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This form is known as a t-cycle D � Z form of an s-dimensional lattice rule [LK95].It is abbreviated to Q[t;D;Z; s];where D denotes the t� t diagonal integer matrix having positive diagonal elementsdi and Z denotes the t� s integer matrix having rows zi.The precursor of the lattice rule is the number-theoretic rule, introduced by Korobov[K59] and Hlawka [H62]. This is also de�ned by (1.2) above with t = 1. For anexpository account of these rules we refer to Niederreiter [N78], [N88], and Hua andWang [HW81]. A full history and detailed account of the current state of the theoryof lattice rules appears in a recent monograph by Sloan and Joe [SJ94].The D � Z form (1.2) has been used to derive many interesting results about latticerules (see, for example, [SL89] or [SL90]). It su�ers from two drawbacks. First, thereare many di�erent D � Z forms for the same rule. For example, it is easy to verifythat the simple two-dimensional seven-point lattice ruleQf = 17 7Xj=1 f �� j7(1; 2)�� (1:3)may be expressed as Qf = 17 7Xj=1 f �� j7(k; 2k)�� ;with k any integer relatively prime to 7. Other forms of the same rule includeQf = 114 14Xj=1 f �� j14(2; 4)�� and Qf = 149 7Xj2=1 7Xj1=1 f �� j17 (1; 2) + j27 (5; 3)�� : (1:4)All these are equivalent to (1.3). The second drawback to this form is that it maybe repetitive. This is illustrated in the �nal two forms; each quadrature point occurstwice in the second form and seven times in the third form. Much of the theory isconcerned with avoiding di�culties that arise because of this.To return to the general D�Z form (1.2), we note that it speci�es detD = d1d2 � � � dtabscissae, namely, the setA(Q) = (( tXi=1 ji zidi) : j` 2 [1; d`]; ` 2 [1; t]) : (1:5)As we have just seen, the elements need not be distinct. The number of distinctabscissae required by Q is referred to as the order of Q and is written �(Q). It is thenumber of distinct elements belonging to the set given in (1.5).De�nition 1.6 Let Q[t;D;Z; s] be a D �Z form of Q. It is termed nonrepetitive if�(Q) = detD = d1d2 � � � dt:2



Forms (1.4) above are repetitive. It is simple to show that for all forms�(Q) = detD=k = d1d2 � � � dt=k; (1:7)where k is a positive integer satisfying k j detD. When k = 1, the form is nonrepet-itive. Incidentally, when t > s and �(Q) is a power of some prime, an inequalitystronger than (1.7) is valid. Under these circumstances �(Q) cannot exceed the prod-uct of the s largest elements di (see Theorem 3.10 below).The proliferation of di�erent D � Z forms for the same rule presents a challenge to�nd a special unique D � Z representation. However, except for the special caseof projection-regular rules (see [SL90]), no unique D � Z form representation hasappeared before. In [SL89] a general partial solution is given. For every rule Q onecan �nd a canonical form Q[r;D;Z; s] in which r � s, the diagonal elements of Dsatisfy di+1 j di and dr > 1, and Z is of full rank. It turns out that for a given Q onlyone value of r and one matrix D satisfy these speci�cations; r is known as the rankand the elements d1; : : : ; dr are the invariants of Q. However, many possibilities forZ remain.In this paper we shall show that it is possible to obtain a unique D�Z representationfor a prime-power rule, that is, a rule Q for which �(Q) is a positive power of someprime (greater than 1). In this unique triangular form, Z is a column-permutedunit upper-triangular matrix. The proofs are constructive so it is straightforward todevelop an algorithm that produces this form for a prime-power rule.Some further background material that applies to all rules is covered in the nextsection. The unique triangular form is developed in the remaining sections, which aredevoted to prime-power rules.2 Background MaterialA vast number of di�erent D�Z forms are available to describe the same lattice ruleQ. However, these may be related by using a sequence of simple transformations tot, D, and Z that leave the rule Q invariant. We list some of these below.Theorem 2.1 The rule Q[t;D;Z; s] is unchanged if t, D, and Z are modi�ed byapplying one of the following transformations, or a sequence of them.(i) Replace zi by `zi for ` an integer satisfying gcd(`; di) = 1.(ii) Replace zi by zi + dix for x 2 �0.(iii) Replace zi by zi + (mdi=dj)zj for j 6= i, m an integer, and dj j mdi.(iv) (Row interchange) Interchange di and dj with a corresponding interchange of ziand zj. 3



