
Language Constructs and Runtime Systemsfor Compositional Parallel ProgrammingIan Foster1 and Carl Kesselman21 Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, IL 60439, U.S.A.2 Beckman Institute, California Institute of Technology,Pasadena, CA 91125, U.S.A.Abstract. In task-parallel programs, diverse activities can take place concurrently, and com-munication and synchronization patterns are complex and not easily predictable. Previouswork has identi�ed compositionality as an important design principle for task-parallel pro-grams. In this paper, we discuss alternative approaches to the realization of this principle.We �rst provide a review and critical analysis of Strand, an early compositional programminglanguage. We examine the strengths of the Strand approach and also its weaknesses, whichwe attribute primarily to the use of a specialized language. Then, we present an alternativeprogramming language framework that overcomes these weaknesses. This framework uses sim-ple extensions to existing sequential languages (C++ and Fortran) and a common runtimesystem to provide a basis for the construction of large, task-parallel programs. We also discussthe runtime system techniques required to support these languages on parallel and distributedcomputer systems.1 IntroductionParallel programming is widely regarded as di�cult: more di�cult than sequential programming,and perhaps (at least this is our view) more di�cult than it needs to be. In addition to the normalprogramming concerns, the parallel programmer has to deal with the added complexity broughtabout by multiple threads of control: managing their creation and destruction, and orchestratingtheir interactions via synchronization and communication. Parallel programs must also manage aricher set of resources than sequential programs, controlling for example the mapping and schedulingof computation onto multiple processors.As in sequential programming, complexity in program development can be managed by providingappropriate programming language constructs. Language constructs can help both by supportingencapsulation so as to prevent unwanted interactions between program components, and by providinghigher-level abstractions which leverage programmer e�ort by allowing compilers to handle mundane,error-prone aspects of parallel program implementation.For example, the various languages that havebeen developed to support data-parallel programming achieve both these goals, albeit for a restrictedclass of programs [7, 9, 17]. Data-parallel programs exploit the parallelism inherent in applyingthe same operation to all or most elements of large data structures. Data-parallel languages avoidunwanted interactions by enforcing sequential semantics. They use data distribution statements toprovide a high-level, abstract syntax for specifying data placement, freeing the programmer fromthe labor of partitioning computation and translating between global and local addresses.Our research goal is to develop language constructs and associated tools to support the moregeneral class of task-parallel applications, in which multiple unrelated activities can take place con-currently. Task parallelism arises in time-dependent problems such as discrete-event simulation, inirregular problems such as those involving sparse matrices, and in multidisciplinary simulationscoupling multiple, possibly data-parallel, computations. The challenge when developing languageconstructs for task-parallel programming is to provide the modularity and abstraction needed for



ease of programming while maintaining the generality needed to support arbitrary parallel compu-tations.Compositionality has been proposed as a design principle for task-parallel programs. A compo-sitional programming system is one in which properties of program components are preserved whenthose components are composed in parallel with other program components. That is, the behaviorof the whole is a logical combination of the behavior of the parts. Compositionality can simplifyprogram development by allowing program components to be developed and tested in isolation andthen reused in any environment.In this paper, we describe various language constructs and runtime system techniques that havebeen proposed to support compositionality. We �rst use the example of Strand to show how the ba-sic ideas of compositional programming can be supported using a small number of simple concepts,namely monotone operations on shared objects, a uniform addressing mechanism, and parallel com-position. Then, we show how these same concepts have been incorporated into the CompositionalC++ and Fortran M extensions to the sequential languages C++ and Fortran, hence providing amore 
