
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
IMPACT OF PARTIAL SEPARABILITY ON LARGE-SCALEOPTIMIZATIONAli Bouaricha and Jorge J. Mor�eMathematics and Computer Science DivisionPreprint MCS-P487-0195January 1995(Revised version)October 1995

This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation,through the Center for Research on Parallel Computation, under Cooperative AgreementNo. CCR-9120008.

IMPACT OF PARTIAL SEPARABILITY ON LARGE-SCALEOPTIMIZATIONAli Bouaricha and Jorge J. Mor�eAbstractELSO is an environment for the solution of large-scale optimization problems. WithELSO the user is required to provide only code for the evaluation of a partially separablefunction. ELSO exploits the partial separability structure of the function to compute thegradient e�ciently using automatic di�erentiation. We demonstrate ELSO's e�ciencyby comparing the various options available in ELSO. Our conclusion is that the hy-brid option in ELSO provides performance comparable to the hand-coded option, whilehaving the signi�cant advantage of not requiring a hand-coded gradient or the sparsitypattern of the partially separable function. In our test problems, which have carefullycoded gradients, the computing time for the hybrid AD option is within a factor of twoof the hand-coded option.1 IntroductionELSO is an environment for the solution of large-scale minimization problemsmin ff0(x) : x 2 IRng ; (1:1)where f0 : IRn ! IR is partially separable, that is, f0 can be written asf0(x) = mXi=1 fi(x); (1:2)where each element function fi depends only on a few components of x, andm is the numberof element functions. Algorithms and software that take advantage of partial separabilityhave been developed for various problems (for example, [14, 19, 20, 17, 21, 22, 10]), butthis software requires that the user provide the gradient of f0. An important design goal ofELSO is to avoid this requirement.For small-scale problems we can approximate the gradient by di�erences of functionvalues, for example, [rf0(x)]i � f0(x+ hiei)� f0(x)hi ; 1 � i � n;where hi is the di�erence parameter, and ei is the i-th unit vector, but this approximationsu�ers from truncation errors, which can cause premature termination of an optimizationThis work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38, and by the National Science Foundation, through the Center for Research onParallel Computation, under Cooperative Agreement No. CCR-9120008.1

algorithm far away from a solution. We also note that, even for moderately sized problemswith n � 100 variables, use of this approximation is prohibitive because it requires n functionevaluations for each gradient. For these reasons, the accurate and e�cient evaluation of thegradient is essential for the solution of optimization problems.ELSO is able to solve large-scale unconstrained optimization problems, while requiringonly that the user provide the function in partially separable form. This is an importantadvantage over standard software that requires the speci�cation of the gradient and thesparsity pattern of the partially separable function, that is,S = f(i; j) : fi depends on xjg = f(i; j) : @jfi(x) 6� 0g : (1:3)ELSO exploits the partial separability structure of the function to compute the gradiente�ciently by using automatic di�erentiation (AD). The current version of ELSO incorporatesfour di�erent approaches for computing the gradient of a partially separable function in thecontext of large-scale optimization software. These approaches are hand-coded, compressedAD, sparse AD, and hybrid AD. In our work we have been using the ADIFOR (AutomaticDi�erentiation of Fortran) tool [4, 6], and the SparsLinC (Sparse Linear Combination)library [5, 6], but other di�erentiation tools can be used.We demonstrate ELSO's e�ciency by comparing the compressed AD, sparse AD, andhybrid AD options with the hand-coded approach. Our conclusion is that the performanceof the hybrid AD option is comparable with the compressed AD option and that the per-formance penalty over the hand-coded option is acceptable for carefully coded gradients.In our test problems, which have carefully coded gradients, the computing time for thehybrid AD option is within a factor of two of the hand-coded option. Thus, the hybrid ADoption provides near-optimal performance, while providing the signi�cant advantage of notrequiring a hand-coded gradient or the sparsity pattern of the partially separable function.We describe in Section 2 the di�erent approaches used by ELSO to compute the gra-dient of a partially separable function. In Section 3 we provide a brief description of theMINPACK-2 large-scale problems and show how to convert these problems into partiallyseparable problems. In Section 4 we compare and analyze the performance of large-scaleoptimization software using the di�erent options available in ELSO. We present results forboth a superscalar architecture (IBM RS6000) and a vector architecture (Cray C90). Ourresults on the Cray C90 are of special interest because they show that if the hand-coded gra-dient does not run at vector speeds, the hybrid AD option can outperform the hand-codedoption. Finally, we present our conclusions in Section 5.2 Computing Gradients in ELSOIn addition to hand-coded gradients, ELSO supports three approaches based on automaticdi�erentiation for computing the gradient of a partially separable function. In this section2

