¢=1,...,p. Hence z = 0, and our claim is proved.
The following result is a consequence of the implicit function theorem (see, for example,

Lang [2, p. 131]).

Theorem 3.1 Let the vector pair (x(z,0),\(z,0)) be defined implicitly as the solution of
the nonlinear system
z

Fle) = [ | (19)

ge

for given (z,0). Then there are positive constants € > 0 and M > 0 such that the following
statements hold.

(i) (x(z,0),\(z,0)) is a C* function of (z,0) in the neighborhood defined by

Ne=A{(z,0) ]Izl + |o| < €}

(ii) For o >0 and (z,0) € N, we have \j(z,0) > 0 and ¢;(z,0) >0 fori=1,2,...,m.



(iii) For (z1,01) and (z2,03) in N, we have

21 — 22

l \ ] - [ - ] = VF(r1, M) l (o — on)e ] +r, (20a)

21 — 22

= VF(150)" [ : ] + s, (20b)

o1 — 03)€
where (x1, 1) = (x(z1,01), AM(z1,01)) and (22, Ay) = ((22,02), AM(22,02)), and

]l < M(]lz1 = 2l + o1 — 0a])*, (21a)
Il < M(llz1r = 22l + o1 — o2)". (21b)

Proof. Since VF(z*, \*) is nonsingular and F'(+,-) is % in a neighborhood of (z*, \*), we
have from the implicit function theorem that there is ¢, > 0 such that (z(z,0),A(z,0)) is a
C? function of (z,0) with (2(0,0), A(0,0)) = (z*, \*) whenever (z,0) € NV,,.

For (ii), we can use the strict complementarity condition to choose € € (0, ¢] such that
for (z,0) € NV, we have

Ai(z,0) >0, i=1,...,p, ¢i(x(z,0))>0, i=p+1,....m

The condition A;¢;(x) = o0 > 0 ensures that the complementary components are also strictly
positive; that is,

ci(x(z,0)) >0, 1=1,...,p, Ai(z,0) >0, t=p+1,....m

For (iii), we use the result of (i) to choose €5 € (0, €] such that the condition number
of VF(z(z,0),A(z,0)) is uniformly bounded in the neighborhood N,,. By a Taylor series
argument and Lipschitz continuity of VF in this neighborhood, we have

2)

Therefore, substituting for F(x1, A1) and F(x2,A2) from (19) and multiplying through by

the inverse of VF'(x1, A1), we have
Ty — T 2 — 2 s ||
1— T2 | _ -1 1= %2 -1 2
] e | 2o, o (val,xl 5] ) es
Since (z,A) is a C'* function of (z,A) on N, it is certainly Lipschitz C''. Hence we have

on]-lEe genllaza]e(azz]) e

F, M) = Pz, A2) = VEF (21, M) [ M= Ao ] o (Hl A - iz ]

(21,01)
(21701)

SIS
SIESE




The Jacobian term in (23) is bounded, so we can combine (22) and (23) to obtain the result
(20a) for ry satisfying (21a), for some M > 0. The remaining result (20b), (21b) follows
identically.

The choice € = €3 > 0 is sufficient for all of (i), (ii), and (iii). [

It is not difficult to show that x(0, ) defined from (19) is an isolated local minimizer of
P(-; p) for sufficiently small g. In fact, @(pw, p) is an isolated local minimizer of the modified
log barrier function P,(-;u) provided that w is not too large. (The claim certainly holds
when |[w|| = o(~'/?), as we assume below in (29).)

Uniform nonsingularity of VF in a neighborhood of (*, A\*) implies that the first terms
in the right-hand side of (20a) and (20b) dominate the second terms for e sufficiently small;

that is,
H[gﬂ_[ ]H (H[ gl__; HD O(||z1 — 2ol + |1 — o2]). (24)

Let € be the quantity in Theorem 3.1, and suppose that p and w are such that
plllwll +1) < e

Then for any py € [0, u], the vector pairs (z,0) = (—pw, 1) and (z,0) = (0, uy) both lie in
the neighborhood .. It is easy to verify that

(z,0) = (pw,p) = (2,A) = (2u(p), Awlp)),
(z,0) = (0,p4) = (2,A) = (a(p4), Mp4))

Hence, Theorem 3.1 (iii) implies that

—(p— py)e

][] - 2
where
Il < M ((ulloll + |1 = pe])?) < M2 (]| + 1)),
Returning to (14), using (2, A) = (2, (¢), Aw(1)), and noting that ¢(x) > 0, we can define
a vector 6\ € R™ implicitly by the equation
AA(@) (e /p)p + Cl2)oX = —(1 — py)e. (26)
We now show that (14) and (26) together imply that ((p4/p)p, 6X) satisfies

eren <[5 )[4 T

The second block row of (27) follows immediately from (26). To recover the Newton equations
(14), multiply the second block row from the left by A(z)C'(x)™!, add it to the first block

row, and use the identities

Y

C(z)™' = %A, A(z)Ae = g — pw.