(v) (Removal of overall common factor) If � is an integer for which di=� is aninteger and zi=� 2 �0, replace di by di=� and zi by zi=�.(vi) (Redundant row removal) If dt = 1 or zt = 0, remove dt from D and remove ztfrom Z. Then decrease the current value of t by 1.Proofs or demonstrations of the validity of each of these transformations are verysimple. The �rst three, given explicitly in [SL90], are the ones that retain t andD and alter rows of Z only. The remaining three (interchange of rows, elementaryscaling, and redundant row removal) are trivial.In view of the large number of D�Z forms available ab initio that describe the samelattice rule, the rest of this section is devoted to a few minor de�nitions that reducethe number of essentially trivial variants that we need to consider.The reader will have noticed that in any D�Z form, one may arbitrarily reorder therows Z, making a corresponding change in the order of the elements di. And, unlessthis is the only element of D, one may remove di and zi when di = 1. It is convenientto de�ne the following.De�nition 2.2 D is sequential or a D � Z representation is sequential ifd1 � d2 � � � � � dt > 1:To \reduce" any D �Z representation to a sequential representation is, in general, atrivial task.There are many ways of representing an individual point z=d.De�nition 2.3 The vector z=d, where z 2 �0 and d is a positive integer, is said tobe in proper form if at least one of the components of z is relatively prime with dand z=d 2 [0; 1)s. (Colloquially, z=d is in its lowest terms, and the point is in theintegration region.)De�nition 2.4 A t-cycle D � Z form is proper nontrivial if every element zi=di,i 2 [1; t], is in proper form and if elements di = 1 or zi = 0 do not occur.Pedagogically, the �nal phrase is not necessary because there is no proper form forthe origin 0. This point occurs in all lattice rules. The D � Z form includes thispoint, as may be seen in (1.2) by setting ji = di for i 2 [1; t]. The s-dimensionallattice rule Qf = f(0)is represented by (1.2) if, for all i 2 [1; t], either di = 1 or zi = 0. We refer to this asthe unit rule. This leads to an inconvenient but trivial exception.4



Theorem 2.5 All lattice rules, with the single exception of the unit rule, may beexpressed in a sequential, proper nontrivial D � Z form.The reader will readily con�rm that any D�Z form may be reduced to this form byusing the transformations of Theorem 2.1. Note that all but one of the three formsin (1.3) and (1.4) are proper nontrivial. This form, which can be obtained so easily,does have one interesting useful property.Theorem 2.6 Let Q[t;D;Z; s] be a proper nontrivial form of Q. Then �(Q) has afactor di for all i 2 [1; t].Proof. A simple argument, based on the structure of (1.2) yields this almost self-evident result. 2Corollary 2.7 When Q is a prime-power rule, that is, �(Q) = p
 for some primep and positive integer 
, then the elements of D in any proper nontrivial form of Qhave di = p