we describe and compare these approaches.ELSO relies on the representation (1.2) to compute the gradient of a partially separablefunction. Given this representation of f0 : IRn 7! IR, we can compute the gradient of f0 bynoting that if the mapping f : IRn 7! IRm is de�ned byf(x) = 0BB@ f1(x)...fm(x) 1CCA ; (2:1)then the gradient rf0 can be obtained byrf0(x) = f 0(x)Te; (2:2)where e 2 IRm is the vector of all ones. The key observation is that the partial separabilityof f0 implies that the Jacobian matrix f 0(x) is sparse, and thus automatic di�erentiationtechniques can be used to compute the gradient rf0 e�ciently. The aim is to compute thegradient so that Tfrf0(x)g �
T Tff0(x)g; (2.3)Mfrf0(x)g �
MMff0(x)g; (2.4)where Tf�g andMf�g denote computing time and memory, respectively, and
T and
M aresmall constants; if the function f0 is de�ned by a discretization of a continuous problem, wealso wish the constants to be independent of the mesh size. Any automatic di�erentiationtool can be used to compute f 0(x) and thus the gradient of f0, but e�ciency requires thatwe insist on (2.3) and (2.4).Automatic di�erentiation tools can be classi�ed roughly according to their use of theforward or the reverse mode of automatic di�erentiation. See, for example, the survey ofJuedes [16]. Automatic di�erentiation tools that use the forward mode generate code forthe computation of f 0(x)V for any V 2 IRn�p. If L ffg and M ffg are, respectively, thenumber of
oating-point operations and the amount of memory required by the computationof f(x), then an AD-generated code employing the forward mode requiresL �f 0(x)V 	 � (2 + 3p)L ffg ; M �f 0(x)V 	 � (1 + p)M ffg ;
oating-point operations and memory, respectively, to compute f 0(x)V . For many large-scale problems we can obtain the Jacobian matrix f 0(x) by computing f 0(x)V for a matrixV 2 IRn�p with p small. Thus, in this case, an automatic di�erentiation tool based on theforward mode satis�es (2.3) and (2.4). We elaborate on this point when we discuss thecompressed AD approach.Automatic di�erentiation tools that use the reverse mode generate code for the compu-tation of WTf 0(x) for any W 2 IRm�q . We can also use the reverse mode to compute f 0(x),3

but since the reverse mode reverses the partial order of program execution and remem-bers (or recomputes) any intermediate result that a�ects the �nal result, the complexityof the reverse mode is harder to predict. In general, the reverse mode requires O (L ffg)
oating-point operations and up to O (L ffg+M ffg) memory, depending on the code. Inparticular, there is no guarantee that (2.4) is satis�ed. Griewank [11, 12] has discussedhow to improve the performance of the reverse mode, but at present the potential memorydemands of the reverse mode are a disadvantage. For additional information on automaticdi�erentiation, see the proceedings edited by Griewank and Corlis [13]; the paper of Iri [15]is of special interest because he discusses the complexity of both the forward and the reversemodes of automatic di�erentiation.In ELSO we have used the ADIFOR [4, 6] tool and the SparsLinC library [5, 6] because,from a computational viewpoint, they provide all the
exibility and e�ciency desired onpractical problems. Indeed, Bischof, Bouaricha, Khademi, Mor�e [3] have shown that theADIFOR tool can satisfy (2.3) and (2.4) on large-scale variational problems.We now outline the three approaches used by ELSO to compute the gradient of f0. Aswe shall see, all these approaches have advantages and disadvantages in terms of ease ofuse, applicability, and computing time.2.1 Compressed AD ApproachIn the compressed AD approach we assume that the sparsity pattern of the Jacobian matrixf 0(x) is known for all vectors x 2 D, where D is a region where all the iterates are knownto lie. For example, D could be the setD = fx 2 IRn : f0(x) � f0(x0)g ;where x0 is the initial starting point. Thus, in the compressed AD approach we assumethat the closure of the sparsity pattern is known. The sparsity pattern S(x) for f 0(x) at agiven x 2 D is just the set of indicesS(x) = �(i; j) : [f 0(x)]i;j 6= 0	 ;the closure of the sparsity pattern of f 0(x) in the region D is[fS(x) : x 2 Dg :To determine the closure of the sparsity pattern, we are required to know how the functionf0 depends on the variables. When f is given by (2.1), a pair (i; j) is in the closure of thesparsity pattern if and only if fi depends on xj . Hence, the closure of the sparsity patternis the sparsity pattern (1.3) of the partially separable function when x is restricted to lie inD. 4