exible and accessible implementation of the ideas. Finally, we examine the runtime systemtechniques used to support these various compositional programming languages on parallel anddistributed computer systems.2 New Languages: Strand and PCNOne particularly elegant and satisfying approach to compositional task-parallel programming is tode�ne a simple language that provides just the essential elements required to support this program-ming style. This language can be used both as a language in its own right and as a coordinationlanguage, providing a parallel superstructure for existing sequential code. These dual roles require asimple, uniform, highly-parallel programming system in which:{ the structure of the computation, the number of concurrently-executing threads of control, andthe placement of these threads can vary dynamically during program execution,{ communication and synchronization operations are introduced into a program via high-levelabstractions which can be e�ciently implemented by the language compiler,{ patterns of communication can change dynamically,{ the functional behavior of parallel programmodules is independent of the scheduling or processorallocation strategy used,{ arbitrary parallel modules can be combined and will function correctly, and{ modules written in other languages can be incorporated.These goals motivate the design both of Strand and of the CC++ and Fortran M languages describedbelow.2.1 Strand DesignThe Strand language integrated ideas from earlier work in parallel logic programming [8], data
owcomputing [1], and imperative programming [15] to provide a simple task-parallel programming lan-guage based on four related ideas:{ single assignment variables,{ a global, shared namespace,{ parallel composition as the only method of program composition, and{ a foreign language interface. 2



Single-assignment variables provide a uni�ed mechanism for both synchronization and communi-cation. All variables in Strand follow the single-assignment rule [1]: a variable is set at most once andsubsequently cannot change. Any attempt by a program component to read a variable before it hasbeen assigned a value will cause the program component to block. All synchronization operationsare implemented via reading and writing these variables. New variables can be introduced by writingrecursive procedure de�nitions.Strand variables also de�ne a global namespace. A variable can refer to any object in the compu-tation, even another variable. The location of the variable or object being referenced does not matter.Thus, Strand does not require explicit communication operations: processes can communicate simplyby reading and writing shared variables.Unlike most programming languages which support only the sequential composition of programcomponents, Strand supports only parallel composition. A parallel composition of program com-ponents executes as a concurrent interleaving of the components, with execution order constrainedonly by availability of data, as determined by the single-assignment rule.The combination of single-assignment variables, a global namespace, and parallel compositionmeans that the behavior of a Strand program is invariant to the placement and scheduling of com-putations. One consequence of this invariance is that Strand programs are compositional: a programcomponent will function correctly in any environment. Another consequence is that the speci�cationof the location of a computation is orthogonal to the speci�cation of the computation. To exploitthese features, Strand provides a mapping operator which allows the programmer to control theplacement of a computation on a parallel computer.By allowing modules written in sequential languages to be integrated into Strand computations,the foreign language interface supports the use of Strand as a coordination language. Sequentialmodules that are to be integrated in this way must implement pure functions. The interface sup-ports communication between foreign modules and Strand by providing routines that allow foreignlanguage modules to access Strand variables passed as arguments.2.2 Strand CritiqueUnlike many parallel programming systems developed in a research environment, Strand has beenused extensively for application development in areas as diverse as computational biology, discreteevent simulation, telephone exchange control, automated theorem proving, and weather modeling.This work provides a broad base of practical experience on which we can draw when evaluatingthe strengths and weaknesses of the Strand approach. Analysis of this experience indicates threeparticular strengths of the Strand constructs:{ The use of parallel composition and a high-level, uniform communication abstraction simpli�esdevelopment of task-parallel applications featuring dynamic creation and deletion of threads,complex scheduling algorithms, and dynamic communication patterns. Complex distributed al-gorithms can often be expressed in a few lines of code using Strand constructs.{ Parallel composition and single assignment variables also enforce and expose the bene�ts of acompositional programming model. This eases program development, testing, and debugging,and the reuse of program components.{ The recursively-de�ned data structures and rule-based syntax that Strand borrows from logicprogramming are useful when implementing symbolic applications, for example in computationalbiology.This same analysis also reveals four signi�cant weaknesses which limit the utility of the Strandsystem, particularly for larger scienti�c and engineering applications.{ While the use of a separate coordination language for parallel computation is conceptually eco-nomical, it is not universally popular. Writing even a simple program requires that a programmerlearn a completely new language, and the logic-based syntax is unfamiliar to many.3



