
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
COMPUTING GRADIENTS IN LARGE-SCALE OPTIMIZATIONUSING AUTOMATIC DIFFERENTIATIONChristian H. Bischof, Ali Bouaricha, Peyvand M. Khademi, Jorge J. Mor�eMathematics and Computer Science DivisionPreprint MCS-P488-0195January 1995(Final Revised Version)June 1996

Work supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Departmentof Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency underPurchase Order L25935D, and by the National Science Foundation, through the Center forResearch on Parallel Computation, under Cooperative Agreement No. CCR-9120008.

COMPUTING GRADIENTS IN LARGE-SCALE OPTIMIZATIONUSING AUTOMATIC DIFFERENTIATION�CHRISTIAN H. BISCHOF ALI BOUARICHA PEYVAND M. KHADEMIJORGE J. MOR�EMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439fbischof,bouarich,khademi,moreg@mcs.anl.govAbstractThe accurate and e�cient computation of gradients for partially separable functionsis central to the solution of large-scale optimization problems, since these functions areubiquitous in large-scale problems. We describe two approaches for computing gradientsof partially separable functions via automatic di�erentiation. In our experiments weemploy the ADIFOR (Automatic Di�erentiation of Fortran) tool and the SparsLinC(Sparse Linear Combination) library. We use applications from the MINPACK-2 testproblem collection to compare the numerical reliability and computational e�ciency ofthese approaches with hand-coded derivatives and approximations based on di�erencesof function values. Our conclusion is that automatic di�erentiation is the method ofchoice, providing code for the e�cient computation of the gradient without the needfor tedious hand-coding.The solution of nonlinear optimization problems often requires the computation of thegradient rf0 of a mapping f0 : IRn ! IR. If the number of variables n is moderate, we canapproximate the components of the gradient by di�erences of function values, for example,[rf0(x)]i � f0(x+ hiei)� f0(x)hi ; 1 � i � n; (1)where hi is the di�erence parameter, and ei is the i-th unit vector. However, for large-scale problems (even for moderately sized problems with n = 100 variables) use of thisapproximation is prohibitive because it requires n function evaluations for each gradient.Another reason to avoid the use of (1) is that truncation errors in this calculation can misleadan optimization algorithm and cause premature termination far away from a solution. Thus,algorithms for the solution of optimization problems avoid approximations of the gradientby di�erences, and insist on an accurate and e�cient evaluation of the gradient.In this paper we explore the use of automatic di�erentiation tools for the computationof rf0 when f0 : IRn 7! IR is partially separable, that is, f0 can be represented in the formf0(x) = mXi=1 fi(x); (2)where fi depends on pi � n variables. This class of functions, introduced by Griewank andToint [17, 18], plays a fundamental role in the solution of large-scale optimization problems1

since, as shown by Griewank and Toint, a function f0 is partially separable if the Hessianmatrix r2f0(x) is sparse.Algorithms and software that take advantage of the partially separable structure havebeen developed for various problems (see, for example, [14, 27, 19, 31, 32, 33, 34]). In thesealgorithms the partially separable structure is used mainly to approximate the (dense)Hessian matrices r2fi(x) by quasi-Newton methods. Partial separability is also used tocompute the gradient of f0 as the sum of the gradients of the element functions fi, but thisis just another method for hand-coding the gradient. In a related paper [11] we discuss theimpact of partial separability on optimization software.The key observation needed to compute the gradient of a partially separable functionis that if f0 : IRn 7! IR is de�ned by (2), and if the vector-valued function f : IRn 7! IRm isde�ned by f(x) = 0BB@ f1(x)...fm(x) 1CCA ; (3)then the gradient of f0 is given by rf0(x) = f 0(x)Te; (4)where f 0(x) is the Jacobian matrix of f at x, and e 2 IRm is the vector of all ones. At�rst sight this approach does not look promising because it requires the computation of theJacobian matrix f 0(x). However, for partially separable functions, fi depends on pi � nvariables, and thus f 0(x) is a sparse matrix. We use the sparsity of f 0(x) to show thatautomatic di�erentiation tools can compute the gradient rf0 so thatTfrf0(x)g �
T Tff0(x)g; (5)Mfrf0(x)g �
MMff0(x)g; (6)where Tf�g and Mf�g denote computing time and memory, respectively, and
T and
Mare constant. We also show that for partially separable functions that arise in applications,the constants
T and
M are independent of n, in contrast to the use of (1).The approach for computing the gradient of f0 using (3) and (4) was proposed by An-dreas Griewank and can be viewed as a special case of the results discussed by Griewank [21,Section 2]. Preliminary tests of this approach were done by Bischof and El-Khadiri [9]. Theresults in this paper show that this approach is not only feasible, but highly e�cient.A brief review of automatic di�erentiation, the ADIFOR (Automatic Di�erentiationof Fortran) tool [4, 6], and the SparsLinC (Sparse Linear Combination) library [5, 6] isprovided in the next section. Automatic di�erentiation techniques rely on the fact thatevery function, no matter how complicated, is executed on a computer as a potentially2