do j = 1, ngrad(j) = 0.0do k = jpntr(j), jpntr(j+1)-1i = indrow(k)grad(j) = grad(j) + c_fjac(i,ngrp(j))enddoenddoFigure 2.1: Computing rf0(x) from the compressed Jacobian array c fjacGiven the sparsity pattern of f 0(x), we can determine the Jacobian matrix f 0(x) if wepartition the columns of the Jacobian matrix into groups of structurally orthogonal columns,that is, columns that do not have a nonzero in the same row position. In our work we employthe partitioning software described by Coleman, Garbow, and Mor�e [8, 7].Given a partitioning of the columns of f 0(x) into p groups of structurally orthogonalcolumns, we can determine the Jacobian matrix f 0(x) by computing the compressed Jacobianmatrix f 0(x)V , where V 2 IRn�p. There is a column of V for each group, and the k-th columnis determined by setting the i-th component of vk to one if the i-th column is in the k-thgroup, and to zero otherwise. For many sparsity patterns, the number of groups p is smalland independent of n. For example, if a matrix is banded with bandwidth � or if it can bepermuted to a matrix with bandwidth �, Coleman and Mor�e [9] show that p � �.The compressed Jacobian matrix contains all the information of the Jacobian matrix.Given the compressed Jacobian matrix, we can recover f 0(x) in a sparse data structure. Wecan eliminate the storage and
oating-point operations required to determine the sparserepresentation of the Jacobian matrix f 0(x), however, by computing the gradient of f0directly from the compressed Jacobian array c fjac and storing the result in the arraygrad. This way of computing the gradient of f0 is shown in the code segment in Figure2.1. In this �gure, indrow is the row index of the sparse representation of f 0(x), andjpntr speci�es the locations of the row indices in indrow. The row indices for column jare indrow(k), k = jpntr(j),...,jpntr(j+1)-1, and ngrp speci�es the partition of thecolumns of the sparse representation of f 0(x); column j belongs to group ngrp(j).2.2 Sparse AD ApproachFor the sparse AD approach we need an automatic di�erentiation tool that takes advantageof sparsity when V and most of the vectors involved in the computation of f 0(x)V aresparse. We also require the sparsity pattern of f 0(x)V as a by-product of this computation.At present, the SparsLinC library [5, 6] is the only tool that addresses this situation, butwe expect that others will emerge. 5

