
Random Number Generation in Ada 9XK. W. Dritz�Argonne National LaboratoryArgonne, IL 60439The generation of random numbers1 is central to many kinds of scienti�cstudy, especially those involving simulation or modeling. Most libraries of math-ematical software have one or more random number generators (RNGs), en-capsulating the best techniques for random number generation that have beenreported in the literature, and at least rudimentary capabilities for generatingrandom numbers are intrinsically provided in particular programming languages(among them, C and Fortran 90). The lack of a prede�ned RNG in Ada hasinhibited the portability of application programs that need random numbers.With Ada 9X, that problem will cease to exist, at least for the vast majority ofsuch applications.The facilities for random number generation can be found in the Prede�nedLanguage Environment (Annex A) of Ada 9X [2], where they take the formof a pair of children of the prede�ned package Ada.Numerics. The packageAda.Numerics.Float_Random de�nes types and operations for the generation ofoating-point random numbers, while the generic package Ada.Numerics.Dis-crete_Random plays a similar rôle for the generation of random integers (actu-ally, random values of an aribtrary user-speci�ed discrete subtype).The content of these two packages underwent many changes after the initialproposal for an RNG facility, which did not even include the latter package.Perhaps more than for any other mathematical library routine, preconceivedopinions about the form that the RNG should take ran strong, and many com-promises were made before the �nal RNG was formulated. Nevertheless, certaingoals for the design of the facility remained constant throughout the develop-ment process:� The facility should be easy to use; it should appeal to the applicationprogrammer migrating from Fortran and should not require a major in-vestment in learning new concepts unique to Ada.�This chapter was written with �nancial support from Intermetrics, Inc., to Argonne Na-tional Laboratory under proposal No. P-91122.1Technically, of course, we mean to say pseudo-random numbers, numbers in an algorith-mically generated sequence that do not appear to be correlated and that satisfy some of thesame statistical properties that truly random numbers satisfy.1

� It should be possible to obtain a repeatable sequence of random numbersfor use during program testing. When one is trying to understand aberrantprogram behavior, one needs to be able to rule out di�erences in therandom numbers generated from one run to the next.� It should be possible to obtain a unique sequence of random numbersin each production run of an application program. Changing from therepeatable mode to the unique mode should be straightforward.� It should be possible to have multiple random number sequences, for thoseapplications that require it. It should be possible to have separate RNGsin each task, as well as multiple RNGs in a single task. It should be pos-sible to make multiple generators generate the same sequence or di�erentsequences.� It should be possible to save the state of an RNG and to restore an RNGto a previously saved state. This supports certain debugging requirementsas well as the checkpointing and restarting of long-running applications.� For testing purposes, it should be possible to examine the state of an RNGin an interactive debugger without advanced planning.We discuss below how these goals have been realized in the Ada 9X RNG facility.Implementations are free to exploit advances in the theory of random num-ber generation, because Ada 9X does not prescribe the algorithm to be used.In order to provide some assurance that the algorithm used is minimally ac-ceptable, the language prescribes tests of uniformity and randomness that mustbe satis�ed by the implementation, and it also prescribes a lower bound on theperiodicity of the RNG algorithm. Several popular RNG algorithms are knownto pass the tests, including the venerable multiplicative linear congruential gen-erator with multiplier 75 and modulus 231 � 1 of Lewis, Goodman, and Miller[4] and both the add-with-carry and subtract-with-borrow Fibonacci generatorsof Marsaglia and Zaman [5]. Other algorithms that would be expected to pass,but which have not been explicitly tested, include the combination generatorsof Wichmann and Hill [6] and L'Ecuyer [3] and the x2 mod N generators ofBlum, Blum, and Shub [1]. In order to allow users to assess the suitability ofthe algorithm for their particular application, the implementationmust describethe algorithm it uses and must document some of its properties.The prede�ned oating-point RNG package has the speci�cation shown inFigure 1. The �rst point to note about this package is that it de�nes both basicfacilities, which are expected to be needed by all or most applications of randomnumbers, and advanced facilities, which are expected to be needed only by thosefew applications having advanced or specialized needs. Most programmers willneed to learn and use only the basic facilities. In fact, to get started, one needonly \with" and \use" the package, declare a generator, and invoke the Randomfunction on the generator, as illustrated in Figure 2. Another point to note is2