long sequence of elementary operations such as additions, multiplications, and elementaryfunctions (e.g., the trigonometric and exponential functions). By applying the chain ruleto the composition of those elementary operations, derivative information can be computedexactly and in a completely mechanical fashion [22, 28].In Section 2 we propose two approaches for the computation of the Jacobian matrixf 0(x). The �rst approach uses the sparsity pattern of f 0(x), graph-coloring techniques, andthe ADIFOR tool to obtain a compressed Jacobian matrix that contains all the informationneeded to determine the entire Jacobian matrix. The second approach uses ADIFOR withthe SparsLinC library to produce a sparse representation of the Jacobian matrix withouta priori knowledge of the sparsity pattern. In fact, the sparsity pattern is a byproduct ofthe ADIFOR/SparsLinC approach.Section 3 discusses the formulation of large-scale problems in terms of partially separablefunctions, and outlines the problems from the MINPACK-2 [1] collection of large-scaleproblems that we use to validate our approach. Experimental results with problems fromthe MINPACK-2 collection on Sun SPARC 10, IBM RS 6000 (model 370), and Cray C90platforms are presented in Section 4.Our results show that the compressed Jacobian approach with the ADIFOR automaticdi�erentiation tool generally outperforms di�erence approximations (to the compressed Ja-cobian matrix) in terms of computing time. We make no comparisons with the standarddi�erence approximation (1) because our results show that the approach based on (1) isroughly n times slower than the approach based on the compressed Jacobian matrix.The ADIFOR/SparsLinC approach obviates the need for the computation of the sparsitypattern and the compressed Jacobian matrix, but produces slower gradient code in our testproblems. This tradeo� between convenience and cost is not always an option. UsingADIFOR/SparsLinC is the only feasible approach for applications where it is desirableto relieve the user of the error-prone task of providing the sparsity pattern or where theassumption that the sparsity pattern of f 0(x) is independent of x does not hold.For both approaches based on automatic di�erentiation, (5) and (6) hold with constants
T and
M that depend on the number of columns p in the compressed Jacobian matrix.For many sparsity patterns, p is independent of n. For example, Coleman and Mor�e [13]show that p � � if there is a permutation of the Jacobian matrix with bandwidth �.The relationship between p and
M is mainly dependent on the problem. On scalar andvector architectures, the memory requirements for both approaches based on automaticdi�erentiation is comparable with the approach based on di�erence approximations, with
M somewhere between p and 12p.The relationship between p and
T depends on the approach used to compute thegradient, the architecture, and the problem. On scalar architectures, the ADIFOR tooloutperforms the approach based on di�erence approximations with
T � 2p; with the3

ADIFOR/SparsLinC approach
T � 30p. The performance of the various approaches onvector architectures is harder to predict as performance depends on the level of vectorizationin the approach for computing the gradient and the code that evaluates the problem. Onvector architectures, the performance of the ADIFOR tool is comparable with the approachbased on di�erence approximations, but the higher overhead in the indirect addressing usedby the ADIFOR/SparsLinC approach leads to a signi�cant degradation in performance.The performance of the various approaches also depends on the sparsity pattern, thevalue of p, and the cost of evaluating the function. In this paper we concentrated on sparsitypatterns where p = 3 and p = 8, but a similar study [1] of ADIFOR for computing sparseJacobian matrices shows that we can expect
T � 2p on scalar architectures for a widevariety of sparsity patterns with 7 � p � 19. In general we expect our results to hold forany sparsity pattern where p is independent of n.The cost of evaluating the function inuences the performance of the various approachesbecause if the function is not costly to evaluate, then the overhead associated with the var-ious approaches is noticeable. This can be seen in our results since the worst performanceof the approaches based on automatic di�erentiation is obtained on quadratic functions(see problems EPT and PJB in Section 4.3). In particular,
T � 10p with the ADI-FOR/SparsLinC approach if we omit the two quadratic functions.In terms of accuracy, both approaches based on automatic di�erentiation provide thegradient to full accuracy, while approximations based on di�erences always su�er fromtruncation errors and provide, at best, half the accuracy in the function evaluation. Weemphasize that the accuracy of the gradient in an optimization algorithm is of paramountimportance because the gradient is used to determine the search directions. An inaccurategradient can easily lead to false convergence.1 The ADIFOR Tool and the SparsLinC LibraryAutomatic di�erentiation [22, 28] (AD) is a chain-rule-based technique for evaluating thederivatives of functions de�ned by computer programs. AD produces code that, in theabsence of oating-point exceptions, computes the values of the analytical derivatives ac-curate to machine precision. AD avoids the truncation and cancellation errors inherent inapproximations of derivatives by di�erences of function values. Moreover, it is applicableto codes of arbitrary length containing branches, loops, and subroutine calls.The forward and reverse modes of automatic di�erentiation for computing the Jacobianmatrix of a mapping f : IRn 7! IRm are distinguished by how the chain rule is used to propa-gate derivatives through the computation. The forward mode accumulates the derivatives ofintermediate variables with respect to the independent variables x, whereas the reverse modepropagates the derivatives of the dependent variables y = f(x) with respect to intermediatevariables. 4

Given a seed matrix S with n rows and p columns, the forward mode generates code forthe computation of the directional derivativef 0(x)S: (7)Given the directional derivative f 0(x)S we can determine f 0(x) for suitable choices of theseed matrix S. Clearly, if we set S to the identity matrix of order n, then the Jacobianmatrix can be obtained directly from (7), but this requires p = n. We want to have p < nbecause this reduces the computing time of f 0(x)S, which is usually possible if f 0(x) issparse. For example, if the Jacobian matrix has the structuref 0(x) = 0BBBBBBB@ 44 3 3 3 2 1CCCCCCCA ;where symbols denote nonzeros, and zeros are not shown, then we can determine f 0(x) from(7) by setting the seed matrix to S = 0BBBBB@ 1 01 00 11 0 1CCCCCA :In this case p = 2. In general, each column of the seed matrix de�nes a group of structurallyorthogonal columns, that is, columns that do not have a nonzero in the same row position.The partitioning of the columns of f 0(x) into groups of structurally orthogonal columnscan be done with the techniques in Section 2. Given f 0(x), we compute the gradient of apartially separable function via (4),The complexity of the forward mode is rather predictable. If L ffg and M ffg are,respectively, the number of oating-point operations and the amount of memory required bythe computation of f(x), then an AD-generated code employing the forward mode requiresL �f 0(x)S	 � (2 + 3p)L ffg ; M �f 0(x)S	 � (1 + p)M ffg : (8)oating-point operations and memory, respectively, to compute f 0(x)S (see Griewank [21]).With the reverse mode, on the other hand, we can compute f 0(x)TQ where, Q is a seedmatrix with m rows and q columns. The reverse mode requires the ability to reversethe partial order of program execution and to remember (or recompute) any intermediateresult that nonlinearly a�ects the �nal result. As a result, the complexity of the reversemode is harder to predict. If no intermediate values are recomputed, a straightforward5