{ The foreign language interface is often too restrictive for programmers intent on reusing existingsequential code in a parallel framework. In particular, it is di�cult to convert sequential codeinto single program/multiple data (SPMD) libraries, as this typically requires the ability toembed parallel constructs in existing sequential code, something that Strand does not support.As a consequence, combining existing program modules with Strand can require signi�cantrestructuring of those modules.{ The Strand abstractions provide little assistance to the programmer intent on applying domaindecomposition techniques to regular data structures. In these applications, the principal di�cul-ties facing the programmer are not thread management or scheduling, but translating betweenlocal and global addresses, problems which have been addressed in data-parallel languages.{ The use of a new language means that program development tools such as debuggers and ex-ecution pro�lers have to be developed from scratch; it also hinders the application of existingsequential development tools to sequential code modules.2.3 Program Composition NotationIn a related research project stimulated in part by Strand and the Unity system [5], Chandy and Tay-lor investigated the feasibility of integrating single-assignment variables and concurrent compositionwith conventional imperative programming. This led to the development of Program CompositionNotation (PCN) [6]. Like Strand, PCN provides a parallel programming model based on single-assignment variables, a global address space, and concurrent composition. Its major contributionis to show how this model can be integrated with the conventional world of \multiple-assignment"variables and sequential composition. This produces a programming language that is both morecomplex and more expressive than Strand. In retrospect, however, it appears that while PCN ad-dressed some Strand de�ciencies, these were probably not the important ones. PCN still su�ers fromthe four essential weaknesses identi�ed in the preceding subsection.3 Language Extensions: CC++ and FMThe weaknesses of the Strand approach appear to derive in large part from the use of a new languageto express parallel computation. This observation suggests an alternative approach to compositionalprogramming in which traditional languages, such as C++ and Fortran, are extended to providethe central strengths of Strand: compositionality and high-level speci�cation of communication andsynchronization. (Support for symbolic applications appears less fundamental.) In principle, theselanguage extensions can address Strand's weaknesses by providing a common framework for paral-lel and sequential programming and simplifying the integration of existing code. It would also bedesirable for these extensions to support the speci�cation of data-parallel computations.The design of a language extension that supports compositional parallel programming requiressome analysis of what makes a programming language \compositional."Compositionality in Strand isachieved using three mechanisms. Single-assignment variables provide both an interaction mechanismbased on monotonic operations on shared state, and a uniform address space; parallel compositionprovides a concurrent interleaving. (State changes on single-assignment variables are monotonic inthat the value of a variable cannot be changed once written [4].) Together, these mechanisms ensurethat neither the order in which program components execute, nor the location of this execution, a�ectthe result computed. Other mechanisms can provide the same capabilities. For example, nonblockingsend and blocking receive operations on a virtual channel data type are also monotonic, and couldform the basis for a compositional programming language.These various consideration lead to the following additional design goals for compositional pro-gramming languages. 4



{ A language should de�ne just a small set of new language constructs; these new constructs shouldbe compatible with the basic concepts of the sequential base language.{ The new constructs should provide monotonic operations on shared program state, so as tosupport compositionality.{ The new constructs should be easily embedded in existing sequential code, so as to facilitate thedevelopment of parallel SPMD libraries.{ The language should retain support for 
exible communication and synchronization structures,and a data-driven execution model.{ The language should support interoperability, both with other compositional languages and withdata-parallel languages.These design goals have motivated the development of the parallel programming frameworkillustrated in Figure 1. Compositional programming is supported by small sets of extensions toC++ and Fortran 77 called Compositional C++ (CC++) and Fortran M (FM), respectively. Acommon runtime system, Nexus, is used by the compilers developed for both languages, facilitatinginteroperability. We describe the language extensions in the following.