package Ada.Numerics.Float_Random is-- Basic facilitiestype Generator is limited private;subtype Uniformly_Distributed is Float range 0.0 .. 1.0;function Random (Gen : Generator)return Uniformly_Distributed;procedure Reset (Gen : in Generator;Initiator : in Integer);procedure Reset (Gen : in Generator);-- Advanced facilitiestype State is private;procedure Save (Gen : in Generator;To_State : out State);procedure Reset (Gen : in Generator;From_State : in State);Max_Image_Width : constant := implementation-de�ned integer value;function Image (Of_State : State) return String;function Value (Coded_State : String) return State;private... -- not speci�ed by the languageend Ada.Numerics.Float_Random;Figure 1: Speci�cation of Ada.Numerics.Float_Random3

with Ada.Numerics.Float_Random; use Ada.Numerics.Float_Random;procedure Simple_Application isRNG : Generator;X : Float;...beginloop...X := Random(RNG);...end loop;end Application;Figure 2: Example of a simple use of Ada.Numerics.Float_Randomthat only uniformly distributed random numbers are provided, and they lie inthe customary range of 0.0 to 1.0.2 The uniform distribution is the one mostcommonly encountered in practice; other distributions can be obtained from theuniform distribution by techniques covered in standard textbooks.The example in Figure 2 shows that random number generators in Ada 9Xare associated with objects of the type Generator. Each such object should beregarded as the source of a sequence of random numbers, successive elementsof which can be obtained by applying the Random operation (as a function) tothe object. The current \position" in the sequence is internal state informationthat is hidden from the user by virtue of the fact that Generator is a privatetype.As the example illustrates, the ease with which one can begin to use theoating-point random number generator is likely to appeal to beginning ap-plication programmers, who may have some experience with Fortran but littleor none with Ada. In particular, it is not necessary for the programmer tolearn how to use generics in order to use the oating-point random numbergenerator, and this feature goes a long way toward meeting the �rst design2Some implementations may be incapable of generating either or both endpoints of therange, but application programmers are forewarned by a note in the reference manual not todepend on that. The subtleties of mapping this range into a particular range of integers wasone of the motivations for providing a separate discrete random number generator package.4

goal. Floating-point random numbers are provided only in the prede�ned typeFloat, which programmers migrating from Fortran are likely to use instinc-tively; random numbers of some other oating-point type can be obtained byexplicit conversion.3The second design goal, provision for obtaining repeatable sequences of ran-dom numbers (for program testing), is met by making that the default behaviorof generator objects. That is, each generator is implicitly initialized to the same�xed state. One has to go a little out of the way to obtain a unique sequenceof random numbers in each run. Thus, during the initial stages of programtesting, when one has not thought to turn on all the bells and whistles, thereis no danger of obtaining nondeterministic behavior (which could confound thetesting process).When one has progressed far enough in program testing to want a uniquesequence of random numbers in each run, one merely needs to insert a call tothe \time-dependent reset operation" in the program before the �rst call toRandom. The Reset procedure comprises three overloadings, all of which resetthe state of the generator given as a parameter; they di�er in the nature of theresetting that is performed. When Reset is called with no parameters otherthan a generator, the action is to reset the generator to a time-dependent state;an example is shown in Figure 3. According to the reference manual, two calls tothe time-dependent reset operation are guaranteed to establish di�erent states ifthe calls are made at least one second apart, and not more than �fty years apart;this is certainly su�cient for priming a generator to yield unique sequences indi�erent runs of the application. The time-dependent reset operation supportsthe third design goal.One may declare any number of generator objects, and they can be aggre-gated into arrays or made components of other objects with arbitrary structure.Thus, multiple generators can be created trivially, either within a single task orin each of several tasks.4 Unless one of the reset operations is used, however,3We decided that learning how to perform explicit numeric conversions was less of a chal-lenge to inexperienced programmers than learning how to use generics. In most cases, suchconversions will serve merely to satisfy the strong typing requirements and will not a�ect thevalue of the random number; but if the conversion is to a type with greater or lesser precision,the value may be a�ected. The decision to avoid generics, thereby giving the user no directway to request random numbers of di�erent precisions, was also made partly on the basis ofthe implementation burden that it would have created. Floating-point random numbers ofexceptionally high precision are required by only a few very specialized applications, and itis reasonable to expect those applications to shoulder the burden of providing high-precisionrandom numbers. They can do so by building on the facilities that have been provided; forexample, they can scale and combine the results of two or more calls to Random to obtain asingle high-precision random number.4We considered an alternative design that uses generics and associates a single, implicitgenerator with each instance. Having certain advantages as well as disadvantages, the alter-native was rejected because it does not allow for generators to be components of other objects,such as arrays, or be allocated dynamically|capabilities that might reasonably be needed insome advanced applications. 5