implementation of the reverse mode requires O (L ffg) oating-point operations and up toO (L ffg+M ffg) memory, depending on the nonlinearity of the code.The bounds in (8) are only theoretical and do not take into account the overhead in thegeneration of f 0(x)S. As we shall see in Section 4, the overhead in the various approachesto automatic di�erentiation is of crucial importance.The reverse mode is attractive when m is small. In particular, if m = 1, then f 0(x) isa gradient, and the reverse mode needs only O(L ffg) operations to compute f 0(x). Thestorage requirement of the reverse mode, however, can be a di�culty because of the possibledependence on L ffg+M ffg . Griewank [20] suggested a snapshot approach to circumventthis di�culty.There have been various implementations of automatic di�erentiation; an extensive sur-vey can be found in [25]. In particular, we mention GRESS [24], and PADRE-2 [26] forFortran programs and ADOL-C [23] for C programs. GRESS, PADRE-2, and ADOL-C im-plement both the forward and reverse modes. In order to save control ow information andintermediate values, these tools generate a trace of the computation by recording the partic-ulars of every operation performed in the code. The interpretation overhead associated withusing this trace for the purposes of automatic di�erentiation, as well as its potentially verylarge size, can be a serious computational bottleneck [30]. Recently, a source transformationapproach to automatic di�erentiation has been explored in the ADIFOR [4, 6], ADIC [10],AMC [16], and Odyssee [29] tools. ADIFOR transforms Fortran 77 code, ADIC transformsANSI-C code, and AMC and Odyssee transform a subset of Fortran 77. ADIFOR andADIC mainly use the forward mode, with the reverse mode at the statement level, whileAMC and Odyssee use the reverse mode.In our work, we employed the ADIFOR tool, which has been developed jointly by Ar-gonne National Laboratory and Rice University (see the World Wide Web siteshttp://www.mcs.anl.gov/adifor or http://www.cs.rice.edu/~adifor for additionalinformation on ADIFOR). Given a Fortran subroutine (or collection of subroutines) de-scribing a function, and an indication of which variables in parameter lists or commonblocks correspond to independent and dependent variables with respect to di�erentiation,ADIFOR produces Fortran 77 code that allows the computation of the derivatives of thedependent variables with respect to the independent variables.The workhorse of any mainly forward-mode �rst-order automatic di�erentiation ap-proach, such as employed in ADIFOR or ADIC, for computing the m directional derivativesin (7) is the vector linear combination kXi=1 �ivi; (9)where �i is a scalar, vi is a vector of length p, and k is usually less than 10. By default, thisoperation is implemented as a DO loop; and as long as p is of moderate size and the vectors6

are dense, this is an e�cient way of expressing a vector linear combination.The SparsLinC library [5, 6] addresses the situation where the seed matrix S is sparseand most of the vectors involved in the computation of f 0(x)S are sparse. This situationarises, for example, in the computation of large sparse Jacobian matrices, since the sparsityof the �nal Jacobian matrix implies that, with great probability, all intermediate derivativecomputations involve sparse vectors as well. SparsLinC implements routines for executingthe vector linear combination (9) using sparse data structures [6]. It is fully integratedinto ADIFOR and ADIC and provides a mechanism for transparently exploiting sparsity inderivative computations. SparsLinC does not require knowledge of the sparsity structure ofthe Jacobian matrix; indeed, the sparsity structure of the Jacobian matrix is a byproductof the derivative computation. The SparsLinC routines adapt to the particular situation athand, providing e�cient support for a wide variety of sparsity scenarios.2 Computing Gradients of Partially Separable FunctionsWe compute the gradient of a partially separable function as outlined in thee introduction:Given the element functions f1; : : : ; fm that de�ne the partially separable function (2), wecompute the Jacobian matrix f 0(x) of the vector-valued function f : IRn 7! IRm de�ned by(3). The gradient rf0(x) of the partially separable function is then obtained via (4); thatis, we add the rows of f 0(x). In this section we propose two techniques for computing theJacobian matrix.If the sparsity pattern of f 0(x) is known, then graph-coloring techniques can be used todetermine a seed matrix S so that the compressed Jacobian matrix f 0(x)S contains all theinformation needed to determine the entire Jacobian matrix f 0(x). The compressed Jacobianmatrix approach has long been used in connection with the determination of sparse Jacobianmatrices by di�erences of function values; see, for example, [13, 15]. As we mentionedin Section 1, the compressed Jacobian matrix approach requires the determination of apartitioning of the columns of f 0(x) into structurally orthogonal columns. Because of thestructural orthogonality property, we can uniquely extract all entries of the original Jacobianmatrix from the compressed Jacobian.The partitioning problem can be considered as a graph-coloring problem [13]. Givena graph representation of the sparsity structure of f 0(x), these algorithms produce a par-titioning of the columns of f 0(x) into p structurally orthogonal groups by graph-coloringalgorithms for the column-intersection graph associated with f 0(x). For many sparsity pat-terns, p is small and independent of n. For example, if a matrix is banded with bandwidth� or if it can be permuted to a matrix with bandwidth �, it can be shown [13] that p � �.In our experiments we employ the graph-coloring software described in [12] to determinean appropriate partition.In an optimization algorithm we invariably need to compute a sequence frf0(xk)g of7