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Parallel and Networked ComputersFig. 1. A task-parallel programming framework based on language extensions (CC++ and FM), a commonruntime system, and libraries implementing common abstractions such as virtual channels. The languageextensions can be used to construct libraries supporting a range of programming models, including messagepassing (MPCL), data parallelism (A++, HPF), and parallelism extracted automatically from derivativecomputations (ADIFOR).3.1 Compositional C++Compositional C++ [3], or CC++, is a general-purpose parallel programming language based onC++. CC++ de�nes six new keywords, designed to provide an essential set of capabilities from whichmany di�erent types of parallel programs could be constructed. For example, we can write CC++libraries that implement parallel programming paradigms such as synchronous virtual channels,actors, data 
ow, and concurrent aggregates [16].CC++ is not a purely compositional programming language. In order to guarantee composition-ality, unacceptable restrictions would have to be made on the C++ constructs that are availablein CC++. Thus, in designing CC++, our approach was to provide constructs that would enablerather than guarantee the construction of compositional modules. In most instances, compositionalmodules can be obtained by following simple programming conventions [4].5



CC++ provides three di�erent mechanisms for creating threads of control: the parallel block,the parallel loop, and spawned functions. The �rst two have a parbegin/parend semantics, while thespawned function creates an independent thread.CC++ borrows the idea of a single-assignment variable fromStrand. In CC++, a single-assignmentvariable is called a synchronization, or sync variable, and is distinguished by the type modi�er sync.A CC++ program can contain both sync and regular C++ variables. Programs that contain onlysync variables will be compositional. To support the development of compositional programs con-taining regular C++ variables, CC++ introduces atomic functions. Within an instance of a givenC++ class, only one atomic function is allowed to execute at a time. The operations speci�ed in thebody of an atomic function execute without interference. Thus, an atomic function is like a moni-tor [14]. If all accesses to a shared C++ variable takes place within the body of an atomic function,than the resulting program is compositional.The remaining aspects of C++ deal with the allocation of computation to processors and themethods used to access data on di�erent processors. The central issue is what happens to global andstatic data in a CC++ program. Our approach is to introduce a structure called a processor object.A processor object is a virtual processor, containing a private copy of all global and static data.Like other C++ objects, a processor object has a type declared by a class de�nition, encapsulatesfunctions and data, and can be dynamically created and destroyed. Each instance of a processorobject contains an address space from which regular objects can be allocated. As in Strand, thefunctional behavior of the program is independent of where the processor objects are placed.CC++ distinguishes between inter-processor object and intra-processor object references: apointer that can refer to an object in another processor object must be declared to be global.Global pointers provide CC++ with both a global name space and a two-level locality model thatcan be manipulated directly by a program. A global pointer can be dereferenced like any other C++pointer. However, dereferencing a global pointer causes an operation to take place in the processorobject referenced by that global pointer. Thus in CC++, communication abstractions are providedby operations on global pointers, while synchronization abstractions are provided by sync pointers.In summary, CC++ integrates parallel composition with sequential execution. It uses globalpointers to provide a uniform global address space and sync variables and atomic functions toimplement compositional interactions between program components.3.2 Fortran MFortran M (FM) [11] is a small set of extensions to Fortran 77 for task-parallel programming. FM isdesigned to support both the modular construction of large parallel programs and the development oflibraries implementing other programming paradigms. For example, FM libraries have been used tointegrate SPMD message-passing computations and data-parallel HPF programs into a task-parallelframework [10], and to implement distributed data structures. Although simple, the FM extensionsprovide the essential mechanisms required for compositional programming. Program componentscan encapsulate arbitrary concurrent computations and can be reused in any environment.Concepts such as pointers and dynamic memory allocation are foreign to Fortran 77. Hence,the FM design bases its communication and synchronization constructs on an existing concept: �leI/O. FM programs can dynamically create and destroy