ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

IMPACT OF PARTIAL SEPARABILITY ON LARGE-SCALE
OPTIMIZATION

Ali Bouaricha and Jorge J. Moré

Mathematics and Computer Science Division

Preprint MCS-P487-0195

January 1995
(Revised version)

October 1995

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and Technology Research, U.S. Depart-
ment of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation,
through the Center for Research on Parallel Computation, under Cooperative Agreement

No. CCR-9120008.

IMPACT OF PARTIAL SEPARABILITY ON LARGE-SCALE
OPTIMIZATION

Ali Bouaricha and Jorge J. Moré

Abstract

ELSO is an environment for the solution of large-scale optimization problems. With
ELSO the user is required to provide only code for the evaluation of a partially separable
function. ELSO exploits the partial separability structure of the function to compute the
gradient efficiently using automatic differentiation. We demonstrate ELSO’s efficiency
by comparing the various options available in ELSO. Our conclusion is that the hy-
brid option in ELSO provides performance comparable to the hand-coded option, while
having the significant advantage of not requiring a hand-coded gradient or the sparsity
pattern of the partially separable function. In our test problems, which have carefully
coded gradients, the computing time for the hybrid AD option i1s within a factor of two
of the hand-coded option.

1 Introduction

ELSO is an environment for the solution of large-scale minimization problems
min { fo(z):2 € R"}, (1.1)

where fo : R™ — IR is partially separable, that is, fo can be written as
folz) = file), (1.2)
=1

where each element function f; depends only on a few components of z, and m is the number
of element functions. Algorithms and software that take advantage of partial separability
have been developed for various problems (for example, [14, 19, 20, 17, 21, 22, 10]), but
this software requires that the user provide the gradient of fy. An important design goal of
ELSO is to avoid this requirement.

For small-scale problems we can approximate the gradient by differences of function

values, for example,

Jo(x + hie;) — fo(z)
h; ’

1 <2<,

[V fo(2)li ~

where h; is the difference parameter, and ¢; is the ¢-th unit vector, but this approximation

suffers from truncation errors, which can cause premature termination of an optimization

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38, and by the National Science Foundation, through the Center for Research on
Parallel Computation, under Cooperative Agreement No. CCR-9120008.

algorithm far away from a solution. We also note that, even for moderately sized problems
with n > 100 variables, use of this approximation is prohibitive because it requires n function
evaluations for each gradient. For these reasons, the accurate and efflicient evaluation of the
gradient is essential for the solution of optimization problems.

ELSO is able to solve large-scale unconstrained optimization problems, while requiring
only that the user provide the function in partially separable form. This is an important
advantage over standard software that requires the specification of the gradient and the

sparsity pattern of the partially separable function, that is,

S =A{(t,7): f; depends on z;} = {(4,7):0; fi(z) #0}. (1.3)

ELSO exploits the partial separability structure of the function to compute the gradient
efficiently by using automatic differentiation (AD). The current version of ELSO incorporates
four different approaches for computing the gradient of a partially separable function in the
context of large-scale optimization software. These approaches are hand-coded, compressed
AD, sparse AD, and hybrid AD. In our work we have been using the ADIFOR (Automatic
Differentiation of Fortran) tool [4, 6], and the SparsLinC (Sparse Linear Combination)
library [5, 6], but other differentiation tools can be used.

We demonstrate ELSQO’s efficiency by comparing the compressed AD, sparse AD, and
hybrid AD options with the hand-coded approach. Our conclusion is that the performance
of the hybrid AD option is comparable with the compressed AD option and that the per-
formance penalty over the hand-coded option is acceptable for carefully coded gradients.
In our test problems, which have carefully coded gradients, the computing time for the
hybrid AD option is within a factor of two of the hand-coded option. Thus, the hybrid AD
option provides near-optimal performance, while providing the significant advantage of not
requiring a hand-coded gradient or the sparsity pattern of the partially separable function.