all such generators will be started in the same state and will yield the samesequence. While that result may well be what is desired, it is more likely thateach generator is intended to yield a di�erent sequence. To satisfy that need,which is expressed by the fourth design goal, we provide an \initiator-dependentreset operation" as one of the overloadings of the Reset procedure, the one thattakes an integer parameter named Initiator in addition to a generator. Theidea is to reset each generator with a distinct initiator value before using any ofthem to generate random numbers; for example, if there are n generators, eachmay be reset by a di�erent initiator value in the range 1 to n. The semanticsof the initiator-dependent reset operation are such that, if the characteristicsof the implementation permit, each possible value of the initiator will initiatea sequence of random numbers that does not, in a practical sense, overlap thesequence initiated by any other value. If this is impossible to achieve in a givenimplementation, then the mapping between initiator values and generator statesis required, at least, to be a rapidly varying function of the initiator value.This technique for starting multiple generators in di�erent states su�ceswhen repeatable program behavior is desired in each run. A more elaboratetechnique is required when, in addition to being di�erent from each other, onedesires the initial generator states to be unique in di�erent runs. For example,one might generate the initiator values randomly, using the discrete randomnumber generator, after having initialized the latter to a time-dependent state.If a wide enough range is requested during the instantiation of the discreterandom number generator package, only a small probability exists that a giveninitiator value will be generated more than once; nevertheless, it would be wiseto �lter out any duplicates that do happen to be generated, so that each of theoating-point generators can de�nitely be started in a unique state.The advanced facilities of Ada.Numerics.Float_Random are concerned withsaving and restoring generator states and with examining or manipulating gen-erator states in the form of (implementation-de�ned) strings. Because Ada 9Xdoes not prescribe the RNG algorithm to be used, it also imposes no require-ments on the representation of generator states.The �fth design goal addresses a long-running application's need to check-point its state so that it can later be restarted from the same state. Since thestate of a random number generator (which is part of the application's state)is implicit, or hidden from the user, operations have been provided to obtainthe state from a generator (by means of the Save procedure) and to reset agenerator to a previously obtained state (by means of the third overloading ofthe Reset procedure). To store a state explicitly, one needs to declare a vari-able of the type State. One way that these advanced facilities can be used tocheckpoint and restart a generator's state is illustrated in Figure 3.5It should be emphasized that simple applications, like that illustrated in5For the sake of simplicity, the �le in which the generator's state is saved between runs isassumed to exist, in this example. 6

with Ada.Numerics.Float_Random; use Ada.Numerics.Float_Random;with Ada.Sequential_IO;procedure Checkpoint_Restart_Application isRNG : Generator;X : Float;RNG_State : State;type Run_Types is (Fresh_Start, Restart);Type_Of_This_Run : Run_Types;package State_IO is new Ada.Sequential_IO (State);use State_IO;State_File : File_Type;beginType_Of_This_Run := ...;case Type_Of_This_Run iswhen Fresh_Start =>Reset (RNG); -- Time-dependent resetwhen Restart =>Open (State_File, In_File, Name => ...);Read (State_File, RNG_State);Close (State_File);Reset (RNG, RNG_State); -- Reset from previously saved stateend case;...X := Random(RNG);...-- Checkpoint the generatorSave (RNG, RNG_State); -- Save current generator stateOpen (State_File, Out_File, Name => ...);Write (State_File, RNG_State);Close (State_File);end Checkpoint_Restart_Application;Figure 3: Example of checkpointing and restarting a generator state7