i .3 A Triangular Form for Prime-Power Lattice RulesIn the remaining sections we restrict our attention to prime-power rules. The primep is the same prime throughout these sections. This section is devoted to developingwhat we shall term (De�nition 3.5 below) a triangular D�Z form. We shall see thatsuch a triangular form is always available for prime-power rules. In Section 4 we shallshow that it is a canonical form; and in Section 5 we shall specify a unique triangularform.The following extension of the conventional unit upper triangular (uut) matrix playsa central role in our theory.De�nition 3.1 The t�s matrix Z is termed column-permuted unit upper-triangular(cpuut) if and only if there exist distinct column indices f�1; �2; : : : ; �min(t;s)g, where�j 2 [1; s], and Zk;�m = ( 1; when k = m,0; when k > m, m 2 [1;min(t; s)]: (3:2)When the column indices are f1; 2; : : : ;min(t; s)g, this is the conventional uut matrix.As an example we illustrate a 7 � 10 cpuut matrix with column indices given byf1; 2; 8; 6; 4; 5; 9g. In this illustration, X and W represent integers. Note that there5



are elements, denoted here by W , that are to the left (or west) of the pivot but neednot be zero. Their signi�cance will become apparent in Section 5.2666666666664 1 X X X X X X X X X0 1 X X X X X X X X0 0 W W W W W 1 X X0 0 W W W 1 X 0 X X0 0 W 1 X 0 X 0 X X0 0 W 0 1 0 X 0 X X0 0 W 0 0 0 W 0 1 X 3777777777775 (3:3)Theorem 3.4 Any D � Z form in which t � s and Z is cpuut is nonrepetitive.Proof. The abscissa set comprises all points of the form( tXi=1 jizidi) ; j` 2 [0; d`); ` 2 [1; t]:(Note that in these summations each parameter j` could have been permitted to takeany d` consecutive integer values. Here it is more convenient to use the limits 0and d` � 1 rather than the usual ones of 1 and d`.) The condition that two distinctparameter choices j01; j02; : : : ; j0t and j001 ; j002 ; : : : ; j00t should describe the identical pointimplies that the point parameterized by their di�erence j 01 � j001 ; j02 � j 002 ; : : : ; j0t � j 00t isthe origin. Thus, if this form is repetitive, there exist qi 2 [0; di), not all zero, suchthat ( tXi=1 qizidi) = 0:Taking the �m-th component of this and applying (3.2) above yields(m�1Xi=1 qiZi;�mdi + qmdm) = 0:Setting m = 1 gives q1 = 0; when q1 = q2 = � � � = qj�1 = 0, setting m = j yieldsqj = 0. It follows by induction that all coe�cients qi are zero, and so the form cannotbe repetitive. 2De�nition 3.5 A triangular form is a proper nontrivial form in which D is sequentialand Z is cpuut.We recall from De�nitions 2.2 and 2.4 that when D is sequential, all elements diexceed 1, and that in a proper nontrivial form, none of the zi are 0. Because Z iscpuut, it follows that in a triangular form the value of t cannot be greater than s.(If t were to exceed s, then all the elements of Z in rows s + 1; : : : ; t would be zeroand Z would then not be proper nontrivial.) A useful corollary of Theorem 3.4 is asfollows. 6



Corollary 3.6 A triangular D � Z form is nonrepetitive.It was shown in Section 2 (see Theorem 2.5) that with one exception, any lattice rulecould readily be expressed as described in the hypothesis of the next theorem.Theorem 3.7 Let Q = Q[t;D;Z; s] be a prime-power rule expressed in proper non-trivial D � Z form with D sequential. Then it may be re-expressed in triangularform.Note that in view of Corollary 2.7, all elements of D are powers of the prime p. Theproof of Theorem 3.7 is by induction. The key lemma follows.Lemma 3.8 Let j be an integer belonging to [1; s]. Suppose the prime-power ruleQ[t;D;Z; s] is a proper nontrivial D � Z form in which D is sequential and Z sat-is�es some of the cpuut conditions, namely, that there exist distinct column indicesf�1; : : : ; �j�1g, each belonging to [1; s] such that for m 2 [1; j � 1]Zm;�m = 1; Zk;�m = 0; k 2 [m+ 1; t]: (3:9)Then there exists a D � Z form of the same rule, whose elements satisfy all of theabove as written with j replaced by j0 = j + 1 and t replaced by t0 � t.Proof. Let zj = (�1; �2; : : : ; �s). Since zj=dj is proper, at least one component ofzj, say �`, has no factor p. In view of Theorem 2.1(i), we may replace zj by �zj(mod dj), where � is such that ��` � 1 (mod dj), and set column index �j = `. Thisleaves Zj;�j = 1; note that zj=dj is still proper; elements of zj that were previouslyzero remain zero; and elements having a factor p retain this factor p.In light of Theorem 2.1(iii), we may subtract any integer multiple of zj from zk whendk � dj , j 6= k, that is, when k > j. Thus we may replace zk by zk � Zk;`zj. It iseasy to check that, after doing this,Zk;�m = 0; k 2 [m+ 1; t]; m 2 [1; j]:Finally, since we have altered zk, k > j, some elements zk=dk may no longer be proper.If necessary, we must apply the \housekeeping" transformations (ii), (v), and (vi) ofTheorem 2.1 to reduce these to their lowest terms and to remove any row in whichdk = 1 or zk = 0. Then we reorder these rows to make D sequential. The resultingform is as stated in the lemma. 