We describe in Section 2 the different approaches used by ELSO to compute the gra-
dient of a partially separable function. In Section 3 we provide a brief description of the
MINPACK-2 large-scale problems and show how to convert these problems into partially
separable problems. In Section 4 we compare and analyze the performance of large-scale
optimization software using the different options available in ELSO. We present results for
both a superscalar architecture (IBM RS6000) and a vector architecture (Cray C90). Our
results on the Cray C90 are of special interest because they show that if the hand-coded gra-
dient does not run at vector speeds, the hybrid AD option can outperform the hand-coded

option. Finally, we present our conclusions in Section 5.

2 Computing Gradients in ELSO

In addition to hand-coded gradients, ELSO supports three approaches based on automatic

differentiation for computing the gradient of a partially separable function. In this section

we describe and compare these approaches.

ELSO relies on the representation (1.2) to compute the gradient of a partially separable
function. Given this representation of fy : R™ — IR, we can compute the gradient of fy by
noting that if the mapping f : R"™ — R™ is defined by

fi(z)
flz) = ; ; (2.1)
fm(2)
then the gradient V fy can be obtained by
Vfolz) = f’(w)Te, (2.2)

where e € R™ is the vector of all ones. The key observation is that the partial separability
of fo implies that the Jacobian matrix f’(z) is sparse, and thus automatic differentiation
techniques can be used to compute the gradient V fy efliciently. The aim is to compute the

gradient so that

T{V fo(z)} Q7 T{fo(2)}, (2.3)
MV fo(z)} < Dy M{fo(2)}, (2.4)

A IA

where T'{-} and M{-} denote computing time and memory, respectively, and Q, and Q,, are
small constants; if the function f; is defined by a discretization of a continuous problem, we
also wish the constants to be independent of the mesh size. Any automatic differentiation
tool can be used to compute f'(z) and thus the gradient of fy, but efficiency requires that
we insist on (2.3) and (2.4).

Automatic differentiation tools can be classified roughly according to their use of the
forward or the reverse mode of automatic differentiation. See, for example, the survey of
Juedes [16]. Automatic differentiation tools that use the forward mode generate code for
the computation of f'(2)V for any V€ R™P. If L{f} and M {f} are, respectively, the
number of floating-point operations and the amount of memory required by the computation

of f(z), then an AD-generated code employing the forward mode requires

L{f(x)Vy<@+3p) LS}, M{f()V]<(L+p) M{f},

floating-point operations and memory, respectively, to compute f'(z)V. For many large-
scale problems we can obtain the Jacobian matrix f/(2) by computing f'(2)V for a matrix
V € R™"*P with p small. Thus, in this case, an automatic differentiation tool based on the
forward mode satisfies (2.3) and (2.4). We elaborate on this point when we discuss the
compressed AD approach.

Automatic differentiation tools that use the reverse mode generate code for the compu-

tation of W7 f(z) for any W € R™*?. We can also use the reverse mode to compute f'(z),

but since the reverse mode reverses the partial order of program execution and remem-
bers (or recomputes) any intermediate result that affects the final result, the complexity
of the reverse mode is harder to predict. In general, the reverse mode requires O (L {f})
floating-point operations and up to O (L {f} + M {f}) memory, depending on the code. In
particular, there is no guarantee that (2.4) is satisfied. Griewank [11, 12] has discussed
how to improve the performance of the reverse mode, but at present the potential memory
demands of the reverse mode are a disadvantage. For additional information on automatic
differentiation, see the proceedings edited by Griewank and Corlis [13]; the paper of Iri [15]
is of special interest because he discusses the complexity of both the forward and the reverse
modes of automatic differentiation.

In ELSO we have used the ADIFOR [4, 6] tool and the SparsLinC library [5, 6] because,
from a computational viewpoint, they provide all the flexibility and efficiency desired on
practical problems. Indeed, Bischof, Bouaricha, Khademi, Moré [3] have shown that the
ADIFOR tool can satisfy (2.3) and (2.4) on large-scale variational problems.

We now outline the three approaches used by ELSO to compute the gradient of fy. As
we shall see, all these approaches have advantages and disadvantages in terms of ease of

use, applicability, and computing time.