The main advantage of the sparse AD approach over the compressed AD approach isthat no knowledge of the sparsity pattern is required. A disadvantage, however, is thatbecause of the need to maintain dynamic data structures for sparse vectors, the sparse ADapproach usually runs slower than the compressed AD approach.Numerical results [3] with ADIFOR and SparsLinC show that the compressed AD ap-proach outperforms the sparse AD approach on various architectures. In fact,Tfrf0(x) : sparse ADIFORg = � Tfrf0(x) : compressed ADIFORg;where � satis�es SPARC 10 IBM RS6000 Cray C903 � � � 8 6 � � � 20 15 � � � 45 .These results show, for example, that the solution of an optimization problem with a rela-tively expensive function evaluation is likely to require at least three times longer if we usesparse ADIFOR instead of compressed ADIFOR. Of course, for the compressed AD optionwe need to supply the sparsity pattern of the partially separable function.Also note that the performance penalty of sparse ADIFOR is worst on superscalar(IBM RS6000) and vector (Cray C90) architectures. Thus, for these architectures, there isa stronger need to obtain the advantages of the sparse AD approach without giving up thespeed of the compressed AD approach.2.3 Hybrid AD ApproachAs stated in the introduction, an important design goal of ELSO is to avoid asking the userto provide code for the evaluation of the gradient or the sparsity pattern of the partiallyseparable function. We can achieve this goal by using the sparse AD option. However, asnoted above, this imposes a heavy performance penalty on the user.In an optimization algorithm we can avoid this performance penalty by �rst using thesparse AD option, to obtain the sparsity pattern of the function, and then using the com-pressed AD option. This strategy must be used with care. We should not use the sparseAD option to obtain the sparsity pattern at the starting point because the starting point isinvariably special, and not representative of a general point in the region D of interest. Inparticular, there are usually many symmetries in the starting point that are not necessarilypresent in intermediate iterates.We can also use the sparse AD option for a number of iterates until we feel that anysymmetries present in the starting point have been removed by the optimization algorithm.This strategy is not satisfactory, however, because optimization algorithms tend to retainsymmetries for many iterations, possibly for all the iterates.The current strategy in ELSO is to randomly perturb every component of the user'sinitial point, and compute the sparsity pattern at the perturbed point. This destroys any6

Table 3.1: MINPACK-2 test problemsName Description of the Minimization ProblemsEPT Elastic-plastic torsion problemGL1 Ginzburg-Landau (1-dimensional) superconductivity problemGL2 Ginzburg-Landau (2-dimensional) superconductivity problemMSA Minimal surface area problemODC Optimal design with composite materials problemPJB Pressure distribution in a journal bearing problemSSC Steady-state combustion problemsymmetries in the original iterates, and the resulting sparsity pattern is likely to be theclosure of the sparsity pattern in D.This strategy may fail if the closure of the sparsity pattern in a neighborhood of theinitial iterate is di�erent from the sparsity pattern in a neighborhood of the solution. Formost optimization problems, this does not occur. If it occurs, however, failure does not occurunless some entries in the current sparsity pattern are not present in the previous sparsitypattern. The justi�cation of this remark comes about by noting that the compressed ADapproach works provided the sparsity pattern of the Jacobian matrix f 0(x) is a subset ofthe sparsity pattern provided by the user. Of course, if the sparsity pattern provided bythe user is too large, then the number of groups p is likely to increase, leading to increasedmemory requirements and some loss in e�ciency in the computation of the gradient.3 Partially Separable Test ProblemsWe used the test problems in the MINPACK-2 collection to compare the performance of alarge-scale optimization software employing the four approaches for computing the gradientof a partially separable function described in Section 2. This collection is representativeof large-scale optimization problems arising from applications. Table 3.1 lists each testproblem with a short description; see [1] for additional information on these problems.The optimization problems in theMINPACK-2 collection arise from the need to minimizea function f of the form f(v) = ZD �(x; v;rv)dx; (3:1)where D is some domain in either IR or IR2, and � is de�ned by the application. In all casesf is well de�ned if v : D 7! IRp belongs to H1(D), the Hilbert space of functions such thatv and krvk belong to L2(D).Finite element approximations to these problems are obtained by minimizing f over thespace of piecewise linear functions v with values vi;j at zi;j , 0 � i � ny + 1, 0 � j � nx + 1,where zi;j 2 IR2 are the vertices of a triangulation of D with grid spacings hx and hy. The7