2Proof of Theorem 3.7 The proof follows by induction by noting that, when j = 1,the hypothesis of the induction step coincides with the hypothesis of Theorem 3.7.And when j = t0, the conclusion of the induction step coincides with the conclusionof the theorem; that is, the form is a triangular form. 27



We close this section with a somewhat unsophisticated result, which is convenientlater in de�ning a canonical form and placing bounds on invariants.Theorem 3.10 Let Q[~t; ~D; ~Z; s] be any D � Z representation of a prime-power ruleQ in which ~d1 � ~d2 � � � � � ~d~t � 1 and Q[t;D;Z; s] be a triangular form. Thendi � ~di for i 2 [1; t], and�(Q) � ~d1 ~d2 � � � ~dT ; T = min(~t; s): (3:11)Note that the nonunit elements of ~D are sequential, but in addition ~di = 1 and ~zi = 0may occur.Proof. The proof is straightforward. Following Theorems 2.5 and 3.7, the �rst formmay be reduced to triangular form using only the elementary transformations ofTheorem 2.1. Each transformation leaves all diagonal elements unchanged, reducesone of them, removes one of them, or alters their order. However, if members of anordered sequence are individually changed, but not increased, and then the sequenceis put in order again, the value of the new i-th member does not exceed the valueof the original i-th member. (This simple result is a specialization of Lemma 2 of[N73].) This leads directly to di � ~di for i 2 [1; t], and these inequalities applied to(1.7) yield (3.11). 24 Canonical D � Z Forms for Prime-Power RulesIn [SL89] the celebrated Kronecker group representation theory was applied to thegroup formed from the abscissa set of a rule Q to establish the following:Each lattice rule may be expressed in a nonrepetitive t-cycle D � Z form in whichdi+1 j di, i 2 [1; t� 1] and dt > 1. Moreover, in such a representation, the values of tand of the di are unique to the rule Q and are termed the rank of Q and the invariantsof Q. Such a form is termed a canonical form.The above was established in [SL89] for all lattice rules. In the context of prime-powerrules, clearly any triangular form as de�ned in the preceding section satis�es theseconditions to be a canonical form.Theorem 4.1 Any triangular form Q[t;D;Z; s] of a prime-power lattice rule Q is acanonical form, that is, t is the rank of Q and the di, i 2 [1; t], are the invariants.The reader who is already familiar with this theory may omit the �rst part of thissection.A nonabstract interpretation of an invariant as the order of some subgroup has beenexploited by Lyness [L93]. To make this paper self-contained, we wish to establish8



Theorem 4.1 without recourse to group theory. To this end we need to construct anindependent de�nition of the invariants of an s-dimensional rule Q.To do this, we �rst introduce the projections of an s-dimensional lattice rule. Aw-dimensional projection of a lattice rule is obtained by removing the same set ofs � w components from each abscissa. There are many w-dimensional projectionsof Q, depending on which set of components is removed, or equivalently which setis retained. We denote by Qfi1;i2;:::;iwgs the w-dimensional rule obtained from Q byretaining only the speci�ed components. Here i1; : : : ; iw are w distinct integers lyingin [1; s]. It is trivial to show that any such projection of a lattice rule is anotherlattice rule. Moreover, we have the following readily veri�ed result.Lemma 4.2 