processes, single-reader/single-writer virtual�les (channels), and multiple-writer, single-reader virtual �les (mergers). Processes can encapsulatestate and communicate by sending and receiving messages on channels and mergers; references tochannels, called ports, can be passed as arguments or transferred between processes in messages,providing a restricted global address space.FM processes are created by process block and process do-loop constructs with parbegin/parendsemantics. Arguments passed to a process are copied in on call and back on return; common blocksare local to each process. A channel is a typed, �rst-in/�rst-out message queue with a single senderand a single receiver; the merger is similar but allows for multiple senders. FM constructs allow6



the programmer to control process placement by specifying the mapping of processes to virtualcomputers: arrays of virtual processors. Mapping decisions do not e�ect program semantics. A novelaspect of the FM extensions is that even complex programs can be guaranteed to be deterministic [2].In summary, FM integrates parallel composition with sequential execution. It uses channels bothto provide a uniform global address space and to implement compositional interactions betweenprogram components.4 Runtime SystemsCompilers for parallel languages rely on the existence of a runtime system. The runtime systemde�nes the compiler's view of a parallel computer: how computational resources are allocated andcontrolled and how parallel components of a program interact, communicate and synchronize withone another.Runtime systems for data-parallel languages are concerned primarily with the e�cient realizationof collective operations in which all processors communicate at the same time, in a structured fashion.Runtime systems for compositional task-parallel languages such as Strand, PCN, CC++, and FMare more complex, as they must support:{ multiple, concurrent threads of control;{ a data-driven execution model;{ dynamic allocation and deletion of threads, shared variables, and other resources;{ a global address space, whether based on single-assignment variables, global pointers, or channels;{ asynchronous access to remote resources; and{ e�cient sequential execution.In addition, task-parallel programs are often required to execute in heterogeneous environmentssuch as networked collections of multiprocessors.4.1 Strand and PCN: Interpreter-based Runtime SystemsThe implementation technology used to support the requirements just listed depends in part on whataspect of program performance is to be optimized. The goal of Strand and PCN implementatione�orts was to provide highly e�cient support for concurrent composition and lightweight processes.These goals were met using a interpreter- and heap-based runtime system. (Similar techniques havebeen used in abstract machines for Id and other functional languages [18].) Programs are compiled tothe instruction set of an abstract machine. A portable interpreter for this abstract machine handlesthe data-driven scheduling of lightweight processes. References to shared variables are tagged, anda runtime test is used to determine when a read or write operation is applied to an o�-processorreference. The operation is then implemented as a call to a machine-dependent communicationlibrary. This design allows the e�cient execution of programs that create thousands of processorsand switch frequently between threads of control. A disadvantage is that the use of a heap-basedstorage system and an interpreter hinders e�cient execution of sequential code.4.2 CC++ and FM: The Nexus Runtime SystemAn alternative approach to runtime system design is to focus on enabling e�cient execution ofsequential code. This implies an execution model based on a \heap of stacks" rather than a simpleheap, so that code generated by optimizing sequential language compilers can be used unchanged.Executable code generated by these compilers is linked with a runtime library implementing the basicabstractions needed for task-parallel execution, using existing message-passing and thread systemswhen possible. This approach is taken in the runtime system called Nexus that is used by bothCC++ and FM compilers. 7



Nexus Interface. Nexus provides �ve basic abstractions: nodes, contexts, threads, global pointers,and remote service requests [12]. Associated services provide direct support for light-weight thread-ing, address space management, communication, and synchronization. A computation consists of aset of threads, each executing in an address space called a context. An individual thread executesa sequential program, which may read and write data shared with other threads executing in thesame context. It can also generate asynchronous remote service requests, which invoke procedures inother contexts. Nodes, contexts, threads, and global pointers can be created and destroyed duringprogram execution. The abstractions have the following properties.{ The node abstraction supports dynamic acquisition and release of potentially heterogeneousprocessor resources.