gradients for some sequence fxkg of iterates. This step requires the computation of asequence of Jacobian matrices ff 0(xk)g. In most cases we need to do the graph-coloringonly once, since we can specify the closure of the sparsity pattern, that is, a sparsity patternthat, for every iterate xk , contains the sparsity pattern of ff 0(xk)g. If we are not able tospecify the closure of the sparsity pattern, the compressed Jacobian approach requires acall to the graph-coloring software at each iteration.By exploiting the capability to compute directional derivatives (7), we can easily com-pute compressed Jacobian matrices via automatic di�erentiation (for additional details, see[3]): Given the seed matrix S, ADIFOR-generated code computes the compressed Jacobianmatrix f 0(x)S. In contrast to the approximation techniques based on the compressed Jaco-bian matrix approach [13, 15], all columns of the compressed Jacobian matrix are computedat once.In many situations it is desirable to have a tool for the determination of f 0(x) that doesnot require knowledge of the sparsity pattern of f 0(x). This situation arises, for example,while developing interfaces for the solution of large-scale optimization problems [11], whereit is desirable to relieve the user of the error-prone task of providing the sparsity pattern.In these situations, a sparse implementation of automatic di�erentiation, such as providedby the ADIFOR/SparsLinC approach, is the only feasible approach.We use the term sparse ADIFOR for the approach based on the ADIFOR tool employ-ing the SparsLinC library for the computation of vector linear combinations of derivativeobjects. This approach is extremely simple. We run ADIFOR with instructions to generatecalls to SparsLinC. Then, at runtime, we set the seed matrix S to the identity matrix usingthe SparsLinC interface routines. No knowledge of the sparsity structure is required. Onthe other hand, this approach is likely to be slower than the compressed Jacobian approachbecause of the need to maintain dynamic data structures for the representation of the sparsevectors. We also note that, unlike the compressed Jacobian matrix approach, this approachis applicable to Jacobian matrices that have a few dense rows; SparsLinC will allocate afew long vectors for the dense rows and will maintain all others as short vectors.3 Test ProblemsA wide variety of large-scale optimization problems in applications can be formulated asvariational problems where we need to �nd a function v : D 7! IRp that minimizes afunctional of the form ZD �(x; v;rv)dx; (10)where D is some domain in IR2, and � is de�ned by the application.Finite element approximations to these problems are obtained by minimizing (10) overthe space of piecewise linear functions v with values vi;j at zi;j , 0 � i � ny+1, 0 � j � nx+1,8

where zi;j 2 IR2 are the vertices of a triangulation of D with grid spacings hx and hy. Thevertices zi;j are chosen to be a regular lattice so that there are nx and ny interior gridpoints in the coordinate directions, respectively. Lower triangular elements TL are de�nedby vertices zi;j ; zi+1;j ; zi;j+1, while upper triangular elements TU are de�ned by verticeszi;j ; zi�1;j ; zi;j�1. A typical triangulation is shown in Figure 1.@@ @@@ @@@@@ @@@@@@ @@@@@@@@ @@@@@@@@ @@@@@@@@ @@@@@@ @@@@@ @@@ @@Figure 1: Triangulation of domain DThe �nite element approximation to (10) is de�ned by the values vi;j of a piecewiselinear functions at zi;j . The values vi;j are obtained by solving the minimization problemmin8<:X(i;j)�fLi;j(v) + fUi;j(v)� : v 2 IRn9=; ; (11)where fLi;j and fUi;j are the �nite element approximation to the integrals in the elements TLand TU , respectively. This problem can be expressed in partially separable form by settingf(v) = 0BBBBBBBBBBB@ fL1;1(v)fL1;2(v)...fU1;1(v)fU1;2(v)... 1CCCCCCCCCCCA : (12)The Jacobian matrix of this mapping is sparse, since the element functions fLi;j(v) and fUi;j(v)depend only on vi;j ; vi+1;j ; vi;j+1 and vi;j ; vi�1;j ; vi;j�1, respectively, and thus the techniquespresented in Section 1 are directly applicable to the computation of the Jacobian matrix ofthis mapping.There are other ways to express problem (11) in partially separable form. For example,by accumulating the contributions of the lower triangular elements TL and TU , we obtainthe mapping f(v) = 0BB@ fL1;1(v) + fU1;1(v)fL1;2(v) + fU1;2(v)... 1CCA : (13)9

A di�erence between formulations (12) and (13) is that the number of element functionsm � 2n for (12), while m � n for (13). This implies, in particular, that the number ofgroups p determined by the graph-coloring software is likely to be di�erent, and thus thecomputing times for the compressed Jacobian matrix may depend on p. In our preliminaryexperience, however, the computing time of di�erent formulations did not di�er signi�cantly.We selected six problems from the MINPACK-2 test problem collection to comparethe di�erent approaches for computing the gradient of a partially separable function. Theselected problems are representative of large-scale optimization problems arising from ap-plications in superconductivity, optimal design, combustion, and lubrication. We give onlya brief description of two of these problems to illustrate the partially separable structure ofthese problems. For further information refer to [1].The Ginzburg-Landau (GL2) problem is of the form (10), where v : IR2 7! IR4. The �rsttwo components of v represent a complex-valued function : D 7! jC (the order parameter),and the other two components represent a vector-valued function A : D 7! IR2 (the vectorpotential). This problem has the formminff1() + f2(;A) : ;A 2 H10(D)g;where D is a two-dimensional region,f1() = ZD n�j (x)j2+ 12 j (x)j4o dx;f2(;A) = ZD �[r� iA(x)] (x)2 + �2(r�A)(x)2� dx;and � is the Ginzburg-Landau constant.The minimal surface area (MSA) problem is of the formminff(v) : v 2 Kg;where f : K 7! IR is the functionalf(v) = ZD �1 + krv(x)k2�1=2 dx;and the set K is de�ned byK = nv 2 H1(D) : v(x) = vD(x) for x 2 @Dofor the boundary data function vD : @D 7! IR that speci�es the Enneper minimal surface.These two problems are partially separable, but each code is structured distinctly, result-ing in a distinctly structured compressed Jacobian in each case (the other four MINPACK-2problems, SSC, EPT, ODC, and PJB, are all structurally identical to the MSA problem).10