The w-dimensional projection Qfi1;i2;:::;iwgs of a rule Q having represen-tation Q[t;D;Z; s] has representation Q[t;D;Z;w], where Z is obtained from Z byretaining only columns i1; i2; : : : ; iw.De�nition 4.3 The invariants of a prime-power lattice rule Q are de�ned asn1 = �1(Q); nw = �w(Q)=�w�1(Q); w 2 [2; t];where �w(Q) = maxi1;:::;iw2[1;s]� �Qfi1;i2;:::;iwgs� :Each of the distinct w-dimensional projections of the s-dimensional rule Q has itsown order, some integer between 1 and �(Q). We have de�ned entities �w(Q) as themaximum of these orders, and the invariants ni as the ratio of successive values of�w(Q).It is clear that the invariants ni(Q) de�ned above are uniquely de�ned in terms of Q.They are independent of any D�Z representation that we might employ. This is allthat is needed pro tempore. Later, their more familiar properties will appear.Lemma 4.4 Let Q[t;D;Z; s] be a triangular form of a prime-power lattice rule Q.For w 2 [1; t], let Qfi1;i2 ;:::;iwgs be one of the w-dimensional projections of Q. Then� �Qfi1;i2;:::;iwgs� � d1d2 � � � dw; (4:5)and equality prevails for at least one w-dimensional projection.Proof. Lemma 4.2 shows that Qfi1;i2;:::;iwgs = Q[t;D;Z;w], where Z is obtained fromZ by retaining columns i1; : : : ; iw. A direct application of Theorem 3.10 yields theinequality (4.5).To show that we can obtain equality, let f�1; : : : ; �tg be the column indices of thetriangular form. If we take ik = �k, k 2 [1; w], the second part of (3.2) shows thatrows w + 1; : : : ; t of Z contain only zeros. Retaining only the �rst w rows of Z, onemay verify that the resulting w-cycle D � Z form is triangular. It then follows fromCorollary 3.6 that � �Qf�1;�2;:::;�wgs� = d1d2 � � � dw. 29



This lemma shows that �w(Q) in De�nition 4.3 coincides with d1d2 � � � dw obtainedfrom any triangular form of Q. It follows that ni in this de�nition coincides with di,so establishing Theorem 4.1. The key point here is that the D-matrix in a triangularform is unique to Q. That is, a di�erent reduction of a di�erent representation ofQ cannot lead to a di�erent sequential D-matrix. This justi�es our use of the terminvariant without any recourse to the underlying group theory required in [SL89]. Wenow restate Theorem 3.10 in a trivially modi�ed form.Theorem 4.6 Let Q be a prime-power rule, having rank r and invariants n1, n2; : : :,nr. Let Q[t;D;Z; s] be any D � Z form representing Q. Thenni � �i; i 2 [1; r];where �1 � �2 � � � � � �r are the r largest elements of D.For a prime-power rule we have now de�ned a canonical form as any form Q[r;D;Z; s]which represents Q and in which r is the rank and D contains the invariants inorder. We have demonstrated one canonical form, the triangular form of the precedingsection. The rest of this section is concerned with the conditions that must be satis�edby Z for Q[r;D;Z; s] to be a canonical form.De�nition 4.7 When t � s, a t� s matrix Z is rank-de�cient modulo p if and onlyif there exist integers �i, i 2 [1; t], not all zero (modulo p) such thattXi=1 �izi = 0 (mod p): (4:8)Corollary 4.9 When t � s, a t� s matrix Z is rank-de�cient modulo p if for somezi, all elements have a factor p, that is, zi 2 p�0.These are standard de�nitions adjusted in an obvious way to a special situation.Theorem 4.10 A necessary and su�cient condition that Q[t;D;Z; s] should be acanonical form of a prime-power rule Q is that D is sequential and Z is full rankmodulo p.Proof. Examination of Theorems 2.5 and 3.7, which justify the reduction of anyprime-power rule to triangular form, reveals that the �rst four operations, (i){(iv),of Theorem 2.1 do not alter detD. In fact, they do not alter any individual di, but(iv) alters their order. Thus, if D is sequential, only two transformations of Theorem2.1 alter the elements di; these are (v) and (vi) (in the case zi = 0). However, thesecan be applied only if either some zi and di have an overall factor (which must bea multiple of p), or if zi = 0. In either case, in light of Corollary 4.9, Z is rank-de�cient modulo p. Thus, in the process of reduction from a general D � Z form to10