This manipulation yields
1 " —
[—A(:z:)AzA(x)T -3 )\Z'VQCZ'(:I;)] 'u—+p = —pw + MA(J}))\ = ('M—+ - 1) g — [y,
1 p m m

which is identical to (14).
It follows from (25) and (27) that

[ﬁ&jii“”]z[“ﬁ@”]+0w%mw+mm

and consequently
(e /10)p = 2 (p4) = wwlp) + O (Jlwl| + 1)%). (28)

The result we are most interested in — that (p4/p)p and @(p4) — (@) are asymptotically
the same direction — will follow from (28) if we can show that the O(u?(||w]||+1)?) remainder
term is eventually dominated by either (hence both) of these two vectors. To show this, we
need additional conditions on w and g, namely,

||| = o(p?) and py < pp, for some p € (0,1). (29)

The first condition controls the inexactness that we allow in the calculation of the minimizer
of P(x;p) as o | 0. Because of (5), the ratio

Vo P(aw(p); )/ p'?

should approach zero as p | 0, where x,,(p) is, as usual, the approximate minimizer for this
value of . The condition on g4 in (29) simply means that there is a significant decrease in
p at each step. If this condition fails to hold, so that py =~ p, we expect the distance even
between two successive exact minimizers x(u) and x(u4) to be short; indeed, it might be
swallowed up in the remainder term in (28).

Next, we show that (29) implies p?(||w]||+1)* = o(||(z+/p)p|]). Given (29) and sufficiently
small 4, we have from (28) that

(s /1P = @(pig) — ulpr) + olp). (30)

Hence, our desired result will hold if we can show that (uy/u)p = ©O(p). From (27) and
uniform nonsingularity of VF'(x, \) near (z*, \*), we have

L | = ot + 1) = o (31

Applying Theorem 3.1(iii) or, alternatively, Equation (24), with

(z1,01) = (pw, p), thatis, (21,M) = (zw(p), Au(p)),
(22,02) = (0,0), thatis, (w2,A2) = (z", "),

8



we have
mulp) a7 1/2
H[ Aw(//j) — X ]H = O(p(Jlw]l +1)) = o(u'?).

Hence, for any active constraint (: = 1,2,...,p), we have

clea(p) = clwa(n)) — eie”) = of'/?). (32)

Further, by our strict complementarity assumptions, we can define a constant v > 0 such
that

Aw(p)]i < AT+ 0(,u1/2) <2X7 <, 1=1,2,....p, (33)

for u sufficiently small. B B
Consider now the first p components of the equation (26). Defining A(x) and A as in (9),
and ¢(z), A, 6\ accordingly, we have for (z,\) = (2, (1), \w(p)) that

A@) (pep)p = =A7 [(1 = g e + Ca)8N]. (34)

Since C'(z)6A = o(p) from (32) and (31), we have

A= (= e+ C(0)8A] 2 47111 = )i+ o(ple = 2~ Le, (35)

for sufficiently small g, so the right-hand side of (34) is O(u).

If we had (py/p)p = o(p), then the right-hand side of (34) would be o(y), which would
contradict (35). Hence (py/p)p = O(p), and so, from (30), the two directions (g4 ) — (1)
and (p4/p)p are asymptotically identical.

We state our main result as a theorem.

Theorem 3.2 Assume that the objective function f(x) of problem (1) is linear and x is a
point near the minimizer x(u) of P( . ,p) in the sense that w defined from (5) satisfies (29).
If py satisfies the second part of (29), then the Newton direction p in (14) for the logarithmic
barrier function P is asymptotically the exact direction to the minimum x(py) of P( ., p4)
in the sense that

v B a(uy) = ofx — ().
n

Even if py is chosen very small (py < p), Theorem 3.2 by itself is not sufficient to
guarantee that the Newton direction will bring us close to the optimal solution z* of (1).
We need to check that the line segment defined by

T+ oz(,u+/,u)p, OIS [07 1]7 (36)

lies within the feasible region, except perhaps for values of « close to 1. It suffices to check
that the constraints that are active at =™ are satisfied. For any 2 = 1,...,p, we have from



(34), the definition A; = p/¢;(x), and the estimate |¢;(2)6A;| = o() that

i)+ aVei(w) (e /pp = - =3[0 = ) ei()8A]

| ==

= =+ apy +o(p)].