Note that the Jacobian matrix of the MINPACK-2 problems is sparse. If nnz(f 0(x)) isthe number of nonzero entries in the Jacobian matrix, then for the GL2 problem we haven = 4nxny , m = n, and nnz(f 0(x)) � 4n, while for the MSA problem, we have n = nxny ,m � 2n, and nnz(f 0(x)) � 6n. On the other hand, the compressed Jacobian matrix isalmost dense. For the GL2 problem (where p = 8), the compressed Jacobian turns out tobe 50% dense, whereas for the MSA problem (where p = 3), the compressed Jacobian isalmost completely dense. As we shall see, respectively in Sections 4.2 and 4.3, this variancein densities impacts the memory requirements and computing time performance of theADIFOR/SparsLinC approach relative to that of the ADIFOR approach.4 Experimental ResultsWe compare four methods for the computation of the gradient of a partially separable func-tion: hand-coded derivative (HC), approximation of the compressed Jacobian matrix withfunction di�erences (FD), computation of the compressed Jacobian matrix with ADIFOR(AD), and computation of the full Jacobian matrix with ADIFOR/SparsLinC (Sparse AD).Our aim is to compare these methods with the cost of computing the function (F) andto show that in all cases (5) and (6) hold with constants
T and
M that are small andindependent of n.Experiments were performed on Sun SPARC 10, an IBM RS 6000 (model 370), and aCray C90. The Fortran compiler was used with all optimization options enabled (on theSun, we employed F77 version 1.4 with the -O option; on the IBM, XLF version 3.1.2.3 withthe -O option; and on the Cray, CFT77 version 6.0.3.20 with the -O inline3 -Oscalar3 -Otask0 -O vector3 -Wf\-dp" options). All computations were done with 64-bit arithmetic.The MINPACK-2 problems were used as a test set because the availability of hand-codedgradients provides a metric in terms of accuracy, computing time, and memory requirements.The emphasis of our work is to show the e�ectiveness of automatic di�erentiation tools forcomputing gradients, given that for many problems hand-coding of derivatives is non-trivialand prohibitive in cost.4.1 Numerical AccuracyIn terms of numerical accuracy, the approaches based on automatic di�erentiation wereaccurate to near machine precision, while the approach based on function di�erences wereaccurate up to at most half of the number of possible signi�cant digits. We do not elaboratefurther on this point because this contrast in accuracies between automatic di�erentiationand function di�erences shows consistency with previously published work [3] on the com-putation of sparse Jacobian matrices with automatic di�erentiation.11

Table 1: Memory Requirements for GL2 (n = 160; 000, p = 8)Platform F FD FD/F AD AD/F Sparse AD Sparse AD/FSPARC / IBM 2.59 31.39 12.1 48.13 18.6 38.65 15.0Cray C90 3.07 42.76 13.9 59.50 19.4 59.74 19.5Table 2: Memory Requirements for MSA (n = 160; 000, p = 3)Platform F FD FD/F AD AD/F Sparse AD Sparse AD/FSPARC / IBM 2.57 34.68 13.5 33.38 13.0 39.64 15.4Cray C90 2.99 49.19 16.5 47.90 16.0 60.37 20.2Table 3: Memory Requirements for SSC, EPT, ODC, or PJB (n = 160; 000, p = 3)Platform F FD FD/F AD AD/F Sparse AD Sparse AD/FSPARC / IBM 1.29 33.38 25.8 32.09 24.8 38.55 29.9Cray C90 1.72 47.91 27.9 46.61 27.1 59.39 34.94.2 Memory RequirementsTables 1 and 2 present, respectively for the GL2 and MSA problems, the total memoryrequired for the computation of the function as well as the various gradient methods, forthe case of n = 160; 000 variables. The remaining four problems have identical memoryrequirements to each other; these are shown in Table 3.We measured memory with the Unix command size executable-�le, which reports thetotal amount of statically allocated memory (memory requirements that can be assessed atcompile time) needed to load and run the executable. In the case of SparsLinC, where mem-ory is also allocated dynamically, we call a SparsLinC routine that reports the total amountof dynamically allocated memory, and we add this to the statically allocated memory.The AD and FD approaches have similar memory requirements for the gradient com-putation. In both cases, memory requirements for the compressed Jacobian matrix areproportional to the product mp, where m is the number of component functions of f , and pis the number of groups determined by the graph-coloring algorithm. Sparsity pattern andgraph-coloring computations, present in both approaches, require memory proportional tonnz(f 0(x)), the total number of nonzeros in the Jacobian matrix. Each approach also hassome distinct memory requirements which account for the di�erences between the two inTables 1{3.For the Sparse AD approach, much of the memory is allocated dynamically and based12

Table 4: Memory Increase Factor
MSPARC/IBM Cray C90FD p �
M � 9p 2p �
M � 9pAD 2p �
M � 8p 2p �
M � 9pSparse AD 2p �
M � 10p 2p �
M � 12pon the need to represent nonzero derivative information. Certainly, the memory neededfor representing the sparse Jacobian matrix has a lower bound of nnz(f 0(x)). Beyond this,SparsLinC requires additional memory for internal representations as explained in [8].The �rst column in Tables 1{3 shows the memory required for running the originalfunction. Memory requirements for the hand-coded MINPACK-2 gradient codes are notshown separately, but are always between a factor of 1.5{2 times the memory requirements ofthe corresponding function. The next three double columns show the memory requirementsof the FD, AD, and Sparse AD approaches in megabytes (Mbytes) and as the ratio ofgradient to function memory requirements. The memory requirements on the SPARC 10and IBM RS 6000 are identical, while the Cray C90 requires more memory because theCray default length for integer variables is 64 bits, whereas it is 32 bits on the workstationplatforms. This is particularly noticeable for the Sparse AD approach, which maintainsinteger arrays for sparse vector data structures.The results in Tables 1{3 show that the memory requirements of the di�erent gradientcomputations are 12{35 times those of the corresponding function computations.The memory requirements can also be measured in terms of the possible range of theconstant
M in (6). Table 4 shows that
M is a small multiple of p. In these results we haverounded the coe�cients of p to the nearest integer, since we are interested only in generaltrends.All three approaches are comparable in terms of memory requirements. The worstperformance is obtained for the problems in Table 3 because the function codes for theseproblems are relatively simple and require only the storage of the vector x. The resultsfor the GL2 and MSA problems are more representative because these problems have workarrays in the function code. In general we expect the Sparse AD approach to require lessmemory than AD when the compressed Jacobian matrix is sparse. Indeed, the SparseAD approach requires about 20% less memory on the workstation platforms for the GL2problem, where the compressed Jacobian matrix is 50% sparse.13