a triangular form, if one encounters a situation in which D is sequential and Z is offull rank modulo p, the rest of the reduction does not alter D. This establishes thatthe condition is su�cient.On the other hand, if Z is not of full rank, a relation of form (4.8) above exists. Thismay be expressed in the formzk � k�1Xi=1 �izi = 0 (mod p);where k is the largest index j for which �j 6= 0 (mod p). Then successive use oftransformation (iii) of Theorem 2.1 leads to zk = 0 (mod p). Since D is sequential,applying Theorem 2.1(v) or (vi) reduces t and reduces or removes some value of di.Thus t is not the rank, and the form is not a canonical form. 2We conclude this section with the following result.Theorem 4.11 A necessary and su�cient condition for a D � Z form of a prime-power rule to be canonical is that it be nonrepetitive with sequential D.Proof. The proof follows from the circumstances that all canonical forms have thesame matrix D; and for one form (Theorem 3.4) �(Q) = detD, the condition for theform to be nonrepetitive. On the other hand, for a repetitive form �(Q) < detDinvalidating the possibility that D contains only the invariants. 25 Prime-Power Rules: A Unique Canonical FormWe look for a unique but recognizable canonical form for prime-power rules. Forexample, the triangular form is readily recognizable. To check that Z is cpuut andthat D is sequential is the work of a moment. Up to now we have shown that D isunique. But there are still many possibilities, all cpuut, for Z. To obtain a di�erentmatrix Z, we might have chosen a di�erent �j at the j-th stage of the reductionof Lemma 3.8. When dk � dj, we may subtract any multiple of (dk=dj)zj from zkwithout altering the rule. And when dj = dj+1, we may simply interchange zj andzj+1. In this section we proceed to place various additional conditions on Z with aview to making it unique. (Some of these may appear to be arbitrary.)We deal �rst with the possibility of altering zk by adding or subtracting a multiple ofzj. When k > j, this will destroy the cpuut property of Z. But, when k < j, one mayapply transformation (iii) of Theorem 2.1 to replace zk by zk � �(dk=dj)zj for anyinteger �. Since zj has zeros in positions �1; �2; : : : ; �j�1, this leaves the correspondingcomponents of zk unaltered. Because Zj;�j = 1, we may compel the values of Zk;�j tolie in the interval [0; dk=dj) simply by setting � to be the integer part of (dj=dk)Zk;�j .Thus, in addition to (3.2), we now impose the restrictionZk;�m 2 [0; dk=dm); k 2 [1;m� 1]: (5:1)11



We have made this part of our speci�cation (De�nition 5.6 below) of an ultratriangularform, which will be unique. We may think of restriction (5.1) being applied separatelyafter the triangular form of Theorem 3.7 has been obtained. However, it may beinserted into the algorithm implicit in the proof of Lemma 3.8. This induction steplemma then requires (5.1) form 2 [1; j�1] in addition to (3.9). This may be combinedwith the second part of (3.2) to yieldZk;�m 2 [0; dk=dm); k 6= m: (5:2)A consequence of imposing (5.1) is that when dk = dj , we �ndZk;�j = Zj;�k = 0: (5:3)One of these follows from the cpuut nature of Z (the �rst if k > j). The other followsbecause the only integer element of [0; 1) is 0.We now impose a second condition. This restricts the choice of indices f�1; �2; : : : ; �tg.We recall that in the proof of Lemma 3.8, �j is chosen to be any value ` for whichthe `-th component of zj has no factor p. We now remove this choice. �j is to bethe smallest value of ` for which the `-th component of zj has no factor p. Thus wechoose the indices in a deterministic manner. This restriction is equivalent toZm;k=p is an integer for k 2 [1; �m � 1]: (5:4)Note that this does not clash with the condition that m�1 of these integers (namely,the ones in positions �1; �2; : : : ; �m�1) are zero