2.1 Compressed AD Approach

In the compressed AD approach we assume that the sparsity pattern of the Jacobian matrix
f'(z) is known for all vectors 2 € D, where D is a region where all the iterates are known

to lie. For example, D could be the set

D={zeR": folz) < fo(zo)},

where zq is the initial starting point. Thus, in the compressed AD approach we assume
that the closure of the sparsity pattern is known. The sparsity pattern S(x) for f'(2) at a

given x € D is just the set of indices

S(x)={(i,7): [f'(2)]ij # 0};

the closure of the sparsity pattern of f/(2) in the region D is

J{S(z):2 € D}.

To determine the closure of the sparsity pattern, we are required to know how the function
fo depends on the variables. When f is given by (2.1), a pair (¢,7) is in the closure of the
sparsity pattern if and only if f; depends on z;. Hence, the closure of the sparsity pattern
is the sparsity pattern (1.3) of the partially separable function when x is restricted to lie in

D.

do j=1, n
grad(j) = 0.0
do k = jpntr(j), jpntr(j+1)-1
i = indrow(k)
grad(j) = grad(j) + c_fjac(i,ngrp(j))
enddo
enddo

Figure 2.1: Computing V fo(z) from the compressed Jacobian array c_fjac

Given the sparsity pattern of f/(2), we can determine the Jacobian matrix f'(x) if we
partition the columns of the Jacobian matrix into groups of structurally orthogonal columns,
that is, columns that do not have a nonzero in the same row position. In our work we employ
the partitioning software described by Coleman, Garbow, and Moré [8, 7].

Given a partitioning of the columns of f’(2) into p groups of structurally orthogonal
columns, we can determine the Jacobian matrix f/(2) by computing the compressed Jacobian
matrix f'(z)V, where V€ R™*P. There is a column of V' for each group, and the k-th column
is determined by setting the i-th component of v to one if the +th column is in the k-th
group, and to zero otherwise. For many sparsity patterns, the number of groups p is small
and independent of n. For example, if a matrix is banded with bandwidth 8 or if it can be
permuted to a matrix with bandwidth g, Coleman and Moré [9] show that p < 3.

The compressed Jacobian matrix contains all the information of the Jacobian matrix.
Given the compressed Jacobian matrix, we can recover f'(z)in a sparse data structure. We
can eliminate the storage and floating-point operations required to determine the sparse
representation of the Jacobian matrix f’(z), however, by computing the gradient of fy
directly from the compressed Jacobian array c_fjac and storing the result in the array
grad. This way of computing the gradient of fy is shown in the code segment in Figure
2.1. In this figure, indrow is the row index of the sparse representation of f'(z), and
jpntr specifies the locations of the row indices in indrow. The row indices for column j
are indrow(k), k = jpntr(j),...,jpntr(j+1)-1, and ngrp specifies the partition of the

columns of the sparse representation of f/'(2); column j belongs to group ngrp(j).

2.2 Sparse AD Approach

For the sparse AD approach we need an automatic differentiation tool that takes advantage
of sparsity when V' and most of the vectors involved in the computation of f/'(z)V are
sparse. We also require the sparsity pattern of f'(x)V as a by-product of this computation.
At present, the SparsLinC library [5, 6] is the only tool that addresses this situation, but

we expect that others will emerge.

The main advantage of the sparse AD approach over the compressed AD approach is
that no knowledge of the sparsity pattern is required. A disadvantage, however, is that
because of the need to maintain dynamic data structures for sparse vectors, the sparse AD
approach usually runs slower than the compressed AD approach.

Numerical results [3] with ADIFOR and SparsLinC show that the compressed AD ap-

proach outperforms the sparse AD approach on various architectures. In fact,
T{V fo(x) : sparse ADIFOR} = x T{V fo(2) : compressed ADIFORY},

where k satisfies

SPARC 10 IBM RS6000 Cray C90
3<k<8 6<k<20 15<k<45

These results show, for example, that the solution of an optimization problem with a rela-
tively expensive function evaluation is likely to require at least three times longer if we use
sparse ADIFOR instead of compressed ADIFOR. Of course, for the compressed AD option
we need to supply the sparsity pattern of the partially separable function.

Also note that the performance penalty of sparse ADIFOR is worst on superscalar
(IBM RS6000) and vector (Cray C90) architectures. Thus, for these architectures, there is
a stronger need to obtain the advantages of the sparse AD approach without giving up the

speed of the compressed AD approach.