vertices zi;j are chosen to be a regular lattice so that there are nx and ny interior gridpoints in the coordinate directions, respectively. Lower triangular elements TL are de�nedby vertices zi;j ; zi+1;j ; zi;j+1, while upper triangular elements TU are de�ned by verticeszi;j ; zi�1;j ; zi;j�1. A typical triangulation is shown in Figure 3.1.@@ @@@ @@@@@ @@@@@@ @@@@@@@@ @@@@@@@@ @@@@@@@@ @@@@@@ @@@@@ @@@ @@Figure 3.1: Triangulation of domain DIn a �nite element formulation of the variational problem de�ned by (3.1), the unknownsare the values vi;j of the piecewise linear function v at the vertices zi;j . The values vi;j areobtained by solving the minimization problemmin8<:X(i;j)�fLi;j(v) + fUi;j(v)� : v 2 IRn9=; ;where fLi;j and fUi;j are the �nite element approximation to the integralsZTL �(x; v;rv) dx; ZTU �(x; v;rv) dx;respectively. Clearly, this is a partially separable problem because the element functionsfLi;j(v) and fUi;j(v) depend only on the vertices vi;j ; vi+1;j ; vi;j+1 and vi;j ; vi�1;j ; vi;j�1, respec-tively. We can formulate this problem by settingf(v) = 0BBBBBBBBBBB@ fL1;1(v)fL1;2(v)...fU1;1(v)fU1;2(v)... 1CCCCCCCCCCCA : (3:2)In this case the number of element functions m � 2n. On the other hand, if we de�nef(v) = 0BB@ fL1;1(v) + fU1;1(v)fL1;2(v) + fU1;2(v)... 1CCA ; (3:3)8

the number of element functions m � n. Since the number of element functions di�ers for(3.2) and (3.3), the number of groups p determined by the partitioning software [8, 7] islikely to be di�erent, and thus the computing times for the compressed Jacobian matrixmay depend on p. In our experience the computing time of formulation (3.2) is slightlybetter than that of (3.3). Therefore, we used formulation (3.2) in the numerical results ofSection 4.The problems in Table 3.1 are representative of a large class of optimization problems.These problems share some common characteristics. The main characteristics are thatthe computation of f requires order n
ops and that the Jacobian matrix of f is sparse.Moreover, the number of groups p determined by the partitioning software leads to analmost dense compressed Jacobian matrix; the only exception is the GL2 problem, wherethe compressed Jacobian matrix is 50% dense. We expect that our numerical results arerepresentative for any problem with these characteristics.4 Numerical ResultsOur aim in these experiments is to show that the performance of the hybrid AD option ofELSO is comparable to the compressed AD option and that the performance penalty overthe hand-coded option is quite reasonable.We chose a limited-memory variable metric method for these comparisons because codesof this type are commonly used to solve large-scale optimization problems. These methodsare of the form xk+1 = xk � �kHkrf(xk);where �k > 0 is the search parameter, and the approximation Hk to the inverse Hessianmatrix is stored in a compact representation that requires only the storage of 2nv vectors,where nv is chosen by the user. The compact representation of Hk permits the e�cientcomputation of Hkrf(xk) in (8nv + 1)n
ops; all other operations in an iteration of thealgorithm require 11n
ops.We used the vmlm implementation of the limited-memory variable metric algorithm (seeAverick and Mor�e [2]), which is based on the work of Liu and Nocedal [18]. In all of ourtests we used nv = 5. Instead of using a termination test, such askrf(x)k � �krf(x0)k;we terminate after 100 iterations. This strategy is needed because optimization algorithmsthat require many iterations for convergence are a�ected by small perturbations in thefunction or the gradient, and, as a result, there may be large di�erences in the number ofiterations required for convergence when the di�erent vmlm options of ELSO are used.All computations were performed on two platforms: an IBM RS6000 (model 370) usingdouble-precision arithmetic, and a Cray C90 using single-precision arithmetic. The IBM9