Figure 2, will have no need to declare variables of type State.Since State is a private type, there is no way to examine or manipulate astate that has been exported from a generator. However, in some circumstances,particularly in advanced applications, there may be a need to do so, as enun-ciated by the sixth design goal. For this purpose, we have provided Image andValue functions, which are functions that convert state values to string values,and vice versa. The named number Max_Image_Width gives an upper bound onthe size of the string representation of a state.Even though the string representation of a state is implementation de�ned,one can perform some tasks with these strings portably. For example, the stringscan be printed. Thus, if one observes aberrant behavior while using a symbolicdebugger for program testing, one can obtain the current state of a generator,print its image on the terminal, and write it down for later reference. Onecan reverse the process by entering interactively a valid state in its string form,converting it to the corresponding state, and then resetting a generator to thatstate.In more demanding applications, perhaps involving experimentation withrandom number generators, one can use information provided by the implemen-tation on how it maps between strings and states to construct an arbitrary stateby assembling the corresponding string. Note that the Value function must val-idate the string it is given, and must raise Constraint_Error if given a stringthat is not the image of a state. But this is the only time that state informationmust be checked for validity. In the more usual type of RNG design, the stateinformation is exposed and often de�ned in detail, thereby creating the possi-bility of corruption or, alternatively, requiring that the operation for generatingthe next random number validate the state each time it is invoked.The prede�ned discrete RNG package, Ada.Numerics.Discrete_Random,has an almost identical speci�cation (not shown here). The main di�erenceis that it is generic and must be instantiated with a discrete subtype beforeuse. It exports the same entities as Ada.Numerics.Float_Random, with theexception that its Random function delivers a value of the generic formal subtypeResult_Subtype, instead of the Uniformly_Distributed subtype of Float.Although it is not di�cult to convert, or map, oating-point random num-bers in the range 0.0 to 1.0 into integers in some range, or into the range ofany other discrete subtype, some subtleties arise at the endpoints 0.0 and 1.0with certain techniques. Ada.Numerics.Discrete_Random is provided partlyto head o� those potential problems and partly to allow implementations togain e�ciency, when the end goal is random integers, by staying entirely withinthe integer domain. Nevertheless, some unusual applications may not be wellserved by the discrete RNG package, because it cannot readily be used to gen-erate (say) random integers in a di�erent range on each call; the range of theRandom function is �xed at instantiation time. An application that has sucha requirement would be better o� generating random oating-point numbersand mapping them into the desired dynamically varying range. A note in the8

reference manual gives a reliable technique for performing that mapping. If FGis a oating-point generator and M has an integer value greater than zero, thenthe expression Integer(Float(M) * Random(FG)) mod M yields an integer uni-formly distributed in the range 0 to M� 1.References[1] L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Pseudo-RandomNumber Generator. SIAM Journal of Computing 15(2):364{383, 1986.[2] ISO/IEC DIS 8652. Information technology | Programming languages |Ada.[3] P. L'Ecuyer. E�cient and Portable Combined Random Number Generators.Communications of the ACM 31(6):742{749, 774, 1988.[4] P. A. Lewis, A. S. Goodman, and J. M. Miller. A Pseudo-Random NumberGenerator for the System/360. IBM System Journal 8(2):136{146, 1969.[5] G. Marsaglia and A. Zaman. A New Class of Random Number Generators.Annals of Applied Probability 1(3):462{480, 1991.[6] B. A. Wichmann and I. D. Hill. An E�cient and Portable Pseudo-RandomNumber Generator. Applied Statistics 31:188{190, 1982.
9