2.3 Hybrid AD Approach

As stated in the introduction, an important design goal of ELSO is to avoid asking the user
to provide code for the evaluation of the gradient or the sparsity pattern of the partially
separable function. We can achieve this goal by using the sparse AD option. However, as
noted above, this imposes a heavy performance penalty on the user.

In an optimization algorithm we can avoid this performance penalty by first using the
sparse AD option, to obtain the sparsity pattern of the function, and then using the com-
pressed AD option. This strategy must be used with care. We should not use the sparse
AD option to obtain the sparsity pattern at the starting point because the starting point is
invariably special, and not representative of a general point in the region D of interest. In
particular, there are usually many symmetries in the starting point that are not necessarily
present in intermediate iterates.

We can also use the sparse AD option for a number of iterates until we feel that any
symmetries present in the starting point have been removed by the optimization algorithm.
This strategy is not satisfactory, however, because optimization algorithms tend to retain
symmetries for many iterations, possibly for all the iterates.

The current strategy in ELSO is to randomly perturb every component of the user’s

initial point, and compute the sparsity pattern at the perturbed point. This destroys any

Table 3.1: MINPACK-2 test problems

Name | Description of the Minimization Problems

EPT Elastic-plastic torsion problem

GL1 Ginzburg-Landau (1-dimensional) superconductivity problem
GL2 Ginzburg-Landau (2-dimensional) superconductivity problem
MSA Minimal surface area problem

0DC Optimal design with composite materials problem

PJB Pressure distribution in a journal bearing problem

SSC Steady-state combustion problem

symmetries in the original iterates, and the resulting sparsity pattern is likely to be the
closure of the sparsity pattern in D.

This strategy may fail if the closure of the sparsity pattern in a neighborhood of the
initial iterate is different from the sparsity pattern in a neighborhood of the solution. For
most optimization problems, this does not occur. Ifit occurs, however, failure does not occur
unless some entries in the current sparsity pattern are not present in the previous sparsity
pattern. The justification of this remark comes about by noting that the compressed AD
approach works provided the sparsity pattern of the Jacobian matrix f'(z) is a subset of
the sparsity pattern provided by the user. Of course, if the sparsity pattern provided by
the user is too large, then the number of groups p is likely to increase, leading to increased

memory requirements and some loss in efficiency in the computation of the gradient.

3 Partially Separable Test Problems

We used the test problems in the MINPACK-2 collection to compare the performance of a
large-scale optimization software employing the four approaches for computing the gradient
of a partially separable function described in Section 2. This collection is representative
of large-scale optimization problems arising from applications. Table 3.1 lists each test
problem with a short description; see [1] for additional information on these problems.
The optimization problems in the MINPACK-2 collection arise from the need to minimize

a function f of the form

o) = /D (z,0, Vo) dz, (3.1)

where D is some domain in either R or R?, and @ is defined by the application. In all cases
[is well defined if v : D — IR? belongs to H!(D), the Hilbert space of functions such that
v and ||Vv|| belong to L?(D).

Finite element approximations to these problems are obtained by minimizing f over the
space of piecewise linear functions v with values v; ; at 2z ;, 0 <7 <n, +1,0 <j <n,+1,

where z; ; € R? are the vertices of a triangulation of D with grid spacings h, and h,. The

vertices z; ; are chosen to be a regular lattice so that there are n, and n, interior grid
points in the coordinate directions, respectively. Lower triangular elements Ty, are defined
by vertices z; ;, zi41,5, %i,j+1, while upper triangular elements 7y are defined by vertices

%5y %i-1,j, %i,j—1. A typical triangulation is shown in Figure 3.1.