Table 5: Gradient-to-Function Runtime Ratios for Sparse AD on the Cray C90n 10,000 40,000 90,000 160,000GL2 1,390 1,790 1,710 1,790MSA 70.7 72.1 72.2 72.64.3 Computing TimeFigure 2 summarizes the GL2 and MSA results for the SPARC 10, IBM RS 6000 and CrayC90. Each �gure shows the gradient-to-function computing time ratio for each of the fourmethods for computing the gradient. We have included data for problems with n = 2; 500variables to n = 160; 000. The solid line indicates the Sparse AD approach, the dottedline the AD approach, the dashed line the FD approach, and the dash-dotted line is thehand-coded derivatives (HC).The main conclusion that can be drawn from Figure 2 is that the gradient-to-functioncomputing time ratio is independent of the problem size for these two problems. This isan important aspect of these results, since our main goal is to avoid the cost of n functionevaluations for approximating the gradient by di�erences of function values. The gradient-to-function ratios for SparsLinC on the Cray C90 are not shown in Figure 2 because inclusionof these ratios would distort the plots. Table 5 show that these ratios, though larger, arealso independent of n.We are also interested in the ratio of computing times between the various approachesand their relation to the time required for the coloring preprocessing step. These ratiosappear in Table 6 for all the problems under consideration, but only for n = 160; 000. Theplots in Figure 2 show that these ratios are essentially independent of the number n ofvariables, and thus the results in Table 6 are representative for any reasonable number ofvariables.Before we analyze the runtime results, we briey summarize important features of theunderlying architectures. The SPARC 10 essentially has a scalar processor and a at mem-ory hierarchy. Hence, vector operations execute only marginally faster, and memory locality(that is, the reuse of data and the accessing of adjacent memory locations) is not much of anissue. In contrast, the IBM RS 6000 architecture employs a superscalar chip and a cache-based memory architecture. Hence, this machine performs better if executing short vectoroperations, since these operations can �ll the short pipes and take advantage of memorylocality. On the other hand, indirect addressing, used extensively in SparsLinC and in thecoloring algorithm, while fairly inconsequential on the SPARC, may lead to performancedegradation, as memory locality su�ers. The Cray C90 is a vector processor without a cache14

SPARC 10
0 0.5 1 1.5 2

x 10
5

0

10

20

30
2−D Ginsburg−Landau (GL2)

Problem Size

G
ra

di
en

t−
to

−F
un

ct
io

n
Ra

tio

0 0.5 1 1.5 2

x 10
5

0

5

10

15

20
Minimal Surface Area (MSA)

Problem Size

G
ra

di
en

t−
to

−F
un

ct
io

n
Ra

tioSparse ADFDADHC Sparse ADFDADHCIBM RS 6000
0 0.5 1 1.5 2

x 10
5

0

20

40

60
2−D Ginsburg−Landau (GL2)

Problem Size

G
ra

di
en

t−
to

−F
un

ct
io

n
Ra

tio

0 0.5 1 1.5 2

x 10
5

0

10

20

30

40
Minimal Surface Area (MSA)

Problem Size

G
ra

di
en

t−
to

−F
un

ct
io

n
Ra

tioSparse ADFDADHC Sparse ADFDADHCCray C90
0 0.5 1 1.5 2

x 10
5

0

20

40

60

80
2−D Ginsburg−Landau (GL2)

Problem Size

G
ra

di
en

t−
to

−F
un

ct
io

n
Ra

tio

0 0.5 1 1.5 2

x 10
5

1

2

3

4

5
Minimal Surface Area (MSA)

Problem Size

G
ra

di
en

t−
to

−F
un

ct
io

n
Ra

tioADFDHC FDADHCFigure 2: Ratios of computing times between the gradient and the function. FD (dashed),AD (dotted), Sparse AD (solid), HC (dash-dotted)15

Table 6: Coloring-to-Function and Gradient-to-Function Runtime Ratios (n = 160; 000)Ginzburg-Landau (GL2) problem (p = 8)Platform Coloring HC FD AD Sparse ADSPARC 10 18.36 2.52 12.00 8.58 23.50IBM RS 6000 36.24 1.78 12.70 7.58 47.30Cray C90 664.29 2.05 27.40 67.70 1790.00Minimal Surface Area (MSA) problem (p = 3)Platform Coloring HC FD AD Sparse ADSPARC 10 7.18 1.55 4.98 3.74 16.30IBM RS 6000 11.62 2.09 4.77 2.90 30.20Cray C90 12.57 1.54 4.45 3.28 72.60Steady State Combustion (SSC) problem (p = 3)Platform Coloring HC FD AD Sparse ADSPARC 10 4.43 1.28 4.63 3.08 18.00IBM RS 6000 5.58 1.48 4.39 2.12 26.50Cray C90 86.51 18.00 7.54 33.60 902.00Optimal Design with Composites (ODC) problem (p = 3)Platform Coloring HC FD AD Sparse ADSPARC 10 5.35 1.28 4.79 3.37 15.70IBM RS 6000 7.68 1.43 4.55 2.56 26.30Cray C90 10.25 2.09 4.41 4.95 77.60Elastic-Plastic Torsion (EPT) problem (p = 3)Platform Coloring HC FD AD Sparse ADSPARC 10 13.24 1.59 5.99 5.67 43.80IBM RS 6000 23.88 2.50 5.71 4.46 87.70Cray C90 331.98 25.5 17.50 63.30 2800.00Pressure in a Journal Bearing (PJB) problem (p = 3)Platform Coloring HC FD AD Sparse ADSPARC 10 12.64 1.92 5.82 5.06 25.20IBM RS 6000 18.24 2.13 5.53 4.06 41.50Cray C90 204.63 64.70 12.20 39.10 1260.0016