RS6000 architecture has a superscalar chip and a cache-based memory architecture. Hence,this machine performs better when executing short vector operations, since these operations�ll the short pipes and take advantage of memory locality. The Cray C90 is a vector proces-sor without a cache that achieves full potential when the code has long vector operations.Without optimization of the source Fortran code, short vector loops and indirect addressingschemes perform poorly.Table 4.1 has the computing time ratios of the compressed AD and sparse AD function-gradient evaluation to the hand-coded function-gradient evaluation on the IBM RS6000.These results show that the use of the sparse AD gradient can lead to a signi�cant degra-dation in performance.Table 4.1: Computing time ratios of the compressed AD and sparse AD function-gradientevaluation to the hand-coded function-gradient evaluation on the IBM RS6000 with n =10; 000 Prob Compressed AD Sparse ADEPT 3.6 44.5GL1 8.5 164.3GL2 5.7 34.9MSA 1.8 14.5ODC 3.2 22.8PJB 4.5 54.7SSC 2.6 19.8Tables 4.2 and 4.3 compare the computing time for the compressed AD, sparse AD, andhybrid AD options of vmlm to the computing time of the hand-coded option. The mostimportant observation that can be made from these tables is that the computing timesfor the hybrid AD option are approximately the same as those for the compressed ADoption. The performance similarity between the hybrid AD option and the compressed ADoption is expected because the di�erence in cost between the two options is only one sparseAD gradient evaluation and the partitioning of the columns of the Jacobian matrix intogroups of structurally orthogonal columns. Tables 4.2 and 4.3 show that the hybrid ADoption is clearly the method of choice because of its signi�cant advantage of not requiringa hand-coded gradient or the sparsity pattern of the partially separable function.The ratios in Tables 4.2 and 4.3 are below the corresponding ratios in Table 4.1. Thisresult can be explained by noting that the ratios in Tables 4.2 and 4.3 can be expressed asTad + TalgThc + Talg ; (4:1)where Tad, Talg, and Thc are the computing times for the function and AD-generated gradi-ent evaluation, the vmlm algorithm, and the function and hand-coded gradient evaluation,10

Table 4.2: Computing time ratios of the compressed AD, sparse AD, and hybrid AD optionsof vmlm to the hand-coded option on the IBM RS6000 with n = 10; 000Prob Compressed AD Sparse AD Hybrid ADEPT 2.6 19.1 2.8GL1 2.3 17.6 2.5GL2 2.6 12.6 2.8MSA 1.6 10.0 1.7ODC 2.0 10.0 2.1PJB 3.2 15.9 3.4SSC 2.2 13.1 2.3Table 4.3: Computing time ratios of the compressed AD, sparse AD, and hybrid AD optionsof vmlm to the hand-coded option on the IBM RS6000 with n = 40; 000Prob Compressed AD Sparse AD Hybrid ADEPT 2.8 19.2 3.0GL1 2.3 17.6 2.5GL2 2.8 12.2 2.9MSA 1.7 10.1 1.9ODC 2.1 10.0 2.2PJB 3.3 14.8 3.4SSC 2.3 13.3 2.4respectively. Since Tad > Thc, we haveTad + TalgThc + Talg � TadThc ;which is the desired result. If Tad and Thc are the dominant costs, the ratio (4.1) should beclose to Tad=Thc. This can be seen in the results for the MSA and SSC problem, since theseare the two most expensive functions in the set.Tables 4.2 and 4.3 also show that when we increase the problem dimension from n =10; 000 to n = 40; 000, the corresponding compressed AD, sparse AD, and hybrid AD ratiosremain about the same. This observation can be explained by noting that the ratio (4.1)can also be expressed as rThc + TalgThc + Talg ; (4:2)where r is the ratio in Table 4.1. Since Thc and Talg grow by approximately a factor of 4when n changes from 10,000 to 40,000, the ratio (4.2) remains constant.We present results only for the SSC and GL2 problems on the Cray C90. We selectedthese problems because they have di�erent characteristics. In particular, the number ofgroups in the compressed AD approach is p = 3 for the SSC problem, while p = 9 for theGL2 problem. 11