Figure 3.1: Triangulation of domain D

In a finite element formulation of the variational problem defined by (3.1), the unknowns
are the values v; ; of the piecewise linear function v at the vertices z; ;. The values v; ; are

obtained by solving the minimization problem
min Z (fj(v)—l— g](v)) veR"
(4,9

where Z{J]« and z’l,]j are the finite element approximation to the integrals

/ O(z,v,Vo)de, / O(z,v,Vo)de,
TL TU

respectively. Clearly, this is a partially separable problem because the element functions
L
]
tively. We can formulate this problem by setting

(v) and gj(v) depend only on the vertices v; ;, v;41,;, v; j41 and v; ;,vi_1 5, v j—1, respec-

2w (32)

fll{z(”)

In this case the number of element functions m =~ 2n. On the other hand, if we define

f1L,1(”) + fgl(”)
Foy=| Halo)+ flalv) |, (3.3)

the number of element functions m = n. Since the number of element functions differs for
(3.2) and (3.3), the number of groups p determined by the partitioning software [8, 7] is
likely to be different, and thus the computing times for the compressed Jacobian matrix
may depend on p. In our experience the computing time of formulation (3.2) is slightly
better than that of (3.3). Therefore, we used formulation (3.2) in the numerical results of
Section 4.

The problems in Table 3.1 are representative of a large class of optimization problems.
These problems share some common characteristics. The main characteristics are that
the computation of f requires order n flops and that the Jacobian matrix of f is sparse.
Moreover, the number of groups p determined by the partitioning software leads to an
almost dense compressed Jacobian matrix; the only exception is the GL2 problem, where
the compressed Jacobian matrix is 50% dense. We expect that our numerical results are

representative for any problem with these characteristics.

4 Numerical Results

Our aim in these experiments is to show that the performance of the hybrid AD option of
ELSO is comparable to the compressed AD option and that the performance penalty over
the hand-coded option is quite reasonable.

We chose a limited-memory variable metric method for these comparisons because codes
of this type are commonly used to solve large-scale optimization problems. These methods
are of the form

Thy1 = xp — o HyV f(2y),

where aj > 0 is the search parameter, and the approximation Hjy to the inverse Hessian
matrix is stored in a compact representation that requires only the storage of 2n, vectors,
where n, is chosen by the user. The compact representation of Hj; permits the efficient
computation of HyV f(x) in (8n, 4+ 1)n flops; all other operations in an iteration of the
algorithm require 11n flops.

We used the vmlm implementation of the limited-memory variable metric algorithm (see
Averick and Moré [2]), which is based on the work of Liu and Nocedal [18]. In all of our

tests we used n, = 5. Instead of using a termination test, such as

IVF(@)[| < 7V f(zo)ll,

we terminate after 100 iterations. This strategy is needed because optimization algorithms
that require many iterations for convergence are affected by small perturbations in the
function or the gradient, and, as a result, there may be large differences in the number of
iterations required for convergence when the different vmlm options of ELSO are used.

All computations were performed on two platforms: an IBM RS6000 (model 370) using

double-precision arithmetic, and a Cray C90 using single-precision arithmetic. The IBM

RS6000 architecture has a superscalar chip and a cache-based memory architecture. Hence,
this machine performs better when executing short vector operations, since these operations
fill the short pipes and take advantage of memory locality. The Cray C90 is a vector proces-
sor without a cache that achieves full potential when the code has long vector operations.
Without optimization of the source Fortran code, short vector loops and indirect addressing
schemes perform poorly.

Table 4.1 has the computing time ratios of the compressed AD and sparse AD function-
gradient evaluation to the hand-coded function-gradient evaluation on the IBM RS6000.
These results show that the use of the sparse AD gradient can lead to a significant degra-

dation in performance.

Table 4.1: Computing time ratios of the compressed AD and sparse AD function-gradient
evaluation to the hand-coded function-gradient evaluation on the IBM RS6000 with n =
10,000

Prob | Compressed AD | Sparse AD
EPT 3.6 44.5
GL1 8.5 164.3
GL2 5.7 34.9
MSA 1.8 14.5
0DC 3.2 22.8
PJB 4.5 54.7
SSC 2.6 19.8

Tables 4.2 and 4.3 compare the computing time for the compressed AD, sparse AD, and
hybrid AD options of vmlm to the computing time of the hand-coded option. The most
important observation that can be made from these tables is that the computing times
for the hybrid AD option are approximately the same as those for the compressed AD
option. The performance similarity between the hybrid AD option and the compressed AD
option is expected because the difference in cost between the two options is only one sparse
AD gradient evaluation and the partitioning of the columns of the Jacobian matrix into
groups of structurally orthogonal columns. Tables 4.2 and 4.3 show that the hybrid AD
option is clearly the method of choice because of its significant advantage of not requiring
a hand-coded gradient or the sparsity pattern of the partially separable function.