and achieves its full potential only when the code exhibits long vector operations. Withoutoptimization of the source Fortran code, short vector loops and indirect addressing schemesexhibit much lower performance, since the hardware pipes cannot get �lled and the speedof main memory is much slower than that of the CPU.Based on the architectures used in our testing, we expect computing times to be stableand predictable on workstation platforms but expect that vectorization issues will cause alarge variation in computing times on vector architectures. Our experimental results bearout these expectations.As expected, the hand-coded derivative code is the fastest on the scalar architectures.For the results in Table 6 we haveT frf0(x) : HCg � 3Tff0g; (14)where T frf0(x) : �g is the time required to compute the gradient of the partially separablefunction by a particular method. The above ratio can be expected for well-coded gradientcomputations on scalar architectures but requires special techniques on vector and parallelarchitectures [2].On vector architectures we can expect the ratio (14) to hold only if both the functionand the gradient evaluation codes vectorize or if neither code vectorizes. An examinationof Cray C90 results shows that only the MSA and ODC function evaluation codes fail tovectorize, and that the GL2 hand-coded gradient evaluation code is the only HC code thatvectorizes. Our results support this remark because we obtain a high gradient-to-functionruntime ratio only on problems where only the function evaluation code vectorizes (i.e.,SSC, EPT, and PJB).The results in Table 6 show that the AD approach outperforms the FD approach onscalar architectures. The performance of the various approaches on vector architectures isharder to predict as performance depends on the delicate interplay between the code andthe compiler (for examples, see [7, 11]). Note that the results in Table 6 show that theperformance of AD is comparable to that of FD on the Cray C90 for those problems (MSAand ODC) where the function evaluation code fails to vectorize.Our numerical results also show that the AD approach outperforms the Sparse ADapproach on all the architectures. From the results in Table 6 we can observe thatTfrf0(x) : Sparse ADIFORg � � Tfrf0(x) : ADIFORg;where � satis�es SPARC 10 IBM RS 6000 Cray C903 � � � 8 6 � � � 20 15 � � � 45 .In all our experiments with the exception of the GL2 problem, the compressed Jacobianis almost fully dense. It is not surprising that AD outperforms Sparse AD on these problems,17

Table 7: Time Increase Factor
TSPARC 10 IBM RS 6000 Cray C90FD p �
T � 2p p �
T � 2p p �
T � 6pAD p �
T � 2p p �
T � 2p p �
T � 20pSparse AD 3p �
T � 15p 6p �
T � 30p 25p �
T � 930pgiven that the runtime e�ciency of SparsLinC is expected to become apparent for problemsthat have much sparser compressed Jacobians. Note that Sparse AD performs much betteron the GL2 problem, where the compressed Jacobian is 50% sparse, compared with theother problems.We can compare the performance of the various approaches by computing the range forthe constant
T in (5) as a function of p. These results, with the coe�cients of p roundedto the nearest integer, are shown in table 7.This table shows that in most cases
T is a small multiple of p.We note the wide variation in
T for FD and AD on the vector architecture owingto the code-dependent e�ects of vectorization, as already discussed. We also note thelarge variation in
T for the Sparse AD results on the SPARC 10. This results fromthe way SparsLinC exploits the particular sparsity characteristics of each problem (thisissue is explored in [8]). Finally, we note that the performance of Sparse AD degradeson vector computers, as a result of pervasive use of indirect addressing and lack of vectorinstructions, though this performance could be improved through the use of hardware-supported gather/scatter instructions.Table 6 also compares the cost of the graph coloring algorithm with the cost of computingthe function. The high relative cost of computing the graph coloring is mainly a reectionof the low cost of computing the functions for these problems. We can justify this remarkby noting that evaluation of the component functions for the GL2, EPT, and PJB problemsonly require the evaluation of a low-order polynomial and, that for these problems, thecoloring-to-function runtime ratio is high. On the other hand, the problems with a lowcoloring-to-function runtime ratio are relatively expensive to evaluate; the SSC problemrequires the evaluation of the exponential function, while the MSA and SSC problemsrequire a square root.Another reason for the high relative cost of computing the graph coloring is that thealgorithm we employ (subroutine DSM from Coleman, Garbow, and Mor�e [12]) is intendedto produce graph colorings with a small p by employing several heuristics. The runtime ofsubroutine DSM could be reduced by a factor of two or more without a substantial increasein p by only using one of the heuristics. Also note that the graph coloring algorithms share18

many of the characteristics of Sparse AD with respect to indirect addressing and memorylocality, and thus the performance of the coloring algorithm deteriorates on the RS 6000and C90 platforms.5 ConclusionsWe have shown that automatic di�erentiation outperforms di�erence approximations ofderivatives and o�ers high numerical accuracy without the need for hand-coding. Theapproach based on the compressed Jacobian matrix with the ADIFOR tool produces codethat is often not more than four times slower than a well-coded hand-derived gradientcode on scalar architectures. This approach, however, requires the sparsity pattern of thepartially separable function.The approach based on the ADIFOR/SparsLinC tool set is the ultimate in convenience,as not even the sparsity pattern of the underlying Jacobian matrix is needed. In fact, thesparsity pattern is a byproduct of the ADIFOR/SparsLinC approach. On the other hand,this approach is considerably slower, particularly on vector architectures.AcknowledgmentsWe thank Andreas Griewank for stimulating discussions on the subject and Alan Carlefor his instrumental role in the ADIFOR project. This work was supported by the Math-ematical, Information, and Computational Sciences Division subprogram of the O�ce ofComputational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D, and bythe National Science Foundation, through the Center for Research on Parallel Computation,under Cooperative Agreement No. CCR-9120008.References[1] AVERICK, B., CARTER, R., MOR�E, J., and XUE, G.-L., 1992. The MINPACK-2 testproblem collection, Technical Report ANL/MCS-TM-150, Revised, Mathematics andComputer Science Division, Argonne National Laboratory.[2] AVERICK, B. and MOR�E, J., 1994. Evaluation of large-scale optimization problemson vector and parallel architectures, SIAM Journal on Optimization 4, 708{721.[3] AVERICK, B., MOR�E, J., BISCHOF, C., CARLE, A., and GRIEWANK, A., 1994.Computing large sparse Jacobian matrices using automatic di�erentiation, SIAM Jour-nal Scienti�c and Statistical Computing 15, 285{294.19