K3

Now, using the bound (33), the estimate ||(u+/p)p|| = O(x), and the smoothness of ¢;, we
have

Gla+alpy/mp) = ale) +aVele) (us/mp+ O()

- )\%[(1 —a)p+ apy +o(p)] + O(/ﬁ)

%{(1 )+ ofu)] (37)

Y

Hence, if the segment (36) crosses the i-th constraint, we have ¢;(x + a(us/p)p) = 0 for
some a € [0,1]. Because of (37), this is possible only when 1 — a = o(g)/g. (In the case
of w = 0, that is, + = x(p) exactly on the central path, this estimate can be strengthened
to 1 — a = O(u).) Hence, near-unit steps can eventually be taken without violating the
constraints.

4 Discussion

In this paper we have analyzed the first Newton step that a logarithmic barrier method takes
after decrementing the barrier parameter. Assuming linearity of the objective (without which
the direction may be no good at all), we have quantified the accuracy of the direction in terms
of the Euclidean norm of the gradient ||w|| and the barrier parameter p. We conjecture that
condition |[w| = o(u~'/?) can be weakened slightly if we use a more appropriate norm, such
as |[wl||vzp@,y-t = (0T V2P(z, p)"'w)/2. However, our final example (below) illustrates
that a rather strong condition on w is necessary indeed to maintain the validity of Theorem
3.2.

Finally, we point out that the second part of condition (29) can be dropped if we work
with the modified barrier function (6). Having obtained a sufficiently accurate approximation
to the minimizer x(p) of P(+; 1), we may set w as in (5). Then, updating u to p4, we can
take a Newton step for the modified barrier function P,(+; i4) toward a,(p4). Theorem 3.2
holds for this Newton step, even if the second part of condition (29) does not hold. (The
Newton direction for the modified barrier function generated in the above way coincides with
the primal affine scaling direction.) The analysis of the Newton step for the modified barrier
function is similar to the analysis above. Since the barrier function (3) is more commonly
used, however, we confined our main result to this function.

10



e Example: Finally, we formulate our introductory example to demonstrate the asymp-
totic equivalence (28). By introducing an artificial variable, we transform (4) to

min x3 subject to (x1,22) >0, x5 > 11 + %(:1;2 —1)%
Then the barrier function P(x; ) is
Pla;p) = a3 —pln(as — g — %(:1;2 — 1)} — plnzy — pln zy,

and we find from VP(x(p); ) = 0 that

I
e(p)=| U+ VI+dn) =] 1+p |,
1+4p —/1+4u 2u

S0
() — &~ p(l1,1,2)". (38)
A little manipulation shows that for py € (0, ) and @ = (), we have
0 2 o -1
) _ 2 ) ~ P+
VP(zipg) = 0 . ViP(aipy) & el B E
L—py/p -1 —p 1

so the Newton step p is approximately

1
I

prR——(p—p)| 1 |. (39)
M+ 9

As claimed, (38) and (39) are consistent with (28).

We conclude this example by illustrating the inaccuracy in the direction p for centered
and noncentered points for this particular example. We calculate the direction accuracy
xr—a"

el e =]

for various values of u. For each u, we choose x to be the exactly centered point
x = x(p) and also the noncentered point

(/2
Ep)=| 142
Ap
Results are shown in Tables 1 and 2. Note that the directions line up as ¢ | 0 in Table

1, while Table 2 shows that the noncentrality of #(p) introduces a systematic error into
the Newton direction p that does not vanish even when &(y) is extremely close to x*.

11



Table 1: Direction accuracy from centered points @ = x(u)

I 7 Relative Accuracy
1 107! 60 x 1071
1 1072 73 x 107t
1072 1073 39 x 1072
1072 107 43 x 1072
107* 107° 41 x 1074
107* 107° 45 x 1074

Table 2: Direction accuracy from non-centered points @ = &(p)

I 7 Relative Accuracy
1072 1073 83 x 107t
1072 107 97 x 107t
107* 107° 88 x 107t
107* 107° 10

10°% 1077 88 x 107t
107 107® 10
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