Table 4.4: Computing time ratios of the compressed AD and sparse AD function-gradientevaluation to the hand-coded function-gradient evaluation on the Cray C90Prob n Compressed AD Sparse ADGL2 10000 25.1 624.6GL2 40000 28.3 694.4SSC 10000 1.9 49.2SSC 40000 1.9 49.4Table 4.5: Computing time ratios of the compressed AD and hybrid AD options of vmlm tothe hand-coded option on the Cray C90Prob n Compressed AD Hybrid ADGL2 10000 14.2 18.0GL2 40000 16.9 20.3SSC 10000 1.9 2.4SSC 40000 1.9 2.4Table 4.4 presents the computing time ratios of the compressed AD and sparse ADfunction-gradient evaluation to the hand-coded function-gradient evaluation. The sparseAD approach uses the indirect addressing and dynamic memory allocation of the SparsLinClibrary [5, 6] and thus performs poorly on vector architectures [3]. As a result, the perfor-mance of the sparse AD approach is far from being practical on the Cray. In the rest ofthis section we present results only for the compressed and hybrid AD options.Table 4.5 presents the computing time ratios of the compressed AD and hybrid ADoptions of vmlm to the hand-coded option. These results show that the performance of thehybrid AD option is comparable to that of the compressed AD option. On the other hand,the performance of the compressed AD option relative to the hand-coded option is poorfor the GL2 problem. The reason for this poor performance is that the GL2 hand-codedgradient fully vectorizes, while the compressed AD gradient does not vectorize. Hence, thehand-coded gradient executes at vector speeds, while the compressed AD gradient executesat scalar speeds. The situation is di�erent for the SSC function. In this case, neither thehand-coded gradient nor the compressed AD gradient vectorizes, so they both execute atscalar speeds.The poor performance of the compressed AD and hybrid AD options is due to the shortinnermost loops of length p, where p is the number of groups in the compressed AD approach.These loops are vectorizable, but when the compiler vectorizes only innermost loops, as isthe case of the Cray C90, the performance degrades. We can vectorize the compressed ADgradient by strip-mining the computation of the gradient; that is, the gradient computationis divided into strips and each strip computes the gradient with respect to a few componentsof the independent variables. In the case of the compressed AD gradient, strip-mining can12

Table 4.6: Computing time ratios of the compressed AD function-gradient evaluation (withloop unrolling) to the hand-coded function-gradient evaluation on the Cray C90Prob n Compressed ADGL2 10000 13.3GL2 40000 13.7SSC 10000 0.4SSC 40000 0.4Table 4.7: Computing time ratios of the compressed AD and hybrid AD options of vmlm(with loop unrolling) to the hand-coded option on the Cray C90Prob n Compressed AD Hybrid ADGL2 10000 8.9 12.7GL2 40000 10.0 13.4SSC 10000 0.5 1.0SSC 40000 0.5 1.0be done conveniently via the seed matrix mechanism. A disadvantage of the strip-miningapproach is that the function is evaluated in every strip, resulting in a runtime overheadof nstrips� 1 extra function evaluations, where nstrips is the number of strips. Usingstrips of size 5 is appropriate for the Cray C90 because the compiler unrolls innermost loopsof length �ve or less, and, as a result, the loops that run over the grid points in the secondcoordinate direction are vectorized.There is one additional complication. Since the value of p is not known at compiletime, the Cray compiler cannot unroll a loop of length p even if the computed value of pat runtime is less than or equal to �ve. We �x this problem by setting the upper boundof the innermost loops to a �xed number at least equal to p but at most equal to 5. Thegeneration of the compressed AD gradients with a �xed upper bound of the innermost loopscan be done automatically by setting the appropriate ADIFOR
ags [6].The computing time ratios for the strip-mining approach (with loop unrolling) are shownin Tables 4.6 and 4.7. The improvement is dramatic for both the compressed AD and hybridAD options. If we compare the results in Table 4.5 with those in Table 4.7, we �nd thatthe computing time ratios are reduced by a factor of 1.6 for the GL2 problem and a factorof 2 for the SSC problem.Also note that the results in Tables 4.6 and 4.7 show that the compressed AD approachperforms better on the SSC problem than the hand-coded approach. The reason for thisis that the strip-mining in the compressed AD approach improves the performance of thisapproach, while the hand-coded approach is still running at scalar speeds. These resultsillustrate the important point that the compressed and hybrid AD approaches can run fasterthan the hand-coded approach if the user does not provide a carefully coded gradient.13