The ratios in Tables 4.2 and 4.3 are below the corresponding ratios in Table 4.1. This

result can be explained by noting that the ratios in Tables 4.2 and 4.3 can be expressed as

Tad + Talg

, 4.1
Thc + Talg ()

where Tyq, Ty14, and T}, are the computing times for the function and AD-generated gradi-

ent evaluation, the vmlm algorithm, and the function and hand-coded gradient evaluation,

10

Table 4.2: Computing time ratios of the compressed AD, sparse AD, and hybrid AD options
of vmlm to the hand-coded option on the IBM RS6000 with » = 10,000

Prob | Compressed AD | Sparse AD | Hybrid AD
EPT 2.6 19.1 2.8
GL1 2.3 17.6 2.5
GL2 2.6 12.6 2.8
MSA 1.6 10.0 1.7
0DC 2.0 10.0 2.1
PJB 3.2 15.9 3.4
SSC 2.2 13.1 2.3

Table 4.3: Computing time ratios of the compressed AD, sparse AD, and hybrid AD options
of vmlm to the hand-coded option on the IBM RS6000 with n = 40,000

Prob | Compressed AD | Sparse AD | Hybrid AD
EPT 2.8 19.2 3.0
GL1 2.3 17.6 2.5
GL2 2.8 12.2 2.9
MSA 1.7 10.1 1.9
0DC 2.1 10.0 2.2
PJB 3.3 14.8 3.4
SSC 2.3 13.3 2.4

respectively. Since T,4 > Th., we have

Tad + Talg < Tad
Thc + Talg - irhc7

which is the desired result. If T4 and T}, are the dominant costs, the ratio (4.1) should be
close to T, q/Th.. This can be seen in the results for the MSA and SSC problem, since these
are the two most expensive functions in the set.

Tables 4.2 and 4.3 also show that when we increase the problem dimension from n =
10,000 to » = 40,000, the corresponding compressed AD, sparse AD, and hybrid AD ratios
remain about the same. This observation can be explained by noting that the ratio (4.1)

can also be expressed as
TThc + Talg

Thc + Talg ’

where 7 is the ratio in Table 4.1. Since T}, and T,;, grow by approximately a factor of 4

(4.2)

when n changes from 10,000 to 40,000, the ratio (4.2) remains constant.

We present results only for the SSC and GL2 problems on the Cray C90. We selected
these problems because they have different characteristics. In particular, the number of
groups in the compressed AD approach is p = 3 for the SSC problem, while p = 9 for the
GL2 problem.

11

Table 4.4: Computing time ratios of the compressed AD and sparse AD function-gradient
evaluation to the hand-coded function-gradient evaluation on the Cray C90

Prob n Compressed AD | Sparse AD
GL2 10000 25.1 624.6
GL2 40000 28.3 694.4
SSC 10000 1.9 49.2
SSC 40000 1.9 49.4

Table 4.5: Computing time ratios of the compressed AD and hybrid AD options of vmlm to
the hand-coded option on the Cray C90

Prob n Compressed AD | Hybrid AD
GL2 10000 14.2 18.0
GL2 40000 16.9 20.3
SSC 10000 1.9 2.4
SSC 40000 1.9 2.4

Table 4.4 presents the computing time ratios of the compressed AD and sparse AD
function-gradient evaluation to the hand-coded function-gradient evaluation. The sparse
AD approach uses the indirect addressing and dynamic memory allocation of the SparsLinC
library [5, 6] and thus performs poorly on vector architectures [3]. As a result, the perfor-
mance of the sparse AD approach is far from being practical on the Cray. In the rest of
this section we present results only for the compressed and hybrid AD options.