[4] BISCHOF, C., CARLE, A., CORLISS, G., GRIEWANK, A., and HOVLAND, P., 1992.ADIFOR: Generating derivative codes from Fortran programs, Scienti�c Programming1(1), 11{29.[5] BISCHOF, C., CARLE, A., and KHADEMI, P., 1994. Fortran 77 interface speci�cationto the SparsLinC library, Technical Report ANL/MCS-TM-196, Mathematics andComputer Science Division, Argonne National Laboratory.[6] BISCHOF, C., CARLE, A., KHADEMI, P., and MAUER, A., 1994. The ADIFOR 2.0system for the automatic di�erentiation of Fortran 77 programs, Preprint MCS-P481-1194, Mathematics and Computer Science Division, Argonne National Laboratory,and CRPC-TR94491, Center for Research on Parallel Computation, Rice University.Forthcoming in IEEE Computational Science & Engineering.[7] BISCHOF, C., GREEN, L., HAIGLER, K., and KNAUFF, T., 1994. Parallel cal-culation of sensitivity derivatives for aircraft design using automatic di�erentiation,Proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on MultidisciplinaryAnalysis and Optimization, AIAA 94-4261, 73{84. American Institute of Aeronauticsand Astronautics.[8] BISCHOF, C., KHADEMI, P., BOUARICHA, A., and CARLE, A., 1996. E�cientcomputation of gradients and Jacobians by transparent exploitation of sparsity in au-tomatic di�erentiation, Optimization Methods and Software 7(1), 1{39.[9] BISCHOF, C. and EL-KHADIRI, M., 1992. Extending compile-time reverse modeand exploiting partial separability in ADIFOR, Technical Report ANL/MCS-TM-163,Mathematics and Computer Science Division, Argonne National Laboratory.[10] BISCHOF, C., JONES, W., MAUER, A., and SAMAREH, J., 1996. Experiences withthe application of the ADIC automatic di�erentiation tool to the CSCMDO 3-D volumegrid generation code, Proceedings of the 34th AIAA Aerospace Sciences Meeting, pagesAIAA 96{0716. American Institute of Aeronautics and Astronomics.[11] BOUARICHA, A., and MOR�E, J., 1995. Impact of partial separability on large-scale optimization. Preprint MCS-P487-0195, Argonne National Laboratory, Argonne,Illinois. Forthcoming in Computational Optimization and Applications.[12] COLEMAN, T., GARBOW, B., and MOR�E, J., 1984. Fortran subroutines for estimat-ing sparse Jacobian matrices, ACM Transactions on Mathematical Software 10,346{347.[13] COLEMAN, T. and MOR�E, J., 1983. Estimation of sparse Jacobian matrices andgraph coloring problems, SIAM Journal on Numerical Analysis 20, 187{209.20

[14] CONN, A.R., GOULD, N.I.M., and TOINT, P.L., 1992. LANCELOT, Springer Seriesin Computational Mathematics, Springer-Verlag.[15] CURTIS, A., POWELL, M., and REID, J., 1974. On the estimation of sparse Jacobianmatrices, J. Inst. Math. Appl. 13,117{119.[16] GIERING, R., 1992. Adjoint model compiler, manual version 0.2, AMC version 2.04,Technical Report, Max-Planck Institut f�ur Meteorologie.[17] GRIEWANK, A. and TOINT, P.L., 1982. On the unconstrained optimization of par-tially separable functions, in Nonlinear Optimization 1981 (M. J. D. Powell, ed.), Aca-demic Press.[18] GRIEWANK, A. and TOINT, P.L., 1982. Partitioned variable metric updates for largestructured optimization problems, Numerische Mathematik 39, 119{137.[19] GRIEWANK, A. and TOINT, P.L., 1984. `Numerical experiments with partially sepa-rable optimization problems, in Numerical Analysis: Proceedings Dundee 1983 (D. F.Gri�ths, ed.), Lecture Notes in Mathematics 1066, Springer-Verlag.[20] GRIEWANK, A., 1992. Achieving logarithmic growth of temporal and spatial com-plexity in reverse automatic di�erentiation, Optimization Methods and Software, 1(1),35{54.[21] GRIEWANK, A., 1993. Some bounds on the complexity of gradients, Jacobians, andHessians, in P.M. Pardalos, editor, Complexity in Nonlinear Optimization, 128{161.World Scienti�c Publishers.[22] GRIEWANK, A. and CORLISS, G., eds., 1991. Automatic Di�erentiation of Algo-rithms: Theory, Implementation, and Application, Society for Industrial and AppliedMathematics.[23] GRIEWANK, A., JUEDES, D., and UTKE, J., 1996. ADOL-C: A package for theautomatic di�erentiation of algorithms written in C/C+, ACM Transactions on Math-ematical Software 22, 131{167.[24] HORWEDEL, J., 1991. GRESS: A preprocessor for sensitivity studies on Fortranprograms, [22], 243{250.[25] JUEDES, D., 1991. A taxonomy of automatic di�erentiation tools, [22], 315{330.[26] KUBOTA, K., 1991. PADRE2, a FORTRAN precompiler yielding error estimates andsecond derivatives, [22], 251{262. 21

[27] LESCRENIER, M., 1988. Partially separable optimization and parallel computing,Annals Operations Research 14, 213{224.[28] RALL, L., 1981. Automatic Di�erentiation: Techniques and Applications, volume 120of Lecture Notes in Computer Science, Springer Verlag, Berlin.[29] ROSTAING, N., DALMAS, S., and GALLIGO, A., 1993. Automatic di�erentiation inOdyssee, Tellus, 45a(5), 558{568.[30] SOULIE, E. User's experience with Fortran compilers for least squares problems, [22],297{306.[31] TOINT, P.L., 1986. Numerical solution of large sets of algebraic nonlinear equations,Mathematics of Computation 46, 175{189.[32] TOINT, P.L., 1987. On large scale nonlinear least squares calculations, SIAM JournalScienti�c and Statistical Computing 8, 416{435.[33] TOINT, P.L., and TUYTTENS, D., 1990. On large-scale nonlinear network optimization, Mathematical Programming 48, 125{159.[34] TOINT, P.L., and TUYTTENS, D., 1992. LSNNO: A Fortran subroutine for solvinglarge-scale nonlinear network optimization problems, ACM Transactions on Mathe-matical Software 18, 308{328.

22