5 ConclusionsWe have developed an environment for the solution of large-scale optimization problems,ELSO, in which the user is required to provide only code for the evaluation of a partiallyseparable function. ELSO exploits the partial separability structure of the function tocompute the gradient e�ciently using automatic di�erentiation.Our test results show that the hybrid option in ELSO provides performance that is oftennot more than two times slower than a well-coded hand-derived gradient on superscalararchitectures, while having the signi�cant advantage of not requiring a hand-coded gradientor the sparsity pattern of the partially separable function.AcknowledgmentsWe wish to thank Christian Bischof and Peyvand Khademi for their assistance with theADIFOR tool and the SparsLinC library.References[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G.-L. Xue, The MINPACK-2 testproblem collection, Technical Report ANL/MCS-TM-150, Revised, Mathematics andComputer Science Division, Argonne National Laboratory, 1992.[2] B. M. Averick and J. J. Mor�e, Evaluation of large-scale optimization problems onvector and parallel architectures, SIAM J. Optimization, 4 (1994), pp. 708{721.[3] C. Bischof, A. Bouaricha, P. Khademi, and J. J. Mor�e, Computing gradientsin large-scale optimization using automatic di�erentiation, Preprint MCS-P488-0195,Argonne National Laboratory, Argonne, Illinois, 1995.[4] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR:Generating derivative codes from Fortran programs, Scienti�c Programming, 1 (1992),pp. 1{29.[5] C. Bischof, A. Carle, and P. Khademi, Fortran 77 interface speci�cation to theSparsLinC library, Technical Report ANL/MCS-TM-196, Argonne National Labora-tory, Argonne, Illinois, 1994.[6] C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system forthe automatic di�erentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,Center for Research on Parallel Computation, Rice University.14

[7] T. F. Coleman, B. S. Garbow, and J. J. Mor�e, Fortran subroutines for estimatingsparse Jacobian matrices, ACM Trans. Math. Software, 10 (1984), pp. 346{347.[8] , Software for estimating sparse Jacobian matrices, ACM Trans. Math. Software,10 (1984), pp. 329{345.[9] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graphcoloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187{209.[10] A. R. Conn, N. I. M. Gould, and P. L. Toint, LANCELOT, Springer Series inComputational Mathematics, Springer-Verlag, 1992.[11] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity inreverse communication, Optim. Methods Software, 1 (1992), pp. 35{54.[12] , Some bounds on the complexity of gradients, Jacobians, and Hessians, in Com-plexity in Nonlinear Optimization, P. Pardalos, ed., World Scienti�c Publishers, 1993,pp. 128{161.[13] A. Griewank and G. F. Corliss, eds., Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application, Society for Industrial and Applied Mathe-matics, 1991.[14] A. Griewank and P. L. Toint, Numerical experiments with partially separable op-timization problems, in Numerical Analysis: Proceedings Dundee 1983, D. F. Gri�ths,ed., Lecture Notes in Mathematics 1066, Springer-Verlag, 1984.[15] M. Iri, History of automatic di�erentiation and rounding error estimation, in Auto-matic Di�erentiation of Algorithms, A. Griewank and G. F. Corliss, eds., SIAM, 1992,pp. 3{16.[16] D. Juedes, A taxonomy of automatic di�erentiation tools, in Automatic Di�erentiationof Algorithms: Theory, Implementation, and Application, A. Griewank and G. Corliss,eds., SIAM, 1991, pp. 315{329.[17] M. Lescrenier, Partially separable optimization and parallel computing, Ann. Oper.Res., 14 (1988), pp. 213{224.[18] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scaleoptimization, Math. Programming, 45 (1989), pp. 503{528.[19] P. L. Toint, Numerical solution of large sets of algebraic nonlinear equations, Math.Comp., 46 (1986), pp. 175{189. 15

[20] ,On large scale nonlinear least squares calculations, SIAM J. Sci. Statist. Comput.,8 (1987), pp. 416{435.[21] P. L. Toint and D. Tuyttens, On large-scale nonlinear network optimization,Math. Programming, 48 (1990), pp. 125{159.[22] , LSNNO: A Fortran subroutine for solving large-scale nonlinear network opti-mization problems, ACM Trans. Math. Software, 18 (1992), pp. 308{328.

16