Table 4.5 presents the computing time ratios of the compressed AD and hybrid AD
options of vmlm to the hand-coded option. These results show that the performance of the
hybrid AD option is comparable to that of the compressed AD option. On the other hand,
the performance of the compressed AD option relative to the hand-coded option is poor
for the GL2 problem. The reason for this poor performance is that the GL2 hand-coded
gradient fully vectorizes, while the compressed AD gradient does not vectorize. Hence, the
hand-coded gradient executes at vector speeds, while the compressed AD gradient executes
at scalar speeds. The situation is different for the SSC function. In this case, neither the
hand-coded gradient nor the compressed AD gradient vectorizes, so they both execute at
scalar speeds.

The poor performance of the compressed AD and hybrid AD options is due to the short
innermost loops of length p, where p is the number of groups in the compressed AD approach.
These loops are vectorizable, but when the compiler vectorizes only innermost loops, as is
the case of the Cray C90, the performance degrades. We can vectorize the compressed AD
gradient by strip-mining the computation of the gradient; that is, the gradient computation
is divided into strips and each strip computes the gradient with respect to a few components

of the independent variables. In the case of the compressed AD gradient, strip-mining can

12

Table 4.6: Computing time ratios of the compressed AD function-gradient evaluation (with
loop unrolling) to the hand-coded function-gradient evaluation on the Cray C90

Prob n Compressed AD
GL2 10000 13.3
GL2 40000 13.7
SSC 10000 0.4
SSC 40000 0.4

Table 4.7: Computing time ratios of the compressed AD and hybrid AD options of vmlm
(with loop unrolling) to the hand-coded option on the Cray C90

Prob n Compressed AD | Hybrid AD
GL2 10000 8.9 12.7
GL2 40000 10.0 13.4
SSC 10000 0.5 1.0
SSC 40000 0.5 1.0

be done conveniently via the seed matrix mechanism. A disadvantage of the strip-mining
approach is that the function is evaluated in every strip, resulting in a runtime overhead
of nstrips — 1 extra function evaluations, where nstrips is the number of strips. Using
strips of size 5 is appropriate for the Cray C90 because the compiler unrolls innermost loops
of length five or less, and, as a result, the loops that run over the grid points in the second
coordinate direction are vectorized.

There is one additional complication. Since the value of p is not known at compile
time, the Cray compiler cannot unroll a loop of length p even if the computed value of p
at runtime is less than or equal to five. We fix this problem by setting the upper bound
of the innermost loops to a fixed number at least equal to p but at most equal to 5. The
generation of the compressed AD gradients with a fixed upper bound of the innermost loops
can be done automatically by setting the appropriate ADIFOR flags [6].

The computing time ratios for the strip-mining approach (with loop unrolling) are shown
in Tables 4.6 and 4.7. The improvement is dramatic for both the compressed AD and hybrid
AD options. If we compare the results in Table 4.5 with those in Table 4.7, we find that
the computing time ratios are reduced by a factor of 1.6 for the GL2 problem and a factor
of 2 for the SSC problem.

Also note that the results in Tables 4.6 and 4.7 show that the compressed AD approach
performs better on the SSC problem than the hand-coded approach. The reason for this
is that the strip-mining in the compressed AD approach improves the performance of this
approach, while the hand-coded approach is still running at scalar speeds. These results
illustrate the important point that the compressed and hybrid AD approaches can run faster

than the hand-coded approach if the user does not provide a carefully coded gradient.

13

5 Conclusions

We have developed an environment for the solution of large-scale optimization problems,
ELSO, in which the user is required to provide only code for the evaluation of a partially
separable function. ELSO exploits the partial separability structure of the function to
compute the gradient efficiently using automatic differentiation.

Our test results show that the hybrid option in ELSO provides performance that is often
not more than two times slower than a well-coded hand-derived gradient on superscalar
architectures, while having the significant advantage of not requiring a hand-coded gradient

or the sparsity pattern of the partially separable function.

Acknowledgments

We wish to thank Christian Bischof and Peyvand Khademi for their assistance with the
ADIFOR tool and the SparsLinC library.

References

[1] B. M. AvERICK, R. G. CARTER, J. J. MoRE, AND G.-L. XUE, The MINPACK-2 test
problem collection, Technical Report ANL/MCS-TM-150, Revised, Mathematics and

Computer Science Division, Argonne National Laboratory, 1992.