{ The context abstraction supports the creation of multiple address spaces in a single node. (Thiscorresponds to the CC++ processor object and the FM process.){ The thread abstraction supports the creation of multiple threads of control.{ The global pointer supports the implementation of a uniform global address space. (This corre-sponds to the CC++ global pointer and is used to implement the FM channel.){ The remote service request provides access to remote resources.Nexus as a Compiler Target. The translation from CC++ and FM constructs to the Nexus abstrac-tions is fairly straightforward. For example, an FM process is implemented as a thread executing ina dedicated Nexus context, with the context's data segments used to hold process state. This contextmust be allocated by the FM compiler prior to creating the thread, and deallocated upon processtermination. As an optimization, processes without state can be implemented as threads in a preex-isting context containing the appropriate code. This optimization can reduce process creation costsand, in some systems, scheduling costs, and is important for �ne-grained applications. A channel isimplemented as a message queue data structure maintained in the context of the receiving process;an outport is implemented as a data structure containing a Nexus global pointer to the channeldata structure. A send operation is compiled to code which packs message data into a bu�er andinvokes a remote service request to a compiler-generated handler which enqueues the message ontothe channel. A receive operation is compiled to code which unpacks a pending message into variablesor suspends on a condition variable in the channel data structure if no messages are pending.Heterogeneity. A novel aspect of the Nexus design is that it supports heterogeneity at multiple levels,allowing a single computation to utilize di�erent programming languages, executables, processors,and network protocols. In order to support heterogeneity, the Nexus implementation encapsulatesthread and communication functions in thread and protocol modules, respectively, that implementa standard interface to low-level mechanisms. Current thread modules include POSIX threads, DCEthreads, C threads, and Solaris threads. Current protocol modules include local (intracontext) com-munication, TCP sockets, PVM, IBM's EUI message-passing library, and Intel NX message-passing.Protocol modules for MPI, SVR4 shared memory, Fiber Channel, AAL-5 (ATM Adaptation Layer5) for Asynchronous Transfer Mode (ATM), and remote memory operations such as the get andput operations on the Cray T3D are planned or under development. When communicating betweencontexts on a global pointer, Nexus uses the most e�cient protocol available to the two contexts.Interoperability. Nexus provides a basis for interoperability between diverse parallel languages. In-teroperability involves a range of both mundane and complex issues relating to data structures,subroutine calling conventions, and the like. Our focus is on those issues that are particular toparallel computing. Because CC++ and FM are both implemented using Nexus facilities, parallelstructures in the two languages can both coexist and interact. For example, an FM program can in-voke a CC++ program, specifying the contexts in which it is to execute and passing as arguments anarray of Nexus global pointers representing the inports or outports of channels. The CC++ program8



can then apply send or receive functions to these global pointers to transfer data between contextsexecuting FM code and contexts executing CC++ code.5 ConclusionsThe goal of compositional programming is to simplify parallel program development by allowingcomplex programs to be developed from simpler components. In this paper, we have discussed avariety of approaches to the realization of this goal. A review of Strand, an early compositionalprogramming language, indicates both the advantages of a compositional approach and the disad-vantages of using a specialized language. A description of Compositional C++ and Fortran M showshow the advantages of compositionality can be exploited in more familiar settings by extending ex-isting languages with appropriate constructs. Finally, a description of the runtime support requiredfor compositional programming languages indicates that a relatively small set of simple mechanismssu�ces to support complex task-parallel computations on parallel and distributed computer systems.6 AcknowledgmentsThe Strand system was developed with Steve Taylor. We gratefully acknowledge the many contribu-tions of Mani Chandy to the work on CC++ and FM, and the outstanding implementation e�ortsof John Garnett, Tal Lancaster, Robert Olson, James Patton, Mei Su, Steven Tuecke, and MingXu. This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38, and by the National Science Foundation's Center for Research inParallel Computation under Contract CCR-8809615.References1. Ackerman, W.: Data 
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