as a result of Z being cpuut. This isillustrated in the Z-matrix (3.3) above. The elements denoted by W are those thathave a factor p. One desirable feature of this restriction is that it goes nearly all theway to ensuring, that if a unit upper triangular Z is possible, it will be the uniqueform. Indeed, if all the di are distinct, this is already the case. It still appears thatwhen dk = dk+1, one may �nd �k+1 < �k. However, in view of (5.3) above, these rowsof Z may be interchanged without violating earlier restrictions. Our �nal restrictionis dk = dk+1 ) �k < �k+1: (5:5)We conclude this section with a de�nition that embraces restrictions (5.1), (5.4), and(5.5) and with the major theorem of this section.De�nition 5.6 An ultratriangularD�Z form for a prime-power rule is one in which(i) D is sequential,(ii) zi=di is proper,(iii) Z is cpuut with column indices f�1; �2; : : : ; �tg,(iv) Zm;k=p is an integer for k 2 [1; �m � 1],12



(v) if dm = dm+1, then �m < �m+1, and(vi) Zk;�m 2 [0; dk=dm), k 6= m.Clearly (i), (ii), and (iii) simply assert that this is a triangular form. The conditionsof (vi) for which k > m are already included in (iii). It will appear later that (iv) and(v) may be replaced by the condition on f�1; �2; : : : ; �tg of Theorem 5.10 below. Therest of this section is devoted to proving the following:Theorem 5.7 All prime-power rules Q have a unique ultratriangular D � Z form.We know already that t (the rank) and D (containing the invariants) are unique.To prove this theorem, we then need to show that Z is unique. In general, di�erenttriangular forms of the same rule may be based on di�erent column indices. We nowshow that the column indices f�1; �2; : : : ; �tg in an ultratriangular form are unique. Itturns out that the t-tuple f�1; �2; : : : ; �tg is the smallest of the various possibilities inthe sense of the following standard lexicographic ordering.De�nition 5.8 Let f�1; �2; : : : ; �tg and f� 01; � 02; : : : ; � 0tg both be t-tuples containing apermutation of a subset of the integers 1; 2; : : : ; s. This standard ordering is de�nedby f�1; �2; : : : ; �tg < f� 01; � 02; : : : ; � 0tgwhen 9` such that �k = � 0k for k 2 [1; `� 1] and �` < � 0̀.According to this ordering the \smallest" t-tuple possible is f1; 2; : : : ; tg, while the\largest" one possible is fs; s� 1; : : : ; s� t+1g. If s � 9, the ordering coincides withthe natural ordering of the s-digit integers (base 10). For example, with s = 9 wehave f6; 4; 3g < f7; 1; 2g simply because 643 < 712.De�nition 5.9 A triangular D � Z form is termed to have a minimal t-tuple ofcolumn indices if there is no other triangular D � Z form of the same rule Q with asmaller t-tuple (in the sense of De�nition 5.8).Theorem 5.10 For a prime-power lattice rule, a triangular D�Z form that satis�esitems (i) through (v) of De�nition 5.6 has a minimal t-tuple of column indices.Proof. To establish this result, we shall show �rst that for k < �` the k-th componentof each abscissa of Q that has zeros in positions �1; : : : ; �`�1 is of the form �p=d` forsome integer �. To prove this latter result, we letc = ( tXi=1 jizidi) ; ji 2 [0; di);13



be such an abscissa. Since c has zeros in positions �1; : : : ; �`�1, an argument similarto that used in the proof of Theorem 3.4 shows that ji = 0 for i 2 [1; ` � 1].Suppose d` = d`+1 = � � � = d`+m > d`+m+1. Then application of item (v) of De�nition5.6 gives �` < �`+1 < � � � < �`+m. Since we are treating ck with k < �`, it follows thatk < �i for all i 2 [`; ` + m]. Thus m + 1 applications of item (iv) of De�nition 5.6reveal that Zi;k=p is an integer for i 2 [`; ` + m]; hence, the contribution to ck fromthese m+ 1 terms is a multiple of p=d`.Finally for i � ` +m + 1, we have di < d` so that di = d`=(�p), for some � � 1. Itthen follows that each contribution to the abscissa c has a k-th component that is amultiple of p=d` (including possibly a zero multiple), and so c has a k-th componentof the form �p=d`.To prove the desired result, let us suppose there was a smaller t-tuple, say f� 01; � 02; : : : ; � 0tg.Let ` be the �rst index for which � 0̀ < �`. Then we see that Q has an abscissa c0that has a component 1=d` in position � 0̀ and zeros in positions �1; : : : ; �`�1. However,since � 0̀ < �` and c0 has zeros in positions �1; : : : ; �`�1, we have already shown abovethat the � 0̀-th component of c0 is of the form �p=d`. This is a contradiction. Thusthere cannot be an index t-tuple smaller than the f�1; �2; : : : ; �tg t-tuple for the D�Zform satisfying items (i) through (v) of De�nition 5.6. 