[2] B. M. AVERICK AND J. J. MORE, Evaluation of large-scale optimization problems on
vector and parallel architectures, SIAM J. Optimization, 4 (1994), pp. 708-721.

[3] C. BiscHoFr, A. BouaricHa, P. KHADEMI, AND J. J. MoRE, Computing gradients
in large-scale optimization using automatic differentiation, Preprint MCS-P488-0195,
Argonne National Laboratory, Argonne, Illinois, 1995.

[4] C. Biscuor, A. CarLE, G. CorLIss, A. GRIEWANK, AND P. HovLanD, ADIFOR:
Generating derivative codes from Fortran programs, Scientific Programming, 1 (1992),
pp. 1-29.

[5] C. Biscuor, A. CARLE, AND P. KuaDEMI, Fortran 77 interface specification to the
SparsLinC' library, Technical Report ANL/MCS-TM-196, Argonne National Labora-
tory, Argonne, Illinois, 1994.

[6] C. Biscuor, A. CARLE, P. KuaDEMI, AND A. MAUER, The ADIFOR 2.0 system for
the automatic differentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-
gonne National Laboratory, Argonne, lllinois, 1994. Also available as CRPC-TR94491,

Center for Research on Parallel Computation, Rice University.

14

[7] T.F. CoLEMAN, B. S. GARBOW, AND J. J. MORE, Fortran subroutines for estimating
sparse Jacobian matrices, ACM Trans. Math. Software, 10 (1984), pp. 346-347.

[8] ——, Software for estimating sparse Jacobian matrices, ACM Trans. Math. Software,
10 (1984), pp. 329-345.

[9] T. F. CoLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph
coloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187-2009.

[10] A. R. Conn, N. I. M. GourLp, anp P. I.. ToinT, LANCELOT, Springer Series in
Computational Mathematics, Springer-Verlag, 1992.

[11] A. GRIEWANK, Achieving logarithmic growth of temporal and spatial complexity in
reverse communication, Optim. Methods Software, 1 (1992), pp. 35-54.

[12] ——, Some bounds on the complexity of gradients, Jacobians, and Hessians, in Com-
plexity in Nonlinear Optimization, P. Pardalos, ed., World Scientific Publishers, 1993,
pp. 128-161.

[13] A. GRIEWANK AND G. F. Coruiss, eds., Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, Society for Industrial and Applied Mathe-
matics, 1991.

[14] A. GRIEWANK AND P. L. ToiNT, Numerical experiments with partially separable op-
timization problems, in Numerical Analysis: Proceedings Dundee 1983, D. F. Griffiths,
ed., Lecture Notes in Mathematics 1066, Springer-Verlag, 1984.

[15] M. Ir1, History of automatic differentiation and rounding error estimation, in Auto-
matic Differentiation of Algorithms, A. Griewank and G. F. Corliss, eds., STAM, 1992,
pp. 3—16.

[16] D. JUEDES, A tazonomy of automatic differentiation tools,in Automatic Differentiation
of Algorithms: Theory, Implementation, and Application, A. Griewank and G. Corliss,
eds., STAM, 1991, pp. 315-329.

[17] M. LESCRENIER, Partially separable optimization and parallel computing, Ann. Oper.
Res., 14 (1988), pp. 213-224.

[18] D. C. Liv AND J. NOCEDAL, On the limited memory BFGS method for large scale
optimization, Math. Programming, 45 (1989), pp. 503-528.

[19] P. L. ToiNT, Numerical solution of large sets of algebraic nonlinear equations, Math.
Comp., 46 (1986), pp. 175-189.

15

[20] ——, On large scale nonlinear least squares calculations, STAM J. Sci. Statist. Comput.,
8 (1987), pp. 416-435.

[21] P. L. ToiNT AND D. TUYTTENS, On large-scale nonlinear network optimization,
Math. Programming, 48 (1990), pp. 125-159.

[22] ——, LSNNO: A Fortran subroutine for solving large-scale nonlinear network opti-
mization problems, ACM Trans. Math. Software, 18 (1992), pp. 308-328.

16