2This is a great help. Given any rule, the invariants and the rank are �xed. It goeswithout saying that of all possible triangular forms, there must be one having aminimal t-tuple of column indices. And, of possibly many choices of Z, we haveshown that our choice of ultratriangular form is one that employs such a minimalt-tuple.Lemma 5.11 A triangular form in which the t-tuple of column indices is minimaland in which condition (vi) of De�nition 5.6 is satis�ed is unique to the prime-powerrule Q.Proof. As has already been pointed out, we need only prove that Z is unique. We�rst use induction to prove that columns �1; : : : ; �t of Z are unique. Suppose Z andW are two alternative forms of a Z-matrix having all the properties of De�nition 5.6.Since both zk=dk and wk=dk are abscissae of Q, we de�neck = zk �wkdk ;and this is also a lattice element. As such, it may be expressed in the formck = tXi=1 jk;izidi : (5:12)Theorem 5.10 shows that both Z and W have the same indices �1; : : : ; �t. Also, sinceboth Z and W are cpuut, then they have the same �1-th column (all elements beingzero except for the �rst element which is 1).14



Let us suppose columns �1; : : : ; �m�1 of Z coincide with the corresponding column ofW , but that for some k, Zk;�m 6= Wk;�m. (Note that such a value of k must be lessthan m.) Taking components �1; �2; : : : ; �m�1 of (5.12) in turn, we �nd successivelyjk;1 = jk;2 = � � � = jk;m�1 = 0. Specializing to component �m givesCk;�m = Zk;�m �Wk;�mdk = tXi=m jk;iZi;�mdi = jk;mdm ;with the �nal equality following because Zi;�m = 0 for all i 2 [m+ 1; t]. ThusZk;�m �Wk;�m = jk;m dkdm : (5:13)Since both Zk;�m andWk;�m satisfy condition (vi), that is, they are both in the interval[0; dk=dm), it follows that (5.13) can be satis�ed only if jk;m = 0.It follows from (5.13) that, contrary to the hypothesis, Zk;�m = Wk;�m for all k,and so column �m of Z and W also coincide. Thus the hypothesis that columns�1; �2; : : : ; �m�1 of Z and W coincide leads to the same being true of column �m andto jk;m = 0 for k 2 [1;m].An elementary inductive process leads tojk;m = 0 8k;m 2 [1; t]:This establishes that wk = zk, k 2 [1; t], and so Z =W from which we conclude thatZ is unique. 26 Concluding RemarksThe principal result of this paper is the derivation of a unique canonical form for afundamental class of lattice rules, namely, rules of prime-power order. Particularlyencouraging is that this form is easy to recognize. Moreover, since the various proofsare constructive in nature, it is not di�cult to construct an algorithm based on theseproofs, which reduces any D� Z form for a prime-power rule into an ultratriangularform.An interesting feature of this paper is that no use has been made of group theory,as in [SL89]; of lattice theory (in the form of generator matrices), as in [LS�93] or[LK95]; or even of the order property of individual lattice points, as in [L93]. Theentire theory is developed independently, starting from an elementary de�nition (1.1)and employing only elementary transformations of integer matrices D and Z. Thebibliography is composed of related papers. None are needed to understand thispaper.Naturally, both authors are in favor of exploiting all advanced theory when applica-ble. But it appeared in our development that elementary matrix theory is generally15
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